20 research outputs found

    Advances in Current Techniques for Monitoring the Progress of Child Delivery

    Get PDF
    Monitoring the progress of labour (child delivery) is essential for key clinical decisions to be taken to help manage the wellbeing of both the mother and child during delivery. The key parameters used by doctors and mid-wives to monitor labour progression are cervical dilation, uterine contractions, Fetal Heart Rate (FHR), Fetal Head Station (FHS) and Progression Angle (PA). In this paper, techniques used in monitoring the progress of child delivery are reviewed. In this review, we show how current techniques are used to measure key parameters with more accuracy and less discomfort to the expectant mother as compared to old techniques. Taxonomy of key parameters used for monitoring childbirth progress (cervical dilation and uterine contractions) is provided vis-à-vis old and novel technique

    Characterization of uterine activity by electrohysterography

    Get PDF
    A growing number of pregnancies is complicated by miscarriage, preterm delivery, and birth defects, with consequent health problems later in life. It is therefore increasingly important to monitor the health status of mother and fetus, so as to permit timely medical intervention when acute health risks are detected. For timely recognition of complications, quantitative assessment of uterine activity can be fundamental during both pregnancy and delivery. During pregnancy, timely prediction of preterm delivery can improve the effectiveness of the required treatments. Unfortunately, the prognostic techniques employed in current obstetrical practice, namely, uterine contraction measurements using an elastic belt (external tocography), cervical change evaluation, and the use of biomarkers like fetal fibronectin, have been demonstrated to be inaccurate for the prediction of preterm delivery. In the last stage of pregnancy and during labor, contractions are routinely and constantly monitored. Especially when complications occur, e.g., when labor shows poor progress, quantitative assessment of uterine activity can guide the physician to choose a uterine contraction induction or augmentation, a cesarean section, or other therapies. Furthermore, monitoring the fetal heart response to the uterine activity (cardiotography) is widely used as a screening test for timely recognition of fetal distress (e.g. asphyxia). However, in current obstetrical practice, accurate quantitative assessment of the uterine contractions can be provided only invasively and during labor. The current golden standard for contraction monitoring, which is based on the direct internal uterine pressure (IUP) measurement by an intrauterine catheter, can be risky and its use is generally limited to very complicated deliveries. The contractile element of the uterus is the myometrium, which is composed of smooth muscle cells. Uterine contractions are caused by electrical activity in the form of action potentials (AP) that propagate through the myometrium cells. Electrohysterography is the measurement of the uterine electrical activity and can be performedby electrodes placed on the abdomen. Electrohysterographic (EHG) measurements are inexpensive and noninvasive. Moreover, it has been demonstrated that the noninvasively recorded EHG signal is representative of those APs that, by propagating from cell to cell, are the root cause of a uterine contraction. Therefore, in view of the limitation of current obstetrical practice, significant benefits could be expected from the introduction of EHG signal analysis for routine contraction monitoring. Previous studies highlighted the potential prognostic and diagnostic value of EHG signal analysis, but did not investigate the possibility of accurately estimating the IUP from noninvasive EHG recordings. Moreover, important issues like the effect of the tissues interposed between the uterus and the skin (volume conductor) on EHG recordings have not been studied. Besides, EHG signal interpretation has been typically based on single-channel measurements, while the use of multiple electrodes conveys additional information (e.g., distribution and dynamics of the electrical activation) that can possibly be predictive of delivery. In this thesis, we focus on the analysis of the EHG signal as an alternative to existing techniques for predicting preterm delivery and monitoring uterine contractions during both pregnancy and delivery. The main goal of this work is to contribute to the technical basis which is required for the introduction of electrohysterography in everyday clinical practice. A major part of this thesis investigates the possibility of using electrohysterography to replace invasive IUP measurements. A novel method for IUP estimation from EHG recordings is developed in the first part of this thesis. The estimates provided by the method are compared to the IUP invasively recorded on women during delivery and result in a root mean squared error (RMSE) with respect to the reference invasive IUP recording as low as 5 mmHg, which is comparable to the accuracy of the invasive golden standard. Another important objective of this thesis work is to contribute to the introduction of novel techniques for timely prediction of preterm delivery. As the spreading of electrical activity at the myometrium is the root cause of coordinated and effective contractions, i.e., contractions that are capable of pushing the fetus down into the birth canal ultimately leading to delivery, a multichannel analysis of the spatial propagation properties of the EHG signal could provide a fundamental contribution for predicting delivery. A thorough study of the EHG signal propagation properties is therefore carried out in this work. Parameters related to the EHG that are potentially predictive of delivery, such as the uterine area where the contraction originates (pacemaker area) or the distribution and dynamics of the EHG propagation vector, can be derived from the delay by which the signal is detected at multiple locations over the whole abdomen. To analyze the propagation of EHG signals on a large scale (cm), a method is designed for calculating the detection delay among the EHG signals recorded by by electrodes placed on the abdomen. Electrohysterographic (EHG) measurements are inexpensive and noninvasive. Moreover, it has been demonstrated that the noninvasively recorded EHG signal is representative of those APs that, by propagating from cell to cell, are the root cause of a uterine contraction. Therefore, in view of the limitation