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The Four Color Theorem is in a set of mathematical questions that are very

simple to state but amazingly complex to answer. It goes as follows, “given any

map, are any more than 4 colors required to color the map in such a way that no

two areas which share a border also share a color?”(2). It was thought to be proven

by Alfred Kempe for nearly a decade using a unique but unsuccessful process later

referred to as Kempe chains. It wasn’t until 1913, with George Birkhoff’s treatment

of reducibility, was true progress from the “proof” of Kempe to be made. From here,

Heinrich Heesch explored reducibility with an improvement on the established A-,

B-, and C-reducibilities, finding something algorithmically sound in D-reducibility

and his subsequent discharging methods. Then Karl Durre introduced the first,

somewhat rudimentary, computer program of D-reducibility. From here the exten-

sive use of the supercomputers of the era helped seal the fate of the long, unfinished

theorem, with Wolfgang Haken and Kenneth Appel at the helm. We seek to ex-

amine the history of this theorem from the proof of Kempe to the utilization of

reducible configurations and discharging methods of Durre and Heesch and into the

eventual proof of the theorem itself.
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CHAPTER I

INTRODUCTION

The origin of the Four Color Theorem is a banal one. In 1852, the mathe-

matician Francis Guthrie noticed that a map of the counties of England was colored

using only four colors. As he perused more maps he found the same results. He

came up with a conjecture that four colors was the absolute maximum needed to

color a map so that no countries that share a border share a color. He showed this

to his younger brother, Frederick, who was studying under Augustus De Morgan.

De Morgan was intrigued by this problem and wrote to William Hamilton about it.

Hamilton found no interest in it, but De Morgan was enthralled. So began the 125

year journey from inception to proof of the Four Color Theorem.

1.1 Maps and Graphs

What is a map? A map itself is a special case of a graph. A graph is composed

of a pair of sets, V and E. We write this as G = (V, E) where V , the elements of

which are the vertices of G, typically labeled v1, v2, etc. The other set E contains

unordered pairs of vertices. A pair of vertices, say (vj, vk) ∈ E is called an edge.

Physically we think of this (vj, vk) as an arc connecting the two points vj and vk.

Two vertices, vj and vk, are said to be adjacent if (vj, vk) ∈ E. We exclude G in

which there is only one v ∈ V or G such that E is empty. We also are only concerned

with graphs that are planar, or can be drawn in R2 such that for any two edges,

(vj, vk) and (vl, vm) in E, the only intersection will occur at their endpoints. Now,

putting a graph in a plane is like assigning our vertices coordinates and connecting
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the vertices that make up the pair in the edge sets by arcs. The resulting planar

graph in R2 is called a map.

1.2 Coloring and Dual Graphs

What then, makes a coloring? A vertex coloring is a mapping, say f : V → C

where every vj ∈ V is assigend a color in a set of colors, say C. A proper vertex

coloring is one in which for (vj, vk) ∈ E, f(vj) 6= f(vk). A map divides the plane

into a collection of disjoint sets known as regions. The borders of these regions are

made up of closed circuits of adjacent vertices, v1, v2, ..., vk−1, vk, v1. Two regions

that share a pair of adjacent vertices of this collection are said to border each other.

This type of coloring and the coloring seen in maps are connected by the idea of a

dual graph.

A dual graph of G is a graph G′ = (R,E) in which our R is composed of a

vertex from each region, and our E is composed of pairs of these regions that share

a border. In this scenario, a proper coloring is g : R → C where g(rj) 6= g(rk)

when rj and rk border each other. Thus, it is easy to see that the proper vertex

coloring of a G′ has an analong to a proper coloring of its regions. It should be

noted, however, that as we move through our timeline of mathematicians, we will

start with colorings on regions and move into colorings on vertices. The dual graph

makes the process mostly trivial. (see figure 1)
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Figure 1. Proper Coloring on a Graph and its Dual

With the nature of graphs, dual graphs and colorings established, we can look at the

idea of Kempe chains and their importance in the proof of the Four Color Theorem.

This sets the stage for the focus of this paper, which is the history of the proof of

the Four Color Theorem. It begins with Alfred Kempe, who used an interesting

method to “prove” the Four Color Theorem. The trick that Kempe used, which

was to create chains along pairs of colors, popped up again and again through the

many steps of the final proof of the theorem. Sadly, Kempe’s proof was wrong and

the real race towards a comprehensive proof began.

The next mathematician to use Kempe chains was George Birkhoff. In his

study of reducibility in graphs he introduced the concepts of rings and schemes and

in turn opened new doors for the future proof of the theorem. He also makes a

prophetic claim: that a set of reducible rings exists that every map would contain.

This becomes the crux of the proof of Haken and Appel. After Birkhoff, the next

mathematician to move forward with the proof was Philip Franklin.

Dr. Franklin explored the theorem from the vantage point of size. Given

what was currently known about the five-chromatic map, the smallest map that

requires five or more colors, he showed that this map would have at least 26 regions.
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Thus, he proved that every map containing 25 regions or fewer could be properly

colored. This approach proved to be too narrow in scope, though, and something

more computational proved to be more appropriate.

This is where Heinrich Heesch and Alfred Durre stepped in. Heesch made

considerable progress with his carefully constructed reductions of graphs known as

C and D reduciblities. Heesch also constructed a process which would be known

as discharging. Discharging involved assigning charges to vertices based on their

degree and then moving them along edges, hoping to find a reducible configuration

after positive charges have been collected. A configuration is a regular graph whose

outer vertices form a circuit of size four or greater. Also, the bounded regions have

triangular borders, every triangle is the border of a region, and inner vertices exist.

(2, 155-156). Without this work, Haken and Appel would have found great difficulty

in their approach to the proof of the theorem.

