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Summary

Non-invasive fetal electrocardiogram: analysis and interpre-
tation

High-risk pregnancies are becoming more and more prevalent because of the pro-
gressively higher age at which women get pregnant. Nowadays about twenty percent
of all pregnancies are complicated to some degree, for instance because of preterm
delivery, fetal oxygen deficiency, fetal growth restriction, or hypertension. Early de-
tection of these complications is critical to permit timely medical intervention, but is
hampered by strong limitations of existing monitoring technology. This technology
is either only applicable in hospital settings, is obtrusive, or is incapable of providing,
in a robust way, reliable information for diagnosis of the well-being of the fetus.

The most prominent method for monitoring of the fetal health condition is moni-
toring of heart rate variability in response to activity of the uterus (cardiotocography;
CTG). Generally, in obstetrical practice, the heart rate is determined in either of two
ways: unobtrusively with a (Doppler) ultrasound probe on the maternal abdomen,
or obtrusively with an invasive electrode fixed onto the fetal scalp. The first method
is relatively inaccurate but is non-invasive and applicable in all stages of pregnancy.
The latter method is far more accurate but can only be applied following rupture of
the membranes and sufficient dilatation, restricting its applicability to only the very
last phase of pregnancy. Besides these accuracy and applicability issues, the use of
CTG in obstetrical practice also has another limitation: despite its high sensitivity,
the specificity of CTG is relatively low. This means that in most cases of fetal dis-
tress the CTG reveals specific patterns of heart rate variability, but that these specific
patterns can also be encountered for healthy fetuses, complicating accurate diagnosis
of the fetal condition. Hence, a prerequisite for preventing unnecessary interventions
that are based on CTG alone, is the inclusion of additional information in diagnostics.

Monitoring of the fetal electrocardiogram (ECG), as a supplement of CTG, has
been demonstrated to have added value for monitoring of the fetal health condition.
Unfortunately the application of the fetal ECG in obstetrical diagnostics is limited
because at present the fetal ECG can only be measured reliably by means of an inva-
sive scalp electrode. To overcome this limited applicability, many attempts have been
made to record the fetal ECG non-invasively from the maternal abdomen, but these
attempts have not yet led to approaches that permit widespread clinical application.
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One key difficulty is that the signal to noise ratio (SNR) of the transabdominal ECG
recordings is relatively low. Perhaps even more importantly, the abdominal ECG
recordings yield ECG signals for which the morphology depends strongly on the ori-
entation of the fetus within the maternal uterus. Accordingly, for any fetal orientation,
the ECG morphology is different. This renders correct clinical interpretation of the
recorded ECG signals complicated, if not impossible.

This thesis aims to address these difficulties and to provide new contributions on
the clinical interpretation of the fetal ECG. At first the SNR of the recorded signals is
enhanced through a series of signal processing steps that exploit specific and a priori
known properties of the fetal ECG. More particularly, the dominant interference (i.e.
the maternal ECG) is suppressed by exploiting the absence of temporal correlation
between the maternal and fetal ECG. In this suppression, the maternal ECG complex
is dynamically segmented into individual ECG waves and each of these waves is esti-
mated through averaging corresponding waves from preceding ECG complexes. The
maternal ECG template generated by combining the estimated waves is subsequently
subtracted from the original signal to yield a non-invasive recording in which the
maternal ECG has been suppressed. This suppression method is demonstrated to be
more accurate than existing methods.

Other interferences and noise are (partly) suppressed by exploiting the quasi-
periodicity of the fetal ECG through averaging consecutive ECG complexes or by
exploiting the spatial correlation of the ECG. The averaging of several consecutive
ECG complexes, synchronized on their QRS complex, enhances the SNR of the ECG
but also can suppress morphological variations in the ECG that are clinically relevant.
The number of ECG complexes included in the average hence constitutes a trade-off
between SNR enhancement on the one hand and loss of morphological variability on
the other hand. To relax this trade-off, in this thesis a method is presented that can
adaptively estimate the number of ECG complexes included in the average. In cases
of morphological variations, this number is decreased ensuring that the variations are
not suppressed. In cases of no morphological variability, this number is increased to
ensure adequate SNR enhancement. The further suppression of noise by exploiting
the spatial correlation of the ECG is based on the fact that all ECG signals recorded at
several locations on the maternal abdomen originate from the same electrical source,
namely the fetal heart.

The electrical activity of the fetal heart at any point in time can be modeled as
a single electrical field vector with stationary origin. This vector varies in both am-
plitude and orientation in three-dimensional space during the cardiac cycle and the
time-path described by this vector is referred to as the fetal vectorcardiogram (VCG).
In this model, the abdominal ECG constitutes the projection of the VCG onto the
vector that describes the position of the abdominal electrode with respect to a refer-
ence electrode. This means that when the VCG is known, any desired ECG signal
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can be calculated. Equivalently, this also means that when enough ECG signals (i.e.
at least three independent signals) are known, the VCG can be calculated. By using
more than three ECG signals for the calculation of the VCG, redundancy in the ECG
signals can be exploited for added noise suppression.

Unfortunately, when calculating the fetal VCG from the ECG signals recorded
from the maternal abdomen, the distance between the fetal heart and the electrodes is
not the same for each electrode. Because the amplitude of the ECG signals decreases
with propagation to the abdominal surface, these different distances yield a specific,
unknown attenuation for each ECG signal. Existing methods for estimating the VCG
operate with a fixed linear combination of the ECG signals and, hence, cannot ac-
count for variations in signal attenuation. To overcome this problem and be able to
account for fetal movement, in this thesis a method is presented that estimates both
the VCG and, to some extent, also the signal attenuation. This is done by determining
for which VCG and signal attenuation the joint probability over both these variables
is maximal given the observed ECG signals. The underlying joint probability dis-
tribution is determined by assuming the ECG signals to originate from scaled VCG
projections and additive noise. With this method, a VCG, tailored to each specific
patient, is determined. With respect to the fixed linear combinations, the presented
method performs significantly better in the accurate estimation of the VCG.

Besides describing the electrical activity of the fetal heart in three dimensions,
the fetal VCG also provides a framework to account for the fetal orientation in the
uterus. This framework enables the detection of the fetal orientation over time and
allows for rotating the fetal VCG towards a prescribed orientation. From the normal-
ized fetal VCG obtained in this manner, standardized ECG signals can be calculated,
facilitating correct clinical interpretation of the non-invasive fetal ECG signals.

The potential of the presented approach (i.e. the combination of all methods de-
scribed above) is illustrated for three different clinical cases. In the first case, the fetal
ECG is analyzed to demonstrate that the electrical behavior of the fetal heart differs
significantly from the adult heart. In fact, this difference is so substantial that diag-
nostics based on the fetal ECG should be based on different guidelines than those for
adult ECG diagnostics. In the second case, the fetal ECG is used to visualize the ori-
gin of fetal supraventricular extrasystoles and the results suggest that the fetal ECG
might in future serve as diagnostic tool for relating fetal arrhythmia to congenital
heart diseases. In the last case, the non-invasive fetal ECG is compared to the inva-
sively recorded fetal ECG to gauge the SNR of the transabdominal recordings and to
demonstrate the suitability of the non-invasive fetal ECG in clinical applications that,
as yet, are only possible for the invasive fetal ECG.
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Samenvatting

Het uitwendige foetale electrocardiogram: analyse en inter-
pretatie

Hoog-risico zwangerschappen komen steeds vaker voor doordat vrouwen op steeds
latere leeftijd zwanger worden. Momenteel vinden bij ongeveer twintig procent van
de zwangerschappen complicaties, zoals vroeggeboorten, zuurstoftekort voor de foe-
tus, foetale groeivertraging of een hoge bloeddruk plaats. Een vroegtijdige detectie
van deze complicaties is van kritiek belang om een tijdig medisch ingrijpen mogelijk
te maken, maar deze detectie wordt bemoeilijkt door ernstige tekortkomingen aan
de bestaande bewakingstechnologie. Deze technologie is ofwel alleen toepasbaar in
het ziekenhuis, ofwel belastend voor de patiënt, ofwel niet goed in staat om op een
robuuste wijze betrouwbare informatie te verschaffen die diagnose van de foetale
conditie mogelijk maakt.

De meest gebruikte methode om de foetale conditie te bewaken is de interpre-
tatie van veranderingen in het hartritme van de foetus die optreden als gevolg van
activiteit van de baarmoeder (cardiotocografie; CTG). Het foetale hartritme kan op
twee verschillende manieren bepaald worden in de verloskundige praktijk: op niet-
belastende, uitwendige wijze met behulp van een (Doppler) ultrageluid probe op de
buik van de moeder, of, op wèl belastende wijze, met een inwendige elektrode die op
het hoofd van de foetus bevestigd wordt. De eerste methode is relatief onnauwkeurig
maar kan in alle stadia van de zwangerschap toegepast worden. De tweede methode
is veel nauwkeuriger dan de uitwendige methode maar kan alleen toegepast worden
nadat de vliezen gebroken zijn en nadat er voldoende ontsluiting is. Dit beperkt
de toepasbaarheid van de inwendige methode tot de allerlaatste fase van de zwanger-
schap. Behalve door de onnauwkeurigheid van de uitwendige methode en de beperkte
toepasbaarheid van de inwendige methode is de waarde van CTG in de klinische
praktijk ook om een andere reden beperkt. Namelijk, hoewel CTG een hoge mate
van sensitiviteit heeft, is de specificiteit relatief laag. Dit betekent dat, hoewel CTG
vrijwel altijd specifieke patronen in hartritme variabiliteit laat zien in gevallen van
foetale nood, het deze patronen ook kan laten zien in gevallen dat er geen sprake is
van foetale nood. Om onnodig ingrijpen in de zwangerschap, enkel gebaseerd op
CTG, te voorkomen zal daarom aanvullende informatie gebruikt moeten worden in
de diagnostiek.
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Het is aangetoond dat de analyse van het foetale electrocardiogram (ECG) in
combinatie met CTG analyse een toegevoegde waarde heeft in het bewaken van de
foetale gezondheidstoestand. Het gebruik van het foetale ECG voor verloskundige
diagnostiek is echter beperkt vanwege de invasiviteit van de scalp elektrode waarmee
het ECG gemeten wordt. Om deze beperking te omzeilen en het ECG meer alge-
meen toepasbaar te maken zijn door de jaren heen verschillende pogingen onder-
nomen om het foetale ECG op een uitwendige wijze vanaf de buik van de moeder
te meten. Helaas heeft door technologische moeilijkheden geen enkele van deze
pogingen geleid tot een veelgebruikte klinische applicatie voor uitwendige bewaking
van het foetale ECG. Eén van de voornaamste moeilijkheden bij het meten van het
uitwendige ECG is het feit dat de signaal ruis verhouding (SNR; signal to noise ratio)
van de ECG metingen relatief laag is. Echter, wat misschien nog wel belangrijker is,
is dat de abdominale metingen ECG signalen opleveren waarvan de morfologie sterk
afhangt van, onder andere, de oriëntatie van de foetus in de baarmoeder. Als een
gevolg van deze afhankelijkheid is de morfologie van het foetale ECG anders voor
elke foetale oriëntatie en is correcte klinische interpretatie van de gemeten ECG sig-
nalen erg lastig, zo niet onmogelijk.

