7,625 research outputs found

    Prostate biopsies guided by three-dimensional real-time (4-D) transrectal ultrasonography on a phantom: comparative study versus two-dimensional transrectal ultrasound-guided biopsies

    Full text link
    OBJECTIVE: This study evaluated the accuracy in localisation and distribution of real-time three-dimensional (4-D) ultrasound-guided biopsies on a prostate phantom. METHODS: A prostate phantom was created. A three-dimensional real-time ultrasound system with a 5.9MHz probe was used, making it possible to see several reconstructed orthogonal viewing planes in real time. Fourteen operators performed biopsies first under 2-D then 4-D transurethral ultrasound (TRUS) guidance (336 biopsies). The biopsy path was modelled using segmentation in a 3-D ultrasonographic volume. Special software was used to visualise the biopsy paths in a reference prostate and assess the sampled area. A comparative study was performed to examine the accuracy of the entry points and target of the needle. Distribution was assessed by measuring the volume sampled and a redundancy ratio of the sampled prostate. RESULTS: A significant increase in accuracy in hitting the target zone was identified using 4-D ultrasonography as compared to 2-D. There was no increase in the sampled volume or improvement in the biopsy distribution with 4-D ultrasonography as compared to 2-D. CONCLUSION: The 4-D TRUS guidance appears to show, on a synthetic model, an improvement in location accuracy and in the ability to reproduce a protocol. The biopsy distribution does not seem improved

    The primacy of multiparametric MRI in men with suspected prostate cancer

    Get PDF
    Background: Multiparametric MRI (mpMRI) became recognised in investigating those with suspected prostate cancer between 2010 and 2012; in the USA, the preventative task force moratorium on PSA screening was a strong catalyst. In a few short years, it has been adopted into daily urological and oncological practice. The pace of clinical uptake, born along by countless papers proclaiming high accuracy in detecting clinically significant prostate cancer, has sparked much debate about the timing of mpMRI within the traditional biopsy-driven clinical pathways. There are strongly held opposing views on using mpMRI as a triage test regarding the need for biopsy and/or guiding the biopsy pattern. Objective: To review the evidence base and present a position paper on the role of mpMRI in the diagnosis and management of prostate cancer. Methods: A subgroup of experts from the ESUR Prostate MRI Working Group conducted literature review and face to face and electronic exchanges to draw up a position statement. Results: This paper considers diagnostic strategies for clinically significant prostate cancer; current national and international guidance; the impact of pre-biopsy mpMRI in detection of clinically significant and clinically insignificant neoplasms; the impact of pre-biopsy mpMRI on biopsy strategies and targeting; the notion of mpMRI within a wider risk evaluation on a patient by patient basis; the problems that beset mpMRI including inter-observer variability. Conclusions: The paper concludes with a set of suggestions for using mpMRI to influence who to biopsy and who not to biopsy at diagnosis. Key Points: • Adopt mpMRI as the first, and primary, investigation in the workup of men with suspected prostate cancer. • PI-RADS assessment categories 1 and 2 have a high negative predictive value in excluding significant disease, and systematic biopsy may be postponed, especially in men with low-risk of disease following additional risk stratification. • PI-RADS assessment category lesions 4 and 5 should be targeted; PI-RADS assessment category lesion 3 may be biopsied as a target, as part of systematic biopsies or may be observed depending on risk stratification

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed

    Multiparametric magnetic resonance imaging of the prostate-a basic tutorial.

    Get PDF
    Prostate cancer is the second most common cause of cancer related death in the United States and the most commonly diagnosed malignancy in men. In general, prostate cancer is slow growing, though there is a broad spectrum of disease that may be indolent, or aggressive and rapidly progressive. Screening for prostate is controversial and complicated by lack of specificity and over diagnosis of clinically insignificant cancer. Imaging has played a role in diagnosis of prostate cancer, primarily through systemic transrectal ultrasound (TRUS) guided biopsy. While TRUS guided biopsy radically changed prostate cancer diagnosis, it still remains limited by low resolution, poor tissue characterization, relatively low sensitivity and positive predictive value. Advances in multiparametric magnetic resonance imaging (mpMRI) have allowed more accurate detection, localization, and staging as well as aiding in the role of active surveillance (AS). The use of mpMRI for the evaluation of prostate cancer has increased dramatically and this trend is likely to continue as the technique is rapidly improving and its applications expand. The purpose of this article is to review the basic principles of mpMRI of the prostate and its clinical applications, which will be reviewed in greater detail in subsequent chapters of this issue

