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Summary

Characterization of uterine activity by electrohysterography

A growing number of pregnancies is complicated by miscarriage, preterm delivery,
and birth defects, with consequent health problems later in life. It is therefore in-
creasingly important to monitor the health status of mother and fetus, so as to permit
timely medical intervention when acute health risks are detected. For timely recogni-
tion of complications, quantitative assessment of uterine activity can be fundamental
during both pregnancy and delivery.

During pregnancy, timely prediction of preterm delivery can improve the effec-
tiveness of the required treatments. Unfortunately, the prognostic techniques em-
ployed in current obstetrical practice, namely, uterine contraction measurements us-
ing an elastic belt (external tocography), cervical change evaluation, and the use of
biomarkers like fetal fibronectin, have been demonstrated to be inaccurate for the
prediction of preterm delivery. In the last stage of pregnancy and during labor, con-
tractions are routinely monitored. Especially when complications occur, e.g., when
labor shows poor progress, quantitative assessment of uterine activity can guide the
physician to choose a uterine contraction induction or augmentation, a cesarean sec-
tion, or other therapies. Furthermore, monitoring the fetal heart response to the uter-
ine activity (cardiotography) is widely used as a screening test for timely recognition
of fetal distress (e.g. asphyxia). However, in current obstetrical practice, accurate
quantitative assessment of the uterine contractions can be provided only invasively
and during labor. The current golden standard for contraction monitoring, which is
based on the direct internal uterine pressure (IUP) measurement by an intrauterine
catheter, can be risky and its use is generally limited to very complicated deliveries.

The contractile element of the uterus is the myometrium, which is composed of
smooth muscle cells. Uterine contractions are caused by electrical activity in the form
of action potentials (AP) that propagate through the myometrium cells. Electrohys-
terography is the measurement of the uterine electrical activity and can be performed
by electrodes placed on the abdomen. Electrohysterographic (EHG) measurements
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are inexpensive and noninvasive. Moreover, it has been demonstrated that the non-
invasively recorded EHG signal is representative of those APs that, by propagating
from cell to cell, are the root cause of a uterine contraction. Therefore, in view of the
limitation of current obstetrical practice, significant benefits could be expected from
the introduction of EHG signal analysis for routine contraction monitoring.

Previous studies highlighted the potential prognostic and diagnostic value of
EHG signal analysis, but did not investigate the possibility of accurately estimat-
ing the IUP from noninvasive EHG recordings. Moreover, important issues like the
effect of the tissues interposed between the uterus and the skin (volume conductor) on
EHG recordings have not been studied. Besides, EHG signal interpretation has been
typically based on single-channel measurements, while the use of multiple electrodes
conveys additional information (e.g., distribution and dynamics of the electrical acti-
vation) that can possibly be predictive of delivery.

In this thesis, we focus on the analysis of the EHG signal as an alternative to ex-
isting techniques for predicting preterm delivery and monitoring uterine contractions
during both pregnancy and delivery. The main goal of this work is to contribute to
the technical basis which is required for the introduction of electrohysterography in
everyday clinical practice.

A major part of this thesis investigates the possibility of using electrohysterogra-
phy to replace invasive IUP measurements. A novel method for IUP estimation from
EHG recordings is developed in the first part of this thesis. The estimates provided
by the method are compared to the IUP invasively recorded on women during de-
livery and result in a root mean squared error (RMSE) with respect to the reference
invasive IUP recording as low as 5 mmHg, which is comparable to the accuracy of
the invasive golden standard.

Another important objective of this thesis work is to contribute to the introduc-
tion of novel techniques for timely prediction of preterm delivery. As the spreading
of electrical activity at the myometrium is the root cause of coordinated and effec-
tive contractions, i.e., contractions that are capable of pushing the fetus down into
the birth canal ultimately leading to delivery, a multichannel analysis of the spatial
propagation properties of the EHG signal could provide a fundamental contribution
for predicting delivery. A thorough study of the EHG signal propagation properties
is therefore carried out in this work. Parameters related to the EHG that are poten-
tially predictive of delivery, such as the uterine area where the contraction originates
(pacemaker area) or the distribution and dynamics of the EHG propagation vector,
can be derived from the delay by which the signal is detected at multiple locations
over the whole abdomen.

To analyze the propagation of EHG signals on a large scale (cm), a method is
designed for calculating the detection delay among the EHG signals recorded by
multiple electrodes. Relative to existing interelectrode delay estimators, this method
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improves the accuracy of the delay estimates for interelectrode distances larger than
5-10 cm. The use of a large interelectrode distance aims at the assessment of the EHG
propagation properties through the whole uterine muscle using a limited number of
sensors. The method estimates values of velocity within the physiological range and
highlights the upper part of the uterus as the most frequent (65%) pacemaker area
during labor. Besides, our study suggests that more insight is needed on the effect
that tissues interposed between uterus and skin (volume conductor) have on the EHG
signal.

With the aim of improving the current interpretation and measurement accuracy
of EHG parameters with potential clinical relevance, such as the conduction veloc-
ity (CV), a volume conductor model for the EHG signal is introduced and validated.
The intracellular AP at the myometrium is analytically modeled in the spatial do-
main by a 2-parameter exponential in the form of a Gamma variate function. The
unknown atomical parameters of the volume conductor model are the thicknesses
of the biological tissues interposed between the uterus and the abdominal surface.
These model parameters can be measured by echography for validation. The EHG
signal is recorded by an electrode matrix on women with contractions. In order to
increase the spatial resolution of the EHG measurements and reduce the geometrical
and electrical differences among the tissues below the recording locations, electrodes
with a reduced surface and smaller interelectrode distance are needed relative to the
previous studies on electrohysterography. The EHG signal is recorded, for the first
time, by a 64-channel (8×8) high-density electrode grid, comprising 1 mm diameter
electrodes with 4 mm interelectrode distance. The model parameters are estimated in
the spatial frequency domain from the recorded EHG signal by a least mean square
method. The model is validated by comparing the thickness of the biological tissues
recorded by echography to the values estimated using the mathematical model. The
agreement between the two measures (RMSE = 1 mm and correlation coefficient,
R = 0.94) suggests the model to be representative of the underlying physiology.

In the last part of this dissertation, the analysis of the EHG signal propagation
focuses on the CV estimation of single surface APs. As on a large scale this parameter
cannot be accurately derived, the propagation analysis is here carried out on a small
scale (mm). Also for this analysis, the EHG signal is therefore recorded by a 3×3 cm2

high-density electrode grid containing 64 electrodes (8×8). A new method based on
maximum likelihood estimation is then applied in two spatial dimensions to provide
an accurate estimate of amplitude and direction of the AP CV. Simulation results
prove the proposed method to be more robust to noise than the standard techniques
used for other electrophysiological signals, leading to over 56% improvement of the
RMS CV estimate accuracy. Furthermore, values of CV between 2 cm/s and 12 cm/s,
which are in agreement with invasive and in-vitro measurements described in the
literature, are obtained from real measurements on ten women in labor.
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In conclusion, this research provides a quantitative characterization of uterine
contractions by EHG signal analysis. Based on an extensive validation, this thesis
indicates that uterine contractions can be accurately monitored noninvasively by ded-
icated analysis of the EHG signal. Furthermore, our results open the way to new
clinical studies and applications aimed at improving the understanding of the elec-
trophysiological mechanisms leading to labor, possibly reducing the incidence of
preterm delivery and improving the perinatal outcome.
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Chapter 1

Introduction

I numeri primi sono divisibili soltanto per 1 e per se stessi. Se ne
stanno al loro posto nell’ infinita serie dei numeri naturali, schiacciati
come tutti fra due, ma un passo in là rispetto agli altri. Sono numeri
sospettosi e solitari... (P. Giordano) 1

Preterm birth, i.e., birth before completing the 37th week of gestation, is still
a major cause of infant mortality and morbidity. In the last decades, a better un-
derstanding of risk factors and mechanisms related to preterm birth has led to the
introduction of several measures to reduce its incidence. However, in most industri-
alized countries the preterm birth rate is still 12% and it accounts for 75% of perinatal
mortality and more than 50% of long term morbidity [1], with an associated annual
societal economic cost that, in the United States alone, was estimated to amount to
26.2 billion US dollars in 2005 [2].

About 30% of preterm births are the result of indicated preterm delivery, i.e.,
labor is induced or the baby is delivered by prelabor Cesarean section before com-
pleting the 37th week of gestation. Common reasons for indicated preterm delivery
include hypertension accompanied by protein in the urine (pre-eclampsia), mother’s
seizures (eclampsia), and uterine growth restriction. In up to 70% of preterm births,
the obstetric precursor is spontaneous preterm labor in the form of preterm uterine
contractions with intact membranes (40-45% of spontaneous preterm labor) or pre-
mature membrane rupture (25-30% of spontaneous preterm labor) [1].

The pathogenesis of spontaneous preterm labor is not well understood: sponta-
neous preterm contractions might be caused by an early activation of the normal labor
process or by other (unknown) pathological causes [1, 3, 4]. Most obstetric interven-
tions to reduce the incidence of spontaneous preterm delivery have been focused

1‘Prime numbers are divisible only by 1 and by themselves. They stand in their place in the infinite
series of natural numbers, squashed in between two others, like all other numbers, but a step further on
than the rest. They are suspicious and solitary...’. From ‘La solitudine dei numeri primi’ (published in
English as ‘The solitude of prime numbers’).



2 Introduction

on inhibiting premature contractions by tocolytic agents in order to temporarily de-
lay delivery, therefore permitting the administration of antenatal steroids along with
mother’s transfer to a hospital where appropriate care can be provided. However,
the effectiveness of tocolytic agents requires early introduction of the therapy. The
onset of active labor, leading eventually to the delivery of the fetus, is the result of
a preparatory phase which induces in the uterus the electrophysiological changes re-
quired to produce forceful and coordinated contractions [5]. At a certain point of the
preparatory phase, this process becomes irreversible; after this point, even with the
latest tocolytics, delivery cannot be delayed for more than few days [5].

Although an early treatment improves the effectiveness of tocolytics [6, 7], their
indiscriminate use at the first signs of preterm delivery can be risky for mother and
fetus [8]. Therefore, timely recognition of the process leading to labor is of prime
importance to discriminate preterm physiological contractions that are unproductive,
i.e., will not soon lead to delivery, from efficient contractions, i.e., contractions that
will induce a progressive cervical dilatation and soon lead to delivery. Besides symp-
tomatic self monitoring and cervical change evaluation, current methods employed in
clinical practice during pregnancy are based on uterine contraction monitoring. The
use of biomarkers, such as fibronectin, has also been recently proposed as a screen-
ing test for preterm labor prediction. Unfortunately, none of these methods can re-
liably discriminate between unproductive and efficient uterine contractions probably
because the method analysis is based on parameters that are independent of the irre-
versible uterine preparatory stage necessary for active labor to take place [5, 9, 10].

During delivery, contractions are routinely and constantly monitored. Especially
when complications occur, e.g., when labor shows poor progress, quantitative as-
sessment of uterine contraction efficiency can guide the physician to choose a uter-
ine contraction induction or augmentation, a Cesarean section, or other therapies.
Furthermore, monitoring the response of the fetal heart to the uterine activity (car-
diotocography) is widely used in clinical practice as a screening test for timely recog-
nition of fetal distress (e.g., asphyxia) [11].

The first result of a contraction is an increase of the internal uterine pressure
(IUP). The techniques used in clinical practice for uterine contraction monitoring
mainly rely on the direct (internal) or indirect (external) measurement of the IUP. Ex-
ternal tocography is currently the most widely used technique to monitor the uterus
during pregnancy and delivery [12]. A tocodynamometer consists of a strain gauge
transducer placed around the external surface of the abdomen and has the primary ad-
vantage of being noninvasive. However, due to the fact that it is an indirect mechani-
cal measurement of the pressure increase, the signal provided by external tocography
is characterized by a low sensitivity. Poor sensitivity can affect the estimation accu-
racy of contraction amplitude and duration [5, 13, 14]. Since external tocography
only conveys accurate information on the contraction rate, it is well established that
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this technique is neither accurate for prediction of preterm delivery during pregnancy,
nor for quantification of uterine efficiency during labor.

During delivery, quantitative information concerning uterine efficiency can be
provided invasively, by measuring the amniotic IUP with an internal uterine pressure
catheter (IUPC). However, the employment of an IUPC requires the rupture of the
membranes and, due to its invasiveness, this device can increase the risk of infections
and even cause damages to the fetus [15, 16]. Therefore, the use of an IUPC is usually
limited to complicated cases.

The contractile element of the uterus is the myometrium, which is a smooth mus-
cle. Smooth muscle is an involuntary, non striated muscle, which presents significant
anatomical and physiological differences relative to (striated) skeletal muscle [17].
The physiological basis of uterine contractions is the cyclic depolarization and repo-
larization of the smooth muscle cells composing the myometrium [18]. Early in preg-
nancy, the poor electrical coupling among the cells is responsible for the quiescent
status of the uterus. As delivery approaches, the formation of low resistance electrical
paths (gap junctions) allows the propagation of electrical activity from cell to cell in
the form of action potentials (APs) [19]. The propagation of APs through an adequate
number of cells results in a coordinated mechanical contraction of the myometrium,
capable of inducing progressive cervical dilatation and producing an increase of the
IUP acting towards the expulsion of the fetus at the end of delivery [18, 20, 21]. Usu-
ally, APs occur in groups (bursts) and each electrical burst corresponds to a uterine
contraction.

Electrohysterography (EHG) is the noninvasive measurement the electrical ac-
tivity underlying uterine contractions. The first EHG signal ever reported in the lit-
erature was measured in 1931 as the deflection of a galvanometric needle during a
uterine contraction [22]. This pioneering measurement unveiled a signal with great
potentials, since EHG measurements are inexpensive and noninvasive. Moreover, as
it is indicative of the root cause of a contraction [12, 15, 18, 23], EHG may not only
replace the invasive or inaccurate methods that are currently employed for contraction
monitoring during labor, but could also be an alternative tool for predicting delivery.

Due to the need for a noninvasive and reliable method aimed at following the
evolution of the uterine activity, predicting the delivery time, and understanding the
processes underlying the onset of labor, the interest in EHG has progressively in-
creased. At the same time, since the pioneering measurements in the early 30s,
the recording techniques have significantly advanced and computer technology has
opened new possibilities for signal analysis. Nevertheless, EHG measurements are
not yet adopted in obstetric practice.

The numerous unsolved issues related to EHG analysis and interpretation make
the introduction of EHG measurements in routine clinical practice still a challenging
objective for both scientists and physicians. Besides the need for establishing a more
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solid knowledge of the physiology underlying uterine contractions, a prerequisite for
such a challenging objective is the development of dedicated signal analysis tech-
niques that permit detection and interpretation of parameters of potentially clinical
relevance. Moreover, extensive clinical studies are required for understanding the
link between the parameters derived from the EHG signal and the processes leading
to labor.

Over the years it has been scientifically established that the EHG signal is repre-
sentative of the electrical changes occurring in the myometrial cells and initiating a
contraction [18]. Several studies investigated the use of the noninvasively recorded
EHG signal for predicting labor and discriminating effective contractions leading to
preterm delivery from unproductive physiological uterine activity. Overall, many pa-
rameters derived from the EHG signal have been considered, both in time [18, 24–26]
and in frequency domain [4, 18, 24, 25, 27, 28]. Typically, EHG signal interpreta-
tion has been based on single-channel measurements. The shift of the EHG burst
frequency components from lower frequencies, during pregnancy, to higher frequen-
cies, during labor, seems the most significant variation and one of the earliest ob-
servable characteristics, observed in both term and preterm delivery by several stud-
ies [28, 29]. Despite these promising observations, a proper frequency threshold for
an accurate contraction discrimination and delivery prediction over a broad range of
patients could not be determined [29].

It has been suggested that the spectral changes of the EHG signal observed dur-
ing the progression of pregnancy may be due to the increased cell excitability and
improved electrical coupling [4]. Only few studies have recorded the intracellular
electrical activity of the human myometrium, and the current knowledge of uterine
physiology was mainly obtained by animal studies [21, 30–32]. The role of gap
junctions for the propagation of the electrical activity, their presence and necessity
during parturition, and their hormone-dependent regulation were also scientifically
established by animal investigation [33–36]. Modeling techniques mainly focused
on the intracellular AP. The temporal evolution of the AP was modeled as a func-
tion of a large number of electrophysiological parameters related to ionic concentra-
tions [37, 38].

There are several important aspects related to the EHG signal interpretation that
have not been addressed by previous studies. The possibility of replacing invasive
IUPC by noninvasive EHG measurements was suggested only very recently [39, 40].
However, a poor accuracy of the estimation [39] and the required use of the IUPC
signal [40], hamper the feasibility of the previously proposed methods in a clinical
environment.

The spreading of electrical activity in the myometrium is the first cause of a coor-
dinated and effective contraction and could therefore represent a fundamental param-
eter to follow the process leading to labor and to accurately predict the time to deliv-
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ery [18, 36]. However, the propagation properties of the EHG signal have received lit-
tle attention and have been mostly investigated in-vitro or in animals [36, 41]. Notice-
ably, most of the previous studies were based on single-channel measurements, with
only few exceptional studies on animals employing multichannel grid electrodes [42].
Besides, the conduction pattern of electrical activation at the myometrium and the ef-
fect of the tissues interposed between the uterus and the skin (volume conductor) are
key aspects of the EHG measurement and interpretation that are not yet fully under-
stood [41]. In general, possibly due to these unexplained aspects, most of the pre-
vious literature on EHG signal analysis has investigated the properties of the whole
burst of APs [43] and only little attention has been dedicated to the analysis of single
surface APs extracted from the EHG burst [41]. In the context of surface record-
ings, by surface AP, or simply AP, we refer to a single spike extracted from a single
channel EHG burst that, being recorded noninvasively, is the weighted average of the
electrical activity of all the underlying excited cells [44, 45].

In this context, important advances for improving the current interpretation and
measurement accuracy of EHG parameters with potential clinical relevance, e.g., the
AP conduction velocity (CV), could be achieved by the introduction and validation
of mathematical models that can reliably describe the cellular AP and the EHG vol-
ume conductor. The models of the cellular AP previously proposed [37, 38] provide
an accurate representation of the biochemical processes underlying the generation of
APs; however, for clinical applications, a significant reduction of the number of pa-
rameters is required. Furthermore, the myometrium-skin volume conductor has been
only partially investigated and it is typically considered as a homogeneous infinite
layer [37, 46]. A complete understanding of the volume conductor effect operated
by the different tissue layers is fundamental to support the EHG signal measurement
and interpretation and, ultimately, for the development of accurate prognostic and
diagnostic tools based on EHG.

In this thesis, we focus on the analysis of the EHG signal as an alternative to
existing techniques for characterizing the uterine activity, predicting preterm delivery,
and monitoring uterine contractions during both pregnancy and delivery. The goal of
this work is to contribute to the technical basis which is required for the introduction
of the EHG signal analysis in clinical practice. To this end, we propose dedicated
models and methods to improve the current measurement and interpretation accuracy
of EHG parameters with established or potential clinical relevance for pregnancy
monitoring. Our contribution is structured in four main objectives:

1. Proposing an accurate method for the noninvasive estimation of the IUP;

2. Designing a dedicated method for estimating the spatial propagation of EHG
bursts on a large scale (cm) as a potential parameter for contraction assessment
and delivery prediction;
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3. Introducing and validating a 4-layer mathematical model of the volume con-
ductor and a two-parameter analytical representation of the myometrium AP;

4. Analyzing the EHG propagation on a small scale (mm) and proposing a new
method for noninvasive estimation of the CV of single surface APs extracted
from the EHG signal.

An additional novelty relatively to previous studies is the employment, in some of
the methods proposed in this thesis, of an improved spatial resolution (high-density)
electrode grid.

The EHG measurement and analysis methods proposed in this thesis are tightly
linked to background physiology. As the knowledge of smooth muscle physiology is
not as well established as that of the other muscles, the physiology underlying uterine
contractions is described in the first part of Chapter 2 as a synthesis of previous stud-
ies. In order to position the proposed methods in a clinical context, the methods that
are currently employed in clinical practice for contraction monitoring and delivery
prediction are reported and discussed in the second part of Chapter 2.

In Chapter 3, we propose a new method for assessing noninvasively the uterine
mechanical activity as measured by an invasive IUPC. Only recently, few studies
focused on EHG analysis as an alternative to existing methods for a quantitative es-
timation of the uterine mechanical activity [39, 40]. The physiological assumptions
underlying these previous methods can be summarized in the use of only the EHG
amplitude as indicative of the mechanical tension produced by the contracting my-
ometrium. The proposed method is fundamentally conceived on the basis of the
physiologic phenomena underling the generation of the recorded signals and regards
the IUP increase as the result of the joint contribution of frequency and amplitude of
the EHG signal. Simultaneous recordings by an IUP catheter confirm that the pro-
posed method, probably due to the physiology-based approach, outperforms those
previously proposed with an accuracy which is comparable to that of the golden stan-
dard.

Another important objective of this thesis work is to contribute to the introduc-
tion of novel techniques for timely prediction of preterm delivery. As the spreading
of electrical activity at the myometrium is the root cause of coordinated and effective
contractions, a multichannel analysis of the spatial propagation properties of the EHG
signal could provide a fundamental contribution for predicting delivery. In Chapter
4, a thorough study of the EHG signal propagation properties is carried out on a large
scale (cm). Parameters related to the EHG that are potentially predictive of delivery,
such as the uterine area where the contraction originates (pacemaker area) or the dis-
tribution and dynamics of the EHG propagation vector, can be derived from the delay
by which the EHg burst is detected at multiple locations over the whole abdomen.
In this Chapter, a method is therefore designed for estimating the detection delay
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among the EHG signals recorded by multiple electrodes. Relative to existing inter-
electrode delay estimators, this method has an improved estimation accuracy when
interelectrode distances larger than 5-10 cm are used. The use of a large interelec-
trode distance aims at the assessment of the EHG propagation properties through the
whole uterine muscle using a limited number of sensors. Measurements by eight
electrodes on women in labor confirm the feasibility of the method for clinical prac-
tice and highlight the upper part of the uterus as the most frequent location of the
pacemaker area.

In order to improve the current interpretation and measurement accuracy of EHG
parameters with potential clinical relevance, such as the CV, a volume conductor
model for the EHG signal is introduced and validated in Chapter 5. A myometrium-
skin conduction model is developed which consists of a four-layer model obtained
by extension of previous studies reported in the literature for the skeletal electromyo-
gram, which were based on simulations [47]. The volume conductor effect is for-
malized in the spatial-frequency domain by a transfer function that accounts for the
physical and geometrical properties of the biological tissues interposed between the
myometrium and the recording site on the skin. The unknown anatomical parame-
ters of the volume conductor model are reduced to the thicknesses of these biological
tissues. The tissue thicknesses can be measured by echography for validation. The
intracellular AP at the myometrium is analytically modeled in the spatial domain by
a 2-parameter exponential in the form of a Gamma variate function [48]. The EHG
signal is recorded by an electrode matrix on women with contractions. In order to
increase the spatial resolution of the EHG measurements and reduce the geometrical
and electrical differences among the tissues below the recording locations, electrodes
with a reduced surface and smaller interelectrode distance are needed relative to the
previous studies on EHG. The EHG signal is recorded, for the first time, by a high-
density electrode grid. The model parameters are estimated in the spatial frequency
domain from the recorded EHG signal by a least mean square method. The model is
validated by comparing the thickness of the biological tissues recorded by echogra-
phy to the values estimated using the mathematical model.

In Chapter 6, the analysis of the EHG signal propagation focuses on the CV esti-
mation of single surface APs. As on a large scale this parameter cannot be accurately
derived, the propagation analysis is here carried out on a small scale (mm). Also
for this analysis, the EHG signal is therefore recorded by a 3×3 cm2 high-density
electrode grid containing 64 electrodes (8×8). New methods based on maximum
likelihood estimation are then applied in two spatial dimensions to provide an ac-
curate estimate of amplitude and direction of the AP CV. Simulation results prove
the proposed method to be more robust to noise than the standard techniques used
for other electrophysiological signals. Recordings on women in labor confirm the
clinical feasibility of the methods.
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The concluding remarks of this thesis are given in Chapter 7 with some sugges-
tions for possible future work.