In dit proefschrift richten we ons op problemen die gerelateerd zijn aan uitwendige
metingen van het foetale ECG: de analyse van deze metingen en het verschaffen
van nieuwe inzichten in de interpretatie van het foetale ECG. In de eerste plaats
wordt de SNR van de gemeten signalen verbeterd door middel van een serie signaal-
verwerkingsstappen die gebruik maken van specifieke en a priori bekende eigen-
schappen van het foetale ECG. De dominante verstoring (i.e. het maternale ECG)
kan bijvoorbeeld onderdrukt worden door de afwezigheid van een temporele corre-
latie tussen het maternale en foetale ECG te benutten. In deze onderdrukking wordt
het maternale ECG op dynamische wijze gesegmenteerd in individuele ECG gol-
ven en wordt elk van deze golven afgeschat door overeenkomstige golven uit voor-
gaande ECG complexen te middelen. Het maternale ECG template dat ontstaat door
de afgeschatte, individuele golven weer te combineren kan vervolgens afgetrokken
worden van het oorspronkelijke ECG signaal om zodoende een uitwendige meting,
waarin het maternale ECG onderdrukt is, over te houden. De prestatie van deze
maternale ECG onderdrukkingsmethode is vergeleken met de prestatie van reeds
bestaande onderdrukkingsmethoden. Deze vergelijking toont aan dat de ontwikkelde
methode een hogere nauwkeurigheid heeft.

Andere verstoringen van het abdominaal gemeten foetale ECG en ruis worden
(gedeeltelijk) onderdrukt door de quasi-periodiciteit van het foetale ECG te benut-
ten (door middel van het middelen van opeenvolgende foetale ECG complexen) of
door het benutten van de ruimtelijke correlatie van het ECG. Het middelen van ver-
scheidene opeenvolgende ECG complexen, gesynchroniseerd op hun QRS complex,
vergroot de SNR van het ECG maar kan ook leiden tot het onderdrukken van kli-
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nisch relevante morfologische veranderingen in het ECG. De keuze voor het aantal
ECG complexen dat gebruikt wordt in de middeling is daarom een afweging tussen
de gewenste SNR toename aan de ene kant en het verlies aan morfologische vari-
aties aan de andere kant. Om het belang van deze afweging te verzwakken wordt in
dit proefschrift een methode gepresenteerd die een adaptieve schatting van het aan-
tal ECG complexen in de middeling mogelijk maakt. In gevallen van morfologische
variatie wordt dit aantal verminderd, er voor zorgend dat deze variaties niet onder-
drukt worden. In gevallen van geen morfologische variatie wordt dit aantal vergroot,
er voor zorgend dat de SNR toename afdoende is. De verdere onderdrukking van ruis
door het benutten van de ruimtelijke correlatie van het ECG is gebaseerd op het feit
dat alle ECG signalen, die op verschillende plaatsen op de maternale buik gemeten
worden, hun oorsprong hebben in dezelfde elektrische bron, namelijk het foetale hart.

De elektrische activiteit van het foetale hart kan op elk tijdstip gemodelleerd wor-
den als een enkele elektrische veld vector met een stationaire oorsprong. Zowel de
amplitude als de oriëntatie van deze vector in de drie-dimensionale ruimte varieert
gedurende de hartcyclus. Het pad dat de vector beschrijft gedurende een hartslag
wordt het foetale vectorcardiogram (VCG) genoemd. In dit model van de foetale car-
diale elektrische activiteit vormt het abdominale ECG een projectie van het VCG op
de vector die de positie van de abdominale elektrode ten opzichte van een referentie-
elektrode beschrijft. Dit betekent dat wanneer het VCG beschikbaar is, elk gewenst
ECG signaal berekend kan worden. Dit betekent echter ook dat, wanneer genoeg
ECG signalen (i.e. minimaal 3 onafhankelijke signalen) beschikbaar zijn, het VCG
berekend kan worden. Door gebruik te maken van meer dan drie ECG signalen in
de berekening van het VCG kan de redundantie in deze ECG signalen benut worden
voor ruisonderdrukking.

Bij het berekenen van het foetale VCG uit de ECG signalen die gemeten zijn
vanaf de buik van de moeder, is de afstand tussen het foetale hart en de elektroden op
de buik helaas niet voor elke elektrode hetzelfde. Omdat de amplitude van de ECG
signalen afneemt tijdens propagatie van de signalen naar het buikoppervlak, houden
deze verschillen in afstand een specifieke, onbekende demping van elk individueel
ECG signaal in. De bestaande methoden om het VCG uit te rekenen maken gebruik
van een vaste, lineaire combinatie van de ECG signalen en kunnen, derhalve, geen
rekening houden met deze verschillen in signaaldemping. Om dit probleem op te
lossen en rekening te kunnen houden met foetale beweging (die de afstand tussen
het foetale hart en de abdominale elektroden doet veranderen), wordt in dit proef-
schrift een methode gepresenteerd die niet alleen het VCG, maar ook, in enige mate,
de signaaldemping afschat. Dit wordt gedaan door te bepalen voor welk VCG en
voor welke signaaldemping de gezamenlijke probabiliteit over deze beide variabelen
maximaal is, gegeven de gemeten ECG signalen. De onderliggende gezamenlijke
probabiliteitsverdeling wordt bepaald door aan te nemen dat de gemeten ECG sig-
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nalen combinaties zijn van geschaalde versies van VCG projecties en additieve ruis.
Met deze methode kan een VCG, individueel afgestemd op elke patiënt, bepaald wor-
den. In vergelijking tot de vaste, lineaire combinatie van ECG signalen presteert de
gepresenteerde methode significant beter in het nauwkeurig afschatten van het VCG.

Naast het beschrijven van de elektrische activiteit van het foetale hart in drie di-
mensies, verschaft het foetale VCG ook een raamwerk waarbinnen rekening gehouden
kan worden met de oriëntatie van de foetus in de baarmoeder. Dit raamwerk maakt
de detectie van de foetale oriëntatie als een functie van de tijd mogelijk en verschaft
bovendien de mogelijkheid om het foetale VCG te roteren naar een voorgeschreven
oriëntatie. Van het gestandaardiseerde foetale VCG dat zo verkregen wordt kunnen
vervolgens gestandaardiseerde ECG signalen berekend worden. Deze ECG signalen
vergemakkelijken op hun beurt de correcte klinische interpretatie van het uitwendige
foetale ECG.

De potentie van de gepresenteerde aanpak (i.e. de integratie van alle methoden
die hierboven beschreven zijn) wordt geı̈llustreerd aan de hand van een drietal kli-
nische voorbeelden. In het eerste voorbeeld wordt het foetale VCG gebruikt om aan
te tonen dat het elektrische gedrag van het foetale hart significant afwijkt van dat
van het volwassen hart. Sterker nog, dit gedrag wijkt zo sterk af dat diagnostiek op
basis van het foetale ECG gebaseerd zou moeten zijn op andere klinische richtlijnen
dan die gebruikt wordt in de diagnostiek voor volwassenen. In het tweede voorbeeld
wordt het foetale ECG gebruikt om de oorsprong van ventriculaire extrasystoles te
visualiseren. De resultaten van deze visualisatie suggereren dat het foetale ECG in
de toekomst wellicht gebruikt kan worden als diagnostisch hulpmiddel om foetale
arrhythmieën te relateren aan aangeboren hartziekten. In het laatste voorbeeld wordt
het uitwendig gemeten foetale ECG vergeleken met het inwendig gemeten foetale
ECG om zodoende de SNR van de metingen op de maternale buik te kunnen duiden.
Bovendien wordt aldus getoond dat het uitwendig gemeten ECG bruikbaar kan zijn in
klinische toepassingen die vooralsnog alleen mogelijk zijn met het inwendig gemeten
foetale ECG.
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Chapter 1

Introduction

Birth is among the biggest challenges a human being encounters in life. Not only
does a newborn have to adjust to completely new surroundings, but, moreover, the
transition from life inside the uterus to life outside it is often associated with temporal
hypoxia, a decrease of the oxygen level in peripheral tissues. In order to withstand
the difficulties of labor well, the fetus is equipped with several protective mecha-
nisms that enable it to cope with substantial oxygen deficiency. A healthy fetus that
encounters hypoxia during labor but is able to handle this adequately is likely to
develop normally after birth [1].

The fetal protective mechanisms against oxygen deficiency consist of several re-
actions that enable the fetus to maintain sufficient oxygen supply to central organs
such as the heart and brain. A first reaction to oxygen deficiency is a reduction of
fetal activity, i.e. a reduction of fetal movement and respiration [1, 2]. When the
lack of oxygen distributed to the fetus persists, the fetus reacts by redistributing its
blood circulation to central organs at the expense of oxygen supply to peripheral
organs [3, 4]. Furthermore, activity of the autonomic nervous system is increased,
stimulating anaerobic metabolism in the peripheral organs [5, 6].