Wolfgang Haken and Kenneth Appel are the heroes of this story. Their very

careful and systematic approach to the proof of the Four Color Theorem took them

to many different universities and allowed them to collaborate with many different

mathematicians. Their perseverance paid off, however, and in 1976 they announced

their results to the world.
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CHAPTER II

KEMPE CHAINS

Kempe chains were a clever idea implemented by Alfred Kempe in an at-

tempt to prove the Four Color Theorem. It would later be seen in his proof of the

Four Color Theorem that, although Kempe’s utilization of chains was very useful,

Kempe had actually proven the less-strict Five Color Theorem, when his proof was

found to have an error by Pearcy Heawood. For the purposes of the definition of

Kempe chains, the colorings will be on vertices, where coloring the regions them-

selves becomes an easy analog utilizing the aforementioned dual graph. Consider a

planar graph G that has a coloring and at least one degree four vertex, say x. We

remove x and color the four other incident vertices with blue (b), green (g), yellow

(y), and red (r). This leads us to a problem, though, since we would need a fifth

color for our missing vertex x. Kempe’s suggestion was to start from an arbitrarily

selected blue-colored vertex and create a subgraph by following the edges from this

vertex through all vertices colored b or y. (1) Note that the edges between the

vertices in this subgraph and the rest of the original graph connect vertices colored

b or y with vertices colored g or r. Thus, a Kempe chain is a mapping f(v) from

V into a finite set of colors say C wherein C contains at least two members. Thus

an a − b chain would be the maximally connected subgraph of G containing all

vertices colored with a or b. Kempe used this chain idea for his proof of the Four

Color Theorem. His proof breaks up into three main cases; two in the four degree

situation and a five degree situation. (1)
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2.1 Kempe’s Proof

Case one simply involves the situation where our subgraph does not contain the

vertex adjacent to x that we colored y. Thus we must change the coloring of all

vertices colored b to y and all vertices colored y to b. This will remain a proper

coloring since our beginning vertex x will now only be adjacent to vertices colored

y, g and r. Thus we are left with x being able to be colored b. (1)

Case two involves a cyclical Kempe chain. In this case, the subgraph includes

the vertex adjacent to x that we colored y. It seems at first that the Kempe chain

might not work here, since a switching in color would still leave x adjacent to four

different colors. The solution is a simple observation. If a path exists between the

vertices colored b and y, then there can’t be one between the vertices colored g and

r. This is due to the fact that a Kempe chain that forms a cycle will separate the

plane. As a result, our Kempe chains will not cross. Thus, we start our chain from

r and go through all vertices colored r or g. This allows us to alternate between r

and g and will leave x adjacent to b, y, and g. (1)

Now, the degree-five case. Let us create a Kempe chain starting from our

b-colored vertex and move out to all the edges containing b’s and y’s. If the situation

arises where x is not adjacent to a vertex colored y in our chain then we simply

toggle our colors so that we can color x with b. (1) If we cannot create a chain

containing y then we abandon that chain and instead focus on one with b and g,

instead. Again, if the situation arises where x is not adjacent to a vertex colored

g then we toggle the colors so that x can be colored b. Now, if this chain doesn’t

contain g, then we have to make two Kempe chains to make this work. We will

create two chains starting from the two vertices colored r.

From the first, we create a chain from the r-colored vertex surrounded by

the b − g chain created earlier. This will be a r − y chain. From the r-colored
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vertex surrounded by the b and y chain we create an r and g chain. The goal of

this seemingly messy process is to free up our original vertex x, to be colored r. (1)

Since the r and g chain cannot reach the vertex adjacent to x colored g, that will

free up x to be colored r. Thus we have a proper coloring of our planar graph.

This was to be Kempe’s proof of the Four Color Theorem for just over a

decade. It was widely accepted, due partly to the general disinterest towards the

theorem itself. Then, in 1889, Pearcy Heawood discovered an inconsistency in

Kempes proof which breathed new life into the interest of the theorem itself. The

flaw was found in the cyclical Kempe chain, utilized in case two. The two chains

created, the r − g chain and the r − y chain can actually have nodes that are

shared, so the toggling of colors could sometimes lead to an improper coloring with

4 colors, but a sufficient coloring with 5. Thus Heawood showed that Kempe had,

in fact, proven a less-strict five color theorem. His work, however, was utilized later

in something called unavoidable sets which would then be utilized in the the final

proof of the Four Color Theorem. (1)
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CHAPTER III

RINGS IN MAPS

George Birkhoff was one of the first mathematician to take Kempe chains

and effectively use them in true progress towards the eventual proof of Four Color

Theorem, following Heawood’s upheaval of Kempe’s proof. In Birkhoff’s paper “The

Reducibility of Maps” he goes through four well known reductions used by graph

theorists towards a proof for the theorem, before introducing new reductions using

Kempe chains.

3.1 Rings

He begins by discussing rings contained in a map. Rings themselves are cyclical

arrangements of n regions where n > 3 and each region only shares a border with

the region preceding it and the region following it. (7) Note that this allows ar-

rangements of regions with no inner regions and those with inner regions, (see figure

2). With a ring, say R, in a map, the map will be divided into three separate areas,

say A, B and R. We will refer to the partial graph of two regions in the graph by

A + R, where A and R are the only regions included in the partial graph. Since

both A and B are bordered by R, if a proper coloring of A+R and B +R will allow

for the same arrangement of colors on R, perhaps with a permutation, then we will

have a proper coloring for the map M itself. Now we move to considering the chains

of paired colors. Consider a graph S, containing a ring R of size four. We define

a line as a joining of two regions that are on the same Kempe chain. The physical

representation of this being a line segment drawn between them. Our focus will be
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the collection of all the lines in pairs of colors of regions in the ring R. In other

words, we will be examining colorings on R by utilizing pieces of Kempe chains. It

follows then that if an a − b chain connects region α of ring R to region β of ring

R, and if another chain of colors a − b connects region β to another region, say γ,

of ring R, then there exists an a− b chain connecting α to γ. (7)

Figure 2. A Ring in a Map.

Lastly we notice that, considering our regions α and β, which are either in

a single or pair of colors will either be joined by a chain containing these colors or

a chain with regions γ and δ such that the regions occur in a cyclical order on the

ring itself and will be joined by a chain of the complementary colors. This makes

sense since we are located on a ring that is properly colored and thus we can have

alternating colors on the chain or, perhaps, a cycle of all four. Also, a new coloring

can easily be obtained by transposing complementary colors. This all leads to the

following idea; a given collection of lines on R gives rise to a permuted collection

of lines in which complementary sets of lines are unaltered and the corresponding

colors are permuted on R in any way so that all those connected by these lines are

transposed together. (7)
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Consider our map M and region B + R. Let’s replace B + R by a set of

regions, say B′, such that there are k regions that retain the same n boundary lines

as R. Thus we have a map B′ + A that we will assume is colored. We have a finite

number of choices of regions for B′ which gives us possible choices for the proper

coloring of A. Thus we will happen upon a set of colorings via our lines for A + R,

with the same colorings in place for R. This idea works similarly if we begin with

region A + R and work our way towards a set of colorings via lines for B + R. (7)

Consider that if any set of two colorings from lines, for the k regions, share at

least one coloring, then we can say that our R is reducible! Then, for the n regions

we can define a reducing number, kn for R. It is clear that, if two such colorings are

shared in our sets, that such a map would be reducible in the sense that we can use

a graph with fewer regions that, if colored properly, can be extended to our original,

larger graph. Also, any coloring for the reduced graph could easily be extrapolated

to the original graph itself.