The methods and results reported in this thesis have been published in several
journal articles and conference proceedings. In particular, with reference to the sec-
tion List of author’s publications, Chapter 3 integrates [JP-6] and [IC-3]. Chapter 4
and Chapter 5 have been published as [JP-5] and [JP-3], respectively, and Chapter 6
has been submitted as [JP-2].

List of author’s publications

Journal Papers

[JP-1] P. G. C. Vinken, C. Rabotti, M. Mischi, J. O. E. H. van Laar and S. G. Oei,
“Nifedipine-induced changes in the electrohysterogram of preterm contrac-
tions: feasibility in clinical practice,” submitted to Obstetrics and Gynecology
International.

[JP-2] C. Rabotti, M. Mischi, S. G. Oei, J. W. M. Bergmans, “Noninvasive estimation
of the electrohysterographic action-potential conduction velocity,” IEEE Trans.
Biomed. Eng., conditional acceptance.

[JP-3] C. Rabotti, M. Mischi, L.Beulen, S. G. Oei, J. W. M. Bergmans, “Model-
ing and identification of the electrohysterographic volume conductor by high-
density electrodes,” IEEE Trans. Biomed. Eng., vol.57 , pp. 519 - 527, 2010.

[JP-4] P. G. C. Vinken, C. Rabotti, M. Mischi, S. G. Oei, “Accuracy of frequency-
related parameters of the electrohysterogram for predicting preterm delivery:
a review of the literature,” Obstet. Gynecol. Surv., vol. 64, n. 8, 529 - 541,
2009.

[JP-5] C. Rabotti, M. Mischi, J. O. E. H. van Laar, S. G. Oei, J. W. M. Bergmans,
“Inter-electrode delay estimators for electrohysterographic propagation analy-
sis,” Physiol. Meas., vol. 30, pp.745 - 761, 2009.

[JP-6] C. Rabotti, M. Mischi, J. O. E. H. van Laar, S. G. Oei, J. W. M. Bergmans,
“Estimation of internal uterine pressure by joint amplitude and frequency anal-
ysis of electrohysterographic signals,” Physiol. Meas., vol. 29, pp. 829 - 841,
2008.

[JP-7] S. M. M. Martens, C. Rabotti, M. Mischi, and R.J. Sluijter, “A robust fetal
ECG detection method for abdominal recordings,” Physiol. Meas., vol. 28,
pp. 373 - 388, 2007. Martin Black prize for best paper in Physiological
Measurement in 2007.
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International conferences proceedings

[IC-1] C. Rabotti, M. Mischi, S. G. Oei, and J. W. M. Bergmans, “Electrohystero-
graphic volume conductor model validation by high-density electrodes,” 18th
Congress of the International Society of Electrophysiology and Kinesiology,
Aalborg, Denmark, October 16 - 19, 2010.

[IC-2] C. Rabotti, M. Mischi, L. Beulen, J. W. M. Bergmans, and S. G. Oei, “Math-
ematical modeling of the electrohysterogram: understanding the origin of uter-
ine contractions for preterm delivery prediction,” 9th World Congress of peri-
natal medicine, Berlin, Germany, October 24 - 28, 2009.

[IC-3] M. Mischi, C. Rabotti, L. P. J. Vosters, S. G. Oei, and J. W. M. Bergmans,
“Electrohysterographic conduction velocity estimation,” IEEE-EMBS Proc. on
the 31st Annual International Conference, Minneapolis, USA, Sep. 2 - 7, 2009,
pp. 6934 - 6939.

[IC-4] C. Rabotti, M. Mischi, J. O. E. H. van Laar, S. G. Oei, and J. W. M. Bergmans,
“Myometrium electromechanical modeling for internal uterine pressure esti-
mation by electrohysterography,” IEEE-EMBS Proc. on the 31st Annual Inter-
national Conference, Minneapolis, USA, Sept. 2 - 7, 2009, pp. 6259 - 6262.

[IC-5] C. Rabotti, M. Mischi, M. Gamba, M. Vinken, S. G. Oei, and J. W. M.
Bergmans, “Identification of the electrohysterographic volume conductor by
high-density electrodes,” 4th European Congress for Medical and Biomedical
Engineering, Antwerp, Belgium, 23 - 27 November 2008, pp. 235 - 238.

[IC-6] C. Rabotti, M. Mischi, J. O. E. H. van Laar, S. G. Oei, and J. W. M. Bergmans,
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Proc. on the 30th Annual International Conference, Vancouver, Canada, Au-
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2008, p. 39.
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Chapter 2

Uterine contraction and clinical practice

The act of birth is the first experience attended by anxiety, and thus
the source and model of the affect of anxiety (S. Freud) 1

2.1 Introduction

The object of this thesis is the characterization of the uterine contractions during
pregnancy. The uterus is a heterogeneous organ composed of many cell types with
a predominance of smooth muscle cells. Smooth muscle is an involuntary, non stri-
ated muscle. In general, physiologists tend to underline that, differently from striated
(skeletal) muscles, for smooth muscles important differences exists between various
smooth tissues of the same species and between anatomically and functionally com-
parable smooth muscles of related species [1]. While striated muscles are all organs
with a comparable locomotive function and consist of only muscle tissue, smooth
muscles are generally, with few exceptions, only elements contributing together with
other tissues to the anatomy of the whole organ.

The smooth muscle is composed of smaller fibers, usually 1 to 5µm in diame-
ter and 20 to 500µm in length. Skeletal muscle fibers, by comparison, can be 30
times larger and hundreds of times longer. Furthermore, isolated muscle elements
of smooth muscles do not exhibit the functions of the whole organ, like the striated
fibers of skeletal muscles, but only those connected with contractility [1]. An addi-
tional peculiarity of the uterus with respect to other smooth muscle organs such as
the gastrointestinal tract, bladder, airways, and blood vessels, is that the myometrium
is normally functional for only brief periods, e.g, following gestation during parturi-
tion [2].

Skeletal and cardiac muscles have been studied much more thoroughly and ex-
tensively than smooth ones. Relative to the skeletal muscle, the smooth cell structure
is fundamentally different and the processes leading to contraction is more complex.
Therefore, the physiological properties of smooth muscle cannot be simply derived

1Sigmund Freud, ‘The Interpretation of Dreams’, third English edition.
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from the well established knowledge on skeletal muscle.
Knowledge of the structure of the myometrium and the factors that regulate uter-

ine contractility during pregnancy is necessary for a thorough comprehension of the
mechanisms that maintain the uterus in a quiescent state during pregnancy and then
convert it to an active and reactive state during labor. Besides, the EHG measure-
ment and analysis methods proposed in this thesis are tightly linked to the underlying
physiological process. The first part of this chapter will therefore be dedicated to
the physiology of the uterus and to the factors that regulate the uterine contractility
during pregnancy and labor.

The main motivation of this thesis is the need for noninvasive tools for accurately
predicting labor and assessment of uterine contractions. This need arises, on the
one hand, from the compromise between accuracy and invasiveness imposed by the
methods currently used in clinical practice for contraction monitoring, and, on the
other hand, from the lack of methods for understanding the process leading to labor
and allowing timely treatment of premature labor. Therefore, in order to position this
thesis work in a clinical context, the methods currently employed in clinical practice
for contraction monitoring and labor prediction will be described and discussed in
the second part of this chapter.

2.2 Physiology of contractions

2.2.1 Uterine anatomy

The uterus is a hollow, muscular organ shaped like an inverted pear. In adults the
uterus is 7.5 cm long, 5 cm wide, and 2.5 cm thick, but during pregnancy it enlarges
by a factor of four to five [3].

The anatomical structure of the nonpregnant uterus is depicted in Fig. 2.1. The
narrower, lower end, which projects into the vagina, is named cervix. The cervix is
made of fibrous connective tissue and is of a firmer consistency than the body of the
uterus. The two fallopian tubes enter the uterus at opposite sides, near its top. The
entrances of the tubes divides the uterus in two parts: the fundus (above) and the
body (below). The body narrows toward the cervix, and a slight external constriction
marks the juncture between the body and the cervix.

As indicated in Fig. 2.1, the uterine wall is composed of three distinct layers in
most species: an inner layer, the endometrium, that lines the lumen of the organ,
an intermediate layer, the myometrium, and an external layer, the perimetrium. The
myometrium, which is the contractile element of the uterus, is composed of two lay-
ers: the outer longitudinal muscle layer and the inner circular layer. The longitudinal
layer consists of bundles of smooth muscle cells that are generally aligned with the
long axis of the uterus. Muscle cells of the circular muscle layer are arranged con-
centrically around the longitudinal axis of the uterus. The muscle cells in the circular
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Figure 2.1: Anatomic structure of the non-pregnant uterus.

layer are arranged more diffusely and the bundle arrangement, if present, is not as
apparent as that of the longitudinal layer [3, 4]. Previous studies indicated that the
longitudinal layer is continuous with the circular one [5] and that the two layers usu-
ally contract in a coordinated fashion [6]. In some studies, a third intermediate layer
of the myometrium is mentioned that is composed of fibers without any organized
arrangement [7].

Smooth muscle cells of the myometrium are generally long, spindle shaped cells
(see Fig. 2.2(a)), but may also be irregularly shaped. The cells progressively increase
in size during the last stage of gestation. Number and size of myometrial smooth
muscle cells are mainly regulated by steroid hormones. The size of the myometrial
cell is expected to vary considerably among different species. Under the optimal
conditions of parturition, for the rabbit, a maximum length of 300µm and a maximum
width of 10µm have been reported [8].

The type of filaments that have been identified in uterine smooth muscle cells
(see Fig. 2.2(b)) include a thick filament (15 nm diameter, myosin), a thin filament
(6-8 nm, actin), and an intermediate one (10 nm, desmin or vimentin).

Contraction of smooth muscle cells occurs, as in skeletal muscle, through the
interaction of myosin and actin filaments. However, as suggested by Fig. 2.2(b), actin
and myosin filaments do not have the same striated arrangement as in skeletal muscles
and a large number of actin filaments are attached to dense portions of smooth muscle
referred to as dense bodies [3].
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(a) (b)

Figure 2.2: Smooth muscle cell: Muscle fibers and spindle-shape cell (a),
smooth muscle cell filaments (b).

2.2.2 Cell activation

Basis of activation

Similarly to skeletal muscles, also for smooth muscles, the contraction results from
the propagation of electrical activity through the muscle cells in the form of action
potentials (AP). The intracellular AP results from time-dependent changes in the
membrane ionic permeability, that are caused by hormonal changes or by cell-to-cell
excitation.

The cell membrane potential depends on the distribution of ions across the plasma
membranes. At rest, the ionic distribution in uterine smooth cell is such that the
concentration of sodium (Na+) and calcium (Ca2+) ions is higher outside the cell
than inside, whereas the concentration of potassium (K+) ions is higher inside the
cell [3]. This distribution of ions corresponds to the resting membrane potential,
i.e., the value of transmembrane potential at which contraction does not occur and
the myometrium is in a quiescent status. The resting membrane potential of the
myometrial cell usually ranges from -40 to -60 mV but can vary depending on the
hormonal state [9, 10]. In women, the resting myometrial cell membrane potential
ranges between -65 to -80 mV [11].

The muscle cells respond to small changes in permeability by significant move-
ments of ions according to the electrochemical gradients; as a consequence, a trans-
membrane ionic current is established. The contractile event of the uterine smooth
muscle is initiated by a rise in the intracellular Ca2+ concentration to approximately
10−5 M from a resting level of about 10−7 M [12].

The source of Ca2+ can be extracellular, intracellular, or a combination of both [3];
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Figure 2.3: Diagram showing the time changes of the membrane potential
(bottom) as a function of the efflux and influx of ions (top).

namely, Ca2+ ions can flow into the cell following their electrochemical gradient
through potential dependent Ca2+ channels in response to a change in membrane
permeability (extracellular), or they can be released from intracellular storage sites
(intracellular). Conversely, a reduction of intracellular free Ca2+, either as a result of
efflux into the extracellular space or re-uptake into cellular storage sites, terminates
the contraction [3].

Although in smooth muscle, similarly to skeletal muscle, the cell contraction is
activated by Ca2+, differently from striated muscle fibres the smooth muscle cell has
poorly developed sarcoplasmic reticulum; as a result, the source of Ca2+ causing the
contraction of smooth muscle cells is mainly extracellular. When the concentration
of Ca2+ in the extracellular fluid exceeds 10−3 M, in comparison with the 10−7 M
inside the cell, a diffusion of Ca2+ into the cell occurs. The time required for the
diffusion (latent period) is on average 200-300 ms, and it is approximately 50 times
longer than the latent period measured in skeletal muscle fibers [13].

Smooth muscle relaxation is due to the removal of the Ca2+ from the intracellular
fluids by a calcium pump, which is very slow in comparison to the fast sarcoplasmic
reticulum pump that is present in the skeletal muscle.

The diagram in Fig. 2.3 shows the time relationship between the membrane AP
and the ion influx and efflux in the cell. The inward current, mainly carried by Ca2+,
but also by Na+, causes a depolarization of the cell. The outward current, carried by
potassium ions (K+) and Ca2+, induces the cell repolarization.

When compared to the skeletal muscle, the smooth muscle cell membrane has
far more voltage-gated calcium channels than the skeletal muscle, but fewer voltage-
gated sodium channels. Therefore, the generation and propagation of APs in smooth
muscle is mainly regulated by Ca2+, while the contraction of skeletal muscle fibers
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Figure 2.4: Schematic representation of the cell-to-cell electrical coupling
due to the formation of gap-junctions.

is mainly regulated by sodium channels. Calcium channels open significantly slower
than sodium channels and they also remain open longer. This accounts for the slow
onset of contraction and relaxation of the smooth muscle tissue in response to the
electrical stimulus.

APs usually occur in groups forming a burst [7]. The shape, size, number, and
frequency of APs may vary considerably in the uterine muscle under different hor-
monal conditions. However, little variation is observed from one cell to the next in
the parturient uterus [8].

Cell-to-cell coupling

In skeletal muscles, the contraction is initiated by the nervous system. The motoneu-
ron initiates an action potential that propagates through the neuromuscular junction
to the muscle end plate, ultimately causing the muscle fiber to contract. Neuromuscu-
lar junctions of the highly structured type of skeletal muscle do not occur in smooth
muscle [13].

In particular, in the myometrium, the action potential is initiated in pacemaker
cells and then propagates to surrounding nonpacemaker cells, opens ion channels
and allows the entry into the cell of Ca2+ to induce contraction, as schematically
represented in Fig. 2.4. There is no evidence for a fixed pacemaker anatomic area
in the uterine muscle: any muscle cell can act as pacemaker cell and pacemaker
cells can change from one contraction to the other [7]. It has been shown that
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non-pacemaker regions can become pacemakers by application of oxytocin, acetyl-
choline, or prostaglandis [14].

Many studies indicate that myometrial cells are electrically coupled by gap junc-
tions [12, 15, 16], which are also present in other types of tissues, such as the epithe-
lia of the pancreas and liver [17]. A gap-junction is a structure composed of two sym-
metrical portions of the plasma membrane from two neighboring cells. Gap junction
proteins within the opposed cell membrane are thought to align themselves and create
channels (of about 1.5 nm) between the cytoplasm of the two cells. These channels
are sites of electrical and metabolic coupling between cells. There is evidence that
gap junctions form a pathway for the passage of APs by forming a low-resistance
electrical contact between the cells (see Fig. 2.4) [12, 15, 16].

Dedicated studies demonstrated that throughout most of the pregnancy the cell-
to-cell gap junctions are absent or present in very low density, indicating poor cou-
pling and limited electrical conductance [15]. Conversely, contractile uterine activity
during term or pre-term labor is invariably associated with the presence of a large
number of gap junctions between the myometrial cells [15, 16]. The presence of
gap-junctions is controlled by changing oestrogen and progesterone concentration
in the uterus. Progesterone downregulates and progesterone antagonist upregulates
the myometrial gap-junction density [12]. It is generally believed that the improved
electrical communication among cells can facilitate synchronous excitation of a large
number of myometrial fibers and permit the evolution of forceful, coordinated uterine
activity, able of effectively terminate pregnancy by helping the fetus to descend into
the birth canal [9, 16].

As previously mentioned, the cell depolarization opens voltage-dependent Ca2+

channels allowing Ca2+ ions to enter the muscle. A single action potential can initiate
a quick shortening of a muscle, which is referred to as twitch contraction [18]. Twitch
contractions do not develop force. Only when APs are repetitively discharged, as
the increments in tension triggered by individual AP can summate, the contraction
amplitude is increased as a result of the increase of intracellular free Ca2+ [18]. It
has been reported that a fused contraction is generated when APs are discharged at a
rate higher than about 1 Hz [18].

Recently, another possible mechanism for cell-to-cell communication in the my-
ometrium has been proposed which involves intracellular calcium waves [19] using
prostaglandin and paracrine signalling [20]. A model of uterine contractility that
comprises a dual mechanism of cell to cell excitation based on APs and calcium
waves has been proposed [20]. This model assumes that the functional unit of the
uterus is a cylindric bundle of cells, where the cellular AP propagation provides a
rapid organ-level propagation and the intercellular calcium wave propagation pro-
vide slower coordination within the cylindric bundle. The results reported in [21],
where some new three-dimensional structures, including cylindric bundles have been
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identified, conceptualizes uterine contractions as the effects of functional units and
suggests that the continuity of the network from bundle to bundle supports the hy-
pothesis that AP propagation is fundamental in coordinating uterine contractions and
that medications that affect action potential propagation modulate uterine contractil-
ity [21].

2.2.3 Cell contraction

Basis of contraction

Contraction of smooth muscle cells occurs through the interaction of myosin and
actin filaments. The myosin heads are made up of heavy chains and light protein
chains. Contraction and relaxation of the myometrium are regulated by phosphoryla-
tion, i.e., acquisition of a phosphate (PO4) group, and dephosphorylation, i.e., remov-
ing of a phosphate groups by hydrolysis, of myosin light protein chain. The enzyme
that phosphorylates the light chains is called myosin light-chain kinase (MLCK). In
order to control the contraction, MLCK is activated by an increase in the intracellular
concentration of free Ca2+ [22].

Unlike the cardiac and skeletal muscle, the smooth muscle does not contain the
calcium-binding protein troponin; instead, calmodulin takes on the regulatory role in
smooth muscle. Calcium ions bind to the calmodulin and form a calcium-calmodulin
complex. This complex will bind to the MLCK to activate it. Contraction is then
initiated by a phosphorylation of myosin where adenosine triphosphate (ATP) is de-
graded to adenosine diphosphate (ADP) [13, 22].

Phosphorylation of myosin light chain leads to the conformational changes in the
myosin head that results, as it is more accurately described in 2.2.3, in the formation
of crossbridges, shortening of the muscle, and development of force [22]. Relaxation
is affected by low concentration of calcium ions, inactivation of MLCK, and dephos-
phorylation of myosin light chain by myosin light chain phosphatase (MLCP) [13].

Sliding filament model

Smooth muscle contraction and force development is due to the sliding of myosin
and actin filaments over each other. Filament sliding occurs when the globular heads
protruding from myosin filaments attach and interact with actin filaments to form
crossbridges. The myosin heads tilt and drag the actin filament along a small dis-
tance (10-12 nm). The heads then release the actin filament and adopt their original
conformation. They can then re-bind to another part of the actin molecule and drag
it along further. This process is called crossbridge cycling and is the same for all
muscles [22].

Differently from the skeletal muscle, the cross-bridges of most of the myosin fil-
aments in smooth muscle are arranged so that the bridges on one side hinge in one
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Figure 2.5: Schematic representation of the smooth cell contraction due to
the formation of cross-bridges.

direction and those on the other side hinge in the opposite direction as schematically
represented in Fig. 2.5. This type of cross-bridge allows the myosin to pull an actin
filament in one direction on one side while simultaneously pulling another actin fil-
ament in the opposite direction on the other side. This organization allows smooth
muscle cells to contract as much as 80% of their length instead of less than 30% as
in skeletal muscle cells [13].

2.2.4 Uterine contraction

The electrical activity of the smooth muscle cells of the myometrium initiate the
mechanical contraction of the uterus. The main function of uterine contractions is,
during parturition, shortening the cervix and helping the fetus to descend into the
birth canal. In this circumstance, the uterus works under isometric conditions, i.e., it
does not shorten. Experiments on rabbits showed that the tension developed by the
uterus in isometric conditions as a function of the electric stimulus is nonlinear [4],
i.e., increasing the stimulus alters the dynamics of contraction in such a way that
there is inhibition of tension development at higher tensions as shown in Fig. 2.6.

In [4], the length-tension relation has been studied for the uterus similarly as it
has been done for the skeletal muscle. Results obtained from the rabbit uterus in-vivo
showed that also for the myometrium the maximum tension is obtained at the resting
length. However, as the contractile properties of the uterus are highly dependent on
the hormonal status, the shape of the diagrams in [4] were highly dependent on the
dominant ovarian hormone as well as on the strength of stimulation.

The tension developed by the uterus is dependent on both strength and duration of
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Figure 2.6: Isometric tension developed by uteri of rabbits as a function of
the electric stimulus [4].

the stimulus [23]. The myometrium requires a relatively long time (5 s) for activation
as compared to the skeletal muscle [24]. The slow onset of contraction is mainly
due to the speed of cycling of the myosin cross-bridges in smooth muscle, which is
10 to 300 times slower than in the skeletal muscle [13]. However, the fraction of
time that the cross-bridges remain attached to the actin filaments, which is a major
factor determining the force of contraction, is believed to be significantly increased
in smooth muscle. In fact, despite the relatively few myosin filaments in the smooth
muscle and the slow cycling time of the cross-bridges, the maximum specific force
of contraction of smooth muscles is often greater than that of skeletal muscles and
can be as much as 6 Kg/cm2 of cross sectional area [13].

Furthermore, it was observed that for the uterus as well as for skeletal muscle, the
function of the stimulus consists not only of the production but also of the mainte-
nance of a condition, referred to as active state, in which tension can develop. How-
ever, differently from skeletal muscles once the muscle has developed a full con-
traction, negligible energy is required for contraction maintenance [13]. This spe-
cific behavior of smooth muscle is generally referred to as latch phenomenon. The
most frequently reported theory among the many postulated to explain the latch phe-
nomenon is the following. During muscle contraction, rapidly cycling crossbridges
form between activated actin and phosphorylated myosin and generate force. Dur-
ing the sustained phase, the activation of the enzyme decreases. The cross-bridge
cycling frequency also decreases. Then the enzyme deactivation allows the myosin
heads to remain attached to the actin filaments for a longer period forming slow cy-
cling dephosphorylated crossbridges which act as latch bridges to contribute to force
maintenance at a low energy cost [3, 13]. The latch mechanism allows smooth mus-
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cles to maintain prolonged tonic contractions for long time (up to hours) with limited
energy [25].

2.3 Clinical practice

2.3.1 Contraction monitoring

(a) (b)

Figure 2.7: Contraction and fetal heart rate monitoring (cardiotocography):
noninvasive recording (a), invasive recording (b).

The first effect of a uterine contraction is the internal uterine pressure (IUP) in-
crease. The techniques used in clinical practice for contraction monitoring mainly
rely on the direct (internal) or indirect (external) measurement of the IUP. Uterine
contractions are evaluated in terms of amplitude or peak pressure, duration, and fre-
quency of contractions, which is usually expressed as number of contractions per
10 minutes.