When the fetal protective mechanisms are fully intact, the fetus reacts optimally
to hypoxemia (a decrease of the arterial blood oxygen level) and acute hypoxia dur-
ing labor, minimizing the risk of fetal damage. However, when the fetal protective
mechanisms fail, either because they have already been used or have not had the op-
portunity to develop, minimal reaction to hypoxia is observed. In this case, the risk
of damage is significant and several non-characteristic signs of fetal distress can be
expected [7].

In some situations, if detected and treated timely, fetal hypoxia is still reversible
[8]. In other situations, earlier in pregnancy, physicians need to intervene, e.g. by in-
ducing labor or by performing a Caesarean section. Monitoring of the fetal condition
throughout all stages of pregnancy is therefore of the utmost importance, enabling
physicians to intervene when an increased risk of long-term morbidity exists.
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1.1 Present-day fetal monitoring

One of the main protective mechanisms of the fetus against hypoxia consists of blood
flow regulation and distribution [3]. The driving force behind the control of variations
in blood flow and blood pressure is the cardiovascular control system, which operates
under the influence of the autonomic nervous system [9]. This system consists of
two parts, the sympathetic nervous system and the parasympathetic nervous system,
between which an essential difference exists. The sympathetic system uses a network
of neurons and ganglia for the transfer of action potentials, whereas innervation by
the parasympathetic system takes place directly [10]. As a result, the sympathetic
system is significantly slower than the parasympathetic system.

The assessment of blood pressure by the autonomic nervous system occurs by
means of so-called baroreceptors [9]. These baroreceptors are located in the wall of
blood vessels and are sensitive to strain. A decrease in blood pressure results in a
decrease in the stimulation of baroreceptors, which in turn leads to increased sympa-
thetic activity and lowered parasympathetic activity [11]. This change in sympathetic
and parasympathetic activity causes an increase in heart rate and cardiac contraction
power [12] and the occurrence of vasoconstriction (the narrowing of blood vessels),
which results in an increase in blood pressure [11]. Thus, regulation of blood flow by
the cardiovascular control system is achieved in two different ways: the primary way
is regulation of the arterial blood pressure by altering the degree of vasoconstriction
in blood vessels and the secondary way is the regulation of the heart rate.

Unfortunately, it is impossible to determine the fetal blood pressure inside the
uterus. The fetal heart rate, on the other hand, can be determined during pregnancy
[13,14], and is currently the main source of information from which the physiological
condition of the fetus is assessed.

The fetal heart rate can be determined in several ways, based on different physical
principles. For instance, it can be determined with Doppler ultrasound measurements
[15]. Ultrasonic waves experience a shift in frequency when they reflect at a moving
interface. The magnitude and direction of this shift contains information about the
motion of that interface. This effect is known as the Doppler effect [16]. Since
both the valves and the blood move in the fetal heart during contraction, Doppler
ultrasound can be used as a non-invasive technique to determine the fetal heart rate.
A second way to determine the fetal heart rate is based on assessment of the electrical
activity of the fetal heart. This electrical activity can be measured by positioning
electrodes either directly on the fetus or on the maternal abdomen. Positioning the
electrodes directly on the fetus is an invasive technique and can only be performed
during labor when the fetal membranes have ruptured. Positioning the electrodes on
the maternal abdomen is preferable since it is a non-invasive technique that, therefore,
can be applied in all stages of pregnancy. However, due to the low signal to noise ratio
(SNR) of the recorded signals, determination of the fetal heart rate from abdominal
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electrophysiological recordings with existing techniques is still inaccurate and not
reliable [17]. Currently, of the presented ways for monitoring the fetal heart rate, the
Doppler ultrasound way is most widely used in clinical practice [17].

Besides the fetal heart rate, clinicians are generally also interested in monitor-
ing of the maternal uterine activity. As uterine contractions can impose stress on the
fetus, the relationship between uterine activity and fetal heart rate provides more in-
formation on the fetal condition than the fetal heart rate alone does. For example,
uterine contractions can lead to (partial) occlusion of the umbilical cord, reducing the
blood flow from the mother to the fetus. The capability of the fetus to respond to
this temporary oxygen deficiency by, among other reactions, adapting its heart rate
is indicative for the fetal condition [18]. The relationship between uterine activity
and fetal heart rate has, therefore, been investigated extensively through the years.
Many guidelines and scoring systems have been proposed for the interpretation of
these simultaneous recordings, referred to as cardiotocography (CTG; the simultane-
ous recording of fetal heart rate (cardio-) and uterine activity (toco-)) recordings, and
several of these guidelines are used in clinical practice [19]. However, the informa-
tion provided by CTG has turned out to be only sufficient when the condition of the
fetus is clearly good or clearly bad [20, 21]. Very often, it is not possible to draw
conclusions from CTG recordings and additional tests, such as fetal blood sampling
(i.e. examination of a small droplet of blood, obtained invasively, from the fetus), are
required to evaluate the condition of the fetus [22]. Besides this lack of information
for accurately evaluating the fetal condition, the use of CTG is also associated with
the drawback that, since it is based on ultrasound, CTG is very sensitive to motion
and noise [23]. Not only does the ultrasound probe require frequent repositioning
due to fetal movement, but the dimensions of the ultrasound beam with respect to
the dimensions of the fetal heart and vessels can cause other moving interfaces to
contribute to the frequency shift of the reflected ultrasound beam. In addition, due to
radiative loads, ultrasound cannot be applied 24/7.

From the above it is clear that any additional source of information from which
the fetal condition can be assessed or any reliable and accurate alternative to deter-
mine the fetal heart rate is potentially valuable. Such an additional source of infor-
mation might be provided by the fetal electrocardiogram (ECG) [24, 25]. The fetal
ECG provides information on the depolarization and repolarization properties of the
heart, which are expressed in the shape of the ECG waveform. Indications have been
found that fetal hypoxia is reflected in the ECG as changes in the morphology of
the waveform [2, 26, 27]. Since this finding, guidelines for clinical interpretation of
the ECG morphology have been established and have in fact converged to the in-
troduction of a commercially available fetal ECG analysis device, called STAN R©

(Neoventa Medical, Sweden). This STAN R© monitor analyzes the ST segment, a
specific part of the ECG associated to relaxation of the cardiac muscles, and the com-
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bined monitoring of this ST segment with CTG has been demonstrated to improve
perinatal outcome [28]. In addition to the analysis of the ST segment for detecting
fetal hypoxia, more information might be available from the fetal ECG. For example,
changes in the orientation of the fetus with respect to the uterus can in principle be
determined from fetal ECG signals that are recorded from the maternal cutaneous
surface. These changes in orientation can be related to fetal movement, providing yet
another parameter that can have clinical relevance in assessing the fetal condition. It
needs to be stressed here that, although the idea of monitoring fetal movement from
the ECG has been published [29], no practical solution to realize this idea and apply
the movement monitoring in clinical practice does as yet exist.

Similar as for the electrical determination of the fetal heart rate, the fetal ECG
can be recorded by positioning electrodes either directly on the fetus or on the ma-
ternal abdomen (see Fig. 1.1). The ST analysis mentioned above is performed on the
ECG signals obtained from a single invasive electrode. The detection of fetal move-
ment from the ECG, on the other hand, requires several electrodes on the maternal
abdomen. Unfortunately, as mentioned before for the fetal heart rate, with currently
existing techniques, the fetal ECG cannot yet be determined accurately and reliably
enough from these non-invasive recordings for the non-invasive fetal ECG analysis
to be employed in clinical practice.

1.2 Future prospects of fetal monitoring: goals of this study

1.2.1 Goals of this study

From the previous section, it is evident that the fetal ECG provides additional infor-
mation to assess the fetal condition, but that clinical application is hampered by either
the limited applicability of the invasively recorded fetal ECG or by the low SNR of
the non-invasively recorded fetal ECG. The focus of this study is directed towards
the latter of these hamperings: to solve some of the problems associated with the
recording of the non-invasive fetal ECG. These problems can essentially be divided
into two main categories: those involved with analysis of the recorded signals and
those involved with clinical interpretation of the results of this analysis.

The analysis of the recorded signals entails the enhancement of the SNR, or, in
other words, the extraction of the relevant signals from the mixture of signals that is
obtained from the maternal abdomen. These signals are not limited to the fetal ECG
signals alone, but also include the three-dimensional representation of the electrical
activity of the fetal heart: the fetal vectorcardiogram (VCG). The fetal VCG con-
stitutes a simplified representation of the full three-dimensional electrical activity of
the fetal heart [30, 31]. Contractions of the heart originate from the propagation of
an action potential through the cardiac tissues [9]. This propagating action potential
causes the simultaneous occurrence of numerous electrical dipoles in the heart. By
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Figure 1.1: Illustration of the abdominal fetal ECG recordings. On the
right, electrodes are positioned on the maternal abdomen and
the recorded electrophysiological signals are transmitted to the
NEMO system where they are digitized and stored. On the left,
two examples of recorded signals are depicted with arrows indi-
cating the maternal and fetal ECG. Note that the fetal ECG am-
plitude for this particular recording is about a factor 10 smaller
than the maternal ECG amplitude. (Photo by Bart van Over-
beeke.)
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superimposing the dipoles at each point in time into a single dipole vector, the elec-
trical activity of the heart can be described by an electrical field vector that varies
in both amplitude and orientation over time [32, 33]. The time path of this electrical
field vector during a single heartbeat, with the simplification that the origin of the
vector is assumed to be stationary, is referred to as the VCG.