Now we can show that any ring of four regions in a regular map is reducible

and the reducing number is zero. We begin with a ring R of four regions, say α1

through α4. Consider the same areas A, and B from earlier, but where A′ and B′

are formed from A + R and B + R, whilst shrinking A and B down to a vertex and

joining them to α1 and α3. Thus, we find the colorings for the ring to be a, b, a, b or

a, b, a, c. If the coloring works for both A + B′ and B + A′, then we have a coloring

for R! In any other case, we have the colorings, let’s assume, a, b, a, b for A + B′

and a, b, a, c for B + A′. Let’s consider a second choice for A′, wherein we reduce

A to a vertex and connect it to α2 and α4. (7) This yields a coloring of a, b, a, b or

a, b, c, b for A′ + B.

The only case in need of consideration is the second one, since the first

one is already in A + B. So, now we have a, b, a, b for A + B′ and a, b, a, c and
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a, b, c, b for A′ + B. Now, looking at the colorings for A + B′, we have either an

a, d line connecting regions α1 and α3 for which we will obtain a coloring a, b, a, c

by permutation, or an b, c line will connect our regions colored b and we can get

a, b, d, b, again by permutation. Either way, our colorings will be similar to the one

found in the colorings for A+B′. Thus we can conclude that any ring of four regions

is reducible and we have a reducing number of 0. (7)

3.2 Ring of Five Regions

Now let’s consider a map containing a ring of five regions instead. Since every

regular map contains a five-sided figure, and considering our previous foray into

reductions of four-region rings, we can assume these graphs will always contain a

ring of five regions. Clearly, showing that map containing a ring of five regions is

reducible to a map containing a ring of four regions will, in effect, show it is four

colorable. Thus, we would wish to show the reducing number for a ring of five

regions is 1. (7)

We would like to show that for our sets of colorings for A + R and B + R,

there exists at least one coloring in common, wherein A + R and B + R are allowed

to have fewer than six regions. This will allow us to consider A+R and B +R to be

just our ring and a single contained region. The proof of such a thing relies more on

patience than cleverness. Considering the colorings we desire and our permutations

along the Kempe chains we have utilized previously, a mere careful consideration of

our map yields a solid proof.

The other results that Birkhoff came across include the structures of the

maps which can be reduced this way, or rather, what is the nature of regular maps

M containing no rings of four regions, or of five regions except about a single region?

The conclusion being that a series of rings will enclose any arbitrary area of the map
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which you focus on. The simplest example of this is a map composed of 12 faces of

a dodecahedron.

Birkhoff goes on to thoughtfully consider what this means for the progress

of the Four Color Theorem, which is the area we are most keenly interested in.

Considering the ring of six regions is a very different problem from the five and

four region cases we’ve already explored. Again, it all depends on circumstance for

reducibility. This is the slight flaw in Birkhoff’s approach. To test all graphs, by

hand, to find complete reducibilities this way would be infeasible. Though at the

time, Birkhoff had great foresight and noted that “All maps can be colored in four

colors, but only by means of reductions of a more extensive character applicable

to sets of regions bounded by any number of rings.” (7, 125) Thus, as we move

into more complicated configurations, we need a more streamlined and concrete

method of determining what is reducible and what isn’t. Considering this work was

being done around 1913, the computing power necessary for such configurations was

decades away. In the meantime, Philip Franklin took the torch from Birkhoff for

the next step in the proof of the Four Color Theorem.
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CHAPTER IV

25 OR FEWER

Philip Franklin set about to use Birkhoff’s approach to reductions to prove

that any map containing 25 regions or fewer, is four-colorable. Franklin is the first

in our line of mathematicians to collect all the characteristics of the concept of an

irreducible map. The Birkhoff Diamond is a popular example of this. The irre-

ducible map that we are most concerned with is the five-chromatic map. It would

be the smallest (in number of regions) map such that no proper four coloring exists

for it. Irreducible maps contain the following properties:

4.1 Properties of Irreducible Maps

1. Each vertex belongs to three and only three regions.
2. No group of less than five regions forms a multiply connected portion of the
map. (Consequently there are no two-, three- or four-sided regions and no multiply
connected regions.)
3. No group of five regions forms a multiply connected portion of the map unless
the group consists of the five regions surrounding a pentagon.
4. No edge is surrounded by four pentagons.
5. No region is completely surrounded by pentagons.
6. No even-sided region is completely surrounded by hexagons. (6, 225)

Logically enough, if it is found that no such map exists, or rather, that

every map contains a reducible configuration, then the Four Color Theorem would

be proven. From here Franklin goes on to show that any irreducible map, if it

exists, must contain more than 25 regions. Consequently, he shows that any map

containing 25 regions or fewer is four-colorable.
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Consider the well-known Euler formula, a0 − a1 + a2 = 2, where a0 is the

number of vertices, a1 is the number of edges and a2 is the number of regions. We

can make this formula more specific since we are in a irreducible map wherein any

three regions only touch one vertex and where no region has less than five sides by

saying 2a1 = 3a0 =
∑
5≤v

vAv. Av represents the number of regions with v sides in

our map. A quick combination of these equalities can tell us that a1 = 3(a2 − 2)

and a0 = 2(a2− 2). (6) Now, knowing that we are in an irreducible map along with

our two new facts leads us to an equality of interest to the Four Color Theorem.

A5 = 12 +
∑
7≤v

(v − 6)Av, again where Av is the number of regions of v sides in

the map. This is an explicitly stated version of a theorem of Kempe’s, which

says: “Every map containing no triangles or quadrilaterals and having three regions

abutting on each vertex contains at least twelve pentagons.” (6, 226) Thus, we have

some more information to work with regarding our irreducible map. Furthermore,

Franklin states that irreducible maps must also contain one of the following: A

pentagon adjacent to two other pentagons, a pentagon adjacent to a hexagon, or a

pentagon adjacent to two hexagons. Considering the previous equalities we coaxed

out of the irreducible maps, the proof of such a statement easily falls out.