of current obstetrical practice, significant benefits could be expected from the introduction of EHG signal analysis for routine contraction monitoring. Previous studies highlighted the potential prognostic and diagnostic value of EHG signal analysis, but did not investigate the possibility of accurately estimating the IUP from noninvasive EHG recordings. Moreover, important issues like the effect of the tissues interposed between the uterus and the skin (volume conductor) on EHG recordings have not been studied. Besides, EHG signal interpretation has been typically based on single-channel measurements, while the use of multiple electrodes conveys additional information (e.g., distribution and dynamics of the electrical activation) that can possibly be predictive of delivery. In this thesis, we focus on the analysis of the EHG signal as an alternative to existing techniques for predicting preterm delivery and monitoring uterine contractions during both pregnancy and delivery. The main goal of this work is to contribute to the technical basis which is required for the introduction of electrohysterography in everyday clinical practice. A major part of this thesis investigates the possibility of using electrohysterography to replace invasive IUP measurements. A novel method for IUP estimation from EHG recordings is developed in the first part of this thesis. The estimates provided by the method are compared to the IUP invasively recorded on women during delivery and result in a root mean squared error (RMSE) with respect to the reference invasive IUP recording as low as 5 mmHg, which is comparable to the accuracy of the invasive golden standard. Another important objective of this thesis work is to contribute to the introduction of novel techniques for timely prediction of preterm delivery. As the spreading of electrical activity at the myometrium is the root cause of coordinated and effective contractions, i.e., contractions that are capable of pushing the fetus down into the birth canal ultimately leading to delivery, a multichannel analysis of the spatial propagation properties of the EHG signal could provide a fundamental contribution for predicting delivery. A thorough study of the EHG signal propagation properties is therefore carried out in this work. Parameters related to the EHG that are potentially predictive of delivery, such as the uterine area where the contraction originates (pacemaker area) or the distribution and dynamics of the EHG propagation vector, can be derived from the delay by which the signal is detected at multiple locations over the whole abdomen. To analyze the propagation of EHG signals on a large scale (cm), a method is designed for calculating the detection delay among the EHG signals recorded by multiple electrodes. Relative to existing interelectrode delay estimators, this method improves the accuracy of the delay estimates for interelectrode distances larger than 5-10 cm. The use of a large interelectrode distance aims at the assessment of the EHG propagation properties through the whole uterine muscle using a limited number of sensors. The method estimates values of velocity within the physiological range and highlights the upper part of the uterus as the most frequent (65%) pacemaker area during labor. Besides, our study suggests that more insight is needed on the effect that tissues interposed between uterus and skin (volume conductor) have on the EHG signal. With the aim of improving the current interpretation and measurement accuracy of EHG parameters with potential clinical relevance, such as the conduction velocity (CV), a volume conductor model for the EHG signal is introduced and validated. The intracellular AP at the myometrium is analytically modeled in the spatial domain by a 2-parameter exponential in the form of a Gamma variate function. The unknown atomical parameters of the volume conductor model are the thicknesses of the biological tissues interposed between the uterus and the abdominal surface. These model parameters can be measured by echography for validation. The EHG signal is recorded by an electrode matrix on women with contractions. In order to increase the spatial resolution of the EHG measurements and reduce the geometrical and electrical differences among the tissues below the recording locations, electrodes with a reduced surface and smaller interelectrode distance are needed relative to the previous studies on electrohysterography. The EHG signal is recorded, for the first time, by a 64-channel (8×8) high-density electrode grid, comprising 1 mm diameter electrodes with 4 mm interelectrode distance. The model parameters are estimated in the spatial frequency domain from the recorded EHG signal by a least mean square method. The model is validated by comparing the thickness of the biological tissues recorded by echography to the values estimated using the mathematical model. The agreement between the two measures (RMSE = 1 mm and correlation coefficient, R = 0.94) suggests the model to be representative of the underlying physiology. In the last part of this dissertation, the analysis of the EHG signal propagation focuses on the CV estimation of single APs. As on a large scale this parameter cannot be accurately derived, the propagation analysis is here carried out on a small scale (mm). Also for this analysis, the EHG signal is therefore recorded by a 3×3 cm2 high-density electrode grid containing 64 electrodes (8×8). A new method based on maximum likelihood estimation is then applied in two spatial dimensions to provide an accurate estimate of amplitude and direction of the AP CV. Simulation results prove the proposed method to be more robust to noise than the standard techniques used for other electrophysiological signals, leading to over 56% improvement of the RMS CV estimate accuracy. Furthermore, values of CV between 2 cm/s and 12 cm/s, which are in agreement with invasive and in-vitro measurements described in the literature, are obtained from real measurements on ten women in labor. In conclusion, this research provides a quantitative characterization of uterine contractions by EHG signal analysis. Based on an extensive validation, this thesis indicates that uterine contractions can be accurately monitored noninvasively by dedicated analysis of the EHG signal. Furthermore, our results open the way to new clinical studies and applications aimed at improving the understanding of the electrophysiological mechanisms leading to labor, possibly reducing the incidence of preterm delivery and improving the perinatal outcome