The interpretation of the results of the fetal ECG analysis basically entails the
presentation of the SNR-enhanced fetal VCG in such a way that clinicians can readily
assess the fetal condition. Continuing on the description of the electrical activity
of the fetal heart in terms of the fetal VCG, the fetal ECG that is recorded at the
maternal abdomen can be viewed as the potential caused by the electrical field vector
[34]. Moreover, the difference between the potential at two locations on the maternal
abdomen, i.e. a bipolar fetal ECG recording, can be viewed as the projection of
the VCG onto the vector that describes the orientation of these recording locations
with respect to one another [35]. The latter vector is referred to as the lead vector.
The relation between the fetal VCG and ECG hence implies that the VCG can be
projected onto any lead vector to yield the ECG lead desired by the clinician. The
ECG lead is defined here as the ECG signal that corresponds to a particular lead
vector. The determination of the desired lead vector is, however, complicated by the
fact that for every change in the orientation of the fetus within the uterus, the lead
vector needs to be modified. Specifically, when the fetus changes its orientation, the
lead vectors need to be changed accordingly to ensure that the projected ECG signals
do not exhibit orientation related changes. The assessment of the fetal orientation,
therefore, forms a significant part of the fetal VCG interpretation problem.

The goal of this study can therefore be summarized as the analysis of the compos-
ite abdominal signals to present the fetal ECG and VCG in such a way that it enables
clinicians to readily assess the fetal condition. The two key variables to achieve such
a suitable presentation of the information are the fetal VCG and the orientation of the
fetus with respect to the abdominal electrodes. With the fetal orientation known, the
fetal VCG can be projected on those lead vectors that are clinically interpretable, e.g.
the fetal ECG lead recorded by the invasive electrode and analyzed by the STAN R©
monitor or the ECG leads that are used in normal cardiology.

All these VCG projections implicitly assume uniform conduction from the fetal
heart to the abdominal surface [36]. This assumption is only justified until the de-
velopment of the vernix caseosa [37, 38], a waxy layer that electrically shields the
fetus from its surroundings and that forms around 28 weeks of gestation and starts
to shed around 32 weeks (see Fig. 1.2). The presence of this vernix limits the value
of the VCG projections, yielding them less useful for gestational ages between 28
weeks and 32 weeks. In fact, not until about 37 weeks of gestation, when the vernix
has completely dissolved in the amniotic fluid [39], can the conduction of the elec-
trophysiological signals be reliably considered uniform and the proposed fetal ECG
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(a)
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Figure 1.2: Time line of pregnancy with in (a) the various periods during
gestation and in (b)the periods in which the vernix caseosa is
present (marked in gray).

monitoring method applied to its full potential. At first glance, the vernix might seem
to put a severe restriction on the applicability of the proposed monitoring method,
but clinically the period between 20 and 28 weeks of gestation and the period near
term are very relevant. From 20 weeks on, treatment of congenital cardiac diseases
becomes feasible [40, 41]. In addition, from approximately 24 weeks on, the fetus
can survive outside the uterus [42, 43]. The risk of preterm morbidity and mortality
for these fetuses is however still substantial [44]. Therefore, in the period before 28
weeks of gestation, providing clinicians with more information than the fetal heart
rate alone can result in improved judgement on whether or not to treat or intervene in
the pregnancy. In the period near term, complications related to labor like hypoxemia
or hypoxia, which might be detected from the non-invasive fetal ECG recordings, are
most likely to occur [12, 45].

In conclusion, as stated above, this thesis aims to address some of the problems
that need to be solved in order for non-invasive fetal ECG monitoring to be em-
ployed in clinical practice. In particular, this thesis focuses on the analysis of the
non-invasive fetal ECG recordings to obtain the fetal VCG and on the interpretation
of the fetal VCG and its projected ECG signals for fetuses with gestational ages be-
fore 28 weeks and after 32 weeks. To further mark this division between analysis
and interpretation, the thesis is divided into two main parts, one concerning the fetal
ECG analysis and the other concerning the fetal VCG and ECG interpretation. Note
that interpretation of the fetal VCG in fact entails the projection of the fetal VCG
onto lead vectors that yield clinically interpretable ECG signals. In future, extensive
clinical studies need to be performed to assess which fetal ECG parameters are rele-
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vant for fetal monitoring and how these parameters need to be presented to clinicians
(e.g. onto which lead vectors the fetal VCG can best be projected). Nevertheless, to
anticipate these studies, in this thesis some clinical parameters that are expected to
be relevant are already exemplified.

1.2.2 Analysis and clinical presentation of fetal ECG

The first step towards the determination of the fetal VCG in the analysis of the ab-
dominal fetal ECG recordings is the enhancement of the relatively low SNR of the
abdominal recordings. The abdominally recorded signals constitute a mixture of sev-
eral electrophysiological signals, including the fetal ECG, and noise. To enable the
determination of the fetal VCG, first the fetal ECG has to be extracted from this mix-
ture. Analogously, each of the interferences can be suppressed to render the fetal
ECG the only signal left.

Suppression of the interferences is achieved in this thesis through a series of
signal processing steps that exploit specific and a priori known properties of the ab-
dominal fetal ECG signals. More particularly, the dominant interference (i.e. the
maternal ECG [46]) is suppressed by exploiting the absence of temporal correlation
between the maternal and fetal ECG [46]. Other interferences are (partly) suppressed
by exploiting the quasi-periodicity of the fetal ECG through averaging consecutive
ECG complexes and, subsequently, further suppressed by exploiting the spatial cor-
relation of the ECG. The latter interference suppression approach is based on the fact
that all fetal ECG signals recorded on the maternal abdomen constitute a projection
of the fetal VCG onto the corresponding lead vectors and, therefore, have to be spa-
tially correlated to one another [35]. In fact, by properly combining the abdominal
fetal ECG signals, not only can (more of) the remaining noise be suppressed, but also
can the fetal VCG be estimated [47, 48].

Besides representing the three-dimensional electrical activity of the fetal heart,
the fetal VCG also provides a way for assessing the fetal orientation within the uterus,
hence facilitating clinical interpretation of the fetal VCG. More particularly, fetal
VCGs that correspond to different fetal orientations can be related to one another
through a series of transformations, including a rotational transformation. By assess-
ing this rotation and correcting for it, the VCGs can be aligned. In other words, the
VCGs can be rotated in such a way that they correspond to a prescribed fetal orienta-
tion. From the universal fetal VCG thus obtained, standardized ECG signals can be
calculated – by projecting the VCG onto the appropriate lead vectors –, facilitating
correct clinical interpretation of the non-invasive fetal ECG recordings.

One of the VCG projections that could be of relevance in clinical practice is the
standard 12-lead ECG that is used in cardiology [49]. Another presentation of the
fetal ECG that can have direct value in clinical practice is the one that resembles the
invasively recorded fetal ECG. As mentioned previously, for the latter ECG, guide-
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Figure 1.3: Screenshot of the STAN R© monitor. In the right panel the fe-
tal heart rate (top graph) and maternal uterine activity (second
graph from above) are depicted. For most uterine contractions,
successive decelerations in the fetal heart rate are clearly visi-
ble. The crosses (x-marks) in the bottom graph of the right panel
show the results of the ST analysis. In the left panel, three (pro-
cessed) fetal ECG complexes are shown, each corresponding to
a single cross.

lines for clinical interpretation have been established [2, 26, 50] and incorporated in
the STAN R© monitor (Fig. 1.3). Notwithstanding the improvement in perinatal out-
come achieved through the introduction of the STAN R© monitor [28], the clinical
value of the fetal ECG’s ST analysis is limited in three ways. At first, as mentioned
previously, ST analysis on the invasively recorded fetal ECG can only be performed
during labor after rupture of the membranes and sufficient dilatation of the uterine
cervix. Secondly, the combination of CTG and ST analysis still does not always pro-
vide sufficient information to conclusively assess the fetal condition [51,52]. Thirdly,
the ST analysis is performed on the only fetal ECG signal available. This is not nec-
essarily the optimal ECG lead signal for performing this particular analysis and could
hence diminish the analysis’ robustness and accuracy.

For the situations in which the combined use of CTG and ST analysis does not
provide sufficient information, additional information provided by parameters that
are extracted from the ECG can be of added value [53, 54]. One such parameter that
is covered in this thesis is fetal movement. Other parameters that have relevance in
clinical practice, but that will not be covered extensively in this thesis, are associated
with growth restriction [55] and sleep and activity patterns of the fetus [56]. To
improve the robustness and accuracy of the ST analysis and to extend its applicability
to stages of pregnancy earlier than labor, the abdominally obtained fetal VCG could
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be used to calculate a fetal ECG signal that has optimal properties for facilitating ST
analysis.

1.3 Thesis outline

As the title of the thesis implies, the content of this thesis concerns the analysis
and interpretation of the non-invasively obtained fetal ECG. Therefore, after having
discussed some of the physiological and technical backgrounds in Chapter 2, this
thesis is divided into two parts, one dealing with analysis of the non-invasive fetal
ECG recordings (Part I) and the other with interpretation of the fetal VCG (and its
projected ECG signals) that is obtained from the analysis (Part II).

The fetal ECG analysis in Part I consists of five chapters (see also Fig. 1.4). Chap-
ter 3 deals with the suppression of the maternal ECG. As discussed, the maternal ECG
constitutes the dominant interference in the abdominal fetal ECG recordings. Cur-
rent methods for suppression of the maternal ECG include subtracting a template of
the maternal ECG. This template exploits the lack of temporal correlation between
the maternal ECG and the fetal ECG. Specifically, the heart rates of the mother and
fetus are not correlated and hence, the averaging of several consecutive maternal
ECG complexes results in an averaged maternal ECG that essentially shows no con-
tribution of the fetal ECG anymore. The maternal ECG can now be suppressed by
subtracting the maternal ECG template (i.e. the averaged maternal ECG) from the
ECG complexes in the recorded signals.