External tocography is currently the most widely used technique to monitor the
uterus during pregnancy and delivery [12]. A tocodynamometer, schematically rep-
resented in Fig. 2.7(a), consists of a strain gauge transducer placed around the ex-
ternal surface of the abdomen. The primary advantage of a tocodynamometer is its
noninvasiveness. However, since it stems from an indirect mechanical measure of
the pressure increase, the signal provided by external tocography can be affected by
many variables, such as the sensor position and the thickness of the subcutaneous fat
tissue. Additionally, body movements, gastric activity, and other nonlabor-induced
stresses on the tocodynamometer can be mistaken for labor contractions [26]. As a
result, external recordings have an accuracy that is highly dependent on the exam-
iner’s skills and are characterized by a low sensitivity. Therefore, the use of external
tocodynamometry can only provide information related to the frequency of the con-
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tractions while it does not quantify the contraction amplitude and duration, resulting
in a poor predictive value for preterm delivery [27, 28].

During delivery, quantitative information concerning the uterine functionality can
be provided invasively, by measuring the amniotic IUP with an internal uterine pres-
sure catheter (IUPC). However, the employment of an IUPC requires the rupture of
the membranes and, due to the invasiveness of this device, it can increase the risk
of infections and even cause damage to the fetus [29, 30]. Therefore, the IUPC is
employed exclusively during parturition and its use is usually limited to complicated
cases or during labor induction or augmentation.

For the evaluation of amniotic pressure traces obtained by an intrauterine catheter,
several units of measurement have been proposed in the literature. Their use in clini-
cal practice is, however, highly controversial [31]. The Montevideo unit [32], which
is the product of frequency of contraction and peak contraction (expressed in mmHg),
is a commonly used parameter. However, this parameter is insensitive to the duration
of each contraction and provides no distinction between a peak pressure maintained
for only a brief instant and one maintained for a longer period [31]. Another com-
monly adopted parameter is the area under the uterine pressure curve [33], which
does not distinguish between active pressure and baseline. Conversely, the active
pressure, which is obtained by removing the baseline pressure from the total pressure
value, can be integrated over a period of 15 minutes to obtain the active pressure
area [31].

Uterine contractions can affect the fetal heart rate (HR) by subjecting the fetus
to an intermittent hyperbaric state. They also compress the myometrial vessels, may
influence the cerebral blood flow, and, depending on the umbilical cord location, they
may cause occlusion of the umbilical cord with a consequent decrease in fetal oxy-
genation [34]. These situations are usually reflected in a deceleration of the fetal HR.
Monitoring the fetal HR in combination with the uterine activity is referred to as car-
diotocography (CTG). The CTG is widely used in clinical practice as screening test
for recognition of fetal distress (e.g., asphyxia) at a sufficiently early stage in order to
permit timely obstetric intervention. The most commonly employed parameter is the
response time of the fetal HR to a uterine contraction. Non-reassuring features on a
CTG trace would include unusually rapid or slow rates, a flat pattern (reduced vari-
ability), and specific types of fetal HR decelerations. In particular, late decelerations
or severely variable patterns are considered as an indicator of placental insufficiency
and fetal hypoxia [35].

The CTG can be obtained either noninvasively, using an external tocodynamome-
ter for contraction monitoring and a ultrasound transducer fixed at the stretch belt to
obtain the fetal HR, or invasively by the combined use of an IUPC and an electrode
placed on the fetal scalp as depicted in Fig. 2.7. As shown in the example CTG trace
in Fig. 2.8, the instantaneous value of the fetal HR is usually plotted above the uterine
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Figure 2.8: Example of a noninvasively recorded cardiotocographic trace.

pressure as a function of time.

2.3.2 Prediction and early detection of preterm labor

Premature birth as a consequence of spontaneous preterm labor is still a major cause
of fetal mortality and long term morbidity [36, 37]. There are at least two broad areas
where early detection of preterm labor might be helpful in clinical practice today.
The first area concerns women with symptoms of preterm labor, i.e., preterm uterine
contractions possibly accompanied by progressive cervical dilatation. In these cases,
in order to avoid unnecessary treatment or ensure accurate and timely intervention to
reduce perinatal mortality and morbidity, early diagnosis is important. The second
area concerns women with increased risk of preterm labor who need to be identified
before clinical signs and symptoms occur [38].

Early detection of preterm labor is difficult because the initial symptoms and
signs are often mild and may also occur in normal pregnancies. Thus, many healthy
women will report symptoms during routine prenatal visits, whereas others destined
to preterm delivery may dismiss the early warning signs as normal in pregnancy [38].

Besides contraction monitoring, digital and ultrasound examination of the cervix,
symptomatic self monitoring, and detection of biochemical markers such ad the fetal
fibronectin have been used for early detection of preterm labor [26].

Table 2.1 lists the current methods used in clinical practice and their characteris-
tics, which are mainly based on the reviews in [26] and [38]. In general, the perfor-
mance of each method varies according to its use to reveal a risk of preterm delivery
in women without symptoms or predict preterm labor in women with symptoms. As
the methods of this thesis are naturally related to the presence of symptoms (i.e.,
contractions), the performance of the clinical methods is evaluated in Table 2.1 for
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detection of labor in women with symptoms. Furthermore, due to the controversial
definition of invasiveness, we regard as highly invasive those methods that require
tissue cutting, puncturing, or vaginal insertion of a sensor and and whose use is as-
sociated with a risk for the health of mother or fetus (for example due to possible
infections), moderately invasive those that require only vaginal insertion of sensor
but are free of risks, and noninvasive the methods that do not require any insertions.

Contractions can be monitored by an intrauterine pressure catheter, which is ac-
curate, but invasive and requires ruptured membrane, by external tocodynamometer,
which is not invasive, but erratic and not predictive of preterm delivery, and by symp-
tomatic patient’s self monitoring, which has a very poor accuracy [26–29].

The cervical status in terms of effacement, softening, dilatation and length is
also clinically used as a predictor of labor [39–41]. Softening, dilatation and efface-
ment of the cervix, together addressed as cervical changes, are commonly assessed
by digital examination and are usually evaluated in combination with other param-
eters such as the contraction rate [38]. Cervical effacement can also be assessed by
ultrasound [41]. The possibility of using ultrasound elastography for characterizing
cervix softening was also recently suggested [42]. Parameters derived by assessment
of cervical changes, possibly correlated with the contraction frequency, are the most
traditional criteria for diagnosis of preterm labor, however their sensitivity and posi-
tive predictive value are highly dependent on the adopted threshold values and are, in
general, modest [39, 40].

Endovaginal ultrasonography can be used to measure the length of the cervix [43].
The risk of spontaneous preterm birth increases as the length of the cervix decreases
[38, 43]. A threshold of 30 mm for the cervix length as measured by endovaginal
ultrasonography in symptomatic women was found to be optimal for excluding the
diagnosis of preterm labor. A cervical length below 20 mm showed the best pre-
dictive value, which is however reported to be as low as 25%. In fact, some values
of cervical length may be simply physiologic, early effacement or shortening can
be the result of inflammation due to hemorrhage or infection or, less commonly, to
biophysical effects of uterine distention or subclinical contractions [44].

Fibronectin is an extracellular matrix protein that attaches the fetal membranes to
the underlying uterine endometrium. Fibronectin found in cervicovaginal secretions
after 22 weeks is a marker of disruption of the interface between the fetal mem-
branes and the endometrium, and has been associated with a six-fold increased risk
of preterm birth before 35 weeks and a 14-fold increased risk of preterm birth be-
fore 28 weeks [44]. However, the positive predictive value for delivering within 1
week is reported to be only 18% [38]. Given the 40% rate of false positive diagnosis
of preterm labor based on contraction frequency and cervical changes by digital ex-
amination, the clinical value of the test in symptomatic women consists primarily in
its high negative predictive value (NPV), i.e., in its capability of identifying patients
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Table 2.1: Current methods used in clinical practice for prediction of labor

Accuracy invasiveness
Intrauterine pressure catheter High High
External tocodynamometer Erratic No
Symptomatic self monitoring of contractions Poor No
Cervical changes (combined with contractions) Mixed/Moderate Moderate
Cervical length Moderate Moderate
Fetal fibronectin test (or estriol test) High NPV Moderate

who are not at risk of preterm delivery. However, studies evaluating the combined use
of fibronectin and cervical sonography in symptomatic women showed contradictory
results, and it remains unclear whether the accuracy of a diagnosis provided by com-
bination of the two methods is superior to either test alone [45, 46]. An increase in
maternal excretion of estriol can also be predictive of labor. The estriol concentration
as measured by salivatory test also showed a high NPV for preterm delivery [47].

In summary, the methods currently employed in clinical practice impose a dra-
matic compromise between reliability and invasiveness that concerns both labor con-
traction monitoring and preterm delivery prediction. In view of the increasing number
of pregnancies complicated by miscarriage, preterm delivery, birth defects, and the
growing rate of consequent long term morbidity, novel methods for noninvasive and
accurate pregnancy monitoring are urgently needed. Electrohysterography, which is
the measurement of the APs propagating through the myometrial cells, is a promising
alternative to existing techniques for uterine contraction monitoring because it is rep-
resentative of the prime cause of a contraction and it can be recorded noninvasively
from the abdominal surface. In the following chapters of this thesis, novel methods
are proposed for analyzing the electrohysterographic (EHG) signal. These methods
aim at paving the way for the introduction in clinical practice of alternative monitor-
ing methods that can accurately characterize uterine activity, follow the evolution of
pregnancy and labor, and timely predict preterm delivery.
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Internal uterine pressure estimation
C. Rabotti, M. Mischi et al., Physiol. Meas., vol. 29, pp. 829-841, 2008,
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L’uffizio del muscolo di tirare è non di spingere, eccetto li membri
genitali e la lingua (Leonardo da Vinci) 1

3.1 Introduction

Premature birth is a major cause of long-term morbidity and it accounts for 69% to
85% of neonatal deaths not caused by congenital malformations [1]. An early predic-
tion of preterm delivery by identification of the risk factors and accurate monitoring
of the patients at risk is crucial for the treatment of preterm birth. In particular, an
early diagnosis of delivery time can be achieved during pregnancy following the pro-
gression of the maternal uterine activity, i.e., frequency, duration, and amplitude of
the uterine contractions.

During labor, accurate monitoring of uterine activity is essential to assess the
condition of both mother and fetus. In particular, the fetal heart rate (FHR) is mon-
itored in combination with the uterine activity in order to evaluate the fetal response
to each contraction [2]. After a uterine contraction, subtle changes of FHR, or a total
absence of FHR variability may in fact occur as first signs of fetal distress. Addition-
ally, when complications occur, e.g., poor progress in labor, quantitative assessment
of uterine activity can guide the physician to opt for specific medical interventions,
such as labor augmentation.

The contractile element of the uterus is the myometrium, which is composed of
smooth muscle cells [3]. The uterine contraction is the result of generation and prop-
agation through the muscle cells of electrical activity in the form of action potentials
(APs). Myometrial cells can generate APs or can be excited by APs generated by a
neighboring cell. The excitation transmission is possible when cells are coupled by

1‘The function of the muscle is to pull not to push, except in the case of the reproductive organs
and the tongue’. From ‘De vocie’ by Leonardo Da Vinci (quoted by Edmondo Solmi in ‘Il trattato di
Leonardo da Vinci sul linguaggio de vocie’, in Archivio storico lombardo, VI, 1906).
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electronic synapses, which are referred to as gap junctions [4]. During pregnancy,
poor coupling and low electrical conductance among the myometrial cells favors the
maintenance of pregnancy; at term, gap junctions increase and form a low-resistance
electrical path required for the occurrence of effective contractions [5].

The first result of a contraction is the internal uterine pressure (IUP) increase.
Besides the traditional methods employing pelvic examination and symptomatic self
monitoring, the techniques used in clinical practice for uterine monitoring mainly
rely on the direct (internal) or indirect (external) measurement of the IUP. External
tocography is currently the most widely used technique to monitor the uterus during
pregnancy and delivery [5]. A tocodynamometer consists of a strain gauge transducer
placed around the external surface of the abdomen and has the primary advantage of
being noninvasive. However, deriving from an indirect mechanical measure of the
pressure increase, the signal provided by external tocography is characterized by a
low sensitivity, which can affect the estimation accuracy of contraction amplitude
and duration [4, 6].

During delivery, quantitative information concerning uterine functionality can be
provided invasively, by measuring the amniotic IUP with an internal uterine pressure
catheter (IUPC). However, the employment of an IUPC requires the rupture of the
membranes and, due to the invasiveness of this device, it can increase the risk of
infections and even cause damages to the fetus [7]. Therefore, the IUPC is employed
exclusively during parturition and its use is usually limited to complicated cases or
during labor induction or augmentation.

An alternative method for monitoring the uterine activity is electrohysterography.
The electrohysterographic (EHG) signal is the bioelectrical signal directly associated
with the muscular activity of the myometrium. Generation and propagation of APs
through an adequate number of cells are the primary causes of the uterine muscle
contractions and of the consequent IUP increase. Therefore, the electrical activity re-
corded from the abdominal surface may provide essential information on the uterine
activity and permit the prediction of the IUP associated with each contraction [8].

The possibility of reliable and noninvasive assessment of the uterine activity has
generated interest in the EHG analysis. In the literature, extensive research demon-
strated the value of external EHG recordings in following the progress of the uter-
ine contractility during pregnancy and parturition [9]. To this end, filtering tech-
niques [10], the Fast Fourier Transform [11], and the Wavelet transform [4] have been
employed for EHG analysis; the obtained results were evaluated by visual compari-
son with the IUP or external tocography traces. However, only few studies focused
on EHG analysis as an alternative to existing methods for a quantitative estimation of
the uterine mechanical activity [12, 13].

In [12] the contraction pattern estimated by the root mean square (RMS) value
of the EHG was compared to the simultaneously recorded external tocogram. As the
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estimated contraction pattern was well correlated to the external tocographic signal,
previous research could propose a reliable estimation of the contraction frequency,
but a validation of amplitude and duration of the detected contractions was not pos-
sible. The use of optimal linear filtering for IUP prediction by EHG signal analysis
was recently investigated in [13]. In this work, the simultaneously measured IUP was
for the first time employed as a quantitative reference for the IUP predicted from the
EHG analysis. According to this study, the IUP can be predicted from external EHG
signals employing a Wiener filter on the rectified EHG.

In this chapter, a new method for quantitative estimation of the uterine activity
by EHG analysis is proposed as a noninvasive alternative technique for IUP monitor-
ing. We consider the EHG signal at each electrode as a nonstationary signal resulting
from the summation of several frequency modulation (FM) processes [14]. The IUP
increase is determined by the coexistence of two factors which in the myometrium,
differently from skeletal muscles, are interrelated. These two factors, namely, propa-
gation of the AP, which is reflected in the spectral properties of the EHG signal, and
amount of cells involved in the contraction, which is proportional to the amplitude of
the EHG signal, are both taken into account to provide a first IUP estimate.

To further improve the estimate accuracy, the nonlinear relationship between the
electrical activation, which is represented by the unnormalized EHG first statistical
moment, and the mechanical contraction of the uterus, which is measured in terms
of IUP, is modeled by three different functions. In addition to a second-order poly-
nomial model, which is a standard representation of nonlinear relationships, we test
a logarithmic function and an exponential function. Simultaneous IUP recordings by
an IUPC are employed for a quantitative validation of the pressure estimates.

The proposed method is compared to the methods previously presented in the lit-
erature for quantitative estimation of the uterine mechanical activity. For the compar-
ison we employ an improved version of the RMS analysis-based method suggested
by [12] and the optimal Wiener filtering proposed in [13].

3.2 Methodology

A schematic description of the proposed method for IUP estimation is shown in
Fig. 3.1. The multichannel EHG signal and the invasively measured IUP were first
recorded as described in Section 3.2.1. The acquired signals were then preprocessed
according to Section 3.2.2; in particular, the EHG signal was made bipolar, down-
sampled, and analyzed in the Time-Frequency (TF) domain using the spectrogram.
From the TF representation ρ(n, f ), the unnormalized first statistical moment Ψ(n)
was then calculated as the feature providing a first estimation of the contraction pat-
tern. The energy of the EHG is concentrated in a limited frequency interval. There-
fore, to optimize the signal-to-noise ratio (SNR), the first statistical moment was
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Figure 3.1: Scheme of the proposed methodology for single channel data
analysis.

calculated in a limited bandwidth [ fmin, fmax], which was experimentally determined.
Each nonlinear model was then identified as described in Section 3.2.4 to provide

a better estimation of the IUP.
The model coefficients were initially calculated for each single contraction by

minimization of the mean squared error with the invasively measured IUP. Ultimately,
for each channel the median value of the coefficients over the available subjects was
calculated. The model identified by the median values of the coefficients was finally
applied to the unnormalized first EHG statistical moment to provide the IUP estimate,
ÎUP(n).

3.2.1 Data acquisition

The experimental data were collected at the Máxima Medical Center in Veldhoven
(the Netherlands). The study was approved by the ethical committee of the hospital.
Nine women during labor underwent multichannel electrical EHG recordings after
signing an informed consent. Six contact Ag-AgCl electrodes, consisting of four ac-
tive electrodes, one ground electrode, and one reference electrode, were placed on the
subject’s abdomen after skin preparation with an abrasive paste for skin impedance
reduction. The IUP was simultaneously measured by an IUPC inserted in the uter-
ine cavity due to medical prescription. The total length of data recorded from each
subject ranged from 22 to 90 minutes.

In order to identify a suitable electrode configuration, two 15-minute measure-
ments in labor were preliminarily performed with a higher number of active elec-
trodes (11 instead of 4) placed on the abdomen as shown in Fig. 3.2-(a) and a mea-
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sure of the average SNR in each electrode was considered. During a contraction, the
skeletal muscle EMG can be regarded as the major noise contribution. Considering
the higher frequency band of skeletal electromyogram (EMG) energy [11], the SNR
was therefore estimated as the ratio of the signal in the frequency band between 0.1
and 5 Hz and that between 5 and 200 Hz during active contractions. In this prelim-
inary study, the highest average SNR was experienced on the lower vertical median
line of the abdomen, in particular on the region immediately below the umbilicus.
These results have a twofold physiological explanation. On the one hand, in the
vertical median line of the abdomen, the distance between the recording site on the
skin and the signal source in the myometrium is reduced with respect of the lateral
sides [15]. On the other hand, in the region surrounding the umbilicus the position
of the uterus relative to the abdominal wall is constant even during contractions [16],
resulting in a better SNR.

Based on the results of this preliminary analysis, the recordings employed in the
present study were measured by four unipolar contact Ag-AgCl electrodes placed on
the abdomen as shown in Fig. 3.2-(b). The common reference for the electrodes was
placed on the right hip. In order to obtain an efficient rejection of electromagnetic
interference, a driven-right-leg (DRL) electrode was placed below the reference elec-
trode and the cables were actively shielded [17]. The position of the DRL electrode
was chosen close to the reference rather than on the limb in order to avoid voltage
oscillation due to the induced current flux through the body [17].

A Koala M1333A (Philips Medical Systems, Best, the Netherlands) transducer-
tipped IUPC was inserted in the uterine cavity to measure the IUP.

The IUP and the EHG were simultaneously recorded and digitized at 20-bit res-
olution with an M-PAQ amplifier (Maastricht Instruments Ltd., the Netherlands),
a 16-channel system for physiological measurements with programmable gain and
sampling frequency. A sampling frequency of 1000 Hz was chosen in order to allow
the employment of the recorded signals also by other applications, e.g., fetal elec-
trocardiogram (ECG) detection. Prior to sampling, to avoid aliasing and remove the
power-line interference, the analog 500 Hz low-pass and notch filters of the amplifier
were employed, respectively.

3.2.2 Preprocessing

The digitized unipolar EHG signal recorded at each active electrode was first made
bipolar by subtracting the signals recorded at contiguous electrodes on the abdomen
(Fig. 3.1). The employment of bipolar electrical signals has been demonstrated to
effectively reduce a large portion of the noise affecting the EHG, e.g., the maternal
ECG, part of the movement artifacts, and the electromagnetic noise [18].

The EHG and the IUPC signals, recorded at 1000 Hz, were then down-sampled to
10 Hz, after low-pass anti-aliasing filtering at 5 Hz. The decrease of the sampling fre-



42 Internal uterine pressure estimation

(a) (b)

Figure 3.2: Preliminary electrode configuration (a). Final electrode config-
uration (b).

quency, which reduces the computational time, is made possible by the low-frequency
characteristic of the EHG [11, 16, 19–21].

For an easy synchronization with the preprocessed EHG, the IUPC signal was
similarly down-sampled to 10 Hz. Additionally, in order to minimize spikes caused
by movement artifacts, we employed a non-causal centered median filter of length
±5 s to remove noise while retaining the IUP peaks [13].

As the EHG is a nonstationary signal [21], the employment of a time frequency
distribution (TFD) is a suitable frequency analysis approach. Since we are interested
in the electrical energy, which is a quadratic signal, the class of quadratic TFDs was
used [22]. In particular, in this study four different quadratic TFDs were tested,
namely, the Wigner-Ville Distribution, the Smoothed Wigner-Ville Distribution, the
Choi-Williams Distribution, and, finally, the spectrogram, which is obtained by the
squared magnitude of the short-time Fourier transform of the time signal x(n) through
a limited time-window w(m)

ρ(n, f ) =

∣∣∣∣∣
∞

∑
m=−∞

x(m)w∗(m−n)e− j2π f m

∣∣∣∣∣
2

(3.1)

where (.)∗ is the conjugate operator.
The Wavelet Transform (WT) can also be employed for the analysis of nonsta-

tionary signals [23] and its main advantage over other TFDs, such as the spectrogram,
is the capability of performing a multi-resolution analysis in the TF domain [24]. Al-
though the WT is a time-scale representation in the first place, it is also suitable,
in fact, for TF interpretation [25] by formally relating the scaling parameter to the
center frequency of the employed mother Wavelet [26]. Since we are interested in
the analysis of the EHG signal energy distribution, the squared modulus of the WT,
namely the Scalogram, was calculated. The adopted mother Wavelet was the Morlet
Wavelet, the most commonly used for TF analysis [27].
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The most suitable values for the TFDs and the best TF distribution for EHG anal-
ysis were singled out by an iterative procedure aiming at the maximization of the
average correlation coefficient R between the IUP estimated by the proposed method
(before polynomial modeling, see Section 3.2.4) and the IUP measured by the pres-
sure transducer.

According to our experiments, the use of the spectrogram with a 70 s time win-
dow w(m) resulted in the best estimation of the IUP. Moreover, with the prospect of
on-line applications, the implementation of the spectrogram as the squared magni-
tude of the short-time Fourier transform results in a lower computational complexity
with respect to other TFDs.

3.2.3 Feature extraction

The tension generated by the contracting myometrium and the consequent IUP in-
crease are dependent on the speed of AP propagation from cell to cell and on the
amount of muscle cells involved in the contraction [5]; in smooth muscles, these two
phenomena are mutually dependent, as propagation requires recruitment of multiple
cells. The excitation rate of smooth muscle cells, which is the counterpart of the fir-
ing rate for skeletal muscle EMG, is an additional factor which contributes to the IUP
increase. All these factors are reflected in the frequency spectrum of the EHG sig-
nal, which can be therefore regarded as the result of a FM process. Additionally, the
EHG signal at each electrode is the signal generated by the muscular contraction on
a macroscopic scale, i.e., a signal originating from the combined contributions of the
individual muscle cells activated underneath the electrode. Consequently, the EHG
at each electrode is regarded as the result of a FM multi-component signal where the
IUP is related to the modulating signal [14]. A first estimate of the contraction pattern
can hence be provided by the average frequency. The average frequency f1(n) of a
signal, represented in the TF domain by the spectrogram ρ(n, f ) as in (3.1), can be
expressed as

f1(n) =

∞

∑
f=0

f ρ(n, f )

∞

∑
f=0

ρ(n, f )
(3.2)

which also corresponds to the first statistical moment in frequency [28]. The use
of (3.2) is common for spectral analysis of the skeletal muscle EMG signals and
for assessment of fiber conduction velocity [29]. However, differently from skeletal
muscles, the force generated by the uterus is related to both the propagation properties
of the APs, which are reflected in the spectral characteristic of the EHG signal, and
the amount of cells involved in the contraction, which is proportional to the amplitude
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of the EHG signal. A measure of the signal amplitude is provided by its energy [30]

Ex(n) =
∞

∑
f=0

ρ(n, f ). (3.3)

The IUP increase is the consequence of the well coordinated contraction of a sub-
stantial number of cells. Therefore, the simultaneous increase of both the frequency-
related and amplitude-related features of the EHG signal determines the establish-
ment of the IUP wave. By multiplying (3.3) and (3.2) and selecting a frequency band
[ fmin, fmax], a first estimation of the IUP can be therefore derived, which corresponds
to the unnormalized first statistical moment Ψ(n) of the TF representation ρ(n, f )

Ψ(n) =
fmax

∑
fmin

f ρ(n, f ). (3.4)

Based on our measurements and in agreement with other studies [11, 20, 21, 31,
32], the most suitable integration interval [ fmin, fmax] for IUP estimation resulted the
frequency band [0.3 Hz, 0.8 Hz].