    N on - Invasive Feto - Maternal Well - Being Monitoring: A Review of Methods

    Get PDF

    Influence of Electrode Placement on Signal Quality for Ambulatory Pregnancy Monitoring

    Get PDF
    Noninvasive fetal health monitoring during pregnancy has become increasingly important in order to prevent complications, such as fetal hypoxia and preterm labor. With recent advances in signal processing technology using abdominal electrocardiogram (ECG) recordings, ambulatory fetal monitoring throughout pregnancy is now an important step closer to becoming feasible. The large number of electrodes required in current noise-robust solutions, however, leads to high power consumption and reduced patient comfort. In this paper, requirements for reliable fetal monitoring using a minimal number of electrodes are determined based on simulations and measurement results. To this end, a dipole-based model is proposed to simulate different electrode positions based on standard recordings. Results show a significant influence of bipolar lead orientation on maternal and fetal ECG measurement quality, as well as a significant influence of interelectrode distance for all signals of interest

    Advanced bioelectrical signal processing methods: Past, present and future approach - Part III: Other biosignals

    Get PDF
    Analysis of biomedical signals is a very challenging task involving implementation of various advanced signal processing methods. This area is rapidly developing. This paper is a Part III paper, where the most popular and efficient digital signal processing methods are presented. This paper covers the following bioelectrical signals and their processing methods: electromyography (EMG), electroneurography (ENG), electrogastrography (EGG), electrooculography (EOG), electroretinography (ERG), and electrohysterography (EHG).Web of Science2118art. no. 606

    Electrohysterogram signal component cataloging with spectral and time-frequency methods