    Three-dimensional greyscale transrectal ultrasound-guidance and biopsy core preembedding for detection of prostate cancer:Dutch clinical cohort study

    Get PDF
    Background: To overcome the limitations regarding two dimensional (2D) greyscale (GS) transrectal ultrasound (TRUS)-guided biopsy in prostate cancer (PCa) detection and tissue packaging in biopsy processing, there is an ongoing focus on new imaging and pathology techniques. A three-dimensional (3D) model of the prostate with biopsy needle guidance can be generate by the Navigo™ workstation (UC-care, Israel). The SmartBX™ system (UC-care, Israel) provides a prostate biopsy core preembedding method. The aim of this study was to compare cancer detection rates between the 3D TRUS-guidance and preembedding method with conventional 2D GS TRUS-guidance among patients undergoing prostate biopsies. Methods: We retrospectively analyzed the records of all patients who underwent prostate biopsies for PCa detection at our institution from 2007 to 2016. The cohort was divided into a 2D GS TRUS-guidance cohort (from 2007 to 2013, n = 1149) and a 3D GS TRUS-guidance with preembedding cohort (from 2013 to 2016, n = 469). Effect of 3D GS TRUS-guidance with preembedding on detection rate of PCa and clinically significant PCa (Gleason score ≥ 7 or &gt; 2 biopsy cores with a Gleason score 6) was compared to 2D GS TRUS-guidance using regression models. Results: Detection rate of PCa and clinically significant PCa was 39.0 and 24.9% in the 3D GS TRUS cohort compared to 33.5 and 19.0% in the 2D GS TRUS cohort, respectively. On multivariate regression analysis the use of 3D GS TRUS-guidance with preembedding was associated with a significant increase in detection rate of PCa (aOR = 1.33; 95% CI: 1.03-1.72) and clinically significant PCa (aOR = 1.47; 95% CI: 1.09-1.98). Conclusion: Our results suggest that 3D GS TRUS-guidance with biopsy core preembedding improves PCa and clinically significant PCa detection compared to 2D GS TRUS-guidance. Additional studies are needed to justify the application of these systems in clinical practice.</p

    Accuracy of elastic fusion biopsy in daily practice: results of a multicenter study of 2115 patients

    Get PDF
    OBJECTIVES: To assess the accuracy of Koelis fusion biopsy for the detection of prostate cancer and clinically significant prostate cancer in the everyday practice. METHODS: We retrospectively enrolled 2115 patients from 15 institutions in four European countries undergoing transrectal Koelis fusion biopsy from 2010 to 2017. A variable number of target (usually 2-4) and random cores (usually 10-14) were carried out, depending on the clinical case and institution habits. The overall and clinically significant prostate cancer detection rates were assessed, evaluating the diagnostic role of additional random biopsies. The cancer detection rate was correlated to multiparametric magnetic resonance imaging features and clinical variables. RESULTS: The mean number of targeted and random cores taken were 3.9 (standard deviation 2.1) and 10.5 (standard deviation 5.0), respectively. The cancer detection rate of Koelis biopsies was 58% for all cancers and 43% for clinically significant prostate cancer. The performance of additional, random cores improved the cancer detection rate of 13% for all cancers (P < 0.001) and 9% for clinically significant prostate cancer (P < 0.001). Prostate cancer was detected in 31%, 66% and 89% of patients with lesions scored as Prostate Imaging Reporting and Data System 3, 4 and 5, respectively. Clinical stage and Prostate Imaging Reporting and Data System score were predictors of prostate cancer detection in multivariate analyses. Prostate-specific antigen was associated with prostate cancer detection only for clinically significant prostate cancer. CONCLUSIONS: Koelis fusion biopsy offers a good cancer detection rate, which is increased in patients with a high Prostate Imaging Reporting and Data System score and clinical stage. The performance of additional, random cores seems unavoidable for correct sampling. In our experience, the Prostate Imaging Reporting and Data System score and clinical stage are predictors of prostate cancer and clinically significant prostate cancer detection; prostate-specific antigen is associated only with clinically significant prostate cancer detection, and a higher number of biopsy cores are not associated with a higher cancer detection rate

    Negative multiparametric magnetic resonance imaging for prostate cancer: what's next?