Consider a map that contains none of these combinations of regions and count

the number of vertices that belong to a hexagon and pentagon. Counting shows

that we have the number of vertices of hexagons which do not touch a pentagon

will be more than twice the number of hexagons in the map. This is due to the fact

that pentagons isolated from hexagons or other pentagons will give up five vertices

apiece, two pentagons adjacent only to each other will give eight vertices up and

lastly a pentagon adjacent to a hexagon will give up four vertices. So, with none

of the ealier assumed combinations we would have at least 4A5 + 2A6 vertices or
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v > 4A5 + 2A6. But from our previous inequality, A5 = 12 +
∑
7≤v

(v − 6)Av and an

obvious one 0 ≥
∑
7≤v

(7− v)Av we get
∑
5≤v

Av + 12 ≤ A5 or
∑
5≤v

Av + 12 ≤ 2A5 + A6.

Now, since
∑

5

Av = a0/2 + 2 we can say that a0/2 + 14 ≤ 2A5 + A6 or v + 28 ≤

4A5 + 2A6 which contradicts our earlier inequality! These inequalities are also

important as they allow us to make a statement about regular graphs, particularly,

v∑
r=1

(6− dr) ≥ 12, where v represents the number of vertices and dr represents the

number of vertices of degree r. This statement will prove useful in the formation of

discharging procedures utilized by Hakken and Appel.

These facts aren’t limited to irreducible maps. As a result, if the configu-

rations listed above could be shown to be reducible, then the Four Color Theorem

would seemingly be proven. Sadly, at the time of this paper, no known reductions

existed for these configurations, but other, more complicated configurations did

have reductions, leaving room for hope for a proof.

As is the way in the world of mathematics, Franklin relies on the work of

prior mathematicians to prove these configurations are reducible. Namely, he refers

to the concept of Kempe chains to help out with these proofs. Let us first consider

the configuration where a side of a hexagon surrounded by a hexagon and three

pentagons. This is a reducible configuration. Clearly if this were present in an

irreducible map, a few clever border erasings would yield something smaller than

an irreducible map and thus, colorable map. (6) Frankin goes on to describe more

and more complicated versions of this configuration and how all of them are, again,

reducible using some clever erasing of borders and application of previous knowledge.

As we move through the proofs of these configurations being reducible, we
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can see the true scope of the difficulties that the Four Color Problem creates. There

are literally an infinite number of cases to go through and even though Franklin and

Birkhoff are describing ways of classifying them, we need to be much more specific

and systematic to make real progress towards a solid and complete proof. Even so,

the approach that Franklin takes through the myriad of pentagonal configurations,

again from our concept of irreducible maps, yields the final result that“every map

containing 25 or fewer regions can be colored in four colors.” (7) is important. The

conclusion was drawn from the idea that every configuration with 25 or less regions

was reducible, so any irreducible maps must have more than 25 regions. Hence, any

map with 25 or fewer regions must be four-colorable.
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CHAPTER V

REDUCIBILITY

The systematic approaches that we are looking for will come from mathe-

matician Heinrich Heesch. Heesch was observing a possible proof of the theorem

from the vantage point of what are called irreducible configurations. At that time

mathematicians considered looking more carefully at the five-chromatic map, that

is, the smallest map that can only be properly colored with 5 or more colors. In par-

ticular, they began to look more carefully at the properties of this five-chromatic

configuration and other configurations which were, in face, reducible. Since the

existence of a five-chromatic map implies that it is a normal map, configurations

overtook maps as a focus and become the most powerful tool in proving the theorem.

We need a few definitions to fully understand the importance of this approach.

5.1 Configurations

A configuration is a regular graph whose outer vertices form a circuit of size four

or greater. Also, the bounded regions have triangular borders, every triangle is the

border of a region, and inner vertices exist. (2, 155-156). To clarify, a normal map is

a regular map which is saturated, meaning no new vertices can be introduced, and

also every face is bounded by a triangle. (2, 151) Of course, regular maps are maps

where every vertex has the same degree. Primarily, these configurations appear as

subgraphs of normal graphs and again become very important as our discussion

progresses. (see figure 3)
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Figure 3. A Four-Colored Birkhoff Diamond.

As Heesch considered this set of reducible configurations, he remarked that

it could have as many as 10,000 members (5). This set of unavoidable reducible

configurations consists of all the reducible configurations that every normal config-

uration would contain and would be sufficient to prove our theorem. Obviously,

fact-checking something like that by hand would be incredibly time consuming.

Thus, reductions became very important. He was at the forefront of two methods

of reduction called C, and later D and an approach that would later be coined as

a “discharging procedure” by Wolfgang Haken, one of the two eventual provers of

our theorem. The beauty in these approaches was that they were sufficiently al-

gorithmic enough to lend themselves to programming, which is where the theorem

eventually met its match.

5.2 Color Extendibility

Let us first look at the concept of D-reducibility. This type of reducibility has to

do with what has been coined “color extendibility”. Color extendibility has to do

with examining a ring of the graph and its boundary coloring, a proper coloring

of the ring. Essentially we will have to sift through all the boundary colorings of
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rings to find those which can be extended back inside the configuration with no

alteration whatsoever. Those that meet this criterion will be referred to as being

good from the onset which was a term coined by both Haken and Appel. An

essential boundary coloring is one that uses the fewest necessary colors. The next

step in establishing D-reducibility in a given configuration is finding a concise way

to describe the configuration in a computer program.

5.3 Adjacency Matrix

Here we turn to a cyclic numbering of the vertices and, consequently, the oft-used

adjacency matrix. An adjacency matrix is a square matrix whose rows and columns

are numbered in accordance with our renumbering of our vertices in our configu-

ration. A 1 is input into the Ai,jth spot if and only if (vi,vj) ∈ E . As a result of

our working with graphs which have no loops, our adjacency matrices always have a

diagonal of 0s. This structure is easily input into a computer and makes an ideal av-

enue for the programmer. Durre, who worked closely with Heesch, developed color

matrices to help with color extendibility. In these matrices, the columns correspond

to the vertices of the map, where as the rows are labeled 0, 1, 2, and 3 for our four

colors. Thus, if vertex 1 has color 2, then entry A2,1 will be a 1. Otherwise, 0’s are

placed in the entries. This matrix provides an easy, programmable way to look at

extendibility. In fact, with the proper indexing of vertices, the first r columns of a

coloring for a configuration will make up the boundary coloring. If a complete color

matrix can be formed from them then we have direct color extendibility.