Unfortunately, ECG complexes of consecutive heartbeats are never the same and
thus also the maternal ECG template does not perfectly match the recorded maternal
ECG complexes. In fact, the difference between the recorded maternal ECG com-
plex and the template can be so large that the residual maternal ECG, remaining after
subtraction of the template, has an amplitude that is still larger than that of the fe-
tal ECG. To improve the accuracy of the maternal ECG template generation, in the
method developed in this thesis each maternal ECG complex is subdivided into mul-
tiple physiological segments. Subsequently, for each of these segments a template is
determined by averaging the corresponding segments of several preceding ECG com-
plexes. In fact, prior to averaging these segments, they are first scaled, time-aligned,
and offset compensated to further improve the accuracy of the generated template.
By combining these separate segment templates, a maternal ECG template can be
generated that can account, at least to some extent, for beat-to-beat variability in the
morphology of the ECG complexes. The subtraction of this maternal ECG template
is demonstrated in Chapter 3 to outperform existing methods – not only template
subtraction methods, but also other methods like adaptive filtering and independent
component analysis (ICA) – in the suppression of the maternal ECG.

To further enhance the SNR of the fetal ECG signals that remain after the sup-



1.3 Thesis outline 11

Chapter 3: 
Maternal ECG 
suppression

Chapter 4: 
Physiology-

based source 
separation

Chapter 5: 
Fetal heart 

rate detection

Chapter 6: 
ECG 

enhancement

Chapter 7: 
Fetal VCG 
estimation

Chapter 8: 
Electrical axis 
of fetal heart

Chapter 9: 
Fetal 

orientation 
monitoring

Chapter 11: 
Non-invasive 
ST analysis

Chapter 10: 
12-lead ECG 
extrasystoles

Part I: Fetal ECG analysis

Part II: Fetal VCG and ECG interpretation

A
bd

om
in

al
 fe

ta
l E

C
G

 
re

co
rd

in
gs

Fe
ta

l V
C

G

Figure 1.4: Block diagram of the outline of the thesis. The arrows that con-
nect the various chapters indicate that the results of the one
chapter are used as input for the next chapter.
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pression of the maternal ECG, also consecutive fetal ECG complexes could be av-
eraged. However, even after suppression of the maternal ECG, the SNR of the fetal
ECG signals is often so low that the heart rate cannot be detected. Consequently,
individual fetal ECG complexes cannot be defined and thus also not averaged. Since
fetal ECG signals recorded at multiple locations on the maternal abdomen originate
from the same source, they are spatially correlated to one another. This spatial corre-
lation can be exploited by employing existing blind source separation techniques like
ICA and principal component analysis (PCA). These techniques linearly combine the
recorded signals to maximize the statistical independency (ICA) or variance (PCA)
of the obtained linear combinations. Some of these linear combinations might rep-
resent the fetal ECG, others might represent noise contributions that are still present
in the abdominal recordings. The linear combinations that represent the fetal ECG
are referred to as the fetal ECG source signals. Both ICA and PCA, however, suffer
from the drawback that they do not consider a priori knowledge on the abdominal
electrode configuration and fetal heart activity. In cases of low-SNR abdominal fetal
ECG signals, this renders ICA and PCA incapable of providing a fetal ECG source at
all times. In Chapter 4 a physiology-based source separation technique is developed
that operates more robustly than ICA and PCA. As its name suggests, the technique
uses a priori knowledge on the origin of the fetal ECG to linearly combine the ab-
dominal signals. Due to the robustness brought about by the usage of physiological
knowledge, the developed technique is capable of providing fetal ECG source sig-
nals that have improved SNR over the abdominal fetal ECG signals, under almost all
circumstances.

The detection of the fetal heart rate is discussed in Chapter 5 and is performed
by means of finding local peaks in the fetal ECG source signal that exceed a variable
threshold. To increase the accuracy of the detection and avoid artifacts from exceed-
ing the threshold, the ECG source signal is transformed to exploit specific features
of the QRS complex. The QRS complex is the part of the ECG that is associated
with depolarization of the ventricles. The QRS complex generally exhibits a rela-
tively large gradient with respect to other ECG segments and roughly lasts for a fixed
amount of time. By summing the modulus of the gradient over a moving time win-
dow for which the length is chosen as the approximated length of the QRS complex,
the QRS complexes are enhanced with respect to artifacts, noise, and other ECG
segments, facilitating their accurate detection.

Together with the abdominal ECG signals that remain after Chapter 3, the de-
tected heart rate is used as starting point for further enhancement of the fetal ECG
signals in Chapter 6. The SNR of the fetal ECG signals can be improved by averag-
ing several consecutive ECG complexes. However, in clinical practice, this averaging
constitutes a trade-off between SNR enhancement and loss of clinically relevant in-
formation. Relatively fast fluctuations in the ECG morphology that have a physiolog-
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ical origin might be lost due to extensive averaging, whereas including too few ECG
complexes in the averaging restricts the SNR enhancement that can be achieved. In
Chapter 6 a Kalman filter with adaptive noise estimation is developed that, in essence,
can adaptively vary the number of ECG complexes included in the averaging, based
on the signal properties. Hence, in case of morphological variations, the number of
ECG complexes is reduced and in case of no such variations, the number of com-
plexes is increased. Compared to a similar filter but without adaptive noise estima-
tion, the developed filter is capable of more quickly adapting its output when the
ECG exhibits relatively fast morphological variations (e.g. due to episodes of fetal
movement) and is less sensitive to artifacts.

The enhanced fetal ECG signals are used in Chapter 7 to determine the fetal VCG.
In the adult case, the VCG is generally determined by applying a fixed transforma-
tion (i.e. the Dower transformation [47]) to the ECG signals. However, such a fixed
transformation requires a priori knowledge on the position of the heart with respect
to the electrodes. As the fetus can take several orientations in the uterus, this position
of the heart cannot be a priori known. Consequently, also the ECG signal attenuation
or distortion that occurs during the propagation from the fetal heart to the abdomi-
nal electrodes cannot be known. Such a distortion can vary from additive noise to
morphological changes in the ECG and is mostly due to non-uniform conductive
properties of the tissues between the fetal heart and the abdominal electrodes [37].
In Chapter 7, a Bayesian method is developed that estimates the VCG and, to some
extent, also the signal attenuation for each electrode. This is done by determining for
which VCG and signal attenuation the joint probability over both these variables is
maximal given the observed fetal ECG signals. The underlying joint probability dis-
tribution is determined by assuming the ECG signals to originate from scaled VCG
projections and additive noise. With this method, a VCG, tailored to each specific
fetal orientation, can be determined. Relative to the fixed Dower transformation, the
developed method performs significantly better in determining the fetal VCG.

The fetal VCG that is determined in the first part of this thesis, is used as starting
point for Part II. This part consists of four chapters. In Chapter 8 the electrical axis
of the fetal VCG is discussed. As mentioned previously, the most straightforward
method for clinically interpreting the fetal VCG is to project the VCG onto lead
vectors that are known from adult electrocardiography. As straightforward as this
projection might seem, the ECG that is obtained by projecting the fetal VCG onto
the standardized lead vectors, is expected to look different for the fetus than for an
adult. The reason for this difference is adaptation of the fetal heart to its alternative
cardiovascular circulation. Rather than in the lungs, the fetal blood is oxygenated
in the placenta, causing the right part of the heart to exert higher loads than the left
part [57]. This is in contrast to the adult heart in which the left part exerts the highest
loads. The adaptation to the alternative fetal circulation usually entails an increment
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in the muscle mass of the right side of the fetal heart, which in turn is accompanied by
a shift in the three-dimensional orientation of the VCG. To the best of our knowledge,
in Chapter 8, this shift in direction is measured and visualized for the first time ever.
In addition, the consequences of this shift for the as yet unexplored field of fetal
electrocardiography are anticipated and briefly discussed.

The interpretation of the ECG signals that are generated by projecting the fetal
VCG onto clinically relevant lead vectors is complicated when the orientation of the
fetus in the uterus is unknown. Not only does this orientation vary between patients,
but also does the orientation for a specific fetus fluctuate due to fetal movement. How-
ever, by aligning the vectorcardiographic loops (i.e. the parts of the fetal VCG asso-
ciated with depolarization of the ventricles), most of this movement can be accounted
for. This alignment has the additional benefit that, besides facilitating interpretation
of the projected fetal ECG signals, the movement itself is also a parameter of partic-
ular relevance in clinical practice. The currently existing alignment method is based
on a statistical model that accounts for scaling, rotation, and time-synchronization of
the loops. The scaling in this model only comprises a scalar multiplication, account-
ing for loop contraction and dilatation but not for distortion effects (i.e. changes in
the morphology of the loop) in the loops. For the fetal ECG, due to fetal move-
ment, such distortions are, however, expected. Hence, the existing statistical model
is extended in Chapter 9 with a lead-dependent scaling to account for distortion ef-
fects in the loops. The parameters for scaling, rotation, and time-synchronization
are assessed by maximizing the likelihood function of the statistical model, using
the expectation-maximization (EM) algorithm. The performance of the method is
assessed by comparing it to that of the method with scalar scaling. This comparison
shows a significant reduction in the morphological variability of the loops when us-
ing the developed EM method. The movement assessed from fetal ECG recordings is
compared to simultaneously performed ultrasound recordings to demonstrate that the
method can also be used to monitor fetal movement. Finally, the method is applied
on an extreme case of morphological variability of the vectorcardiographic loops; it
is used to align a fetal loop with a simultaneously recorded maternal loop. It is shown
that the rotation assessed in this alignment provides information on the orientation of
the fetus within the maternal uterus.

Hence, with the methods described in Chapters 3-9, the fetal VCG can be deter-
mined from non-invasive recordings on the maternal abdomen and this VCG can not
only be corrected for fetal movement, but it can also be rotated towards a standard-
ized presentation that is the same for all patients. Using this universal fetal VCG as
basis, in Chapters 10 and 11 two clinical applications of the non-invasive fetal ECG
are exemplified.

In Chapter 10, the 12-lead ECG presentation is used to visualize the difference
between regular heartbeats and irregular heartbeats that originate from the heart’s
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ventricles. These irregular beats are referred to as ventricular extrasystoles. Using the
12-lead presentation, it might be possible to assess the origin of these extrasystoles
and link them to either harmless events or (congenital) heart diseases.