3.2.4 Electromechanical activation modeling

The first unnormalized statistical moment obtained by the spectrogram can be further
processed in order to increase the accuracy of the estimate. In general, the relation-
ship between the uterine electrical activation, the EHG signal, and the mechanical
response, the IUP, can be considered nonlinear. In vitro studies on animal uterine
strips [33] highlighted, in fact, during induced isometric contractions, a nonlinear
characteristic of the tension developed by the myometrium as a function of the elec-
trical stimulation. Furthermore, the IUP increase is the result of the simultaneous
contraction of an adequate number of cells and it is associated with a widespread
electrical activity of the whole myometrium. Therefore, electrical activities that are
local or poorly coordinated can be recorded without being necessarily followed by
a linearly related IUP increase. Furthermore, as the tension generated by the my-
ometrium is the result of the AP spreading in the muscle tissue, the IUP increase
is always temporally delayed with respect of the electrical activation. Therefore, the
delay τk between the IUP recorded by the catheter and the first unnormalized moment
calculated in each channel k was also included in the model.

A second-order polynomial model resulted as a suitable representation of the
relationship between the unnormalized first statistical moment of the EHG signal
TF representation and the simultaneously measured IUP. The use of higher order
polynomial models was also investigated, but no improvement was experienced.

We indicate by Ψk(n) the unnormalized first EHG statistical moment calculated
in each channel k and by IUP(n) the pressure measured by the catheter. An estimate,
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ÎUPk(n+τk), of the pressure recorded by the catheter can be derived in each channel
by a polynomial expansion of Ψk(n) with coefficients aP, bP, and cP ∈ R as given in
(3.5):

ÎUPk(n+ τk) = aP +bPΨk(n)+ cPΨk(n)
2. (3.5)

In (3.5), aP models the offset, bP the gain, and cP the nonlinearities of the relationship
between the estimated IUP in each channel k and the IUPC signal.

The model in (3.5) is a standard representation of a nonlinear relationship. How-
ever, for values of Ψk(n) above the maximum point of the parabola described by
(3.5), an IUP decrease is obtained for increasing values of Ψk(n); this effect might be
not representative of the underlying physiology. Therefore, a logarithmic model, i.e.,

ÎUPk(n+ τk) = aL + log(bLΨk(n)+1), (3.6)

aL, bL, and cL ∈ R, was considered as a potentially more suitable representation of the
electromechanical activation of the myometrium. According to (3.6), an increase of
electrical activation, Ψk(n), produces always an increase of the mechanical response,
IUP(n).

In order to account for a possible asymptotic behavior of the IUP in response to
increasing electrical activation, an exponential model of the form

ÎUPk(n+ τk) = aE +bE(1− ecE Ψk(n)), (3.7)

with aE , bE , and cE ∈ R, was also tested.
The coefficients aP, aL, and aE in (3.5), (3.6) and (3.7), respectively, represent

the offset between the electrical activation and the IUP. In fact, even in the absence
of uterine contraction, the IUPC signal gives a value, referred to as baseline tone,
which is usually different from zero. Since the IUPC signal baseline tone is affected
by factors that are not related to the uterine activity [34], it was detected by the
method described in [12] and digitally removed on the basis of the first two minutes
of recording. As the same procedure was applied to Ψk(n) prior identification of the
model coefficients, the constant terms aP, aL, and aE were set to zero.

The other coefficients of the models, in the following addressed as the parameter
array Pk, were identified separately for each channel and each contraction segment,
of variable length N samples, by minimization of the mean channel error εk,

εk(τk,Pk) =
1
N

N

∑
n=1

(IUP(n)− ÎUPk(n+ τk))
2, (3.8)

between the invasively recorded IUPC signal and the IUP estimated in the channel
k, ÎUPk(n+ τk). The Nelder-Mead Simplex search method [35] was used for the
minimization of εk.



46 Internal uterine pressure estimation

To this end, contiguous time segments of the IUPC signal, each containing one
contraction, were previously automatically selected using an adaptive threshold [12].
Each contraction segment included one contraction and part of the baseline tone pre-
ceding and following the contraction itself. For each channel and model, an estimate
of the IUP was eventually derived by using a single set of coefficients, which was
obtained by the median value of all the coefficients identified separately for each
contraction. The median value rather than the average value was chosen to ensure
robustness with respect to possible outliers.

The delay between the unnormalized first moment and the IUP signals was ini-
tially calculated by maximization of their cross-correlation function for each record-
ing. For each channel k, the average delay τk across all the subjects was then consid-
ered for the entire data-set.

3.3 Evaluation of the estimate quality

Previous studies for estimating the uterine mechanical activity by EHG processing
mainly comprised the calculation of the root mean squared value (RMS) of the EHG
signal and, more recently, the employment of optimal linear filtering [13, 36]. These
two algorithms were tested on each channel of our data-set to evaluate the perfor-
mance of the proposed method. The comparison aimed at the evaluation of the meth-
ods in the prospective of noninvasive measurements in a clinical setting.

According to the method proposed by [10, 36], for each bipolar down-sampled
signal we calculated the RMS values in 60-s sliding Hamming windows. Then, prior
to comparison with the results obtained by the other methods, the model defined in
(3.5) was applied to the calculated RMS series according to the procedure previously
described.

For the implementation of the Wiener filter [13], further preprocessing was needed
to normalize, down-sample, and rectify the preprocessed signal x(n). The perfor-
mance of the algorithm described in [13] was further improved by removing the
mean value from both the rectified EHG signal and the IUPC signal prior to train-
ing the filter coefficients. For each channel and patient, the weights were calculated
on the basis of the entire recording employing linear regression. For each channel a
set of weights was then obtained by averaging the values across the examined sub-
jects. The final results were eventually derived by filtering the rectified EHG signals
from all the subjects employing the calculated average weights.

The results obtained by the proposed methods for IUP estimation were compared
to those provided by optimal filtering and RMS analysis in terms of correlation coef-
ficient R and root mean squared error (RMSE) between the IUP estimate and the IUP
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measured by the catheter.

RMSE =

√
E(IUP(n)− ÎUPk(n))2, (3.9)

where E[ · ] is the expected value operator, with the IUPC signal, IUP(n).
For a clinical feasibility assessment, the peak pressure amplitude of each con-

traction, ÎUPP, measured on the IUP estimate was compared to the peak pressure
amplitude, IUPP, derived from the IUPC signal. The peak pressure amplitude is, in
fact, one of the parameters commonly employed in clinical practice for the evaluation
of uterine contractility by IUPC recordings [37, 38].

The correlation coefficient R and the RMSE are important figures of merit for
the characterization of the estimate. As the correlation coefficient is a measure of
similarity in shape between two waveforms, a high value of R between the real IUP
and its estimate can be directly related to a high probability of detecting the correct
number of contractions. The RMSE, on the other hand, is influenced by scaling

Table 3.1: Average Results
Method R (p < 0.01) RMSE (mmHg)

Optimal Linear Filtering 0.5 ± 0.16 11.4 ± 3.12

RMS 0.36 ± 0.16 13.17 ± 4.62

Proposed (polynomial model) 0.73±0.11 13.47±6.67

Proposed (logarithmic model) 0.74±0.11 5.13±4.74

Proposed (exponential model) 0.74±0.10 6.36±5.63

factors and DC offset. Therefore, for a fair comparison with optimal linear filtering,
the RMSE of the estimate provided by RMS analysis and by the proposed method
was calculated after removal of the average value from both the IUPC signal and
the estimate. Notice that the RMSE retains the same units of pressure of the desired
signal (mmHg).

3.4 Results

The results provided by the proposed method, RMS analysis, and optimal linear fil-
tering are shown in Table 3.1, where the average values of R and RMSE across all
channels and patients are reported together with their inter-patient variability. The
proposed method in combination with a polynomial model already provided esti-
mates that are highly correlated with the invasively recorded IUP. However, as from
table 3.1, the logarithmic and the exponential model provided a significant estima-
tion improvement with respect to all the other methods, especially in terms of RMSE.
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Therefore, for testing clinical feasibility, only the methods using the logarithmic and
the exponential model were further analyzed.

Figure 3.3: Example of IUP estimated by the RMS analysis method. For the
entire waveform R = 0.70 and RMSE = 16.5 mmHg.

Figure 3.4: Example of IUP estimated by optimal linear filtering. For the
entire waveform R = 0.71 and RMSE = 6.65 mmHg. The re-
moved mean value was restored for both waveforms on the basis
of the mean value of the invasively recorded IUPC.

In Figs. 3.3, 3.4, 3.5, 3.6, and 3.7 an example of IUPC recording (IUP) and cor-
responding IUP estimate (ÎUP) is presented for each method applied to the same
channel and subject.

By employment of the polynomial model, the estimate accuracy improved for
both the RMS analysis and the unnormalized first statistical moment. Especially for
the proposed method, the average correlation coefficient with the invasively recorded
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Figure 3.5: Example of IUP estimated by the polynomial model. For the
entire waveform R = 0.87 and RMSE = 6.5 mmHg.

Figure 3.6: Example of IUP estimated by the logarithmic model. For the
entire waveform R = 0.86 and RMSE = 4.5 mmHg.

IUP improved from R = 0.59 to R = 0.73; the root mean squared error improved from
RMSE = 17.20 mmHg to RMSE = 13.47 mmHg. The average time delay τk between
the estimated IUP and the IUPC was 9.96±0.99 s.

3.5 Clinical feasibility

The mean peak pressure of the IUP estimated by exponential and logarithmic mod-
eling was, respectively, 11.21± 5.82 mmHg and 10.4± 12.9 mmHg lower than the
peak pressure recorded by the catheter. The average IUPC signal peak pressure value
was 41.6 mmHg. A more detailed overview of the peak pressure difference between
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Figure 3.7: Example of IUP estimated by the exponential model. For the
entire waveform R = 0.87 and RMSE = 4.8 mmHg.

the IUPC signal and the estimates is provided by the Bland-Altman plots in Fig. 3.8
and Fig. 3.9, for the logarithmic and for the exponential model, respectively. The IUP
peak amplitude difference is shown as percentage of the mean of IUPP and ÎUPP.

Figure 3.8: Bland-Altman plot of the peak pressure, IUPP, of the IUPC sig-
nal and the peak pressure, ÎUPP, of the IUP estimated by loga-
rithmic modeling.

In Fig. 3.8 and Fig. 3.9, all contractions and channels of all subjects were equally
considered. If the average value of peak pressure difference was calculated separately
for each patient, the mean peak pressure difference resulted in −9%±5% and −18±
9% of the average between IUPP and ÎUPP for the logarithmic and for the exponential
model, respectively.
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Figure 3.9: Bland-Altman plot of the peak pressure, IUPP, of the IUPC sig-
nal and the peak pressure, ÎUPP, of the IUP estimated by expo-
nential modeling.

3.6 Discussion and conclusions

In this chapter a noninvasive method to estimate the IUP is proposed that is based on
the joint analysis of amplitude and time-frequency features of the EHG signal. The
method was tested on a set of measurements from nine women during delivery. The
results were compared to those provided by other two methods proposed in the lit-
erature for quantitative estimation of the uterine mechanical activity, namely optimal
linear filtering and an improved version of RMS analysis. The comparison aimed
at the evaluation of the methods in the perspective of noninvasive clinical measure-
ments. By simultaneously recording a four-channel EHG signal and the IUPC output,
we could reliably assess the IUP estimates provided by the methods.

In terms of correlation coefficient with the invasively recoded IUP, the proposed
method with a polynomial model already resulted in a significantly increased corre-
lation with respect to the RMS analysis and the optimal linear filtering. Nevertheless
the logarithmic and the exponential model provided a significant improvement with
respect of all the other methods, especially when the RMSE between the estimate IUP
and the invasively recorded IUPC signal was considered. On average, the logarithmic
model, which does not account for an asymptotic behavior of the IUP, provides more
accurate estimates than the exponential model.

With reference to the methodology, the RMS analysis has the great advantage
of being simple and suitable for real-time applications. The optimal linear filtering
suggests a technical approach aimed at the identification of a linear transfer function
between the rectified EHG signal and the IUP. The physiological assumptions of these
two methods can be summarized in the use of the EHG amplitude, either in terms of
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EHG signal envelop or in terms of rectified EHG signal, as indicative of the tension
produced by the contracting myometrium. On the other hand, the proposed method
was fundamentally conceived on the basis of the physiologic phenomena underling
the generation of the recorded signals and their relationship.

In this work, IUPC signals were used for validation because IUPC recordings are
currently the most reliable technique for uterine contraction monitoring [39]. Nev-
ertheless, in [40], from the IUP measured by three fluid-filled catheters simultane-
ously inserted in the same uterus, the authors found a measurement uncertainty up
to 25%. In [38], where, like in the present study, transducer-tipped catheters were
used, a lower measure uncertainty was found; for catheters inserted independently in
the same uterus, the mean peak pressure difference (bias) for each patient was about
9.96%±9.7% of the average value recorded by the two catheters.

In the present study, when comparing peak pressure measurements derived from
the estimate of all patients and channels to the invasively recorded IUP, both the ex-
ponential and the logarithmic model resulted in a biased estimate with a standard
deviation of about 25%. However, by comparing the invasive catheter recording and
the noninvasive IUP estimated by EHG signal analysis in terms of average peak dif-
ference per patient, as it was done in [38], we obtained an average peak pressure
difference for the logarithmic model of −9%±5%, which can be comparable to the
measurement uncertainty ratios reported for transducer-tipped IUP catheter record-
ings in [38].

The good results of the estimation suggest that the model coefficients did not
show significant variations across the considered subjects. However, in the perspec-
tive of introducing the proposed method in everyday clinical practice, the proposed
approach could support dedicated studies aimed at the identification of more com-
plex models, possibly including additional parameters for a specific characterization
of patient differences.

In general, the proposed method, due to the adopted physiology-based approach,
may offer additional insight for a better understanding of uterine muscle activity. As
the EHG signal is associated with the primary cause of the uterine contraction, we
believe that the EHG signal analysis has great potential beyond the estimation or
prediction of the uterine mechanical activity. Nevertheless, many aspects related to
the uterine muscle contraction process still need to be clarified. Future research will
therefore include the propagation properties of the EHG signal with the ultimate goal
of providing a reliable and noninvasive technique for preterm labor prediction.
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electromyography: a critical review,” Am. J. Obstet. Gynecol., vol. 169, pp.
1636–1653, 1993.

[17] A.C. Metting van Rijn, A. Peper, and C.A. Grimbergen, “High-quality record-
ing of bioelectric events. part 1 interference reduction, theory and practice,”
Med. Biol. Eng. Comput., vol. 28, pp. 389–397, 1990.

[18] S. Graczyk, J. Jezewski, J. Wrobel, and A. Gacek, “Abdominal electrohystero-
gram data acquisition problem and their source of origin,” in IEEE EMBS Proc.
Int. Conference, 1995, pp. 13–14.
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Chapter 4

Large-scale electrohysterographic
propagation analysis
C. Rabotti, M. Mischi, et al., Physiol. Meas., vol. 30, pp.745-761, 2009.

In medio stat virtus 1

4.1 Introduction

Preterm birth accounts for 75% and 50% of perinatal mortality and long-term mor-
bidity, respectively [1]. Pregnant women with symptoms of preterm delivery, i.e.,
preterm uterine activity in the form of painful uterine contractions, are commonly
treated with tocolytic agents for suppressing the contractions. Although an early
treatment improves the effectiveness of tocolytics [2], their indiscriminate use at the
first signs of preterm delivery can be risky for mother and fetus [3]. Therefore, timely
recognition of the process leading to labor is of prime importance.

The contractile element of the uterus is the myometrium. The myometrial tissue
is composed of depolarizing and repolarizing smooth muscle cells, which are spon-
taneously active [4]. Early in pregnancy, the poor electrical coupling among the cells
is responsible for the quiescent status of the uterus. As delivery approaches, the for-
mation of low resistance electrical paths allows the propagation of electrical activity
from cell to cell in the form of action potentials [5, 6]. The electrical activity can orig-
inate at any region of the myometrium (pacemaker area) and then propagate to the
neighboring cells. Up until now, there is no recognized conduction pathway for the
electrical transmission in this muscle. The propagation of action potentials through
an adequate number of cells results in a coordinated contraction of the myometrium.
Effective contractions are capable of inducing progressive cervical dilatation and pro-
duce an increase of the internal uterine pressure (IUP) acting towards the expulsion
of the fetus at the end of delivery.

1Literally ‘Virtue stands in the middle’. Even if this concept was already used by Aristotle in the
‘Ethica Nicomachea’ as ‘méson te kai áriston’ (‘the best thing is in the middle’) and then by Horatius
in the ‘Satira’ as ‘est modus in rebus’ (‘there is a measure in things’), this Latin motto is famous due to
the medieval Scholastic philosophy.
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There are no means for an early discrimination between effective premature con-
tractions, which need to be promptly suppressed with tocolytics, and unproductive
premature uterine activity, which does not lead to delivery and hence does not re-
quire treatments.

In the presence of uterine activity, the contraction rate can be reliably measured
by an external tocodynamometer. However, due to the weak relation between con-
traction rate and preterm delivery [7], an early prediction of labor cannot be provided
by a tocodynamometer. Evaluation of the cervical changes caused by uterine activ-
ity using digital or ultrasound examination have demonstrated poor sensitivity and
low positive predictive values [7]. Some biomarkers, such as the fetal fibronectin in
symptomatic women, seem promising predictors of preterm delivery [8, 9], but their
clinical utility and applicability needs still to be clarified.

The electrohysterogram EHG is the signal associated to the electrical activity
propagating through the myometrium cells during a contraction [10, 11].

In the literature, several studies investigated the use of the electrohysterographic
(EHG) signal for predicting labor and discriminating contractions leading to preterm
delivery. Overall, many parameters derived from the EHG signal have been consid-
ered, both in time [4, 12, 13] and in frequency domain [4, 12–16]. The shift of the
EHG burst frequency components from low frequencies, during pregnancy, to higher
frequencies, during labor, seems the most significant and one of the earliest observ-
able characteristics. However, such EHG spectral changes were observed as delivery
approaches in both term and preterm deliveries [17].

The prediction of preterm labor on the basis of the EHG signal frequency content
can therefore be hampered by the possibility that the spectral changes observed for
preterm contractions are simply the result to an earlier evolution of the same process
leading to a delivery at term. Instead, as the spreading of electrical activity in the my-
ometrium is the first trigger of a coordinated and effective contraction, a multichannel
analysis of direction and speed of the propagating EHG signal could provide a funda-
mental contribution for predicting delivery. Extensive research has been carried out
on EHG frequency analysis, but only few preliminary studies have been reported on
the investigation of the EHG signal propagation [18, 19].

The challenging objective of predicting premature birth necessitates, in the first
place, the development of dedicated signal processing techniques to permit the re-
quired clinical studies.

In this chapter, a dedicated method is proposed for calculating the interelectrode
time-delay of EHG signals, which is based on the adaptive estimation of the inter-
electrode transfer function and the relative detection delay. The problem is simplified
by calculating the delay between couples of electrode signals. This choice permits
choosing the electrode with the best signal-to-noise ratio (SNR) as common refer-
ence for the delay calculation and exploiting the interelectrode transfer function for
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Figure 4.1: Block scheme of the proposed approach.

improving the estimate accuracy. A simple maximization of the cross-correlation
function (CCF) between the channels was first considered and compared to a high-
resolution estimator based on spectral matching [20]. The temporal resolution pro-
vided by the CCF method is limited by the employed sampling period. However, the
resolution can be improved by interpolating around the maximum of the CCF [21]
or, if the computational time is not relevant, by using higher sampling frequencies.
Methods based on spectral matching and phase-difference (PD) are equivalent alter-
natives for providing the time-lag between two signals without any temporal resolu-
tion limitation [20, 22, 23].

The performances of these estimators, however, are highly dependent on the sim-
ilarity of the input signals, i.e., the methods perform best when they are applied to
the delayed versions of the same signal [24]. We propose an improvement of the per-
formance of the spectral matching method by increasing the interchannel similarity
prior to delay calculation. Such an improvement is achieved by prior adaptive esti-
mation of the interelectrode transfer function. This transfer function is modeled by
a zero-phase, finite impulse response (FIR) filter, whose design is based on accurate
physiological observations and modeling.

The estimators are implemented, evaluated, and compared on simulated and real
data. Furthermore, a feasibility study is performed by analyzing the propagation
properties of EHG signals recorded in a multielectrode configuration on seven women
in labor.

4.2 Methodology

For the assessment of the interelectrode delay, we implemented the following meth-
ods: two standard delay estimators, namely spectral matching and maximization of
the CCF, and a dedicated method.

The main steps of the dedicated method are schematically described in Fig. 4.1
and explained in detail in the following sections. The unipolar EHG signals, (e1, ...,e8)
were recorded at different locations spatially distributed on the entire maternal ab-
domen and digitized at 1000 Hz, i.e., a sufficiently high sampling frequency ( ft)
to avoid aliasing of the components deriving from the subject’s electrocardiogram
(ECG) and skeletal electromyogram (EMG). The recorded signals were then prepro-
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cessed to improve the SNR and reduce ft to 4 Hz. The second block comprises the
detection of contractions and the calculation of the SNR at each electrode. The out-
puts of this block are the contraction segments and the signal with the best SNR, xr.
The last block operates an adaptive estimation of two parameters: the transfer func-
tion G and the delay τ̂ between each electrode signal x j and the reference electrode
signal xr. In order to improve the similarity between each x j and xr, the transfer func-
tion G is estimated during calculation of τ̂, which is the actual output of the scheme
and the parameter of interest.

Spectral matching required the same processing steps as the dedicated approach
with the exception of the estimation of the adaptive filter G.

The CCF maximization method did not include downsampling in order to obtain
a temporal resolution that was comparable to the other implemented estimators; the
CCF was in fact calculated at 1000 Hz.

4.2.1 Data acquisition

The experimental data were collected at the Máxima Medical Center in Veldhoven
(the Netherlands). The study was approved by the ethical committee of the hospital.
Seven women during labor underwent multichannel electrical EHG recordings after
signing an informed consent. All women were at term with the exception of two,
who were post-term. Prior to EHG recording, four women had labor induction.

After accurate skin preparation with an abrasive paste for skin impedance reduc-
tion, eight disposable contact Ag-AgCl electrodes were placed on the abdomen as
shown in Fig. 4.2(a). The electrode position was chosen to cover as much of the
uterus as possible, but the number of sensors was limited to 8 to avoid patient’s dis-
comfort and make the experiments feasible in a clinical environment. The common
reference (REF) for the recording electrodes was placed on the right hip. In order
to obtain an efficient rejection of the electromagnetic interference, we employed a
driven-right-leg (DRL) ground electrode and actively shielded cables [25]. The IUP
was simultaneously measured by a Koala M1333A (Philips Medical Systems, Best,
the Netherlands) intrauterine pressure catheter inserted in the uterine cavity due to
medical prescription. The EHG signals were recorded at 1000 Hz and digitized at 20-
bit resolution by an M-PAQ amplifier (Maastricht Instruments Ltd., the Netherlands),
a 16-channel system for physiological measurements with programmable gain and
sampling frequency. The length of data recorded from each subject ranged from 25
to 73 minutes (from 9 to 23 contractions). In total, we analyzed approximately 5
hours of recordings containing 93 uterine contractions.
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(a) (b)

Figure 4.2: Electrode configuration: front view (a), side view (b). On the ab-
dominal profile it is possible to infer the different properties of
the tissues interposed between the EHG source and the record-
ing electrodes.