5.4 Goodness of Colorings

In this context of color extendibility, we are looking for configurations that have

boundary colorings that are good from the onset and essential. A boundary col-
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oring is a coloring of the boundary circuit of a configuration. This requires us to

look at the coloring of the vertices of our configuration. Two colorings are said to

be equivalent if they have the same size and differ only by a permutation. So, we

then have classes of boundary colorings, and from this class we must pick a repre-

sentative. This is the essential bounday coloring. The essential bounday coloring is

the “smallest” coloring with respect to lexicographical order. The total number of

essential boundary colorings for r regions, called, say e(r), is: for r even,
3(r−1) − 1

8

and for r odd,
3(r−1) + 5

8
. (2, 190) Also, if every boundary coloring is good from the

onset then it is obvious we have a reducible configuration and thus a map that has

a proper coloring. It is also obvious that this simplistic case will not be the case in

nearly all of our configurations so, what can we do when this is not the case?

This is where we employ the concept of Kempe interchanges, which is again

closely related to the Kempe chains used earlier. If any conflict occurs with two

colors meeting, we simply alternate this color with another to produce a desirable

outcome. This is a perfect avenue for the use of computers, as we do not want to

examine the thousands of boundary colorings for a given configuration individually

nor the countless permutations. So, quite a few definitions become necessary to be

precise enough for a program. Suppose we have a five-chromatic map G containing

a configuration C. This G is the smallest map, in number of regions, that is five-

chromatic and is also known as a minimal triangulation. (2) We obtain a new graph,

G′ by eliminating the inner vertices and edges of C. Our new graph has the propery

of having an exceptional face, that is, a region not bordered entirely by triangles.

The vertices that form its edge are our bounding circuit. Examining these circuits

becomes important via block decompositions.
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5.5 Block Decompositions

We can use block decompositions of our vertices to help with this analysis. A block

decomposition is a decomposition of our bounding circuit into blocks, say B1, B2,

etc. (2). A block, or Kempe block, is a maximally connected subgraph of two

arbitrarily chosen colors. This also brings about a definition of a color-pair choice.

A color-pair choice is a partition of our colors [0, 1, 2, 3, 4] into the set of a [0, k], and

the set of [1, 2, 3]\[k]. Thus, by looking at our color-pair choice, we produce Kempe

blocks in our boundary circuit, which we can then call Kempe sectors. (2) With

the particular structures of maps we are considering, there are either 1 or an even

number of Kempe sectors in a given configuration. Given the four colors we have to

choose from, it is seen that there are only two types of Kempe sectors, those colored

with our k and the other chosen color, and those with the two remaining colors.

Thus we have only two block decompositions to consider. The amazing thing about

these block decompositions is that they are only affected by the boundary coloring

and the color pair choice.

Thus, the configurations themselves are unimportant in our decompositions!

Let us discuss what the decompositions actually are. Supposing r is a natural

number, and taking a set M = 1, 2, 3, . . . , r, then M is decomposed along a set of

non-empty pairwise disjoint sets B1, B2, . . . , Br where the union of these sets covers

M . Blocks Bk and Bl are said to abut if, for a cyclically labeled vertex t lying in

Bk, t + 1 lies in Bl. Now we define block decomposition through a theorem (2)

Theorem: Let G be a colored, connected graph without bridges or final edges all of

whose faces are bordered by triangles. Suppose we have a coloring a = (a1, . . . , ar)

and a color pair choice are given. Then a partition of the index set (1, . . . , r) into

blocks B1, · · · , Bs is a block decomposition (with respect to a and w) if and only if:
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1.Each block is a union of Kempe sectors of the same type.
2.Blocks cannot mutually overlap.
3.If two blocks abut at one vertex they must abut at exactly one other vertex. (2)

This allows us to define an important term in decomposition, that is, chro-

modendron. If we consider a boundary coloring, a color-pair choice, k, and the block

decomposition that follows, the chromodendron is the graph whose vertices are the

blocks of the graph and edges are pairs of abutting blocks. These chromodendrons

are trees, in the graphical sense, meaning they contain no cycles and are connected.

(2)

5.6 D-Reducibility and Goodness of Colorings

Now we have enough information to move closer to a definition of D-reducible config-

urations. In fact, we now know enough for a rough definition. So, loosely speaking,

a configuration is D-reducible when every boundary coloring can be changed, with

a finite number of Kempe changes, into colorings that are good from the onset.

When the set of all boundary colorings for a configuration C are good from the

onset, we will call it φ0(C). When they are not, we must use Kempe interchanges.

The Kempe interchanges work in an algorithmic fashion. This algorithm helps us

to find higher order of “goodness” in terms of our colorings via the notion of classes.

Thus, we are taking a block decomposition and trying to take the resulting bound-

ary colorings and make them all good from the onset or good of some stage. We

have discussed being good from the onset, wherein no alteration is necessary for our

boundary colorings. Intuitively then, being good of stage 1, also known as class 1

good refers to a boundary coloring whose block decomposition can be changed into

a boundary coloring that is good from the onset with the choice of a color pair, i.e.,

letting it become a member of φ0(C). Now suppose φ is a set of boundary colorings
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for a configuration. Let a be an element of φ(r), which we know to be our set of

all boundary colorings of size r. The element a is said to be “φ good” where a

itself isn’t a member of φ, but instead if there exists a color-pair choice such that

for the subsequent block decomposition, there is a Kempe interchange that makes

a an element of φ. A further distinction of φ is φn(c). φn(c) is the set of established

boundary colorings that are good of class ≤ n, again referring to the algorithmic

process of using Kempe changes. So, we say a boundary coloring is good of stage

n + 1 if it is φn(c) good. (2) Finally we are in the position to define what it means

for a configuration to be D-reducible:

A configuration C is said to be D-reducible if φ(C) = φ(r). Note that φ(C)
is the same as φn0(c). This means there exists an index n0 such that no boundary
colorings of goodness class n0 + 1 exist. This means that every boundary coloring
is good of one stage or another. Also, a configuration is said to be D-irreducible if
φ(C) is a proper subset of φ(r). (2, 205)