    Get PDF
    The Electrohysterogram (EHG) is a new instrument for pregnancy monitoring. It measures the uterine muscle electrical signal, which is closely related with uterine contractions. The EHG is described as a viable alternative and a more precise instrument than the currently most widely used method for the description of uterine contractions: the external tocogram. The EHG has also been indicated as a promising tool in the assessment of preterm delivery risk. This work intends to contribute towards the EHG characterization through the inventory of its components which are: • Contractions; • Labor contractions; • Alvarez waves; • Fetal movements; • Long Duration Low Frequency Waves; The instruments used for cataloging were: Spectral Analysis, parametric and non-parametric, energy estimators, time-frequency methods and the tocogram annotated by expert physicians. The EHG and respective tocograms were obtained from the Icelandic 16-electrode Electrohysterogram Database. 288 components were classified. There is not a component database of this type available for consultation. The spectral analysis module and power estimation was added to Uterine Explorer, an EHG analysis software developed in FCT-UNL. The importance of this component database is related to the need to improve the understanding of the EHG which is a relatively complex signal, as well as contributing towards the detection of preterm birth. Preterm birth accounts for 10% of all births and is one of the most relevant obstetric conditions. Despite the technological and scientific advances in perinatal medicine, in developed countries, prematurity is the major cause of neonatal death. Although various risk factors such as previous preterm births, infection, uterine malformations, multiple gestation and short uterine cervix in second trimester, have been associated with this condition, its etiology remains unknown [1][2][3]

    Unsupervised Classification of Uterine Contractions Recorded Using Electrohysterography

    Get PDF
    Pregnancy still poses health risks that are not attended to by current clinical practice motorization procedures. Electrohysterography (EHG) record signals are analyzed in the course of this thesis as a contribution and effort to evaluate their suitability for pregnancy monitoring. The presented work is a contributes with an unsupervised classification solution for uterine contractile segments to FCT’s Uterine Explorer (UEX) project, which explores analysis procedures for EHG records. In a first part, applied processing procedures are presented and a brief exploration of the best practices for these. The procedures include those to elevate the representation of uterine events relevant characteristics, ease further computation requirements, extraction of contractile segments and spectral estimation. More detail is put into the study of which characteristics should be chosen to represent uterine events in the classification process and feature selection methods. To such end, it is presented the application of a principal component analysis (PCA) to three sets: interpolated contractile events, contractions power spectral densities, and to a number of computed features that attempt evidencing time, spectral and non-linear characteristics usually used in EHG related studies. Subsequently, a wrapper model approach is presented as a mean to optimize the feature set through cyclically attempting the removal and re-addition of features based on clustering results. This approach takes advantage of the fact that one class is known beforehand to use its classification accuracy as the criteria that defines whether the modification made to the feature set was ominous. Furthermore, this work also includes the implementation of a visualization tool that allows inspecting the effect of each processing procedure, the uterine events detected by different methods and clusters they were associated to by the final iteration of the wrapper model

    Estrazione non invasiva del segnale elettrocardiografico fetale da registrazioni con elettrodi posti sull’addome della gestante (Non-invasive extraction of the fetal electrocardiogram from abdominal recordings by positioning electrodes on the pregnant woman’s abdomen)