In Chapter 11, the fetal VCG is projected onto the lead vector that produces
an ECG signal that resembles the invasively recorded fetal ECG. It is shown that
the SNRs of the non-invasive and invasive ECG signals are similar and it is stud-
ied whether the non-invasive fetal ECG might in future be used for performing ST
analysis. Finally, in this chapter the optimal VCG projection for ST analysis is inves-
tigated (i.e. optimal in terms of providing an ECG signal from which the ST analysis
can be performed most accurately) and it is shown that the invasive ECG signal, for
fetuses in the normal so-called vertex position, is in fact not far from the optimal
projection.

The chapters listed above are either published or submitted for publication. Hence,
each chapter is written to be self-contained, causing some overlap in the introductory
parts of the chapters.
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Chapter 2

Background

This chapter deals with the physiological and technical backgrounds of fetal ECG
monitoring. To exemplify the potential value of the ECG, several parameters that
can be derived from the ECG are discussed. It needs to be noted that some of these
parameters do not necessarily need to be derived from the ECG, but can also be
determined in alternative ways. Fetal movement, for instance, can be obtained from
ECG recordings, as will be discussed in this section, but is nowadays monitored
through either ultrasound analysis or movement counting by the mother. In addition,
it has to be noted that although this chapter deals with some backgrounds on fetal
ECG analysis, it does not present an extensive overview of the state-of-the-art in
signal processing techniques for extracting and analysis of the fetal ECG from the
acquired data. These techniques are discussed later on in this thesis in more detail.

The chapter is organized as follows. Firstly, the physiology of the fetal heart is
discussed with special emphasis on the origin of the fetal ECG and its associated
clinical parameters. Secondly, a brief overview of the clinical practice in fetal ECG
monitoring is provided with special emphasis on some of the problems encountered
in non-invasive fetal ECG analysis. Finally, the data acquisition approach adopted in
this thesis is presented.

2.1 Physiology of the fetal heart and its role in fetal moni-
toring

2.1.1 Physiology of the heart

The adult heart

The adult heart is a muscular organ that consists of two separate pumps. The right
part of the heart pumps blood through the lungs and the left part of the heart pumps
the blood through the peripheral organs [9, 58]. Each of these parts is a pulsatile
two-chamber pump composed of an atrium and a ventricle. The atrium functions in
principle as a weak primer pump for the ventricle, helping the blood to move into
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the ventricle. The ventricle, in turn, supplies the main force that thrusts the blood
through either the pulmonary or peripheral circulation [9, 58].

The heart has a specialized system for generating rhythmical impulses – that
cause rhythmical contractions of the heart muscle – and conducting these impulses
rapidly throughout the heart [9]. When this system functions normally, the atria con-
tract some time ahead of the ventricles, allowing additional filling of the ventricles
before they thrust the blood through the lungs and peripheral circulation. Another
special feature of this system is that it allows all parts of the ventricles to contract
almost simultaneously, which is essential for effective pressure generation in the ven-
tricular chambers.

The fibers of this specialized conducting system have the capability of self-excita-
tion, a process that can cause automatic rhythmical discharge and subsequent contrac-
tion [58]. The fibers of the sinoatrial (SA) node exhibit this capability to the largest
extent and, therefore, the SA node ordinarily controls the rate of contractions of the
complete heart [9]. Specifically, the fibers of the SA node self-excite at the highest
rate and the impulses generated by the SA node subsequently propagate throughout
the entire heart. After depolarization of a cell, the cell exhibits a refractory period in
which no excitation can occur. At the end of the refractory period, the SA node is
generally again the first to self-excite and because of this, the SA node is responsible
for the rate of contractions of the heart.

The nodal fibers of the SA node discharge spontaneously causing an action poten-
tial to propagate rapidly through both atria and from there through the atrioventricular
(AV) bundle into the ventricles [58]. It is primarily this AV (or His) bundle that delays
the transmission of action potentials from the atria into the ventricles, allowing time
for the atria to empty their contents into the ventricles before ventricular contraction
begins [58]. Fig. 2.1 shows an illustration of the conduction path of action potentials
throughout the heart.

After penetration of the fibrous tissue between the atrial and the ventricular mus-
cle, the distal part of the AV bundle passes downward in the ventricular septum and
splits into left and right bundle branches [9, 58]. Each branch spreads downward to
the apex of the ventricle, progressively splitting into smaller branches that spread
around each ventricular chamber and back towards the base of the heart. The termi-
nal Purkinje fibers penetrate about one third of the way into the muscular mass and
then become continuous with the cardiac muscle fibers.

The Purkinje fibers lead from the AV node through the AV bundle branches into
the ventricles and have characteristics quite opposite of those of the AV node. In
order to allow all ventricular muscle fibers to contract almost simultaneously, the
cardiac impulse has to appear at each muscle fiber at approximately the same time.
For this reason, the Purkinje fibers are relatively large fibers that transmit the action
potentials at velocities about six times larger than transmission velocities in cardiac



2.1 Physiological background 21

Figure 2.1: Basic anatomy of the human adult heart with the main compo-
nents of the action potential conduction system indicated.

muscle fibers [9].

The fetal heart: differences with respect to the adult heart

Relative to the adult heart, the physiology and anatomy of the fetal heart exhibit
some significant differences. These differences originate from the fact that the fetal
cardiovascular circulation is different from the adult circulation [57, 59, 60].

In the adult, gas exchange (i.e. the secretion of carbon-dioxide from the blood
and the intake of oxygen in the blood) takes place in the lungs [9]. From the lungs,
the oxygenized blood flows through the left part of the heart into the peripheral circu-
lation. Since this peripheral circulation is larger than the pulmonary circulation, the
left ventricle has to generate a substantially higher pressure than the right ventricle to
ensure sufficient perfusion to the organs. Consequently, the muscular mass of the left
ventricle is larger than the mass of the right ventricle.

In the fetus, gas exchange takes place in the placenta [61]. As a result, the fetal
blood circulation needs to operate differently from the adult. This different circula-
tion manifests itself, among other differences, by interconnections between the left
and right parts of the heart. These interconnections consist of the foramen ovale, a
gap in the septum dividing both sides of the heart, and the ductus arteriosus, a shunt
between the pulmonary artery and the aorta [61]. Both the foramen ovale and ductus
arteriosus are schematically illustrated in Fig. 2.2.
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Figure 2.2: Basic anatomy of the human fetal heart with the main differences
with respect to the adult heart (see Fig. 2.1) indicated.

Because of these interconnections, the left and right ventricle both generate the
same pressure. However, in the fetal circulation, the right ventricle is responsible
for about 60% of the total cardiac output whereas the left ventricle accounts for the
remaining 40% [57]. As a result of this higher output, the right ventricle of the fetal
heart has a muscular mass exceeding that of the left ventricle. The effect of these
different mass distributions between the fetal and adult heart on the ECG is discussed
in Section 2.1.3.

2.1.2 Origin of the ECG

Cardiac activity at cellular level

At rest, the potential of the intracellular fluid is negative with respect to the potential
of the extracellular fluid [9, 58]. This is caused by the different concentrations of
Na+, K+, and Ca2+ across the cell membrane. When an action potential propagates
along the cell, this action potential causes an increase in the Na+ permeability of the
membrane [9, 58]. Consequently, large numbers of Na+ ions flow into the interior of
the cell, reversing the potential of the intracellular fluid with respect to the potential
of the extracellular fluid: the cell is depolarized [58].

Besides the increase in Na+ permeability, the propagating action potential also
causes an increase in the K+ and Ca2+ permeability of the cell membrane, forcing
K+ ions to flow from the interior of the cell to the extracellular fluid and forcing
Ca2+ ions to flow from the exterior to the intracellular fluid [9, 58]. However, the
increase in K+ and Ca2+ permeability arises more gradually than the increase in
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Na+ permeability. In addition, the Ca2+ permeability decreases earlier than the K+

permeability. As a result, the intracellular potential first rapidly increases to positive
values due to the Na+ inflow. Subsequently, the potential remains at a plateau for a
short while due to the inflow of Ca2+ and outflow of K+ ions. Finally, the potential
returns to its rest value due to the persisting outflow of K+ ions: the repolarization of
the cell. In fact, towards the end of the plateau, the K+ permeability even increases
to ensure a rapid return to the rest potential [9]. It has to be noted that the description
above only holds for cardiac cells and not for other excitable cells in the body, like
nerve cells. Moreover, also the nodal cells in the heart that are responsible for the
self-excitation of the heart behave differently [9].

Propagation of electrical impulses from cell to cell occurs in two manners, either
passively or actively [58]. Passive propagation consists of the electrical conduction
of stimuli that are too small to cause the depolarization of the cell. In this case,
the cells act as a coaxial wire conducting the stimulus, but gradually reducing the
stimulus amplitude due to leakage currents to the cell membrane. Active propagation
occurs without degradation of the stimulus amplitude. The reason for this is that the
depolarization of a particular cell causes a supraliminal stimulus in the adjacent cell,
initiating the depolarization of this cell. Active propagation can therefore also be
described as the propagation of action potentials.

Cardiac activity at tissue level

Next to effects at the cellular level, the propagation of action potentials also has effect
at the tissue level. In fact, for the heart to contract, the propagating electrical stimulus
needs to be converted to mechanical activity.

This conversion is accomplished in two steps: the electrical stimulus initiates a
chemical process which in turn initiates the desired mechanical activity [58]. The
propagating action potential causes the sarcoplasmic reticulum (Fig. 2.3) to release
large quantities of Ca2+ ions into the myofibrils. These Ca2+ ions initiate attractive
forces between the actin and myosin filaments in the fiber, causing them to slide
together. This is the actual contraction of the muscle.