The D-reduction we have just discussed is the final important category of the

other types of reducibilities. The other reductions are named, conveniently enough,

A, B, and C. The A, B, and C are actually tributes to various mathematicians who

worked on the Four Color Theorem over the years. A is for A. Errera, B symbolizing

Birkhoff, and C for C. E. Winn. D-reducibility came last and was named so to keep

the ordering which is never surprising in a mathematics context. As far as how they

are inter-related, it turns out that A is a special case of B, B is a special case of C

and D is a special case of C when thought of in terms of reducers. (2)

5.7 Reducers

A reducer is a pair (S, θ) of a graph S and a surjective mapping from the set of outer

vertices of a configuration C to be reduced to the outer vertices of C. The reducer

has the following properties; 1) the mapping θ must preserve the property of being
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a neighbor, and 2) the original distinct outer vertices of S, with respect to θ, cannot

mutually overlap. By looking at the colorings as θ maps them to the vertices of

our reduced map, we will establish the different classifications of reducibilities, and

thus will give us a better look at D-reducibility itself.

A configuration C will be called A-reducible if it has a reducer (S, θ) such

that: 1) It can only be θ-properly embedded in a minimal triangulation and 2) Each

θ-compatible boundary coloring is directly color-extendible.

Now, a minimal triangulation is a normal graph that will not permit the

existence of a proper four coloring. This is also known as a “minimal criminal”

(2, 152) in the sense that its existence would contradict the Four Color Theorem.

Consider a minimal triangulation G, a configuration C and a reducer, (S, θ). To

θ-properly embed a configuration means that two outer vertices of C that have the

same image under our mapping θ cannot be neighbors in our original G. Thus, an

A-reducible graph is, essentially, as small a graph as is possible where in we can

still extend our boundary coloring to our reduced configuration. An example of this

would be the four star in three colors. (2, 210) (see figure 4)

Figure 4. A 2-Colored and 4-Colored 4-Star.
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Again, consider a configuration C with (S, θ) as a reducer. This reducer,

just like A, exists in a way such that C can only be θ-embedded in a minimal trian-

gulation. This configuration will be B-reducible, if: Each θ-compatible boundary

coloring will be either good from the onset or good from stage 1 and will be C-

reducible if: each θ-compatible boundary coloring will be good from some stage. (4,

213)

Considering D-reductions as a special case of C-reductions goes as follows.

For a configuration C, consider S to be the boundary circuit. If we allow θ to be the

identity mapping, then C will only be properly embedded in a minimal triangula-

tion. By our definition of D-reduction, we can see that it is also C-reducible. This

leads us to the conclusion that, in fact, C-reductions can be considered the most

general of the types of reductions. This would make them seem like the best candi-

date for a programming approach. D-reducibility triumphed, however, as Appel put

it, “All D-reducible configuration are C-reducible but, in the approach we took it

was easier to prove D-reducibility and we tried to prove configurations C-reducible

only if they were not D-reducible” (8) There was one more ingredient missing from

a full proof of the theorem, and again Heesch was the mathematician at the helm.
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CHAPTER VI

DISCHARGING

The successful approach to the four color problem involved more than re-

ducibilites. What was necessary was a set of configurations, say S, which we call

unavoidable in the sense that any minimal counterexample to the four color prob-

lem must include a member of the set. The existence of an unavoidable set S such

that each member of S is reducible would imply the truth of the four color theorem.

Heesch invented a clever procedure known as a “discharging method” which became

crucial in the construction of an unvaoidable set. Though he later abandonded it,

Haken and Appel would take and refine his idea to complete their proof.

Heesch’s idea was to assign a “charge” of 6 − k to each vertex of degree k.

It can be seen from Euler’s formla that the sum of the charges in a regular planar

graph will be 12. For the case of a minimal counterexample, given the proof covered

in section 4.1 on Franklin’s work which allows us to look only at vertices of degree

5 or greater we can expand the sum of the charges to

v5 − v7 − 2v8 − · · · − (s− 6)vs = 12 (6.1)

where vr is the number of vertices of degree r and s is the largest vertex degree. The

fact that vr = 0 for r ≤ 4 is important. A discharging procedure is a set of rules

that redistribute the charges among the vertices so the net charge remains the same.

After the charges are redistributed, the net charge of our configuration will remain



27

positive, so some vertices will have a positive charge. These particular vertices give

way to a set of configurations that form an unavoidable set. This unavoidable set

must be examined to ensure that the resulting outcomes are reducible. If they are

not, the discharging procedure is refined and attempted again.

Each discharging procedure will give rise to an unavoidable set of configura-

tions. A simple example of this can be found with a simple discharging procedure:

distribute 1/5th of the charge from each degree 5 vertex to any adjacent vertex of

degree 6 or more. The resulting positive configurations, which can be seen below in

Figure 5, form an unavoidable set. The logic here is fairly simple. We consider what

types of vertices can have a positive charge. A vertex of degree 5 cannot lose all of

its charge, so it must have a neighbor of degree less than 7, or rather, of degree 5 or

6. This will give us the situation presented in Figure 5. A vertex of degree 6 has a

charge of 0 and cannot change. Clearly, a vertex of degree 8 or more cannot collect

enough charges to become positive. The degree 7 vertex is the interesting case. It

begins with a charge of -1, so it must have at least 6 neighbors of degree 5 to become

positive. The regularity of this graph implies that two of the degree 5 vertices must

be adjacent, so this possibility has already been accounted for. This last case gives

a good feeling for how complicated the analysis of a discharging procedure can get.