    Get PDF
    openIl cuore è il primo organo che si sviluppa nel feto, particolarmente nelle primissime settimane di gestazione. Rispetto al cuore adulto, quello fetale ha una fisiologia ed un’anatomia significativamente differenti, a causa della differente circolazione cardiovascolare. Il benessere fetale si valuta monitorando l’attività cardiaca mediante elettrocardiografia fetale (ECGf). L’ECGf invasivo (acquisito posizionando elettrodi allo scalpo fetale) è considerato il gold standard, ma l’invasività che lo caratterizza ne limita la sua applicabilità. Al contrario, l’uso clinico dell’ECGf non invasivo (acquisito posizionando elettrodi sull’addome della gestante) è limitato dalla scarsa qualità del segnale risultante. L’ECGf non invasivo si estrae da registrazioni addominali, che sono corrotte da differenti tipi di rumore, fra i quali l’interferenza primaria è rappresentata dall’ECG materno. Il Segmented-Beat Modulation Method (SBMM) è stato da me recentemente proposto come una nuova procedura di filtraggio basata sul calcolo del template del battito cardiaco. SBMM fornisce una stima ripulita dell’ECG estratto da registrazioni rumorose, preservando la fisiologica variabilità ECG del segnale originale. Questa caratteristica è ottenuta grazie alla segmentazione di ogni battito cardiaco per indentificare i segmenti QRS e TUP, seguito dal processo di modulazione/demodulazione (che include strecciamento e compressione) del segmento TUP, per aggiustarlo in modo adattativo alla morfologia e alla durata di ogni battito originario. Dapprima applicato all’ECG adulto al fine di dimostrare la sua robustezza al rumore, l’SBMM è stato poi applicato al caso fetale. Particolarmente significativi sono i risultati relativi alle applicazioni su ECGf non invasivo, dove l’SBMM fornisce segnali caratterizzati da un rapporto segnale-rumore comparabile a quello caratterizzante l’ECGf invasivo. Tuttavia, l’SBMM può contribuire alla diffusione dell’ECGf non invasiva nella pratica clinica.The heart is the first organ that develops in the fetus, particularly in the very early stages of pregnancy. Compared to the adult heart, the physiology and anatomy of the fetal heart exhibit some significant differences. These differences originate from the fact that the fetal cardiovascular circulation is different from the adult circulation. Fetal well-being evaluation may be accomplished by monitoring cardiac activity through fetal electrocardiography (fECG). Invasive fECG (acquired through scalp electrodes) is the gold standard but its invasiveness limits its clinical applicability. Instead, clinical use of non-invasive fECG (acquired through abdominal electrodes) has so far been limited by its poor signal quality. Non-invasive fECG is extracted from the abdominal recording and is corrupted by different kind of noise, among which maternal ECG is the main interference. The Segmented-Beat Modulation Method (SBMM) was recently proposed by myself as a new template-based filtering procedure able to provide a clean ECG estimation from a noisy recording by preserving physiological ECG variability of the original signal. The former feature is achieved thanks to a segmentation procedure applied to each cardiac beat in order to identify the QRS and TUP segments, followed by a modulation/demodulation process (involving stretching and compression) of the TUP segments to adaptively adjust each estimated cardiac beat to the original beat morphology and duration. SBMM was first applied to adult ECG applications, in order to demonstrate its robustness to noise, and then to fECG applications. Particularly significant are the results relative to the non-invasive applications, where SBMM provided fECG signals characterized by a signal-to-noise ratio comparable to that characterizing invasive fECG. Thus, SBMM may contribute to the spread of this noninvasive fECG technique in the clinical practice.INGEGNERIA DELL'INFORMAZIONEAgostinelli, AngelaAgostinelli, Angel

