3,378 research outputs found

    Measuring and monitoring linear woody features in agricultural landscapes through earth observation data as an indicator of habitat availability

    Get PDF
    AbstractThe loss of natural habitats and the loss of biological diversity is a global problem affecting all ecosystems including agricultural landscapes. Indicators of biodiversity can provide standardized measures that make it easier to compare and communicate changes to an ecosystem. In agricultural landscapes the amount and variety of available habitat is directly correlated with biodiversity levels. Linear woody features (LWF), including hedgerows, windbreaks, shelterbelts as well as woody shrubs along fields, roads and watercourses, play a vital role in supporting biodiversity as well as serving a wide variety of other purposes in the ecosystem. Earth observation can be used to quantify and monitor LWF across the landscape. While individual features can be manually mapped, this research focused on the development of methods using line intersect sampling (LIS) for estimating LWF as an indicator of habitat availability in agricultural landscapes. The methods are accurate, efficient, repeatable and provide robust results. Methods were tested over 9.5Mha of agricultural landscape in the Canadian Mixedwood Plains ecozone. Approximately 97,000km of LWF were estimated across this landscape with results useable both at a regional reporting scale, as well as mapped across space for use in wildlife habitat modelling or other landscape management research. The LIS approach developed here could be employed at a variety of scales in particular for large regions and could be adapted for use as a national scale indicator of habitat availability in heavily disturbed agricultural landscape

    Data capture from engineering drawings

    Get PDF
    Call number: LD2668 .T4 1985 S574Master of Scienc

    CIRSS vertical data integration, San Bernardino study

    Get PDF
    The creation and use of a vertically integrated data base, including LANDSAT data, for local planning purposes in a portion of San Bernardino County, California are described. The project illustrates that a vertically integrated approach can benefit local users, can be used to identify and rectify discrepancies in various data sources, and that the LANDSAT component can be effectively used to identify change, perform initial capability/suitability modeling, update existing data, and refine existing data in a geographic information system. Local analyses were developed which produced data of value to planners in the San Bernardino County Planning Department and the San Bernardino National Forest staff

    Operation of the helicopter antenna radiation prediction code

    Get PDF
    HARP is a front end as well as a back end for the AMC and NEWAIR computer codes. These codes use the Method of Moments (MM) and the Uniform Geometrical Theory of Diffraction (UTD), respectively, to calculate the electromagnetic radiation patterns for antennas on aircraft. The major difficulty in using these codes is in the creation of proper input files for particular aircraft and in verifying that these files are, in fact, what is intended. HARP creates these input files in a consistent manner and allows the user to verify them for correctness using sophisticated 2 and 3D graphics. After antenna field patterns are calculated using either MM or UTD, HARP can display the results on the user's screen or provide hardcopy output. Because the process of collecting data, building the 3D models, and obtaining the calculated field patterns was completely automated by HARP, the researcher's productivity can be many times what it could be if these operations had to be done by hand. A complete, step by step, guide is provided so that the researcher can quickly learn to make use of all the capabilities of HARP

    Operational experience, improvements, and performance of the CDF Run II silicon vertex detector

    Full text link
    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDF's physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance.Comment: Preprint accepted for publication in Nuclear Instruments and Methods A (07/31/2013

    In Situ Measurements of Micro-Scale Surface Roughness of Sea Ice

    Get PDF
    Surface roughness at the centimetre and millimetre scale is an important factor governing radar backscatter, especially in the case of warm (>-5 degrees C) or highly saline sea ice types. Quantitative measurements of surface roughness are required as input to backscatter models. Several field techniques have been used to quantitatively measure the surface roughness of sea ice. These techniques usually posses at least one of the following obstacles: difficult field operation, expense, poor accuracies or arduous data processing. A prototype portable field instrument called the Surface Roughness Meter has been designed to measure micro-scale surface roughness. The instrument provides measurements of two surface roughness parameters, root mean square height and correlation length. The instrument consists of a 35 mm camera and a flash mounted on a platform. The system illuminates and photographs a rectangle of known size on the surface from a fixed height. The negatives are digitized and the root mean square height and correlation length are calculated and recorded using a PC-based image analysis system in the laboratory. The first sea ice application for the instrument was the Labrador Ice Margin Experiment (LIMEX) 1989. The instrument was used to measure surface roughness of first-year deformed pack ice. The resulting data from LIMEX '89 were digitized and surface roughness statistics were computed using a PC image analysis system. LIMEX '89 Surface Roughness Meter data compared favourably to roughness statistics obtained from LIMEX '87.Key words: surface roughness, radar backscatter, sea ice, Surface Roughness Meter, root mean square height, correlation length, LIMEX ’89Mots clés: rugosité de la surface, rétrodiffusion radar, glace de mer, profilographe, hauteur quadratique moyenne, longueur de corrélation, LIMEX ’8
    corecore