Figure 5. A 5-5 and 5-6 Chain.
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6.1 M and N Rule

There was also a method of looking at a configuration to decide whether or not it was

likely to be reducible, i.e., if it contained any obstacles. Heesch invented a procedure

for which, if a configuration failed, it was not reducible at all, but passing warranted

a second look. The first place we look is for any vertex, of degree d, connected

to fewer than d − 3 vertices, the vertex may be removed to produce a smaller

configuration. Then we consider pairs of degree 5 vertices which are connected to

a third vertex and to one another, but to no other vertices. Then you may remove

both of the degree 5 vertices to make a pair of smaller configurations. Lastly, we

look for any cut-vertex of degree d available that is connected to less than d − 2

vertices. A cut-vertex being a vertex that, once removed, leaves the configuration

disconnected. That cut-vertex is removed to form two smaller configurations. The

process is repeated until no further vertices can be removed. Failure comes if, after

all steps are completed, all of the remaining configurations are irreducible. This

procedure is quite nice for wittling down large configurations by hand. As Hakken

and Appel applied this procedure, they made note of something which became a

rule in and of itself. This is called the m and n rule. For a given ring of size n, the

reducibility of the ring increases very quickly as the number of vertices inside of the

ring, say m, increases. If the configuration satisfies m > 3n
2
− 6 then it will contain

a sub-configuration free of any obstacles and will almost always be reducible. The

most important method, though, was the discharging procedures, honed by Hakken

and Appel. (4)
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6.2 R-, S-, And L-Dischargings

The discharging procedures are varied but let us look at a simple example to begin

with. Suppose we have a configuration C with charge distribution, and a procedure

p to move our charges in this configuration. P , as a simple discharging, would be

applied as follows: for any vertex, V5, where V5 represents a vertex with degree 5,

which is connected to a major vertex, Vk, that is a vertex whose degree k ≥ 6, a

charge of 30 will be moved from V5 to Vk. Thus our configuration c has a new charge

distribution, lets say q. Now, when we look at the individual charge on a vertex,

called V (q), there are only a few situations for a vertex V where it can be positive:

1) V has degree 5 and either 1 or 0 major neighbors.
2) V has degree 7 and has between 3 and 7 neighbors of degree five.
3) V has degree 8 and has between 5 and 8 neighbors of degree five.
4) V has degree 9 and has between 7 and 9 neighbors of degree five.
5) V has degree 10 and either 9 or 10 neighbors of degree five.
6) V has degree 11 and has 11 neighbors of degree five. (4)

Now the task becomes creating a set of configurations, let’s call it U , such

that each case from 1 to 6 is represented and each member of U is a part of the

unavoidable set of configurations. The set can be constructed from subgraphs of

graphs containing combinations of the criteria above. An example of such a con-

figuration is the set containing the 6-star, the 7-star, the Birkhoff diamond, the

Chojnacki configuration, and the Franklin configurations with 9, 10 and 11 inner

vertices. (2, 225) The problem with the construction of such a set is that one of the

potential members of U could be irreducible. Haken and Appel came across these

difficulties several times and discovered that more defined procedures would help

overcome these obstacles.(4)

Examining the flaws in the simple procedure p is not without difficulty. In
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fact, in listing the many, many, exceptions to the general distribution, one can

become overwhelmed by the minutiae. By allowing these special cases to become

procedures of their own, it becomes easier to manage the vast amount of dischargings

and members of U . For example, let us call the situation above an R-discharging, R

for regular, but allow for a new procedure called an S-discharging, which addresses

a special-case configuration where we have one degree five vertex connected to a

major edge along which a charge of less than 30 is transferred. We also consider

another situation called an L-discharging, L for large, in which a charge greater

than 30 is transferred along the edge.

So, now taking our exceptions, we define a procedure P (S, L), being wary

of a few situations. Being explicit about what to do when two charges are being

distributed over the same edge is very important. Also, restricting the size of S and

L and the ring size examined is important. Haken and Appel found that an increase

in ring size from 14 to 16 increased the difficulty of deciding the reducibility of a

configuration by a factor of 16. The other difficulty encountered was a 6 - 6 chain,

or the edges that link V6 to V6. This indicated to them that an improvement was

needed to the P (S, L) method.

6.3 T-discharging

Thus we have what became the T -discharging procedure. This comes from allowing

one further exception to R-discharging. This will address situations where V5 is

connected to a neighbor of a neighbor of a major vertex. (see figure 5) This took

Haken and Appel many years of work to refine. The T is a reference to the transver-

sal dischargings that are taking place. Thus, the charges are transferred along one

or more edges that join pairs of V6’s. In fact, this kind of discharging drastically

reduces the number of L-dischargings that are necessary to form an unavoidable set



31

and is thus preferrable. (4)

Figure 6. T-dischargings. (4)

As Haken and Appel worked out the discharging procedures by hand, now

with a P (T, S, L), they were able to construct their unavoidable set. This pro-

duced set S of 269 S-situations, a set L of 210 L-situations and a corresponding

unavoidable set that contained 1818 reducible configurations. This number was

later reduced to 1476. Haken and Appel noted that they did not believe their

choice of discharging was necessarily the best way, as their final discharging proce-

dure had more than 300 rules to it. (4) Other independent mathematicians such as

Frank Allaire attempted a very different discharging procedure which contributed a

much smaller unavoidable set. Also, many years later, using a conjecture of Heesch’s

regarding overcharged vertexes, Neil Robertson constructed an unavoidable set con-

taining only 633 configurations. His discharging procedure only used 32 separate

rules, a vast improvement over Haken and Appel. Haken and Appel’s independent

work cannot go overlooked, though. The final years of the theorem, although other

mathematicians were working on the the theorem itself, belong to Haken and Appel.

(4)
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CHAPTER VII

COMPUTING POWER AND PROOF

The last stretch of the proof of the Four Color Theorem rested on the shoul-

ders of Kenneth Appel and Wolfgang Haken and on that of the computer. Those

who had already programmed the key blocks of the proof found difficulty in several

places. One of the limiting factors initially was the nascent computing power that

was being employed. The first programming that resembled a proof was done by

Durre in 1965 (5). His D-reducibility program running a configuration containing a

ring of size twelve took six hours to run on the CDC 1604A computer at Hannover.

Increasing the size of the ring by one increased the running time to anywhere from

16 to 61 hours, depending on the configuration. Still, though, this was considerably

better than checking the thousands of potential configurations by hand. To confuse

things even more, as previously discussed, just because a configuration doesn’t meet

D-reducible requirements doesn’t mean it isn’t C-reducible. This required careful

consideration by Appel as he began programming. The computer to make this

approach tractable was still out of reach.