    Non-invasive fetal electrocardiogram : analysis and interpretation

    Get PDF
    High-risk pregnancies are becoming more and more prevalent because of the progressively higher age at which women get pregnant. Nowadays about twenty percent of all pregnancies are complicated to some degree, for instance because of preterm delivery, fetal oxygen deficiency, fetal growth restriction, or hypertension. Early detection of these complications is critical to permit timely medical intervention, but is hampered by strong limitations of existing monitoring technology. This technology is either only applicable in hospital settings, is obtrusive, or is incapable of providing, in a robust way, reliable information for diagnosis of the well-being of the fetus. The most prominent method for monitoring of the fetal health condition is monitoring of heart rate variability in response to activity of the uterus (cardiotocography; CTG). Generally, in obstetrical practice, the heart rate is determined in either of two ways: unobtrusively with a (Doppler) ultrasound probe on the maternal abdomen, or obtrusively with an invasive electrode fixed onto the fetal scalp. The first method is relatively inaccurate but is non-invasive and applicable in all stages of pregnancy. The latter method is far more accurate but can only be applied following rupture of the membranes and sufficient dilatation, restricting its applicability to only the very last phase of pregnancy. Besides these accuracy and applicability issues, the use of CTG in obstetrical practice also has another limitation: despite its high sensitivity, the specificity of CTG is relatively low. This means that in most cases of fetal distress the CTG reveals specific patterns of heart rate variability, but that these specific patterns can also be encountered for healthy fetuses, complicating accurate diagnosis of the fetal condition. Hence, a prerequisite for preventing unnecessary interventions that are based on CTG alone, is the inclusion of additional information in diagnostics. Monitoring of the fetal electrocardiogram (ECG), as a supplement of CTG, has been demonstrated to have added value for monitoring of the fetal health condition. Unfortunately the application of the fetal ECG in obstetrical diagnostics is limited because at present the fetal ECG can only be measured reliably by means of an invasive scalp electrode. To overcome this limited applicability, many attempts have been made to record the fetal ECG non-invasively from the maternal abdomen, but these attempts have not yet led to approaches that permit widespread clinical application. One key difficulty is that the signal to noise ratio (SNR) of the transabdominal ECG recordings is relatively low. Perhaps even more importantly, the abdominal ECG recordings yield ECG signals for which the morphology depends strongly on the orientation of the fetus within the maternal uterus. Accordingly, for any fetal orientation, the ECG morphology is different. This renders correct clinical interpretation of the recorded ECG signals complicated, if not impossible. This thesis aims to address these difficulties and to provide new contributions on the clinical interpretation of the fetal ECG. At first the SNR of the recorded signals is enhanced through a series of signal processing steps that exploit specific and a priori known properties of the fetal ECG. More particularly, the dominant interference (i.e. the maternal ECG) is suppressed by exploiting the absence of temporal correlation between the maternal and fetal ECG. In this suppression, the maternal ECG complex is dynamically segmented into individual ECG waves and each of these waves is estimated through averaging corresponding waves from preceding ECG complexes. The maternal ECG template generated by combining the estimated waves is subsequently subtracted from the original signal to yield a non-invasive recording in which the maternal ECG has been suppressed. This suppression method is demonstrated to be more accurate than existing methods. Other interferences and noise are (partly) suppressed by exploiting the quasiperiodicity of the fetal ECG through averaging consecutive ECG complexes or by exploiting the spatial correlation of the ECG. The averaging of several consecutive ECG complexes, synchronized on their QRS complex, enhances the SNR of the ECG but also can suppress morphological variations in the ECG that are clinically relevant. The number of ECG complexes included in the average hence constitutes a trade-off between SNR enhancement on the one hand and loss of morphological variability on the other hand. To relax this trade-off, in this thesis a method is presented that can adaptively estimate the number of ECG complexes included in the average. In cases of morphological variations, this number is decreased ensuring that the variations are not suppressed. In cases of no morphological variability, this number is increased to ensure adequate SNR enhancement. The further suppression of noise by exploiting the spatial correlation of the ECG is based on the fact that all ECG signals recorded at several locations on the maternal abdomen originate from the same electrical source, namely the fetal heart. The electrical activity of the fetal heart at any point in time can be modeled as a single electrical field vector with stationary origin. This vector varies in both amplitude and orientation in three-dimensional space during the cardiac cycle and the time-path described by this vector is referred to as the fetal vectorcardiogram (VCG). In this model, the abdominal ECG constitutes the projection of the VCG onto the vector that describes the position of the abdominal electrode with respect to a reference electrode. This means that when the VCG is known, any desired ECG signal can be calculated. Equivalently, this also means that when enough ECG signals (i.e. at least three independent signals) are known, the VCG can be calculated. By using more than three ECG signals for the calculation of the VCG, redundancy in the ECG signals can be exploited for added noise suppression. Unfortunately, when calculating the fetal VCG from the ECG signals recorded from the maternal abdomen, the distance between the fetal heart and the electrodes is not the same for each electrode. Because the amplitude of the ECG signals decreases with propagation to the abdominal surface, these different distances yield a specific, unknown attenuation for each ECG signal. Existing methods for estimating the VCG operate with a fixed linear combination of the ECG signals and, hence, cannot account for variations in signal attenuation. To overcome this problem and be able to account for fetal movement, in this thesis a method is presented that estimates both the VCG and, to some extent, also the signal attenuation. This is done by determining for which VCG and signal attenuation the joint probability over both these variables is maximal given the observed ECG signals. The underlying joint probability distribution is determined by assuming the ECG signals to originate from scaled VCG projections and additive noise. With this method, a VCG, tailored to each specific patient, is determined. With respect to the fixed linear combinations, the presented method performs significantly better in the accurate estimation of the VCG. Besides describing the electrical activity of the fetal heart in three dimensions, the fetal VCG also provides a framework to account for the fetal orientation in the uterus. This framework enables the detection of the fetal orientation over time and allows for rotating the fetal VCG towards a prescribed orientation. From the normalized fetal VCG obtained in this manner, standardized ECG signals can be calculated, facilitating correct clinical interpretation of the non-invasive fetal ECG signals. The potential of the presented approach (i.e. the combination of all methods described above) is illustrated for three different clinical cases. In the first case, the fetal ECG is analyzed to demonstrate that the electrical behavior of the fetal heart differs significantly from the adult heart. In fact, this difference is so substantial that diagnostics based on the fetal ECG should be based on different guidelines than those for adult ECG diagnostics. In the second case, the fetal ECG is used to visualize the origin of fetal supraventricular extrasystoles and the results suggest that the fetal ECG might in future serve as diagnostic tool for relating fetal arrhythmia to congenital heart diseases. In the last case, the non-invasive fetal ECG is compared to the invasively recorded fetal ECG to gauge the SNR of the transabdominal recordings and to demonstrate the suitability of the non-invasive fetal ECG in clinical applications that, as yet, are only possible for the invasive fetal ECG