Besides this mechanical effect, the propagating action potentials also have an
electrical effect on the tissue. As mentioned before, the depolarization of a particular
cell causes a potential difference with respect to adjacent cells that are not yet depo-
larized. Consequently, the boundary between a depolarized cell and a cell at rest acts
as a dipole. Moreover, as the action potentials propagate rather uniformly through
the cardiac tissue, adjacent fibers depolarize virtually simultaneously: a dipole (or
depolarization) wave travels through the heart [9].
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Figure 2.3: Schematic view of a muscle fiber with the main components in-
volved in the contraction of the fiber indicated.

Cardiac activity at cutaneous level

The tissues surrounding the traveling dipole are, in general, conductive and hence
the dipole wave acts as a source for a circular current that is substantially larger than
the circular current caused by the cellular potential difference itself. These currents
spread all the way to the body surface where the skin impedance causes potential
differences [33].

As the dipole wave travels through the cardiac tissues, the potential at a specific
position on the skin is not constant but varies with the traveling dipole. The repre-
sentation of the skin potential as a function of time is called the electrocardiogram
(ECG) and can be measured by positioning electrodes on the skin [9].

2.1.3 Characteristics of the ECG

One-dimensional ECG

The ECG is a representation of the skin potential as a function of time. In fact, the
use of the word potential is not completely correct in this context: the ECG gener-
ally constitutes a representation of the potential-difference between two electrodes,
referred to as a bipolar ECG recording [9]. The bipolar ECG (throughout this thesis
simply referred to as the ECG) can be described by means of a few characteristic
waves, which are associated with specific physiological events, and the segments and
intervals between these waves. Fig. 2.4 shows an example of a typical ECG signal.

The P-wave is associated with the depolarization of the atria [9, 58]. When the
atria are completely depolarized, the net electrical field generated by the traveling
dipole is zero and the ECG consequently has zero amplitude. This isoelectrical period
lasts until the action potential has propagated through the AV bundle to the Purkinje
fibers and is represented in the ECG by the PR interval. The QRS complex is asso-
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Figure 2.4: Nomenclature of the ECG.

ciated with ventricular depolarization [9, 58]. The amplitude of the QRS complex
exceeds the amplitude of the P-wave dramatically as the amount of muscle fibers in
the ventricular walls is much larger than the amount of muscle fibers in the atrial
walls. The reason for this is that the ventricles need to propel the blood into the pe-
ripheral circulation whereas the atria only need to propel the blood into the ventricles.
As a result of this and because the atrial repolarization coincides with the ventricular
depolarization, the repolarization of the atria cannot be distinguished in the ECG. Af-
ter the ventricles are depolarized completely, the net electrical field is again zero and
the ECG has zero amplitude. The repolarization wave of the ventricles propagates in
the opposite direction as the depolarization wave and is represented in the ECG by
the T-wave [9,58]. Because of the reversed propagation direction and the inversion of
the signs in the resulting dipole wave, the T-wave has the same polarity as the QRS
complex.

Besides as the aforementioned potential-difference between two electrodes, the
ECG can also be regarded as the projection of the electrical field generated by the
traveling dipole onto the lead vector that describes the positions of the involved elec-
trodes with respect to one another [35]. This view on the ECG will be described in
more detail in the forthcoming section, but elucidates the title for this section: the
ECG is a one-dimensional projection of the three-dimensional electrical field gener-
ated by the traveling dipole.
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Three-dimensional VCG

The traveling dipole produces a varying electrical field in the heart, which to a first-
order approximation can be described by a single vector: the heart (or cardiac) vec-
tor [32, 35]. When the orientation of the heart vector on the cutaneous level is per-
pendicular to the lead vector between two electrodes, both these electrodes measure
the same electrical field amplitude and hence the bipolar ECG amplitude is zero. In
other words, the projection of the heart vector onto the lead vector determines the
instantaneous ECG amplitude. This is illustrated in Fig. 2.5, in which the three vec-
tors composing the triangle are the lead vectors and the amplitude of the ECG is
determined by the amplitude of the projection of the instantaneous heart vector onto
these lead vectors [62]. In addition, this relation between the electrical field, the lead
vector, and the ECG amplitude implies that the varying electrical field can be used
to describe the ECG at the body surface. Consequently, one of the main interests in
fetal ECG monitoring is the description of this electrical field vector over time: the
fetal vectorcardiogram (VCG) [63].

Essentially, the VCG is the three-dimensional representation of the time-path of
the heart vector during one cardiac cycle [31]. Fig. 2.5 shows a two-dimensional
illustration of the VCG. In fact, this depicted VCG represents a simplification of the
actual physiology. As the heart vector originates from the dipole wave, the origin of
the vector travels with this wave through the heart. In the simplification used in the
definition of the VCG, however, the origin of the heart vector remains stationary [64].

In general, the VCG consists of three closed loops associated with atrial depolar-
ization, ventricular depolarization, and ventricular repolarization [63]. The largest of
these loops, the ventricular depolarization loop, exhibits one particular direction for
which the cardiac vector has maximum amplitude. This direction is referred to as the
electrical axis of the heart or the main heart axis [9].

For adults, the main heart axis is on average tilted 57◦ with respect to the trans-
verse plane, i.e. approximately corresponding to the direction from the right shoulder
to the left ankle (Einthoven lead II [62]), but deviations from−30◦ to 90◦ are consid-
ered normal [9].

Differences between fetal and adult ECG

The direction of the electrical axis in the adult and fetal hearts are not the same. In
the adult heart, the electrical axis points towards the left ventricle; the ventricle with
the largest mass. For the fetal heart, however, the mass of the right ventricle is larger
than that of the left one [60]. Hence, the electrical axis of the fetal heart is expected
to point towards the right ventricle [59]. This shift in the electrical axis between the
fetal and adult is firmly established in Chapter 8 of this thesis and implies that the
fetal VCG is oriented differently as well with respect to the adult VCG. Hence, each
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Figure 2.5: Two-dimensional illustration of the vectorcardiogram (in gray)
and the instantaneous projection of the cardiac vector on the
three leads of the Einthoven triangle, resulting in three one-
dimensional ECG leads [35].
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ECG representation for the fetus – being the projection of the fetal VCG onto the
appropriate lead vector – differs from the same ECG representation for the adult.

For clinical interpretation of the fetal ECG, therefore, standard guidelines used
in the field of cardiology may no longer be valid, requiring the formulation of new
guidelines for the fetal cardiology field. In Chapter 8 of this thesis, the differences
between the fetal and adult ECG are further elaborated on.

2.1.4 Clinical significance of the fetal ECG

Several parameters of the fetal ECG complex can be associated with the fetal condi-
tion. For instance, the dimensions of the fetal heart and hence the size of the fetus
can be estimated from the lengths of the intervals in the ECG, while also indications
for fetal oxygen deficiency can be discerned.

Fetal growth parameters

The time it takes for the traveling dipole wave to depolarize both atria is determined
by the size of the atria and the conduction speed of the action potentials. As this
conduction speed is rather constant, the interval between activation of the SA node
and complete atrial depolarization is associated with the size of the atria [55]. This
interval is reflected in the ECG by the length of the P-wave.

In addition, the QRS complex reflects the time interval between initial and com-
plete depolarization of the ventricles [9]. The length of this interval is associated with
the size of the ventricles. As the heart grows proportionally with the fetus, both the
length of the P-wave and the length of the QRS complex are parameters that can be
used to approximate the size of the fetal heart and consequently assess potential fetal
growth restriction.

ST segment variability

The capability of the fetal heart to distribute the blood to the body depends on the
critical balance between energy production and energy consumption. Under normal
conditions, the available amount of oxygen exceeds the requested amount and the
fetal heart utilizes aerobic (oxygen-dependent) metabolism for generating energy.
In this situation, the energy balance is positive and the fetal ECG morphology is
normal [1].

When the available amount of oxygen decreases while the requested amount per-
sists, the energy balance becomes negative and myocardial hypoxia emerges. As
a result of myocardial hypoxia the ECG morphology changes in such way that the
ST segment obtains a downward slope: a biphasic ST segment [1]. The fetus re-
sponds to the negative energy balance by a sudden increase in adrenalin, activating
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the myocardium even more and causing an rapid further decrease in the energy bal-
ance [12]. In addition however, this adrenalin initiates glycogenolysis, a process in
which stored glucose is utilized for generating energy [65]. Consequently, the aerobic
metabolism gets supported by anaerobic metabolism, restoring the energy balance to
equilibrium [12].

However, in contrast to aerobic metabolism that, next to energy, produces carbon-
dioxide and water, the anaerobic metabolism produces lactates which contribute to
the development of metabolic acidemia [66]. Moreover, the process of glycogenol-
ysis releases a surplus of K+ ions increasing the amplitude of the T-wave. When
the lack of oxygen supply continues and the rate of glycogenolysis rises, the T-wave
amplitude increases ever more [2, 26].

The persisting lack of oxygen can result in a global oxygen deficiency that also
includes the central organs. This is called asphyxia. In cases of severe and sustained
asphyxia, the T-wave amplitude returns to its normal level due to the incapability of
the fetus to respond to the situation [50, 67, 68]. At the same time, biphasic ST seg-
ments as are visible during the initial phase of hypoxia should no longer be expected
in case of developing asphyxia due to the fact that the ability of the fetus to employ
its protective mechanisms is declining [1]. Although this might, at first sight, impede
the use of ST monitoring in clinical practice, in these asphyxia situations the CTG is
usually conclusive, underscoring once more the necessity for combining the use of
ST monitoring with CTG.

Fetal movement

As discussed before, each ECG complex can be considered the projection of the VCG
on the appropriate electrode lead vector. For non-invasive fetal ECG recordings this
implies that the fetal VCG is projected on electrode lead vectors on the maternal
abdomen. Since these lead vectors are stationary, with the exception of abdominal
movement, changes in the morphology of the ECG can be related to fetal movement.
Naturally, changes in the morphology of the fetal ECG do not have to originate from
fetal movement per se; changes in the physiological condition of the fetus can also
affect the fetal ECG, as indicated above. Discrimination between either of these ECG
changes is nevertheless made possible based on a priori physiological knowledge on
the time scale on which each of these changes occurs. Particularly, ST waveform
variations are expected to take place at a time scale in the order of 15 seconds or
larger [69]. Fetal movement, on the other hand, is expected to take place at a much
smaller time scale.