4.2.2 Preprocessing

The uterine EHG signal can be affected by several noise sources, e.g., the mother’s
ECG (MECG), the EMG generated by the contraction of abdominal skeletal muscles,
respiration, and different motion artifacts.

Previous work demonstrated that the frequency content of EHG signals non in-
vasively recorded during delivery is concentrated below 1 Hz [14, 15, 26]. On the
other hand, the minimum frequency content of the ECG corresponds to the minimum
value of the instantaneous heart rate [27]. For example, a minimum ECG frequency
content of 1 Hz corresponds to a heart rate of of 60 beat per minute, which can be
considered a lower-bound value for women during delivery. The MECG was there-
fore suppressed by low-pass filtering. The stop band lower frequency of the filter was
set at the minimum value of the instantaneous mother’s HR calculated during each
recording by the method described in [28]. In order to obtain a steep transitional
band, we used a Chebyshev Type II filter with the minimum order required to meet
the following specifications: 0.4 Hz transition bandwidth, 3 dB maximum pass-band
ripple, and 60 dB stop-band attenuation.

Another source of noise is the abdominal EMG. It was demonstrated that the
electrical signal associated to voluntary contraction of the abdominal muscle has a
dominant frequency component of about 30 Hz [29]. After low-pass filtering, the
noise due to EMG activity is therefore negligible.

The baseline oscillations due to slow electrical waves [13] such as respiration
were then removed by a four-order Butterworth high-pass filter with cut-off frequency
set at 0.34 Hz [14].

After band pass filtering, the EHG signal is confined in a narrow band that is
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upper bounded by the minimum value of HR, which is usually lower than 2 Hz (in
our recordings it was in the range 1.1-1.83 Hz). The sampling frequency could then
be decreased to 4 Hz without introducing aliasing effects. A decrease of the sampling
frequency, which is made possible by the low frequency characteristics of the EHG
signal [14, 29, 30], decreases significantly the computational time of the following
steps of the algorithm.

4.2.3 Standard delay estimators

The EHG signal originates from the action potentials propagating in the myometrium.
Therefore, the EHG time sequence x j(m), m = 1, · · · ,M recorded by electrode j
during a contraction could theoretically be represented as the delayed version of the
signal xr(m) recorded during the same contraction at a different location, r, with the
addition of noise w(m). Therefore, x j(m) is given as

x j(m) = xr(m− τ)+w(m), (4.1)

where τ ∈R is the continuous detection delay of the signals with respect to the chan-
nel j.

In the narrow frequency band of interest, the noise w(m) can be considered white
and Gaussian, as confirmed by the analysis of the signal when no contraction is
present. The delay corresponding to the maximum of the CCF between the signals
x j(m) and xr(m) corresponds to a least squares estimation of the delay and, under the
assumption of white-Gaussian noise, this is also equivalent to a maximum likelihood
estimate.

However, in practice, the temporal resolution of the delay estimated by signal
CCF maximization is limited by the employed sampling period. Increasing the sam-
pling frequency or interpolating around the maximum of the CCF partly overcomes
this limit [21]. An elegant alternative is the PD method, which relies on the difference
between the phases of the two signals in the frequency domain for the time-delay es-
timation [22]. A procedure that is analogous to the PD method consists of estimating
the time-delay in the frequency domain by minimization of the mean squared error
(MSE) between the DFT of the two signals. This method was referred to as spectral
matching [20].

Nevertheless, the assumption of pure temporal translation in (4.1) is not com-
pletely fulfilled and, even during the same contraction, the EHG signals have differ-
ent shapes at different electrodes. As the accuracy of the mentioned delay estimators
can be seriously hampered by poor interchannel similarity, significant improvements
can be obtained by compensating for the poor interchannel similarity prior to assess-
ing their relative delay. To this end, we suggest the adaptive identification of a filter
G (Fig.4.3), which represents the volume conductor transfer function between the
sensors, during estimation of the interelectrode delay by spectral matching.
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4.2.4 Shape variation modeling

In order to properly design the adaptive filter G, we need to identify the main cause
of the shape changes, which can be due to
1) the propagation of the signal at the myometrium level and
2) the biological tissues interposed between the source on the muscle and the record-
ing site on the skin (volume conductor).

The signal recorded by each surface electrode is the weighted average of the elec-
trical activity of all the underlying excited cells [31, 32]. Due to possible different
cell-to-cell propagation properties of the action potentials, it is plausible that the elec-
trical activity of the group of cells excited underneath one electrode does not mirror
exactly the electrical patterns of the cells underneath the other electrodes.

However, the thickness and the properties of the tissue layers between the my-
ometrium and the skin surface may also vary considerably from location to location
as suggested by Fig. 4.2(b). This effect can be prevailing when, as in our measure-
ments, the interelectrode distance is large.

Unfortunately, not much is known on these two phenomena, and a combination
of the two seems the most plausible explanation for the interchannel shape changes.
However, during labor, the electrical activity of the myometrium is well propagated
and all the cells underneath each electrode can be considered simultaneously excited.
Additionally, our aim is studying the global propagation of the electrical burst rather
than detecting the distribution of the cell-to-cell transmission of the electrical activity.
For the design of the adaptive filter G, we will therefore assume that the interelectrode
signal shape changes are exclusively due to the effect of the volume conductor, which
can be characterized by a low-pass filter in the spatial frequency domain [33]. The
characteristics of this filter are determined by the electrical and geometrical properties
of the tissue layers.

As shown in Fig. 4.3(a), the tissue interposed between the source location on the
myometrium and the recording site on the abdomen is mainly composed by a skin
layer, a fat layer, and a skeletal muscle layer. Each physical layer can be viewed
as equivalent to a low-pass spatial filter. These spatial filters have been previously
analytically formalized in the spatial frequency domain, rather than in the space do-
main, for mathematical convenience [34]. The spatial frequency domain formulation
is adopted also in this work, because it allows the estimation of the parameter of in-
terest, τ̂ in Fig. 4.1, without any resolution limit due to the finite sampling frequency.

In Fig. 4.3(a), H0 j(k), H1 j(k), and H2 j(k) represent the transfer functions of the
filter associated to the skeletal muscle, to the fat, and to the skin layer, respectively,
with k being the spatial angular frequency. In the spatial frequency domain, the
signals Xr(k) and X j(k) recorded by two electrodes, r and j, can be represented as
the underlying electrical signals Φr(k) and Φ j(k) multiplied by the transfer functions,
Gr(k) and G j(k), which are the series of low-pass filters representing each underlying
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(a) (b)

Figure 4.3: Volume conductor spatial filtering effect: schematic description
of the layers interposed between the myometrium and the skin
surface for one electrode (a), simplified two-electrode scheme
(b).

tissue layer (Fig. 4.3(b)).
Given a traveling wave, the spatial frequency domain is related to the temporal

frequency domain by the component of the propagation velocity in the considered
direction [35]. In particular, considering the direction parallel to the line connecting
two electrodes and the velocity component in that direction, v, to be constant and
known, the spatial sampling frequency fs can be derived from the temporal sampling
frequency ft by

fs =
1
v

ft . (4.2)

Based on the equivalence in Fig. 4.3(b), our assumptions can then be formalized
by considering the EHG signal X j(k) as the filtered and translated version of the
signal Xr(k), recorded during the same contraction in a different location, with the
addition of noise W (k), i.e.,

X j(k) = G(k)Xr(k)e− jzt k/M +W (k), (4.3)

where

G(k) =
G j(k)
Gr(k)

=
H0 j(k)H1 j(k)H2 j(k)
H0r(k)H1r(k)H2r(k)

, (4.4)

M is the number of considered samples, and zt is a dimensionless factor, expressed
in the continuous domain, which determines the wave translation from one electrode
to the other. The physical translation z0, which equals the distance between two
electrodes r and j, is then given as z0 = zt

fs
.

The parameter provided by the standard delay estimators described in Section 4.2.3
is the temporal detection delay τ in (4.1), while in (4.3) a spatial translation factor is
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considered. For a wave traveling at velocity v, the temporal detection delay τ between
two electrodes placed at a reciprocal distance z0 can be obtained from the translation
factor zt by

τ =
z0

v
=

zt/ fs

v
=

zt

ft
, (4.5)

where the last equality is obtained by using (4.2).
Among the abdominal tissues, the thickness of the fat layer shows consider-

able local differences from location to location. Conversely, the thickness of the
skin and the skeletal muscle layers is more homogeneous. Therefore, by assuming
H0r(k)≈ H0 j(k) and H2r(k)≈ H2 j(k), we obtain G(k)≈ H1 j(k)

H1r(k)
, i.e., the transfer func-

tion in space domain between the signals recorded by two electrodes is equivalent
to the ratio between the transfer function of the fat layer in the considered locations.
From the model developed in [34], we can analytically derive the expression of
the transfer function associated to the fat layer and compute G(k) (see Appendix I),
which depends on the following parameters:
-h j,hr, thickness of the fat layer under the electrode j and r, respectively;
-d, thickness of the skin layer, which is assumed to be the same at both electrode
locations;
-Rc, conductivity ratio between skin and fat layer.

4.2.5 Adaptive parameter estimation

In order to improve the calculation efficiency for the estimation of the transfer func-
tion G(k) in (4.11), we represented it by a centered zero-phase FIR filter with N
symmetric coefficients an, with frequency response

G(k) =
n=N−1

2

∑
n=−N+1

2

ane jnk, (4.6)

and with magnitude

|G(k)|= |1+2
n=N−1

2

∑
n=1

ancos(nk)|. (4.7)

In order to assess the required filter order N, the value of G(k) was calculated by its
analytical expression (Appendix I) for the following range of parameters:
-Rc from 10 to 260, with steps of 10 units;
-h j and hr from 2 mm to 4 cm, with steps of 1 mm;
-propagation velocity v from 2 cm/s to 8 cm/s, with steps of 5 mm/s [10].
The analytical response was then fitted by different order N zero-phase FIR filters
with the amplitude response in (4.7).
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Figure 4.4: Average mean squared error between the normalized analytical
transfer function G(k) and its approximation by a zero-phase
FIR filter of different order N.

The mean squared error (MSE) between the transfer function of the analytical
filter and the fitted digital FIR was then calculated for different values of N. The MSE
was measured as the ratio between the mean fit squared error and the mean energy of
the analytical transfer function in the frequency band of interest. Fig.4.4 shows the
average value and standard deviation (SD) of the MSE over all the combinations of
the considered physiological parameters.

For N > 12, the average approximation error is below 20% and the improvement
obtained by increasing N is lower than 10−2. We chose therefore N = 12, which
implies, for the symmetry properties of the filter, the identification of 6 coefficients,
a1, a2, a3, a4, a5, and a6.

For each single active contraction segment and electrode signal x j(m), the filter
coefficients and the translation factor ẑt were adaptively estimated employing as ref-
erence the electrode signal xr(m) with the best SNR. A single reference was used for
the entire set of translation estimates during one recording. We defined the SNR as
the ratio between the power of the signal during a contraction and the power during
the quiescent period [36]. The contractions were detected and separated on the basis
of the IUP estimated from the EHG signal using the method described in [26]. The
accuracy of the detected contractions was supported by the simultaneously recorded
IUP.

The interelectrode translation and the coefficients of the filter G(k) were identi-
fied by an MSE-based algorithm according to the scheme in Fig. 4.5. For a contrac-
tion segment of length M samples, the error array e = e(m),m = {1, · · · ,M}, was
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Figure 4.5: System model and scheme employed for the identification of the
translation factor ẑt and for the coefficients of the transfer func-
tion Ĝ(k).

defined as
e = x j − x̂ j, (4.8)

where x̂ j = x̂ j(m) is the array representing the time sequence estimate of the signal
x j(m), in the following addressed, in vector notation, as x j. The FIR filter coefficients

representing the transfer function Ĝ(k) and the translation factor ẑt were identified in
the frequency domain, i. e.,

x̂ j = Fxre− jkẑt/MĜ(k)F−1, (4.9)

where F is the M×M DFT matrix and ẑt is an estimate of the spatial translation.
The coefficients of Ĝ(k) were calculated by a simple matrix inversion (see Ap-

pendix II), while the translation ẑt was adaptively estimated by the Nelder-Mead Sim-
plex search method [37]. For comparison with the other methods, the time delay τ̂
was obtained from the estimated translation ẑt by (4.5). The initial value of the trans-
lation was set to the shift corresponding to the maximum of the CCF previously
calculated on the preprocessed signals down-sampled at 4 Hz. By performing the
adaptive estimation in the frequency domain, a delay τ̂ with unlimited temporal res-
olution was then obtained.

4.3 Results

4.3.1 CCF maximization and spectral matching methods

In order to assess the equivalence of the two methods on noisy EHG signals, we em-
ployed the CCF delay estimator at a sampling frequency of 1000 Hz and the spectral
matching method at 4 Hz on couples of simulated signals xr and x j. For the simu-
lation, the model in (4.1) was used where xr was a real EHG signal recorded in the



68 Large-scale electrohysterographic propagation analysis

(a) (b)

Figure 4.6: Aligned preprocessed signals recorded in two different elec-
trodes (a). Shape similarity improvement after employing the
adaptive filter (b).

channel with the best SNR. The two methods were compared for different values of
the delay τ, ranging from 0 to 25 ms with steps of 5 ms. To simulate w(m), white
Gaussian noise was added with SNR = 3 dB, which is the average value of SNR
calculated on the available data-set. The delays estimated by the two methods were
compared using 20 sequences of random Gaussian noise for each value of delay.
Overall, the mean and the standard deviation of the difference between the estimates
by the two methods was lower than the sampling period for the CCF method, i.e.,
SD < 10−3, proving the equivalence of these two methods. Therefore, for compari-
son with the dedicated approach, only the delay τ̂SM estimated by spectral matching
at 4 Hz is used.

4.3.2 Signal similarity improvement

The proposed method includes an adaptation step for increasing the shape similarity
between the inputs of the delay estimator in order to improve the estimation accuracy.
The shape similarity between two waveforms can be measured by their correlation
coefficient R. The improvement provided by the adaptive filter was assessed by com-
paring the average correlation coefficients:
-R0 between the preprocessed signals x j and xr;
-R1 between the preprocessed signals aligned according to the delay τ̂SM estimated
by spectral matching;
-R2 between the signals x̂ j and x j.
The average correlation coefficients were calculated over all the channels of the seven
analyzed women during 93 recorded contractions.

The average correlation coefficient increased from R0 = 0.49 for the prepro-
cessed signals to R1 = 0.56 after alignment with the delay provided by spectral
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(a) (b)

Figure 4.7: Example of the estimated volume conductor transfer function.
The average and standard deviation of the coefficients in each
electrode is shown (a) together with the FIR filter magnitude re-
sponse (b) obtained from the estimated coefficients of electrode
2. For comparison, the analytical filter G magnitude response
was fitted on the estimated one.

matching, and to R2 = 0.60 after filtering and translating with the values of coeffi-
cients and delay adaptively estimated. We can conclude that the relative correlation
improvement due to the alignment is 14% and that a further 8% is due to the shape
similarity improvement. For those contraction signals with initial high correlation co-
efficients the improvement was negligible, while for poorly correlated signals the use
of the FIR filter increased R significantly. An example of the improvement from the
pre-aligned signals is shown in Fig. 4.3.2, where the correlation coefficient improved
from R1 = 0.24 to R2 = 0.50.

We assumed that the filter G(k) was representative of the biological tissues and
the recording materials interposed between the electrodes and the myometrium. In
order to test this hypothesis, we estimated the filter coefficients separately for each
contraction and we analyzed their variability in two situations: when the proper-
ties of tissue layers underlying the electrodes are constant, i.e., during each patient
recording, and when they are expected to be highly different, i.e., in different subject
recordings. In agreement with our assumptions, the average SD of the coefficients per
channel for each subject was 30% of their mean values, while the average interpatient
variability was 300%.

The intrapatient stability of the filter coefficients is also confirmed by the example
reported in Fig. 4.7(a), which refers to the average and the standard deviation of the
coefficients identified in the recording containing the highest number of contractions
(23 contractions).

An example of the FIR filter magnitude response is shown in Fig. 4.7(b) for the
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(a) (b)

Figure 4.8: Absolute difference between the delays obtained by spectral
matching and the dedicated approach versus the correlation co-
efficient R1 between the aligned preprocessed signals (a). To-
tal number of contractions during which each electrode was the
pacemaker sensor (b).

estimated coefficients of electrode 2 in Fig. 4.7(a). For comparison, the analytical
transfer function G was fitted on the estimated one, Ĝ, between 0.34 and 0.87 Hz,
i.e., the stop band frequencies of the HP and LP filters employed for this subject.

4.3.3 Feasibility of the estimators on real data

The two methods were applied to the available dataset for calculating the interelec-
trode delay for each contraction. The average absolute difference between the delay
provided by spectral matching, τ̂SM, and the delay calculated by the proposed ap-
proach, τ̂, was 0.05 s over all the analyzed contractions and channels. The difference
between the two estimates for the analyzed data is reported in Fig. 4.8(a) as a function
of the interchannel correlation coefficients R1 of the aligned signals. The correlation
(Rv = −0.45, p< 0.001) between R1 and the estimated delay difference (Fig. 4.8(a))
suggests that for lower values of interchannel correlation the estimates produced by
the two methods show larger differences.

The estimated relative delays of all the electrodes during the same contraction
permitted the assessment of the direction of propagation of the EHG signal. In par-
ticular, the area where the EHG signal originates (pacemaker area) was located, for
each contraction, as corresponding to the pacemaker sensor, i.e., the electrode pro-
viding the first detection of the burst.

In Fig. 4.8(b), the histogram of the pacemaker sensors is reported based on the
93 contractions recorded from the seven subjects. Electrode 8, the uppermost left
electrode, provided the first detection in 25% of the cases. By summing the occur-
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(a) (b)

Figure 4.9: Example of visual analysis of EHG signal propagation during
a contraction obtained by the dedicated (a) and the spectral
matching method (b). The values for the local delays are pro-
portional to the color intensity of the map.

rences of the uppermost electrodes (1, 2, 3, and 8) as pacemaker sensors, we deduce
that 65% of the contraction started in the upper part of the myometrium. The av-
erage propagation time, i.e., from the first to the last electrode detecting the burst,
was 9.52±11.4 s according to both the spectral matching and the dedicated method.
By analyzing and comparing the delay detected in each channel during a contrac-
tion, a study of the global propagation of the EHG signal could be conducted. In
Fig. 4.9(a) and Fig. 4.9(b), an example of propagation analysis is shown. By interpo-
lating the values of the electrode delays, a spatial grid representing the uterus surface
was obtained, where the intensity is proportional to the local delay with respect to
the pacemaker sensor. The uterine activation map in Fig. 4.9(a) was obtained by the
dedicated approach. Here, the electrical signal clearly propagates from the upper left
region towards the central-right part of the uterus. From the propagation map we can
also derive an indication of the propagation path on the rear of the uterus. The uterine
activation map in Fig. 4.9(b) was obtained, for the same contraction in Fig. 4.9(a),
employing the delays obtained by spectral matching. In this case, the propagation
path is more chaotic, probably due to an inaccurate estimate of the delay at sensor 4.

4.4 Discussion and conclusions

The purpose of this study is the definition of a method for analyzing the propagation
of EHG signals. The final goal is supporting further clinical studies for assessing the
capability of EHG propagation-related parameters in predicting premature birth.
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We implemented the time-lag estimators based on the CCF maximization and
spectral matching and we developed a dedicated interelectrode time delay estimator.
The electrode configuration employed in our experiments was chosen to maximize
the coverage of the uterine surface to test the robustness and the feasibility of the
estimators on real data. For more specific information on the propagation properties
of EHG signals, a larger number of sensors and lower iterelectrode distance should
be employed in the future.

The main novelty of the dedicated approach is the employment of an adaptive
filter for improving the signal similarity between the inputs of the delay estimator.
To this end, on the basis of physiological observations, we propose a simple model,
which is representative of the propagation mechanism of the EHG signal in labor.
The algorithm is suitable for sampling frequencies as low as 4 Hz, as the method
resolution is not limited by the sampling period.

By comparing the average correlation coefficient of the signals before and af-
ter the employment of the adaptive filter, we experienced an overall improvement
of the waveform shape similarity. This result provides a preliminary validation of
the adopted model. Shorter distances between the electrodes could however be used
in the future to strengthen the validity of our assumptions on the signal transmis-
sion through the myometrium, decreasing the effect of the volume conductor and,
therefore, of the designed filter, on the signal similarity. For example, considering a
myometrium-skin distance of about 1 cm, 1 cm interelectrode spacing could already
provide some improvement. If we assume the EHG signal to be modeled by a planar
wave propagating at constant velocity, the future use of shorter electrode distance
could also permit to estimate the EHG signal propagation direction and velocity by
analysis of larger sets of electrodes, therefore improving the estimations robustness
and accuracy.

For the adaptive filter design, we assumed that the shape variations between the
signals recorded by different electrodes are mainly due to the inhomogeneous struc-
ture and properties of the biological tissues interposed between the signal source and
the recording site.

When applied to real signals, the employed estimators provided delays with larger
scattering for poor similarity among the preprocessed signals. This result is in agree-
ment with the conclusion that poor values of interchannel correlation might affect the
accuracy of time-delay estimators based on spectral matching and on the maximiza-
tion of the CCF.

Finally, we demonstrated the feasibility of the proposed approach for the analysis
of EHG signal propagation by testing it on the available dataset. The evaluation of
the number of occurrences of each electrode as the pacemaker sensor highlighted the
upper region of the uterus as the most probable pacemaker area. About 65% of the
contractions were first detected by the uppermost electrodes, suggesting a preferred



4.4 Discussion and conclusions 73

top-down propagation of the myometrial electrical burst. Since the mechanical con-
traction of the uterine muscle acts towards the expulsion of the fetus, during labor this
propagation pattern could be expected and might be associated to the effectiveness
of the contractile activity. However, these are preliminary results for a circumscribed
stage of pregnancy and a limited number of patients. Further clinical investigations
on a more extended database including more patients with different abdominal fat
content and at different gestational ages are needed to relate the propagation proper-
ties of the EHG signal to the effectiveness of uterine contractions and to the prediction
of preterm labor.

It is important to notice that the EHG signal can also originate and propagate in
the rear of the uterus, which cannot be directly monitored. Identification of the pace-
maker sensor can then provide only partial information on the propagation pattern.
To overcome these limitations, visual tools for the clinical and statistical analysis of
EHG propagation, like the uterine activation maps in Fig. 4.9, can be provided based
on the calculation of the interelectrode delay. The global view of the map suggests the
presence of a propagation path on the rear of the uterus, which gives a fundamental
contribution to the mechanical efficiency of a contraction. Note that, even if a single
pacemaker sensor is generally assumed, the presence of multiple pacemaker regions
is not excluded and can be possibly detected. Both the employed time-lag estimators
resulted in an average propagation time from the first to the last sensor of about 9 s.
Although the assessment of the conduction velocity was not in the aim of the present
study, considering an average uterine length of about 40-50 cm, the detected values
are in the velocity range reported in the literature [10].

By neglecting the pattern of the action potentials spreading though the myometrium
cells, we achieved a significant problem simplification, which is suitable for the spe-
cific aim of this study but does not represent entirely the real underlying process. Our
future work will therefore focus on specific models and experiments for assessing the
propagation distribution action potentials in order to obtain more insight on the un-
known processes leading to the onset of effective uterine contractions and to preterm
delivery.