    Etude de la propagation de l‟activité électrique utérine dans une optique clinique : Application a la détection des menaces d‟accouchement prématuré

    Get PDF
    Uterine contractions are essentially controlled by two physiological phenomena: cell excitability and propagation of uterine electrical activity probably related to high and low frequencies of uterine electromyogram, called electrohysterogram -EHG-, respectively. All previous studies have been focused on extracting parameters from the high frequency part and did not show a satisfied potential for clinical application. The objective of this thesis is the analysis of the propagation EHG signals of during pregnancy and labor in the view of extracting tool for clinical application. A novelty of our thesis is the multichannel recordings by using 4x4 electrodes matrix posed on the woman abdomen. Monovariate analysis was aimed to investigate the nonlinear characteristics of EHG signals. Bivariate and multivariate analyses have been done to analyze the propagation of the EHG signals by detecting the connectivity between the signals. An increase of the nonlinearity associated by amplitude synchronization and phase desynchronization were detected. Results indicate a highest EHG propagation during labor than pregnancy and an increase of this propagation with the week of gestations. The results show the high potential of propagation‟s parameters in clinical point of view such as labor detection and then preterm labor prediction. We proposed novel combination of Blind Source Separation and empirical mode decomposition to denoise monopolar EHG as a possible way to increase the classification rate of pregnancy and labor.Les contractions utérines sont contrôlées par deux phénomènes physiologiques: l'excitabilité cellulaire et la propagation de l'activité électrique utérine probablement liées aux hautes et basses fréquences de l‟electrohysterograme (EHG) respectivement. Toutes les études précédentes ont porté sur l'extraction de paramètres de la partie haute fréquence et n'ont pas montré un potentiel satisfait pour l'application clinique. L'objectif de cette thèse est l'analyse de propagation de l'EHG pendant la grossesse et le travail dans la vue de l'extraction des outils pour une application clinique. Une des nouveautés de la thèse est l‟enregistrement multicanaux à l'aide d‟une matrice d'électrodes 4x4 posée sur l'abdomen de la femme. Analyse monovariés visait à étudier les caractéristiques non linéaires des signaux EHG, analyses bivariées et multivariées ont été effectuées pour analyser la propagation des signaux EHG par la détection de la connectivité entre les signaux. Une augmentation de la non- linéarité associée par une synchronisation en amplitude et de désynchronisation en phase a été détectée. Les résultats indiquent plus de propagation au cours du travail que la grossesse et une augmentation de cette propagation avec les semaines de gestations. Les résultats montrent le potentiel élevé de paramètres de propagation dans le point de vue clinique tel que la détection du travail et de prédiction du travail prématuré. Finalement, nous avons proposé une nouvelle combinaison entre Séparation Aveugles de Sources et la Décomposition en Modes Empiriques pour débruiter les signaux EHG monopolaires comme un moyen possible d'augmenter le taux de classification de signaux grossesse et l'accouchement
    corecore