The limits of most computers of that era put a stop to most programs be-

ing used in regards to our proof. Where most computers simply weren’t powerful

enough, the ones that did possess the architecture to potentially make the programs

tractable were at major universities or being used by the government. Unlike to-

day, where everyone has a PC that can do an amazing amount of calculations per

second, the computers of the sixties and seventies were only available on limited

schedules. Interest in the solution to the Four Color Theorem had not reached a
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fever-pitch outside of the mathematics community, so convincing your average com-

puter science engineer to let you use his universities supercomputer was difficult as

well. Still, Haken, Appel, Heesch, and Durre continued to look for more powerful

computers, in the hopes that Durre’s program could be made feasible to use. (5)

At first, Haken and Appel attempted to use the ILLIAC IV, the supercom-

puter on the campus of University of Illinois. This computer possessed a heretofore

unused parallel structure that promised to make it a very fast and powerful ma-

chine. Sadly, it was not complete enough to be used for their program. They were

referred instead to a theoretical physicist who would turn out to be a major player

in the final days of the theorem, Yoshio Shimamato. Shimamato had direct access

to the Brookhaven 6600, a machine that was considerably more powerful than the

CDC 1604A computer at Hannover. The only hiccup in the process was the trans-

lation of the original program, which was in ALGOL 60, to FORTRAN. Thankfully,

this process didn’t take long and many configurations were soon being tested for

reducibility. (5)

Still, though Shimamato had access to the Brookhaven 6600, he did not

have the authority to monopolize its computing power. In this idle time he became

more and more interested in the Four Color Theorem. In fact, he later remarked

that during a particular boring faculty meeting, he began drawing out a particular

configuration that was almost the end of the Four Color Theorem. The figure was

the aptly named “Shimamato Horsehoe”. (figure 6)
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Figure 7. The Shimamato Horseshoe. (5)

In essence, Shimamato had constructed a figure that, if proven D-reducible, would

prove the Four Color Theorem once and for all. Given some time, the horseshoe

was run through Durre’s program. The announcement was a sad one, the horseshoe

was not, in fact, D-reducible. Many reruns of the program solidified this fact. It

seemed, for a brief moment, that the progress of this proof had stalled entirely.

Haken did not consider himself a regular mathematician. He was more of

a physicist by trade and even mused on one occasion that he “could not pass any

one of those exams that are required today” for mathematics professors (5). It was

at the urging of Kenneth Appel for a lecture on the methods of one of Haken’s

graduate students, Thomas Osgood, that the two began working together. Osgood

was, in fact, working on the Four Color Theorem himself, under the supervision

of Haken, in the area of reducible configurations. In this lecture, Haken admitted

to the gathered group that he may return to the Four Color problem, but for now

“I’m quitting”(5, 130). Appel, after the lecture, found himself very interested in

the problem, given his background in programming and as a logician.

At his urging, Haken agreed to work on the problem more, with Appel’s aid

as a programmer. They both recognized that the brute force methods that others
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had applied just wouldn’t work. Something slightly more elegant and clever needed

to be used. The trick of searching for reduction obstacles became an intricate part

in making this proof a reality. In essence, these were characteristics of irreducible

graphs that had been noticed by Haken, who possessed an amazing knack for pre-

dicting whether or not a given configuration would be reducible. One of these

reduction obstacles he noticed was that no reducible configuration contained “at

least two vertices, a vertex adjacent to four vertices of the ring, and no smaller con-

figuration that was reducible.” (4) Haken was able to identify three more of these

obstacles which were easily describable. This breathed new life into the program-

ming aspect of things, and helped reduce computer time, giving a more narrow focus

in the search for reducible configurations. With this and the discharging methods,

Haken and Appel would have everything they needed, from a computer standpoint.

Still, though, there were things to be done in this proof that require work by

hand. While the computer and programs showed that the selected configurations

were reducible, showing these configurations formed an unavoidable set became

something done by Haken, Appel, and their families. Also, hand-checking was done

on the various discharging methods, of which the final method was completely de-

scribable by hand. The method of this section of the proof became a modification

of the discharging procedure every time the associated configurations could not be

proved reducible. As the proof drew to a close, Haken and Appel both noticed

something strange. “There are literally thousands of proofs of the Four Color The-

orem in the sense that many possible discharging procedures and their associated

unavoidable sets would yield proofs.” (8) It turns out that as they were modifying

their discharging methods, they were downsizing to a smallest size of acceptable

proof.

Another method of proof Haken and Appel employed was fact-checking
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against other resources. As they were verifying the outputs of their program, they

looked at the work for Heesch and Durre, Frank Allaire and E. R. Swart. Since

this part of the proof had to be correct, they took no chances. Thankfully, with

correspondence they found all parties in agreement about the reducibilities that

they had checked with the computer.

Even with all of this careful work, some found problems with the proof when

it was announced in 1976. The problems that most mathematicians had came

from the computer itself. Hand checking pages upon pages of work was routine to

mathematicians of the age, but the use of computers as workhorses in proofs was

new and, to some, scary. Appel addressed this in a paper published in 1977 entitled

“Computers and The Four Color Theorem.”

In his estimation, there are two kinds of proof that fall under the category

of benign. One of them is something called pseudo-benign. A pseudo-benign proof

is one that can be hand-verified by a single mathematician with a lifetime of work.

The other is called easily replicable, which refers to a proof that requires a small

number of easily programmable algorithms and can be verified by an interested

party without an overwhelming amount of effort. The Four Color Theorem is a

proof that can fall into either category. Appel notes that, although mistakes will

be made by humans in transcribing and perhaps in thought as a proof grows in

size, most of the time the errors are easily corrected. Even so, looking over a

pseudo-benign proof of the Four Color Theorem would require a patience and work

ethic that very few could muster for the amount of time necessary for thorough

checks. Thus, there is an inevitability to these kinds of proofs. Computers, when

programmed correctly, have these attributes in spades. Acceptance came in small

doses at first, but the acceptance of the proof by William Tutte was considered a

major step towards a true consensus. His almost comic poem entitled “Some Recent
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Progress in Combinatorics” cooled some fires in the mathematical community:

Wolfgang Haken,
Smote the Kraken,
One! Two! Three! Four!
Quoth he: The monster is no more.(3)

Since this proof was announced at a Summer meeting of the American Mathe-

matical Society in 1976, many other mathematicians have improved upon the meth-

ods of Haken and Appel but produced the same elegant outcome. Some sought to

reduce the size of the unavoidable set, which Haken and Appel predicted would be

possible. The proof given by Neil Robertson in 1993 used only 633 configurations,

but very similar methodology. (9) All the proofs that followed Haken and Appel

only solidified what was announced to that stunned audience; to properly color a

planar graph, one needs, at most, four colors!
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