    Get PDF
    Multiparametric magnetic resonance imaging (mpMRI) of the prostate has excellent sensitivity in detecting clinically significant prostate cancer (csPCa). Nevertheless, the clinical utility of negative mpMRI (nMRI) is less clearMultiparametric magnetic resonance imaging (mpMRI) of the prostate has excellent sensitivity in detecting clinically significant prostate cancer (csPCa). Nevertheless, the clinical utility of negative mpMRI (nMRI) is less clear. OBJECTIVE: To assess outcomes of men with nMRI and clinical follow-up after 7 yr of activity at a reference center. DESIGN, SETTING, AND PARTICIPANTS: All mpMRI performed from January 2010 to May 2015 were reviewed. We selected all patients with nMRI and divided them in group A (naïve patients) and group B (previous negative biopsy). All patients without a diagnosis of PCa had a minimum follow-up of 2 yr and at least two consecutive nMRI. Patients with positive mpMRI were also identified to assess their biopsy outcomes. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: A Kaplan-Meier analysis was performed to assess both any-grade PCa and csPCa diagnosis-free survival probabilities. Univariable and multivariable Cox regression models were fitted to identify predictors of csPCa diagnosis. RESULTS AND LIMITATIONS: We identified 1545 men with nMRI, and 1255 of them satisfied the inclusion criteria; 659 belonged to group A and 596 to group B. Any-grade PCa and csPCa diagnosis-free survival probabilities after 2 yr of follow-up were 94% and 95%, respectively, in group A; in group B, they were 96%. After 48 mo of follow-up, any-grade PCa diagnosis-free survival probability was 84% in group A and 96% in group B (log rank p&lt;0.001). Diagnosis-free survival probability for csPCa was unchanged after 48 mo of follow-up. On multivariable Cox regression analysis, increasing age (p=0.005) was an independent predictor of lower csPCa diagnosis probability, while increasing prostate-specific antigen (PSA) and PSA density (&lt;0.001) independently predicted higher csPCa diagnosis probability. The prevalence of and positive predictive value for csPCa were 31.6% and 45.5%, respectively. Limitations include limited follow-up and the inability to calculate true csPCa prevalence in the study population. CONCLUSIONS: mpMRI is highly reliable to exclude csPCa. Nevertheless, systematic biopsy should be recommended even after nMRI, especially in younger patients with high or raising PSA levels

    BiopSym: a simulator for enhanced learning of ultrasound-guided prostate biopsy

    Full text link
    This paper describes a simulator of ultrasound-guided prostate biopsies for cancer diagnosis. When performing biopsy series, the clinician has to move the ultrasound probe and to mentally integrate the real-time bi-dimensional images into a three-dimensional (3D) representation of the anatomical environment. Such a 3D representation is necessary to sample regularly the prostate in order to maximize the probability of detecting a cancer if any. To make the training of young physicians easier and faster we developed a simulator that combines images computed from three-dimensional ultrasound recorded data to haptic feedback. The paper presents the first version of this simulator

    Accuracy of multiparametric magnetic resonance imaging to detect significant prostate cancer and index lesion location

    Get PDF
    Background: Multiparametric magnetic resonance imaging (mpMRI) of the prostate appears to improve prostate cancer detection, but studies comparing mpMRI to histopathology at the time of radical prostatectomy (RP) are lacking. This retrospective study determined the accuracy of mpMRI predicting Gleason score and index lesion location at the time of RP, the current gold standard for diagnosis. Methods: Between April 2013 and April 2016, a database of all men aged more than 40 years who underwent RP after positive transrectal ultrasound biopsy by an experienced urological surgeon was collated at a single regional centre. This was cross‐referenced with a database of all men who had mpMRIs performed at a single centre and reported according to Prostate Imaging Reporting and Data System (PI‐RADS version 1) during this period to generate a sample size of 64 men. A Spearman\u27s rho test was utilized to calculate correlation. Results: Median age of patients was 64 years, the median prostate‐specific antigen at RP was 6.22 ng/mL. mpMRI was positive (≥PI‐RADS 3) in 85.9% of patients who underwent RP. More than 92% of participants had Gleason ≥7 disease. A positive relationship between mpMRI prostate PI‐RADS score and RP cancer volume was demonstrated. An anatomical location correlation calculated in octants was found to be 89.1% accurate. Conclusion: mpMRI accurately detects prostate cancer location and severity when compared with gold standard histopathology at the time of RP. It thus has an important role in planning for future prostate biopsy and cancer treatment
    corecore