Appendix I

From the model developed in [34], we can analytically derive the expression of the
transfer function H1 j(k,h j,d) in the location j of a fat layer of thickness h j

H1j(k,hj,d)=
cosh(kd)

cosh(khj)cosh(kd)+Rcsinh(khj)sinh(kd)
, (4.10)

where Rc is the conductivity ratio between skin and fat, d is the thickness of the skin
layer, and k is the angular frequency in the y direction (Fig. 4.3(a)). By assuming the
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spatial variations of the properties of skin and skeletal muscle layers to be negligible,
the transfer function between two electrode locations j and r is an isotropic filter
given by the ratio of the transfer functions representing the fat layer, i.e.,

G(k)≈ cosh(kh j)cosh(kd))+Rcsinh(kh j)sinh(kd)
cosh(khr)cosh(kd))+Rcsinh(khr)sinh(kd)

, (4.11)

where hr is the thickness of the fat layer in the position r. This function provides a
zero-phase spatial filter with a global low-pass characteristics if h j > hr, while it has
a high-pass characteristics otherwise.

Appendix II

By X j(k) we indicate the frequency transformed signal recorded by the electrode
j, i.e., X j(k) = Fx j, and by Xr(k) the FFT of the signal at the reference elec-
trode r, i.e., Xr(k) = Fxr, where F is the M ×M DFT matrix. The error vector
e(ẑt , ŵ) can be expressed as a function of the translation factor ẑt and coefficient ar-
ray P̂ = (a1, · · · , a6)

T by

e(ẑt , P̂) = (Xr(k)−Ω(ẑt)P̂)F−1, (4.12)

where, for the frequency samples k1, k2 · · · , kM , it follows from the magnitude re-
sponse of the zero-phase FIR filter that

Ω(ẑt)=e
− jkẑt

M




X j(k1) 2X j(k1)cos(k1) · · · 2X j(k1)cos(Nk1)
X j(k2) 2X j(k2)cos(k2) · · · 2X j(k2)cos(Nk2)

...
...

...
...

X j(kM) 2X j(kM)cos(kM) · · · 2X j(kM)cos(NkM)


.

The optimal coefficient vector, P̂o(ẑt) = (ao1, · · · , ao6)
T , can be obtained by mini-

mization of the squared error eT (ẑt , P̂)e(ẑt , P̂) as a function of the translation ẑt as

P̂o(ẑt) = (Ω(ẑt)
T Ω(ẑt))

−1Ω(ẑt)
T Xr(k). (4.13)

The error can therefore be expressed as a function of a single parameter ẑt , i.e.,

e(ẑt) = Xr(k)−Ω(ẑt)P̂o(ẑt)F−1. (4.14)
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Chapter 5

Electrohysterographic volume conductor
modeling
C. Rabotti, M. Mischi et al., IEEE Trans. Biomed. Eng., vol.57 , pp. 519-527, 2010.

Everything should be made as simple as possible, but no simpler (A.
Einstein) 1

5.1 Introduction

The sequence of contraction and relaxation of the uterine muscle (myometrium)
results from the cyclic depolarization and repolarization of the muscle-cell mem-
branes [2]. The spontaneous electrical activity of the myometrium, which can initiate
in any cell (pacemaker) and then excites surrounding regions, consists of bursts of
action potentials that can be measured at the abdominal surface by electrohysterog-
raphy (EHG) [3, 4]. Uterine contractions are often the first sign of labor; therefore,
when occurring preterm, they need to be promptly suppressed by tocolytics. During
labor, instead, a coordinated and strong uterine activity is required for the effective
expulsion of the fetus at the end of delivery. Accurate monitoring of the uterine ac-
tivity is therefore essential. The methods currently employed in clinical practice for
uterine activity monitoring, such as internal and external tocography, cervical change
evaluation by digital or ultrasound examination, and the measurements of biomarkers
(e.g., fibronectine) in symptomatic women, could support the selection of patients at
higher risk of preterm delivery within few days, but they are either invasive or not
sufficiently accurate for effective prognosis and, therefore, prompt treatment of pre-
mature birth [5–7].

During a contraction, the EHG signal can be recorded noninvasively by standard
Ag-AgCl contact electrodes placed on the abdomen. Many studies demonstrated that
the analysis of the EHG signal may play a key role for accurate monitoring of the

1This is the better known variant of ‘It can scarcely be denied that the supreme goal of all theory is
to make the irreducible basic elements as simple and as few as possible without having to surrender the
adequate representation of a single datum of experience’, from ‘On the Method of Theoretical Physics’,
The Herbert Spencer Lecture, delivered at Oxford (10 June 1933), also published as [1].
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uterine contractions, prediction of labor, and improvement of perinatal outcome [8–
12]. However, many issues related to the conduction pattern of electrical activation
are still unsolved [13].

An important contribution for studying noninvasively the conduction properties
of EHG signals and for the development of novel monitoring technology can be pro-
vided by modeling techniques. At the myometrium level, the cellular action poten-
tial generation and the excitation-contraction coupling have been recently accurately
modeled as a function of a large number of electrophysiological parameters related
to ionic concentrations [14, 15]. The myometrium-skin volume conductor, instead,
has been only partially investigated, and it is typically considered as a homogeneous
infinite layer [14, 16]. As a result, the myometrium-skin conduction properties are
assumed only dependent on the distance between source and recording site. Never-
theless, a complete understanding of the volume conductor effect on the measured
signals is fundamental to support the development of accurate prognostic and diag-
nostic tools based on the EHG signal analysis.

In this study, a myometrium-skin conduction model is developed that consists
of a four-layer model obtained by extension of simulation studies reported in the
literature for the skeletal electromyogram [17]. The volume conductor effect is for-
malized in the spatial frequency domain by a transfer function that accounts for the
physical and geometrical properties of the biological tissues interposed between the
source of electrical current in the myometrium and the recording site on the skin.
The intracellular action potential is mathematically modeled by a Gamma probabil-
ity density function [18]. After model reduction, the potential recorded on the skin
surface depends on five parameters, of which three are related to the source signal
shape and two are given by the thickness of the fat and the abdominal muscle. The
model parameters are estimated from EHG measurements performed by a grid of 64
high-density (HD) electrodes on five pregnant women at term with uterine contrac-
tions. For comparison, the values of fat and abdominal muscle thickness were also
measured by echography.

5.2 Methodology

5.2.1 Background

The contractile element of the uterus is the myometrium, which is composed of bil-
lions of smooth muscle cells. The sequence of contraction and relaxation results
from a cyclic depolarization and repolarization of the muscle cells in the form of ac-
tion potentials (AP). The intracellular AP results from time-dependent changes in the
membrane ionic permeability caused by hormonal changes or by cell-to-cell excita-
tion. Due to changes in the permeability, ions diffuse across the membrane according
to their electrochemical gradients and a transmembrane ionic current is established.
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APs occur in bursts; they arise in cells that act as pacemakers and propagate from cell
to cell through gap junctions, which are low-resistance electrical connections [3]. It
has been shown that gap junctions are present between myometrial cells in pregnant
animals only during parturition [19]. Due to a lack of evidence [20], many authors
concluded that no classical linear propagation of single action potentials, similar to
the myocardium, could be assumed for the myometrium, and that only a global prop-
agation of the whole burst envelop could be measured [20, 21]. However, more re-
cently, extensive measurements of the electrical activity of the guinea pig uterus using
a grid of extracellular electrodes clearly demonstrated that also for the myometrium,
similarly to the myocardium, a linear propagation of single electrical spikes occurs
and can be measured [13, 22, 23].

In this study, the potential recorded on the skin surface is formalized as a func-
tion of the transmembrane ionic current and the properties of the volume conductor
between the myometrium and the skin. For identifying the model parameters, sin-
gle surface APs are visually selected from the bursts recorded during contractions.
We assume that, below the recording electrodes, the current source can be approx-
imated by a planar wave that propagates, as hypothesized in [14], either along the
longitudinal or the circumferential axis of the uterus.

5.2.2 System modeling

Volume conductor modeling

The biological tissues interposed between the electrical source at the myometrium
and the recording site at the skin act as a volume conductor producing a spatial low-
pass filtering effect. Similarly to the study reported in [17] for skeletal muscles, the
volume conductor between the myometrium and the skin is considered as made of
parallel interfaces separating the tissue layers. As the abdominal curvature is negligi-
ble in a limited region, the interfaces can locally be approximated by infinite parallel
planes. The biological tissues involved in the conduction of EHG signals are repre-
sented in Fig. 5.1 and consist of myometrial tissue (a), where the source is placed at
a depth y = y0, a ∆hb thick abdominal muscle layer (b), a ∆hc thick fat layer (c),
and a ∆hd thick skin layer (d).

The general relation between the potential and the current density source in a
non-homogeneous and anisotropic layer is expressed by the Poisson equation [24],

−∂
∂x

(
σx

∂φ(x,y,z)
∂x

)
− ∂

∂y

(
σy

∂φ(x,y,z)
∂y

)
− ∂

∂z

(
σz

∂φ(x,y,z)
∂z

)
= IV (x,y,z) (5.1)

where IV (x,y,z) is the volume current source [A ·m−3], φ(x,y,z) is the potential [V],
and σx, σy, and σz [S ·m−1] are the conductivities of the medium in the x, y, and z
direction, respectively.
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Figure 5.1: Schematic description of the biological tissue layers involved in
the volume conductor of EHG signals.

Skin, fat, and myometrial tissue can be considered isotropic, i.e., the value of con-
ductivity does not depend on the direction of propagation and σx = σy = σz = σ,
while the abdominal muscle is anisotropic, i.e., σx = σxb 6= σz = σzb [17]. In
the y direction, σy = σyb = σxb if the muscle fiber orientation is parallel to the
z axis, σyb = σzb if it is parallel to the x axis. All the tissues can be regarded as
homogeneous. In the myometrium, the relation in (5.1) becomes

−σa

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
φa(x,y,z) = IV (x,y0,z)δ(y− y0), (5.2)

with φa(x,y,z) and σa being the potential and the conductivity, and IV (x,y,z) the
current source at depth y0.

All the other layers contain no current source. In the anisotropic muscle layer b,
(

σxb
∂2

∂x2 +σyb
∂2

∂y2 +σzb
∂2

∂z2

)
φb(x,y,z) = 0, (5.3)

where φb(x,y,z) is the potential in this layer. In the isotropic fat layer c, with potential
φc(x,y,z), and similarly in the layers d, and e, with potentials φd(x,y,z) and φe(x,y,z),
respectively, relations of the form

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
φc(x,y,z) = 0 (5.4)

hold. The solution of (5.2), (5.3), and (5.4) can be obtained in the spatial frequency
domain by calculating the two-dimensional Fourier transform in the x and z direc-
tions. Indicating by kx and kz the spatial angular frequencies in the x and z direction,
due to the Fourier transform properties, the second derivatives in the x and in the z di-
rections become, in the spatial frequency domain, multiplications by −kx

2 and −kz
2,
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respectively. Furthermore, we define ky =
√

k2
x + k2

z and kyb =
√

σyb
σxb

k2
x +

σzb
σxb

k2
z .

Therefore, indicating by Φa, Φb, and Φc the Fourier transform of the potentials φa,
φb, and φc, in the spatial frequency domain, (5.2), (5.3), and (5.4) become

(
∂2

∂y2 − k2
y

)
Φa(kx,y,kz) =

IV (kx,y,kz)

σa
δ(y− y0), (5.5)

(
∂2

∂y2 − k2
yb

)
Φb(kx,y,kz) = 0, (5.6)

and (
∂2

∂y2 − k2
y

)
Φc(kx,y,kz) = 0, (5.7)

respectively. Equations of the same form as (5.7), which refers to layer c, hold also
for the skin layer, d, and the air, e. In order to obtain the expression of the potential
at the skin surface, all the obtained partial differential equations can be solved by
adding the boundary conditions at the four interfaces, namely the continuity of the
current in the y direction, the continuity of the electrical field in the z and x directions,
and the decay to zero of the potential for y →±∞.

The expression of the potential Φe(kx,y,kz) in the spatial frequency domain on
the skin surface (y = h3) as a function of the current source IV = IV (kx,y0,kz)
and of the volume conductor properties can then be derived as given in (8) using the
following conventions:
- Ra = σa/σxb,
- Rb = σzb/σxb,
- Rc = σc/σxb,
- Rd = σd/σc,
- α1 (kx,kz) = ky cosh(∆hbkyb)Ra + kyb sinh(∆hbkyb) ,
- α2 (kx,kz) = ky sinh(∆hbkyb)Ra + kyb cosh(∆hbkyb) .

Φe(kx,h3,kz) =(
(1−Rd){kybα1(kx,kz)cosh[(∆hc−∆hd)ky]−Rckyα2(kx,kz)sinh[(∆hc−∆hd)ky]}

2ekyy0 IV (kx,y0,kz)kyb/σxb

+
(1+Rd){kybα1(kx,kz)cosh[(∆hc+∆hd)ky]+Rckyα2(kx,kz)sinh[(∆hc+∆hd)ky]}

2ekyy0 IV (kx,y0,kz)kyb/σxb

)−1

(5.8)

In the following, the expression of the surface potential, which has been for-
malized in two dimensions for completeness, is simplified and addressed as a one-
dimension problem. Due to the planar wave assumption, the use of a two-dimension
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model is not expected to provide additional relevant information. The z axis is consid-
ered the main component (horizontal or vertical) of the electrical activity propagation
velocity. The spatial angular frequency in the x direction, kx, is set to zero and a single
line (row or column) of the electrode grid is employed to identify the model parame-
ters. In this respect, the use of a two-dimension grid for the acquisition is exploited to
single out, on the basis of the signal quality and the direction of the electrical activity
propagation, the line that is used as reference for the model identification.

Source modeling

Microelectrode recordings of uterine electrical activity showed that the uterine intra-
cellular AP, similarly to skeletal muscles, is characterized, in time, by a fast depolar-
ization followed by a reversal of membrane polarity and a slower repolarization [25].
In the considered direction, z, the intracellular AP appearance in the time domain, t,
is converted to the space domain by assuming a constant intracellular AP propagation
velocity component in the z direction, vz, using the relation

z =−vzt. (5.9)

As also suggested for skeletal muscles [18], the intracellular AP at the myometrium,
IAP(z), can be suitably described in the space domain by a function that has the shape
of a Gamma probability density function

IAP(z) =





zα−1e−z/β

βαΓ(α)
z ≥ 0

0 z < 0
, (5.10)

where Γ is the Gamma operator, α ∈ R+ is a dimensionless shape parameter, and
β ∈ R+ is a spatial scale parameter.

The example of the function IAP(z) modeled by (5.10) in Fig. 5.2(a) refers to a
propagation velocity vz parallel and opposite to the z axis. Considered the relation in
(5.9) between the spatial and temporal properties of a waveform, when compared to
the intracellular APs depicted in the literature [25, 26], the shape of the modeled in-
tracellular AP in Fig. 5.2(a) is representative of microelectrode recordings of uterine
activity.

As from (5.1), the source of our model, IV , is a volume current source density;
being a measure of the current outflow per unit volume, IV can then be obtained by
the divergence of the current density J(x,y,z), [A ·m−2], i.e.,

IV = ∇ ·J(x,y,z) = ∂
∂z
(J(z)), (5.11)

where the last equality results from the hypothesis of a single propagation direction
along z. Assuming the core-conductor model [24], the transmembrane ionic current
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density J(z) is proportional to the second spatial derivative of the intracellular AP
profile [24]. In the spatial frequency domain, the volume current source IV (kz) of the
model in (5.8) is therefore given as

IV (kz) = F

{
A

∂3IAP(z)
∂z3

}
=

Aik3
z

(
−ikz +

1
β

)−α
β−α

√
2π

, (5.12)

where F indicates the Fourier transform, A is an amplitude scaling factor that accounts
for the number of cells simultaneously active during the contraction, and i =

√−1.

Figure 5.2: Example of intracellular action potential, (a), and volume cur-
rent source, (b), modeled in the space domain by a Gamma prob-
ability density function and its third derivative, respectively. The
IAP propagation direction is parallel and opposite to the z axis.
Assuming a propagation velocity of about 10 cm/s, the depicted
example corresponds to an action potential duration of 150 ms.

Model reduction

The surface potential φe(kx,h3,kz) in (5.8) depends on the tissue thicknesses and con-
ductivities, on the source depth, y0, and on the parameters α, β, and A in 5.12. The
tissue conductivities are however relatively invariant and the values reported in the
literature are used [27–29]. For APs propagating in the direction parallel to the ab-
dominal muscle fiber orientation, i.e., z parallel to the vertical line of the abdomen,
by assuming a uterine conductivity σa = 0.2 S ·m−1 [27], and a transversal muscle
conductivity σxb = 0.09 S ·m−1 [28], we obtain Ra = 2.2, Rb = 5, Rc = 0.5, and
Rd = 20 [29]. For APs propagating horizontally, σxb is the longitudinal abdominal
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Figure 5.3: Schematic description of the sensor placement.

muscle conductivity; therefore, σxb = 0.4 S ·m−1 [28], Ra = 0.5, Rb = 0.2, and
Rc = 0.225.

A further reduction of the model parameter number is obtained by setting the
skin tissue thickness, ∆hd , to a constant value. A low intersubject variability of the
skin thickness, demonstrated already in previous studies [30], is also suggested by 15
echographic measurements performed at the Máxima Medical Center in Veldhoven
(the Netherlands) from 12 pregnant and 3 nonpregnant women. In agreement with
the values employed in other modeling approaches [29] and those measured for der-
matological investigations on the abdomen [30], we measured a skin thickness equal
to 2 mm in 87% of the cases. Therefore, the model is identified assuming a constant
skin thickness ∆hd = 2 mm.

An additional model reduction concerns also the source depth y0. Assuming the
source to be close to the myometrium-abdominal muscle interface, y0 → 0 and, there-
fore, the exponential term in (5.8) can be approximated by a McLaurin expansion
ekyy0 → 1.

5.2.3 Experimental data recording and preprocessing

The measurements were performed at the Máxima Medical Center in Veldhoven (the
Netherlands) after approval by the ethical committee of the hospital. Five women in
labor, admitted to the hospital with contractions, were enrolled in the study after sign-
ing an informed consent. The sensors were placed as described in Fig. 5.3 after skin
preparation for contact impedance reduction. The EHG was recorded using a Refa
system (TMS International, Enschede, the Netherlands), comprising a multichannel
amplifier for electrophysiological signals and a grid of 64 (8x8) HD electrodes (1 mm
diameter, 4 mm interelectrode distance). The sampling frequency was 1024 Hz. The
electrodes have a flexible support, which can be fixed to the skin by a double-sided
adhesive tape mask that covers the interelectrode space and leaves the sensing sur-
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face recessed in a cavity. The cavity can be filled by electrolyte gel. The combined
use of flexible and recessed electrodes contributes to the reduction of movement arti-
facts [31].

The HD electrode grid was placed on the mid line of the lower abdomen imme-
diately below the umbilicus. By analyzing a set of previous measurement performed
with electrodes distributed on the abdomen, the signals recorded by electrodes placed
in this region resulted less affected by movement artifacts, such as respiration, than
the signals recorded by electrodes placed in other locations [32]. The common refer-
ence for the monopolar EHG signals recorded by the HD electrode was placed on the
right hip, close to the ground (GRD) electrode. The external tocogram, simultane-
ously recorded due to medical prescription, was employed to support the assessment
of the contraction period. An accelerometer was fixed on the HD electrodes to detect
movements and exclude from the analysis signal segments affected by motion arti-
facts. An Aloka ultrasound scanner was employed to measure the thickness of the
fat and the abdominal muscle layers underneath the HD electrode. Two echographic
images were recorded: one during the quiescent period and one at the contraction
peak. The values of thickness were then measured on the echographic image by two
independent observers.

The uterine EHG signal can be affected by various noise sources, e.g., electrocar-
diographic (ECG) signals, electromyographic (EMG) interference generated by the
contraction of abdominal muscles, and different motion artifacts. It has been exten-
sively reported that the EHG signal does not have significant frequency components
outsides the frequency band 0.1- 5 Hz [21]. The interference due to the EMG signal
has a dominant frequency component of about 30 Hz [9], the main frequency of res-
piration is up to 0.34 Hz, and the lower frequency of the ECG signal is given by the
heart rate, which can be as low as 1 Hz [33]. In the literature, either narrow band-pass
filtering (i.e., between 0.34 and 1 Hz) [11], or maternal ECG subtraction combined
with band-pass filtering between 0.1 and 3 Hz were proposed to improve the EHG
SNR [12]. In this work, a sixth-order Butterworth band-pass filter with cut-off fre-
quencies at 0.1 and 0.8 Hz is used. The example of action potential in Fig. 5.4, filtered
between 0.1 and 5 Hz and between 0.1 and 0.8 Hz, suggests, in fact, that low-pass
filtering below 0.8 Hz does not affect the signal shape while removing the ECG inter-
ference at the heart-rate. Due to the electrode typology and position, low-frequency
oscillations due to the respiration are not visible in the recorded signals.

5.2.4 Model parameter identification

For each woman, two different signal time segments, each containing a propagating
(i.e., it shows a delay between consecutive channels) surface AP, were visually se-
lected on the preprocessed signal and used as reference for validation by mean square
estimation of the model parameters.
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Figure 5.4: Example of preprocessed EHG signal recorded during labor (39
week of gestation) and effect of filtering in two different fre-
quency bands.

Since possible artifacts, such as those due to ECG and movements, do not prop-
agate along the electrode grid, the surface APs in the different channels represent the
same AP propagating below the electrodes. We assume that the conduction wave can
be approximated by a planar wave. Due to the planar wave assumption, the spatio-
temporal information of the surface AP recorded by one column and one row of the
electrode grid is representative of the AP propagation. The best row and column are
then selected using the similarity among the recorded signals as quality index. A
high interchannel signal similarity provides, in fact, a first evidence that the selected
electrodes are recording APs originating from a single source. Furthermore, as we
assume that the AP propagates either vertically or horizontally [14], we single out the
line (either the column or the raw) that is parallel to the AP direction of propagation,
estimated by analysis of the AP conduction velocity. In fact, no spatial information
could be derived from electrodes that are aligned orthogonally to the AP propagation
direction. Note that, due to the preliminary line selection based on the interchan-
nel signal similarity, the conduction velocity estimates in the selected line is more
reliable [34].

Possible indexes of the shape similarity between two signals are the correlation
coefficient and the coherence spectrum [35]. Differently from the correlation coef-
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ficient, the similarity index provided by the coherence spectrum, which is the fre-
quency equivalent of the correlation coefficient, is independent of the signal phase
and, therefore, does not require preliminary signal alignment. The coherence spec-
trum is therefore calculated for all the couples of signals in a line and the median
value considered as line signal-quality index.

For assessing the surface AP conduction velocity between two electrodes, the
phase-difference method is employed [36]. The conduction velocity is calculated
between all the possible couples of channels in the considered lines. A more robust
estimation of the delay can then be obtained by exploiting the redundancy of this
information and taking the median value of the delay estimates.

Once a channel line is identified on the basis of coherence and propagation, the
8-channel-surface APs in the time domain are used for identification of the model
parameters in the space domain. However, due to the wavelength of the uterine
AP and the spatial low-pass filtering effect of the biological tissues interposed be-
tween the myometrium and the skin, the signal simultaneously recorded by the eight
electrodes may not provide enough spatial information for reconstructing a complete
surface AP in the space domain. After calculation of the surface AP conduction ve-
locity, assumed to be constant, time information is used to recover the missing spatial
information. Eventually, the surface AP, SAP(z), is represented by 16 spatial sam-
ples (Fig. 5.8).

The parameters of the model in (5.8) and (5.11) are identified on simulated and
real signals by minimization of the mean error e,

e =

√√√√ N

∑
z=1

(SAP(z)−SAPM(z))2

N
, (5.13)

between the measured (simulated) reference signal, SAP(z), and the modeled poten-
tial SAPM(z) = F−1 {φe(kz)}. The Nelder-Mead Simplex search method is used for
the minimization of e, which is given for SAPM = ŜAPM [37]. For the minimization
of e, the values of the abdominal fat and muscle thickness are initialized at 19 mm
and 12 mm, respectively; for the considered abdominal tissues, these are the mean
values reported in the literature for young women [38].

5.3 Results

5.3.1 Simulation results

Simulated surface APs were obtained for all the possible combinations of realistic
values of ∆hb and ∆hc, and for a fixed set of source parameters. Ten values of abdom-
inal muscle thickness, ∆hb, and fat tissue thickness, ∆hc, between 1 and 16 mm and
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(a) (b)

Figure 5.5: Standard deviation of the fat thickness estimates, SDc, a), and
standard deviation of the abdominal muscle thickness estimates,
SDb, b), over 50 simulated surface APs with SNR = 12dB. The
plots show the results (grey level) as a function of the tissue-
thickness values adopted for the surface AP simulation.

between 1 and 30 mm, respectively, were considered for the simulations [38]. Gaus-
sian white noise was added to each of the simulated surface AP. The noise power was
estimated as the mean squared error between SAP and ŜAPM obtained by the model
identification on the real signals. Each noisy simulated surface AP was used as ref-
erence to obtain an estimate of the fat thickness, ∆̂hc, and of the abdominal muscle
thickness, ∆̂hb, as described in Section 5.2.4.

The standard deviation, SDb, of the abdominal muscle thickness estimates and the
standard deviation, SDc, of the fat tissue thickness estimates were calculated over 50
noise sequences. The standard deviation of the fat and abdominal muscle thickness
estimates in Fig. 5.5(a) and Fig. 5.5(b) refer to the worst case SNR, i.e., SNR = 12 dB.
In these simulations, vertical propagation was assumed, i.e., the abdominal muscle
conductivity in the z direction, σzb, is the longitudinal conductivity and σxb is the
transversal one.

The estimates are unbiased. Furthermore, Fig. 5.5(a) shows that for ∆hb > 1 mm,
SDc < 1.5 mm. As for the standard deviation of the abdominal muscle estimates,
Fig. 5.5(b), for ∆hb > 1 mm, SDb < 4 mm. In the simulations reported in Fig. 5.5(a)
and Fig. 5.5(b), the standard deviation of the abdominal muscle thickness estimates
is, in general, higher than the fat thickness. For a simulated vertical propagation,
this tendency is present also when higher values of SNR are considered, and it is
due to the convexity of the error function, which is slightly higher in the direction
of ∆hc than in the direction of ∆hb. When horizontal propagation is simulated, the
surface AP is more sensitive to variations of the abdominal muscle thickness and the
estimation of ∆hb becomes more accurate than ∆hc.
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Figure 5.6: Measured and estimated values of fat tissue thickness, (a), and
abdominal muscle thickness, (b).

Figure 5.7: Mean estimated values of fat, (a), and abdominal muscle thick-
ness, (b), and zero-intercept trend-line as a function of the mean
values measured on the echographic image.

5.3.2 Measurement results

For each patient, the abdominal muscle and the fat layer thickness were measured
by echography by two independent observers and the model parameters identified
on two different time segments of the EHG signal. The values of tissue thickness
recorded by echography and those estimated from the EHG signal using the volume
conductor model are shown in Fig. 5.6 for each analyzed patient. In Fig. 5.6, the
echographic measurements refer to the contraction period and are reported in terms
of inter-observer mean and standard deviation. The difference between the values
of tissue thickness recorded by echography during the quiescent period and during
contraction (not reported in the figure) was 0.11± 0.67 mm for the fat tissue and
−0.23±0.34 mm for the abdominal muscle. For comparison, Fig. 5.6 shows also the
mean and standard deviation of the parameters estimated from the surface APs. As
from the table in Fig. 5.6, the mean values of thickness measured echographically by
the two observers were ∆hc = 11.32±6.17 mm and ∆hb = 9.36±3.63 mm. The
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Figure 5.8: Example of recorded and modeled surface AP.

mean difference between the echographic and the electrophysiological estimates was
∆c = 0.97± 1.99 mm for the fat and ∆b = − 1.02± 1.21 mm for the abdominal
muscle. The mean total difference between the echographic and the EHG estimates,
i.e., with no distinction between the two different tissues, was 0.02±1.9 mm.

The variability between the two types of measurements was comparable, with
a mean interobserver variability of 1.1 mm by echography and a mean difference
between the tissue thickness estimated by the two surface APs of 1.2 mm.

In Fig. 5.7, the estimated values of tissue thicknesses are plotted against the val-
ues measured by echography. By operating a linear regression of the data with the hy-
pothesis of zero intercept, we obtained correlation coefficients R = 0.9458(p< 0.05)
and R = 0.9342(p < 0.05), for the fat and the abdominal muscle tissue, respectively.
The angular coefficient of the regression lines is 1.03 and 0.89 for the fat tissue and
the abdominal muscle, respectively.

On average, we obtained values of the error, e = 4.8 ·10−3 ± 3.4 ·10−3 mV.
Fig. 5.8 shows an average example of model fit (e = 4.19 ·10−3 mV).

5.4 Discussion and conclusions

In this chapter, we propose a four-layer mathematical model of the conduction of
EHG signals from the myometrium to the skin surface. The cellular action potential
is modeled by a Gamma probability density function. Based on physiological and
experimental observations, the number of model parameters can be reduced. The
model is then identified from the EHG signal recorded on women in labor by surface
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electrodes. Of the five estimated parameters, two can also be measured by ecography.
The model can therefore be reliably validated by comparison with the echographic
measurements [39].

The model was tested on ten segments of EHG signals recorded on five women in
labor. On average, the parameters estimated using the model differed from the ones
measured by echography by less than 1 mm for the fat tissue and by 1.2 mm for the
abdominal muscle tissue. The good agreement between the measured and estimated
parameters was also confirmed by their high correlation (R = 0.9458 and R = 0.9342).

On the experimental data, the estimation accuracy of the fat thickness was com-
parable to that of the abdominal muscle thickness. On simulated signals, the error
between the measured and estimated surface AP resulted more sensitive to the ab-
dominal muscle or to the fat tissue thickness error depending on the considered di-
rection of propagation (vertical or horizontal). This dependency between the estimate
accuracy and the AP direction of propagation is likely to be related to the anisotropy
of the abdominal muscle. The comparable parameter errors obtained on real data
for the two different biological tissues can therefore be explained by the comparable
number of selected surface AP propagating horizontally (four) with respect to those
propagating vertically (six).

For each woman, the tissue thickness was echographically measured by two ob-
servers and estimated on two different segments of the EHG signal. The interob-
server variability of the echographic measurements was comparable to the variability
between the tissue values estimated by analysis of two surface APs; both variabilities
resulted to be slightly higher than the mean difference between the two methods. In
general, our simulations show that even considering the worst realistic value of SNR,
the standard deviation of the parameter estimates is modest for any realistic value of
tissue thickness.

The tissue thickness was measured twice in the same location: during contrac-
tion and during the quiescent period. For the validation of the model, the reference
values were those obtained during contraction, since APs are present only during the
contraction period. According to our echographic measurements, a decrease in the
fat and an increase in the abdominal muscle tissue thickness is observed when a con-
traction occurs. However, the small mean difference measured in our experiments,
(0.11 mm for the fat and 0.23 mm for the abdominal muscle) is not statistically sig-
nificant (p > 0.5), leading to the conclusion that the thickness of these tissues is
approximately constant independently on the contraction of the uterine muscle.

In general, the values of fat and abdominal muscle thickness of our experiments
are lower than those reported in the literature for nonpregnant women in the same age
range. During pregnancy, in fact, due to the expansion of the uterus, the subcutaneous
tissues tend to stretch especially in the region surrounding the umbilicus.

In conclusion, our results show that the proposed mathematical model of the vol-
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ume conductor is in agreement with human anatomy and can provide an accurate
description of the EHG action potential and volume conductor. Furthermore, even
if the main focus of the present work is volume conductor modeling, the proposed
mathematical description of the cellular action potential, derived from striated mus-
cle electromyography, resulted suitable for the scope. Further investigation might be
dedicated to the advantages of integrating our volume conductor model with more
complex descriptions of the myometrial cell AP generation [14, 15]. In view of the
recent investigations on the guinea pig myometrium [13], possible limitations of the
proposed model are the assumption that the myometrial tissue is isotropic and the
hypothesis that action potentials propagate exclusively along either the longitudinal
or the circumferential axis of the uterus. Therefore, in the future, the role played
by the complex three-dimensional geometrical and anatomical structure of the my-
ometrium in the conduction of electrical activity needs to be understood and possibly
integrated in the source model. Nevertheless, on the basis of our results, the proposed
mathematical model for the potential source leads to an accurate description of the
data with a limited number of parameters. Therefore, it is suitable to support future
studies on the mechanism of action potential propagation in humans and, ultimately,
to sustain the development of accurate noninvasive techniques for uterine contraction
monitoring and preterm labor prediction.
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Chapter 6

Small-scale conduction velocity
estimation
C. Rabotti, M. Mischi et al., “Noninvasive estimation of the electrohysterographic action-potential con-

duction velocity,” IEEE Trans. Biomed. Eng., conditional acceptance

Panta rei os potamòs 1

6.1 Introduction

The understanding of risk factors and mechanisms related to preterm labor has been
advancing and many public health and medical interventions to reduce the incidence
of preterm birth have been introduced. The preterm birth rate has however risen in
most industrialized countries and it still accounts for 75% of perinatal mortality and
more than 50% of long term morbidity [2], with an associated annual societal eco-
nomic cost that, in the United States alone, was estimated to amount to 26.2 billion in
2005 [3]. It is well established that pregnancy monitoring techniques are essential to
assess the key risk factors and permit timely medical intervention; however, accurate
prediction of the delivery time, which can be the key parameter for timely treatment
of premature labor, still remains a major challenge [4].

Next to fetal heart rate monitoring, detection and evaluation of the uterine con-
tractions is of major importance. Typical techniques adopted in clinical practice in-
volve the use of either an external tocodynamometer, which provides a noninvasive
indication of contraction onset timing based on external strain gauges, or an internal
catheter, which measures the intrauterine amniotic pressure [4]. Only the latter tech-
nique provides quantitative information, but it is invasive and applicable only during
labor [4].

In the past few years, a noninvasive alternative technique has been proposed that
promises reliable assessment of the uterine activity without the use of intrauterine
catheterization. Quantitative information on the myometrium (uterine muscle) is in

1Literally, ‘Everything flows like a river’; this aphorism was used by Simplicius to characterize
Heraclitus’ philosophy [1]
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fact derived from the analysis of its electrical activity, referred to as electrohystero-
gram. Several techniques have been proposed for the analysis of the electrohystero-
graphic (EHG) signal. Some authors have developed methods for the noninvasive
estimation of the intrauterine pressure [5–7], while other authors could distinguish
between two different EHG frequency components [8] or observe a shift in the fre-
quency content of the EHG signal as delivery approaches [9, 10], possibly being
able to predict the course of pregnancy. The ultimate goal and main challenge re-
mains the prediction of preterm delivery. While the reported techniques are mostly
based on single channel measurements [10], we believe that important information
for monitoring and predicting the progress of pregnancy resides in the EHG signal
propagation characteristics as also suggested in [11, 12].

Differently from skeletal muscles, which are striated and present an anatomical
direction of propagation parallel to the fiber orientation, the myometrium is a smooth
muscle; as a result, the direction of propagation of the myometrium intracellular
action potential (AP), i.e., the electrical activation of the myometrial cells, is a pri-
ori unknown [8]. The propagation of electrical activity in the myometrium mainly
depends, in fact, on the specific pattern of gap-junction connections which are dy-
namically formed between cells during each contraction [13, 14]. Possible additional
parameters that may influence the propagation of uterine action potentials are calcium
waves [15] and the possible bundle arrangement of the myometrium fibers [16].

APs usually occur in bursts. Each burst usually corresponds to a contraction
event [17]. The burst frequency and duration as well as the AP frequency within a
burst are highly dependent of the subject and the parturition stage. In human, the
bursts duration can be more than one minute [17], with a burst frequency around 0.1
Hz [8]. The AP frequency within a burst has been reported to range between 0.1 and
10 Hz [8], with the majority of studies focusing on the frequency range 0.1-3 Hz [18,
19] and 0.3-1 Hz [9, 12, 17, 20]. Most of the previous literature was dedicated to
the analysis of the entire burst and only few studies were dedicated to the analysis of
single surface APs [14, 20, 21]. However, in-vitro studies have demonstrated that, in
association with the increase of the gap-junction number, individual APs propagate
for longer distance and with higher conduction velocity (CV) at parturition than at
preterm [14].

In this paper we focus, for the first time, on a method for the estimation of the
CV of single surface APs, which are extracted from EHG signals recorded noninva-
sively on women in labor. By surface AP we refer to a spike extracted from a single
channel EHG burst that, being recorded noninvasively, is the weighted average of
the electrical activity of all the underlying excited cells [22, 23]. An additional nov-
elty of this study resides in the EHG signal recording methodology, which comprises
the use of a high-density (HD) electrode grid. The grid, in fact, integrates a larger
number of electrodes (64) with a reduced surface and smaller interelectrode distance
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with respect to the previous literature [6, 7, 11, 19, 24]. Furthermore, due to the a
priori unknown AP direction of propagation, the bi-dimensional arrangement of the
electrodes on the grid (8x8) permits to estimate all the possible CV directions along
the abdominal plane parallel to the abdominal surface.

Several methods are available from the electromyography literature for the mea-
surement of the surface AP CV. Due to the signal source (skeletal muscles), these
methods use monodimensional information, as the direction of propagation can be
derived from the muscle fiber orientation. These methods can be divided in four
major categories [25]: cross-correlation function maximization [26], phase differ-
ence [27], maximum likelihood (ML) [28], and the detection of spectral dips [29].
A four electrode implementation of this method (multidip), leading to an analytical
solution, has been presented in [30], where the authors mention the possibility of fur-
ther increase of the number of electrodes. One of the main issues related to the use
of spectral dips is the large variance in their detection, which is due to the variance
of the estimated power spectrum [25]. Furthermore, more extensive validation is re-
quired before adapting the method to our EHG measurement. In particular, due to
the varying direction of propagation of the AP, the extension of the spectral multidip
method to two dimensions is neither trivial nor practical.

Among the remaining three methods, the phase difference and the ML method,
unlike the cross-correlation method, are both implemented in the frequency domain
and permit CV measurements that are not limited by the time sampling rate [25].
Given the EHG frequency content, usually lower than 1 Hz [5], this characteristic
is highly desirable, permitting low sampling rates and, therefore, reducing the com-
plexity of the signal analysis. The ML method [31], compared to the phase difference
method, permits a complete exploitation of our multichannel measurements because
it allows using all the available acquisition channels, leading to an increased robust-
ness to a low signal-to-noise ratio (SNR). Furthermore, differently from the spectral
multidip, the ML method can be easily extended to two dimensions.

The ML method has been therefore chosen for the EHG analysis. Due to the mod-
els assumed for the AP propagation and for the noise, the ML estimation is equivalent
to a mean square error minimization. We improved the ML method described in [31]
by weighting the derived cost function. A set of weights is automatically determined
based on SNR estimates at each channel. Two different weighting approaches are
here presented and compared. The method in [31] has been further extended to two
dimensions, permitting to estimate amplitude and direction of the CV.

6.2 Methodology

In this Section, more detailed information is provided on the proposed CV-estimation
methods. These methods are based on the characteristics of the measured signals,
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Figure 6.1: Scheme of the measurement setup.

depending on the measurement system, presented in Section 6.2.1, as well as on
the implemented preprocessing steps, presented in Section 6.2.2. The implemented
ML method and the proposed improvements are then presented in Sections 6.2.3 and
6.2.4, respectively.

6.2.1 Measurement

After approval of the medical committee of the hospital, ten measurements were per-
formed at the Máxima Medical Center in Veldhoven (the Netherlands) on ten women
in labor who signed an informed written consent. The sensors were placed as de-
scribed in Fig. 6.1 after skin preparation with an abrasive paste for contact impedance
reduction. The EHG was recorded by a Refa system (TMS International, Enschede,
the Netherlands) comprising a multichannel amplifier for electrophysiological signals
and a grid of 64 (8x8) HD electrodes (1 mm diameter, 4 mm interelectrode distance).
The HD electrode grid, whose characteristics are more extensively described in [20],
was placed on the mid-line of the abdomen below the umbilicus; the ground (GRD)
electrode was positioned on the right hip. In order to obtain an efficient rejection of
electromagnetic interference, an active GRD electrode was used and all cables were
actively shielded [32]. An external tocogram was employed to support the assessment
of the contraction period.
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Figure 6.2: Example of EHG surface APs recorded by one column of the
acquisition matrix after filtering and downsampling.

6.2.2 Data preprocessing

Given the narrow-band nature of the EHG signal, similarly to previous studies [9, 12,
17, 20], the acquired signals were band-pass filtered by a sixth order Butterworth filter
with low and high cut-off frequencies at 0.1 and 0.8 Hz, respectively. This permitted
to suppress most of the noise introduced by the respiration, the maternal electro-
cardiogram (ECG), and the abdominal electromyogram [20, 33]. The filtered signals
could therefore be downsampled from 1024 to 16 Hz without introducing aliasing and
reducing significantly the computational complexity of the following analysis. This
is particularly convenient when dealing with 64 parallel channels. Fig. 6.2 shows an
EHG surface AP sequence registered by one column (8 channels) of the acquisition
matrix after filtering and downsampling. Similarly as it has been shown in [21], the
example indicates that within the same burst the direction and speed of propagation
can vary from one surface AP to the next. This peculiarity of the single surface AP
suggests that the analysis of APs, relative to the whole EHG burst analysis, provides
additional and different information that may be of clinical relevance. The expected
shape of the EHG surface AP can be derived by the previous studies on the EHG sur-
face AP, where propagating action potentials were directly recorded from the uterus
surface [21], and where the EHG surface AP has been measured and modeled [20].

6.2.3 Maximum likelihood method

Following the schematic representation of Fig. 6.3, we assume the EHG to propagate
with velocity v and with incidence angle θ (θ ∈ [−π,π]) with respect to the vertical
axis of the electrode grid. Due to size of the electrode grid, which is of the order
of the signal wavelength [20], we can assume the EHG surface AP to be a planar
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Figure 6.3: Schematic description of the system model.

wave. The signal is detected by Nr rows and Nc columns of electrodes. Assuming
that the same signal shape s(n) is measured at each channel, the adopted ML method
is developed under the hypothesis that the signal xrc measured at the channel (r,c) in
the rth row (r ∈ [1,2, ...,Nr]) and cth column (c ∈ [1,2, ...,Nc]) of the electrode grid
can be modeled as

xrc (n) = s(n− (r−1)τr − (c−1)τc)+wrc (n) , (6.1)

where n indicates the time sample (n ∈ [1,2, ...,N]) and wrc (n) is white Gaussian
noise with variance σ2

rc that is present at channel (r,c). The choice of the noise model
is supported by the narrow band nature of the signal of interest. As from (6.1), in each
channel (r,c) the reference signal shape s(n) is delayed by τr and τc time samples with
respect to the previous row and column, respectively.

The CV calculation requires the estimation of (τr,τc), which can be obtained by
the maximization of p((τr,τc)|xrc(n),s(n)). Using Bayesian inference and assum-
ing p(τr,τc) uniform, the maximization of p((τr,τc)|xrc(n),s(n)) corresponds to the
maximization of the probability p(xrc(n)|(τr,τc),s(n)) of the samples of the signal
xrc(n), given the row and column sample delays τr and τc and the reference shape
s(n), i.e.,

p(xrc (n) |(τr,τc) ,s(n)) =
1

(2π)N
2 σN

rc

·

·e−
∑N

n=1 [xrc(n)−s(n−(r−1)τr−(c−1)τc)]2

2σ2rc . (6.2)

Furthermore, the ML estimation of (τr,τc) corresponds to the maximization of
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ln(p(xrc(n)|(τr,τc),s(n))) [34], where

ln(p(xrc(n)|(τr,τc),s(n))) = ln

(
1

(2π)N
2 σN

rc

)
+

−∑N
n=1 [xrc(n)− s(n− (r−1)τr − (c−1)τc)]

2

2σ2
rc

. (6.3)

The expression in (6.3) can be extended to the entire matrix including all rows r and
columns c. The estimation of (τr,τc) reduces therefore to the minimization of the
cost function

ε2(τr,τc) =
Nr

∑
r=1

Nc

∑
c=1

N

∑
n=1

[xrc(n)+

−s(n− (r−1)τr − (c−1)τc)]
2. (6.4)

Since the signals xrc(n) are only available for discrete values of τr and τc, mini-
mization of (6.4) results in a discrete estimate of the optimum (τr, τc), which depends
on the sampling rate. By using Parseval’s equality, (6.4) can be transformed in the
frequency domain, where τr and τc become continuous multiplicative factors of the
phase and can be estimated without resolution limits. Indicating by Xrc( f ) and S( f )
the Fourier transform of the signal recorded at the channel (r,c) and of the reference
shape, respectively, the resulting cost function is

E2(τr,τc) =
2
N

Nr

∑
r=1

Nc

∑
c=1

N/2

∑
f=1

[
Xrc( f )+

−S( f )e− j2π f [(r−1)τr+(c−1)τc]
]2
. (6.5)

From the description in Fig. 6.3, for an interelectrode distance equal to d and a tem-
poral sampling frequency fs, it follows that τr and τc are related to the conduction
velocity v and to the incidence angle θ by

τr = fs · d ·cos(θ)
v

τc = fs · d ·sin(θ)
v

.
(6.6)

The shape function S( f ) can be estimated as the average of all the channels Xrc( f )
after alignment, i.e., in the temporal frequency domain

Ŝ ( f ) =
1

NcNr

Nr

∑
r=1

Nc

∑
c=1

Xrce j2π f [(r−1)τr+(c−1)τc]. (6.7)
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The resulting estimated cost function Ê2(τr,τc) is then

Ê2(τr,τc) =
2
N

Nr

∑
r=1

Nc

∑
c=1

N/2

∑
f=1

[
Xrc( f )+

− 1
NrNc

Nr

∑
m=1

Nc

∑
p=1

Xmp( f )e j2π f [(m−r)τr+(p−c)τc]
]2
. (6.8)

6.2.4 Channel weighting

The model in (6.1) is based on the assumption, that the signals recorded at different
channels are delayed versions of the same reference shape s(n). This assumption,
already weak for skeletal muscles [28], is even weaker for the myometrium, where
differences in the volume conductor and cell-to-cell conduction path underneath the
electrodes may cause shape variations of the propagating APs [8]. In (6.1) such
shape variations are accounted for by the noise term wrc(n). In order to increase the
robustness of the CV estimation to surface AP shape variations due to the presence
of noise, the method is improved by introducing proper weights, arc ∈R+, in the cost
function. The resulting weighted cost function Ê2

a (τr,τc) is defined as

Ê2
a (τr,τc) =

2
N

Nr

∑
r=1

Nc

∑
c=1

N/2

∑
f=1

[
arc

(
Xrc( f )+

−Ŝ( f )e− j2π f [(r−1)τr+(c−1)τc]
)]2

. (6.9)

The weights are chosen to be inversely proportional to the standard deviation of
the channel noise σrc [35], i.e,

arc =
A

σrc
=

A

2
N

√
N/2
∑

f=1
|Wrc( f )|2

, (6.10)

were A indicates a proper scaling factor to normalize the weight sum to 1. For the
expression of arc in the frequency domain, last term of (6.10), Parseval’s equality is
used, where |Wrc( f )|2 is the noise power spectrum in the considered channel (r,c).

In order to obtain an estimate of the noise power for the generic channel (r,c),
the model in (6.1) is expressed in the temporal frequency domain f as

Xrc ( f ) = S( f )e− j2π f [(r−1)τr+(c−1)τc]+Wrc( f ) (6.11)

By assuming the reference shape S( f ) and the noise Wrc( f ) to be uncorrelated,
the noise can be estimated from

N/2

∑
f=1

Xrc ( f ) ·X∗
rc ( f ) =

N/2

∑
f=1

S( f ) ·S∗( f )+
N/2

∑
f=1

|Wrc( f )|2, (6.12)
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where ( ·)∗ is the conjugate operator. The noise power derived by (6.12) can then be
substituted in (6.10) to provide the weights

arc =
A

2
N

√
N/2
∑

f=1
(Xrc ( f ) ·X∗

rc ( f )−S( f ) ·S∗( f ))

. (6.13)

The shape Ŝ( f ) defined in (6.7) as the average of the aligned signals Xcr, which is
used as estimate of the reference signal Ŝ( f ) in (6.9), can be employed in (6.13).

Alternatively, the estimate Ŝw ( f ) of the reference shape S( f ) in (6.13) can be
calculated as the weighted average of the signals Xrc( f ), i.e,

Ŝw ( f ) =
Nr

∑
r=1

Nc

∑
c=1

aw
rc ·Xrce j2π f [(r−1)τr+(c−1)τc]. (6.14)

Using Ŝw ( f ) as estimate of S( f ) in (6.13), the alternative channel weights aw
rc are

defined as
aw

rc =
A

2
N

√
N/2
∑

f=1
Xrc ( f ) ·X∗

rc ( f )− Ŝw ( f ) Ŝ∗w ( f )

. (6.15)

and using (6.14) for Ŝw( f ) and Ŝ∗w( f ), (6.15) can be expressed as

aw
rc =

A

2
N

√
N/2
∑

f=1
Xrc ( f ) ·X∗

rc ( f )−
Nr

∑
r=1

Nc

∑
c=1

(aw
rc)

2 ·Xrc( f )X∗
rc ( f )

. (6.16)

The Nr ·Nc equations of the same form as (6.16), which holds for each channel
(r,c), and the condition on the weight sum

Nr

∑
r=1

Nc

∑
c=1

aw
rc = 1 (6.17)

lead to a system of Nr ·Nc + 1 linearly independent equations, where the Nr ·Nc un-
known weights and the scaling factor A can be univocally derived. Using the same
weights aw

rc for the cost function and the reference shape in (6.13) leads to the follow-
ing expression of the estimated alternative cost function Ê2

aw(τr,τc),

Ê2
aw(τr,τc) =

2
N

Nr

∑
r=1

Nc

∑
c=1

N/2

∑
f=1

[
aw

rc

(
Xrc( f )+

−Ŝw( f )e− j2π f [(r−1)τr+(c−1)τc]
)]2

, (6.18)
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Figure 6.4: SNR distribution of 40 APs randomly selected from ten patients.

where, differently from the cost function E2(τr,τc) in (6.9), the weights aw
rc are cal-

culated using the weighted average Ŝw ( f ) of the signals Xrc( f ) as estimate of the
reference shape S( f ).

For validation, the three cost functions E2(τr,τc), E2
a (τr,τc), and Ê2

aw(τr,τc),
whose definitions are summarized in Table 6.1, were compared on simulated and
real signals. In our previous study [36], the use of clustering in combination with
weighting was successfully proposed, for the first time, to select a subset of elec-
trodes for the CV estimation in one direction and to improve the estimate accuracy.
In the present study, we tested the combined use of clustering and weighting by defin-
ing the cluster distance as the reciprocal of the weights aw

rc.
For the minimization of the cost functions, the Nelder-Mead Simplex search

method was used [37]. The values of τr and τc are initialized according to the av-
erage values reported in the literature for the uterine AP CV in the circumferential
direction (2.8 cm/s) and in the longitudinal direction (6.8 cm/s), respectively [21].
The proposed methods were implemented in Matlab (Mathworks). For each surface
AP, with the algorithm running on an Intel Core2 Duo Processor with 1.97 GB RAM,
the CV estimate was obtained in about 1 minute.

6.3 Results

6.3.1 Simulated signals

The presented CV-estimation methods are evaluated by means of simulations based
on real signals. A time interval of 10 s including a complete EHG surface AP was
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Table 6.2: Standard deviation of the delay estimates for different velocities
and angles of incidence.

v= 4cm/s

Cost Function
θ = 0 θ = π/12 θ = π/6 θ = π/4

SDr SDc SDr SDc SDr SDc SDr SDc

Ê2(τr,τc) 7.0 ms 5.5 ms 6.2 ms 5.4 ms 6.2 ms 5.9 ms 6.4 ms 5.6 ms
Ê2

a (τr,τc) 3.2 ms 2.5 ms 3.0 ms 2.8 ms 2.9 ms 3.0 ms 3.0 ms 3.1 ms
Ê2

aw(τr,τc) 2.7 ms 2.3 ms 2.5 ms 2.4 ms 2.5 ms 2.5 ms 2.7 ms 2.6 ms
v= 10cm/s

Cost Function
θ = 0 θ = π/12 θ = π/6 θ = π/4

SDr SDc SDr SDc SDr SDc SDr SDc

Ê2(τr,τc) 4.5 ms 4.2 ms 4.1 ms 3.7 ms 3.8 ms 3.5 ms 3.7 ms 3.5 ms
Ê2

a (τr,τc) 2.9 ms 2.3 ms 2.7 ms 2.1 ms 2.6 ms 2.2 ms 2.4 ms 2.3 ms
Ê2

aw(τr,τc) 2.0 ms 1.9 ms 1.8 ms 1.7 ms 1.6 ms 1.6 ms 1.6 ms 1.6 ms

extracted from real EHG recording to obtain the reference shape s(n). This signal
was then artificially delayed to simulate the measurement of the same surface AP by
the other electrodes on the grid. Two arbitrary velocities of 4 cm/s and 10 cm/s and
four different angles of incidence, equal to 0, π/12, π/6, and π/4, were considered.
After downsampling at 16 Hz, the delays corresponded to a fraction of the sampling
frequency.

White Gaussian noise was then added to the reference shape signal to simulate
the remaining 63 channels. In order to determine a realistic SNR, 40 APs (four per
subject) were selected from the available recorded signals. The SNR was estimated
by (6.12) in each channel. The distribution of the SNR expressed in dBs over the 40
64-channel recordings, (fig. 6.4), resulted well represented by a Gaussian probability
density function (correlation coefficient R = 0.97 with the Gaussian fit), with mean
and standard deviation equal to 5.88 dB and 7.41 dB, respectively. Therefore, for
each simulated velocity and angle of incidence, 1000 different noise sequences were
generated and added to each channel; the SNR was randomly distributed among the
channels according to a Gaussian probability density function with the same mean
and standard deviation estimated from the real signals.

The 64-channel simulations were then used to evaluate the different methods for
the CV estimation. The CV-estimates were calculated by the ML method alone, and
after the use of the two different weighting strategies in Table 6.1. The standard
deviations of the error for the row delay τr (SDr) and the column delay τc (SDc) are
reported in Table 6.2 for each simulated angle of incidence and for the different used
cost functions. The maximum mean error was lower than 5% of the reference value
of delay. On average, weighting the cost function reduced the standard deviation of
the error by 44.06%± 8.03%. Weighting both the cost function and the reference
shape provided an average improvement of 56.70%±2.25%.



6.3 Results 111

Figure 6.5: Example of EHG bursts and corresponding tocogram. An exam-
ple of selected surface AP is also shown in the top of the figure by
magnifying a time segment of the burst at the contraction peak.

6.3.2 Real signals

The measurement feasibility was also tested on ten women between the 38th and the
41st week of gestation with uterine contractions. Nine women were classified to be
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Figure 6.6: Mean and standard deviation of the CV amplitude for all pa-
tients.

in labor (dilatation > 3 cm) and delivered within 13 hours from the EHG record-
ing. During contractions, time segments were visually inspected and two surface
APs were determined per each woman around the contraction peak. In Fig. 6.5 an
example recording of EHG bursts after preprocessing and the associated tocographic
signal are shown. The figure shows that the amplitude during the quiescent period
is significantly lower than during the activity burst. The magnified time segment in
Fig. 6.5 shows that the surface AP propagates along the recording electrodes with a
velocity of few cm/s. This suggests that the selected waveform originates from uter-
ine activity and not from artifacts due to motion, which typically do not propagate,
or to the ECG, which is not expected to show propagation along electrodes placed
on the abdomen. The longer duration of surface APs relative to the internal mea-
surements reported in the literature [21] can be explained by the effect of the volume
conductor [20] and by the fact that the signal recorded by each surface electrode is the
weighted average of the electrical activity of all the underlying excited cells [22, 23].

The surface AP visual selection aimed at excluding possible circulating excita-
tions and re-entries [38]. Surface APs originating in the middle of the electrode grid
and then propagating in two different directions or not propagating through the entire
electrode were also excluded. Only those surface APs originating outside or on the
border of the electrode grid and then propagating through the entire electrode grid
were selected.

The method comprising the minimization of the cost function Ê2
aw(τr,τc) was ap-

plied on the entire 8x8 electrode matrix. The average and standard deviation of the
velocity amplitude are reported in Fig. 6.6 for all patients. On average, we found ver-
tical and horizontal components of the velocity amplitude equal to 3.68±3.24 cm/s
and 3.76±3.21 cm/s, respectively. These estimates are within the expected physiolog-
ical range [8]. Concerning the wave incidence angle, as was previously demonstrated
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.7: Temporal sequence of surface AP propagation maps as recorded
by the whole 64-channel electrode grid after spatial interpola-
tion. The local amplitude of the surface AP is proportional to
the grey level of the map. The reported maps, from (a) to (b),
were recorded every 100 ms.

by in-vitro studies, a preferred direction of propagation of single APs could not be
highlighted and, even within the same contraction, different incidence angles were
detected for different APs.

An example of surface AP propagation is shown in Fig. 6.7 by means of a tem-
poral sequence of spatial maps representing the electrode grid; the local amplitude
of the recorded surface AP is proportional to the grey level of the map. Therefore,
the dark region represents the depolarization phase of the surface AP. In the first four
maps the repolarization phase of the preceding surface AP (light region) is also visi-
ble. The reported maps refer to 8 different instants, one every 100 ms, of the surface
AP propagation. In the presented example, the surface AP propagates with an inci-
dence angle of about 6 degrees and a velocity of 4 cm/s, as detected by the proposed
method.

6.4 Discussion and conclusion

Only few studies dedicated to the EHG signal propagation properties by multichannel
recordings [11, 12]. These studies investigated the propagation on a large scale by
analyzing the EHG bursts on the whole uterine muscle. A similar approach has also
been attempted by multichannel tocography [39]. On the contrary, this paper focuses
on the CV estimation of single APs. The surface AP CV is an additional parameter of
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potential clinical relevance. As on a large scale this parameter cannot be accurately
derived [12], the propagation analysis is here carried out on a small scale using a
HD electrode grid. This small-scale analysis provides local propagation parameters
that can fundamentally contribute, possibly in combination to the global parameters
derived by large-scale analysis, to the development of diagnostic and prognostic tools
for uterine contraction monitoring and labor prediction.

The measurement of the electrohysterographic surface AP CV is here proposed
for the first time. The use of an electrode matrix permits estimating the CV vector in
two dimensions. This is an important aspect in electrohysterographic measurements
because, differently from electromyographic CV measurements, the EHG CV direc-
tion is not known a priori. For the signal analysis we propose a ML method, which is
implemented in two dimension and comprises the use of weights in the cost function.
The weight values depend on the estimated SNR.

Results on simulated signals show that the estimate accuracy is significantly im-
proved by the use of weights. Among the two different weighting strategies that were
proposed, the use of the same weights for estimating the reference signal shape and
for the cost function results in more accurate estimates. As compared to the ML
method alone, on average, the error variance diminished by 56.70%, becoming up to
less than 3% of the measured value.

In our previous study [36], the use of clustering in combination with weighting
was successfully proposed, for the first time, to select a subset of electrodes for the
CV estimation in one direction and to improve the estimate accuracy. In the present
study, we tested the combined use of clustering and weighting by defining the cluster
distance as the reciprocal of the weights aw

rc. On our simulated signals, the combined
use of clustering and weighting led to an estimate accuracy comparable to that of the
best weighting strategy (i.e the use of the cost function Ê2

aw(τr,τc)) alone. As cluster-
ing can be viewed as a form of binary weighting, these results could be expected and
are therefore not explicitly reported.

The method feasibility was confirmed by measurements on ten women at term
with uterine contractions. Calculation of the CV amplitude led to values that are
within the expected physiological range [8, 14, 21]. As for the incidence angle of
propagating surface AP, differently from what is reported for the propagation of the
whole electrical burst [12], we could not highlight a most frequent direction of the
surface AP propagation pattern even within the same contraction. The same vari-
ability in both origin and direction of the surface AP propagation pattern has been
previously observed in in-vivo and in-vitro studies on the uterus, and, at least during
labor [21], it seems physiological.

For practical reasons, the real signal analysis was conducted on APs that were
previously selected around the contraction peak in order to exclude waves originating
within the electrode area and then propagating in two different directions below the
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electrode grid. Noteworthy, the proposed method for the CV estimation is not limited
by this assumption. In fact, if the surface AP originates within the region covered by
the electrode grid and then propagate in two different directions [21], an additional
step is required for detecting the pacemaker electrode (i.e the first electrode recording
the burst). The CV can be estimated for the two directions of propagation by applying
the proposed method separately on the two subsets of electrodes in which the grid can
be divided by the pacemaker electrode.

Additional exclusion criteria for the surface AP selection were circulating exci-
tation, re-entries, and partial propagation along the electrode grid. These phenomena
have been previously observed for the myometrium activity in animal studies. In
particular, in rats circulating excitation had an occurrence of 22% [38]. Partial prop-
agation of the surface AP along the electrode grid are common events especially at
the beginning or at the end of a burst as highlighted in [40], where only in 25% of the
bursts the mapped area was completely activated by the first AP. As confirmed in the
literature, the high probability of these events, which we all excluded from the real
signal analysis, imposed a limitation to the amount of analyzed signals.

The advantage of using a HD two-dimensional grid for the EHG signal record-
ing is highlighted by the reported sequence of propagation maps. Furthermore, the
example of surface AP in the maps satisfies the planar wave approximation that we
assumed in our propagation model.

In conclusion, our results show that the proposed ML method is suitable for the
two dimensional estimation of the EHG surface AP conduction velocity. Moreover,
the use of weights for both the reference shape and the cost function leads to more
accurate estimates than the use of the ML alone and should therefore be preferred.
However, even if conceived for estimating the CV of surface AP extracted from the
EHG signal, the proposed method can be employed for the analysis of other types of
signal, in particular of those whose direction of propagation is a priori unknown.

For EHG surface AP analysis, the method, as currently presented, requires an
accurate detection of the surface AP as prerequisite for the signal analysis. Future
research will focus on implementation and clinical evaluation aspects such as the
possibility of automatically selecting surfaceAPs. In general, this work opens new
possibilities for future clinical studies aimed at assessing the CV-vector dynamics and
its value for analysis of the pregnancy course and, most importantly, for prediction of
preterm delivery.
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Chapter 7

Conclusions and future directions

...un pianoforte. I tasti iniziano. I tasti finiscono. Tu sai che sono 88,
su questo nessuno può fregarti. Non sono infiniti, loro. Tu sei infinito, e
dentro quei tasti, infinita è la musica che puoi suonare. (A. Baricco) 1.

For timely recognition of complications and proper medical intervention when
acute risks are detected, quantitative assessment of uterine activity can be important
throughout pregnancy and delivery. Unfortunately, assessment methods currently
employed in clinical practice for contraction monitoring are either inaccurate or in-
vasive.

Electrohysterography is the noninvasive measurement of the root cause of a uter-
ine contraction. Therefore, the electrohysterographic (EHG) signal has great poten-
tial for routine uterine contraction monitoring both during pregnancy, for instance,
for timely predictions of preterm labor, and during delivery, for accurate detection of
complications like poor labor progress.

There are several important aspects related to the EHG signal interpretation, mea-
surement, and analysis that have not been studied yet. In particular, the possibility
of accurately estimating the internal uterine pressure (IUP) from noninvasive EHG
recordings has not been previously investigated. Moreover, important issues like the
effect of the tissues interposed between the uterus and the skin (volume conductor)
on EHG recordings have not been studied. Furthermore, EHG signal interpretation
has been typically based on single-channel measurements, while the use of multiple
electrodes conveys additional information that can possibly be predictive of delivery.

This thesis aims at contributing to the technical basis for a comprehensive char-
acterization of uterine activity by electrohysterography, as a prerequisite for intro-
duction of electrohysterography in clinical practice. In this work, dedicated EHG
signal analysis techniques were developed that, exploiting the underlying physiol-

1Literally ‘... a piano. The keys start. The keys end. You know that they are 88, nobody can cheat
you about that. The keys are not infinite. You are infinite, and within those keys, infinite is the music
that you can play’. From ‘Novecento: un monologo’ (Published also in English as ‘Novecento: pianist’)
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ogy, aim at improving the current accuracy of EHG measurement and interpretation
in the perspective of clinical applications.

One of the major issues addressed in this thesis is the possibility of replacing
invasive IUP catheters, which are currently the golden standard for contraction mon-
itoring, by EHG signal analysis. In the first part of this thesis, we demonstrated that
the joint use of amplitude and frequency parameters derived from the EHG signal,
combined with a nonlinear model of the relation between the electrical activity and
the mechanical contraction of the myometrium (electromechanical activation), can
provide, noninvasively, an accurate estimate of the IUP. Validation during delivery
by comparison with the invasively recorded IUP showed that the proposed method
outperforms the previous methods proposed in the literature, with an accuracy that is
comparable to the golden standard. These results, due to the physiology-based ap-
proach, can also support the formulation of hypotheses on the mechanism underlying
the uterine contraction. An example is provided by the hypothesis of the nonlinear
electromechanical activation of the myometrium (see Chapter 3). In the perspective
of introducing the proposed method for noninvasive IUP measurements in everyday
clinical practice, due to the limited amount of analyzed data, further clinical valida-
tion is required to assess the robustness of the method with respect to the physiologi-
cal differences among patients.

It is well established that the EHG signal is representative of the root cause of a
uterine contraction and can therefore be predictive of labor or indicative of contrac-
tion efficiency. In this context, differently from the previous literature focused on the
frequency analysis of the EHG signal, we studied the spreading of electrical activity
in the myometrium as the first cause of a coordinated and effective contraction. We
designed a method for analyzing the spatial distribution and dynamics of the EHG
propagation vector on a large scale (cm). This method is based on the delay by which
the signal is detected at multiple locations over the abdomen. Time-delay estimators
based on cross-correlation function (CCF) maximization and spectral matching were
implemented. Furthermore, we proposed a dedicated interelectrode time-delay esti-
mator that, relative to existing methods, improves the robustness to noise in measure-
ments performed in a clinical environment. The electrode configuration employed in
these experiments was chosen to maximize the coverage of the uterine surface with a
limited number of electrodes in order to test the robustness and the feasibility of the
estimators on real data and in a clinical setting.

The results of the large-scale propagation study in labor suggested that poor val-
ues of interchannel correlation might affect the accuracy of time-delay estimators
based on spectral matching and on the maximization of the CCF. Besides, although
the assessment of the conduction velocity (CV) was not the aim of this propagation
study, the estimated values of velocity were in the range reported in the literature for
EHG bursts. Most of the contractions recorded in this study were first detected by the
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uppermost electrodes, suggesting a preferred top-down propagation of the myome-
trial electrical burst during delivery. Since the mechanical contraction of the uterine
muscle acts towards the expulsion of the fetus, this propagation pattern could be ex-
pected during labor and it might be associated with the effectiveness of the contractile
activity.

The design of the dedicated interelectrode time-delay estimator was based on the
assumption that the shape variations between the signals recorded by different elec-
trodes are mainly due to the inhomogeneous structure and properties of the biological
tissues interposed between the myometrium and the recording site on the skin. In or-
der to further investigate this assumption and improve the interpretation accuracy of
clinically relevant EHG parameters, a mathematical model of the EHG volume con-
ductor was designed and validated. The intracellular AP at the myometrium was also
analytically modeled in the spatial domain by a 2-parameter exponential in the form
of a Gamma variate function.

The EHG signal was recorded by an electrode matrix on women. To validate the
volume conductor model, a 64-channel (8×8) high-density (HD) electrode grid was
employed to record the EHG signal. The use of electrodes with a reduced surface
and smaller interelectrode distance with respect to previous studies resulted in an in-
creased spatial resolution of the EHG measurements and reduced geometrical and
electrical differences among the tissues below the recording locations. The volume
conductor model parameters were estimated from the recorded EHG signal by a least
mean square method. The volume conductor model is validated by comparing the
thickness of the biological tissues recorded by echography to the values estimated
using the model. The agreement between the estimated parameters and the echo-
graphic measurements suggested that the proposed model of the volume conductor is
in agreement with the human anatomy and it can provide an accurate description of
the physiology underlying the EHG signal.

The specific assumptions made for modeling the EHG volume conductor allowed
developing a relatively simple one-dimensional model that leads to an accurate de-
scription of the data with a limited number of parameters. This model is therefore par-
ticularly suitable to support future physiological studies on the mechanism of EHG
AP propagation in humans, the design of specific experimental protocols for future
clinical investigations, and the interpretation of the relevant parameters. On the other
hand, as the role played by the complex three-dimensional anatomical structure of
the myometrium in the conduction of the electrical activity needs to be understood,
future studies might suggest the need for integration of additional parameters into the
model as well as extension of the model to more dimensions.

Based on the developed volume conductor model, the small-scale propagation
properties of the EHG signal were then investigated for the first time in patients.
The CV of the a single propagating surface AP was estimated by a 64-channel HD
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electrode grid placed on the mother’s abdomen. The use of an electrode matrix per-
mits estimation of the CV vector in two dimensions. This is an important aspect in
EHG measurements because, differently from electromyography (EMG) CV mea-
surements, the direction of the EHG AP CV is not known a priori. Furthermore, the
use of a HD electrode grid allows an increased resolution of the measurement rela-
tive to previous studies on EHG. For the signal analysis, we designed a maximum
likelihood (ML) method, which was implemented in two dimensions and comprises
the use of weights in the cost function. The weight values depend on the estimated
channel signal-to-noise (SNR) ratio. Results on dedicated simulations showed that
the estimate accuracy is significantly improved by the introduction of weights relative
to the standard ML method. Among the two different weighting strategies that were
proposed, the use of the same weights for estimating the reference signal shape and
for the cost function (see Chapter 6) resulted in the most accurate estimates.

The feasibility of the method for small-scale propagation analysis was again con-
firmed by measurements on women at term with uterine contractions. These mea-
surements led to CV values within the expected physiological range. Furthermore,
analysis of the EHG signals recorded by the HD electrode grid suggested that also
for the myometrium, similarly to the skeletal muscle, it is possible to observe a lin-
ear propagation of the surface APs, i.e., the surface APs detected by the different
electrodes are the delayed and possibly scaled version of the same signal.

The proposed methods for EHG propagation analysis both on a large scale and
on small scale has been conceived on the basis of the physiological background and
specifically tailored to the analysis of EHG signals. Nevertheless, the methods pro-
posed in this thesis can be extended for use to other applications related to the detec-
tion of propagating electrophysiological signals (e.g., the EMG).

More in general, this thesis provides a quantitative characterization of the uterine
activity during pregnancy and delivery by analysis of the EHG signal aiming at an ac-
curate measurement and interpretation of parameters with clinical relevance. There-
fore, in view of the medical challenges faced everyday by obstetricians and the sever
limitations of current technologies, this work opens the way to clinical applications
and studies, that, based on these results, aim at understanding the processes underly-
ing the onset of labor, advancing obstetrical monitoring technologies, and, ultimately,
reducing the incidence of preterm birth and improving the perinatal outcome.
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Ginevra, Emma, e Filippo perchè l’affetto e l’ammirazione che hanno sempre di-
mostrato nei miei confronti sono stati uno stimolo eccezionale a fare sempre meglio
e non deludere le loro aspettative. Infine vorrei ringraziare la famiglia Balzano per
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