Besides discriminating ECG changes that originate from changes in the fetal
physiological condition from ECG changes originating from movement, monitoring
of fetal movement serves another purpose. In general, spontaneous fetal movement
can be observed from 7 weeks of gestational age [56]. During the first part of preg-
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Figure 2.6: Example of a SVES (third heartbeat) in the precordial leads of
an adult patient.

nancy, these movements take place randomly in time. As pregnancy progresses, they
become more and more clustered into alternating episodes of rest and activity. These
so-called rest-activity cycles are present from 20 weeks of gestation [70, 71]. In the
second half of pregnancy, the rest-activity cycles become increasingly linked to fetal
heart rate patterns and fetal eye movements and result in fetal behavioral states. The
presence of these behavioral states is one of the indicators for maturity and integrity
of the fetal nervous system [56]. In addition, severe and sustained reduction in fetal
movement is an indication of fetal distress, often preceding fetal death [54, 72].

It has to be noted here that monitoring fetal movement through the fetal ECG
only provides information about motion of the fetal heart or thorax; movement of the
fetal limbs does not affect the transabdominal fetal ECG.

Extrasystoles

Extrasystoles, or more particularly supraventricular extrasystoles (SVES), are heart-
beats that originate in the nodal cells of the ventricles and not in the SA node [9].
The conduction of the depolarization wave therefore occurs in opposite direction and
does not exploit the high conduction velocities of the Purkinje fibers. In the ECG,
this conduction translates to a widened QRS complex with opposite sign [9]. The
P-wave, representing contraction of the atria, is absent for SVES (see Fig. 2.6).

In most cases, SVES are innocent and hence not very relevant for fetal monitor-
ing. This innocence can be explained by the fact that the ventricles are filled with
blood both actively (by contraction of the atria) and passively (because of the higher
pressure in the vena cava) [60]. Sole contraction of the ventricles in periods of low
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activity, is therefore sufficient to perfuse the fetal body with blood. In addition, the
occurrence of SVES is in most cases associated with immaturity of the heart and not
with congenital heart disease [73–76].

However, in the few cases that SVES do originate from congenital heart disease,
the visualization of the fetal ECG can be of vital importance. This is so because
timely detection of congenital heart disease can aid in either treatment of the disease
during pregnancy, e.g. through administration of medication [77], or in the prepara-
tion for treatment directly after birth [78].

All the parameters discussed above illustrate that fetal ECG monitoring can have
added value with respect to CTG monitoring. Not only can the fetal heart rate be
assessed more accurately and more reliably, but also do the fetal growth, fetal oxy-
genation and fetal movement parameters provide information about fetal distress.
This, however, raises the question why fetal ECG monitoring has not been used as a
standard in clinical practice since many years. One of the answers to this question
is the lack of signal acquisition and processing techniques that enable determination
of the fetal ECG with sufficient accuracy and reliability in all stages of pregnancy.
As mentioned in Chapter 1, this thesis aims to provide a contribution to the solution
of the signal processing (and interpretation) issues. Hence, in the remainder of this
chapter, firstly the problems that signal processing and analysis techniques have to
overcome for non-invasive fetal ECG monitoring to be applied in clinical practice
are discussed briefly. The existing solutions to these signal analysis problems them-
selves are detailed on in the remainder of this thesis. Secondly, the data acquisition
and the patient population used throughout this thesis to evaluate the developed signal
analysis techniques are described.

2.2 Problems encountered in non-invasive fetal ECG ana-
lysis

2.2.1 History of fetal ECG analysis

Ever since Cremer [79] in 1906 recorded the first fetal ECG, researchers have shown
interest in reproducing this feat and studying the clinical relevance of the fetal ECG
[12, 79–83]. In particular, interest has been focused towards the non-invasive record-
ing of the fetal ECG, i.e. from the maternal abdomen. Notwithstanding the many
attempts to improve the quality of the transabdominal fetal ECG [12], this quality
remained too low to use the non-invasive fetal ECG as a diagnostic tool. Hence, the
use of fetal ECG monitoring in clinical practice lost momentum and was disregarded
until the introduction of the scalp electrode as a means of fetal heart rate monitoring
by Hon in 1963 [13].
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The introduction of this scalp electrode, i.e. an invasive electrode connected to the
fetal scalp that provides an ECG signal with improved quality over the non-invasive
fetal ECG, led to extensive new research regarding the diagnostic value of this im-
proved quality fetal ECG [84–86]. Part of this research finally converged to the in-
troduction of the STAN R© monitor [2, 8, 25, 26, 50]; a monitor that analyzes the ST
segment of the fetal ECG and, in combination with CTG, can be used to assess fetal
hypoxia [28]. In recent years, this STAN R© monitor has gained evermore momen-
tum [52,87,88]. Unfortunately, STAN R© can only be applied during parturition since
it is based on the invasively recorded fetal ECG. Combined with the fact that the ST
segment alone cannot discriminate between sustained asphyxia and normal oxygen
levels [51], this stresses the need for a non-invasive method to record the fetal ECG.
For example, in case of a fetus suffering from asphyxia before dilatation, the scalp
electrode and thus STAN R© analysis is commenced too late. Consequently, ST ana-
lysis does not assess the fetal condition correctly [51]. Naturally, the CTG registration
of a fetus in this case should lead to a correct diagnosis and subsequent intervention
by the physician, but when the ST analysis could have commenced earlier this would
potentially have resulted in an earlier diagnosis.

Basically, this limited applicability of the STAN R© monitor returns us to the prob-
lem that arose after Cremer recorded the first fetal ECG: how can we record the
transabdominal fetal ECG with good enough quality to use it as a diagnostic tool
in clinical practice? Over the years, many techniques have been proposed to ex-
tract the fetal ECG from the composite signals that are recorded from the maternal
abdomen [89–96], but none prevailed.

The origin of the signals that mostly contribute to the composite abdominal sig-
nals and that corrupt the fetal ECG are discussed below. Techniques – both proposed
in the literature and newly developed – to remove, suppress, or extract these con-
tributing signals are discussed in Chapter 3, Chapter 6, and Chapter 7.

2.2.2 Signals recorded from the maternal abdomen

Physiological signals

As the maternal body acts as a conductor, several other electrophysiological signals
that do not originate from the fetus are recorded by electrodes on the maternal ab-
domen [63]. These interferences include, but are not limited to, the maternal ECG,
activity from the uterus (electrohysterogram, EHG) [97, 98], and abdominal muscle
activity (electromyogram, EMG).

The maternal ECG has about the same spectral properties as the fetal ECG, that
is, a frequency content ranging from about 2 Hz to 80 Hz as shown in Fig. 2.7 [99],
but has amplitudes that can exceed those of the fetal ECG by a factor 10 (Fig. 2.8).
The EHG, in contrast, has a frequency content ranging from 0 Hz to approximately
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Figure 2.7: Frequency content of both the fetal and maternal ECG. The dip
around 50 Hz is due to a notch filter to suppress powerline in-
terference.

3 Hz [100], whereas the EMG exhibits frequencies ranging from 0 Hz to 200 Hz
[101]. These three interferences alone already illustrate the difficulty of fetal ECG
extraction and hence explain the wide range of techniques proposed to achieve this
extraction. To further exemplify this, in Fig. 2.8 a composite abdominal fetal ECG
recording is shown with some of the contributing signals indicated.

Non-physiological signals

Although many non-physiological interferences exist, e.g. imperfections in the analog-
digital converter of the recording equipment, the non-physiological interferences are
dominated by the powerline grid [102].

The interference from the powerline grid in the Netherlands is centered around
50 Hz with harmonics at multiples of 50 Hz and can be suppressed from the compos-
ite signal by either employing a series of notch filters with fixed cutoff frequencies or
an adaptive interference canceler [102].
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Figure 2.8: Segment of composite abdominal fetal ECG recording. The con-
tribution of the EHG is reflected by wandering of the baseline.
This baseline wander is emphasized by the additionally drawn
dashed arc.

2.2.3 Complications in fetal ECG analysis due to changes in the volume
conductor

In addition to the signals that corrupt the fetal ECG in the abdominal recordings, fe-
tal ECG analysis is complicated for another reason as well. Changes in the volume
conductor between the fetal heart on the one hand and the abdominal electrodes on
the other hand can distort or attenuate/amplify the ECG [36, 37, 103, 104]. In gen-
eral, these changes originate from movement of the fetus, development of the vernix
caseosa [37, 39], and movement of the mother.

As stated previously, fetal movement is reflected in the transabdominal fetal ECG
as spatially correlated changes in the morphology of the ECG waveform. In terms of
the fetal VCG, movement of the fetus is reflected as a rotation of the VCG. However,
fetal movement not only causes the fetal VCG to rotate with respect to the electrode
configuration on the maternal abdomen, but it also causes the distance between the fe-
tal heart and the various electrodes to change [29]. In case the conduction of the elec-
trophysiological signals from the fetal heart to the maternal abdominal surface is not
uniform, this change in distance causes both distortion and attenuation/amplification
of the fetal ECG [37, 104]. In case of uniform conduction, only attenuation or am-
plification of the fetal ECG signals is expected. Specifically, in case fetal movement
causes the distance between the heart and a particular electrode to decrease, ampli-
fication of the corresponding fetal ECG signal is expected. Conversely, an increase
in the heart-electrode distance is expected to be accompanied by attenuation of the
corresponding fetal ECG.



2.3 Fetal data acquisition 35

From about 28 weeks of gestation the fetus develops a protective layer called the
vernix caseosa [37, 39, 105, 106]. The vernix caseosa isolates the fetus electrically
from its surroundings, making it virtually impossible to record a fetal ECG on the
maternal abdomen. However, from about 32 weeks of gestation this protective layer
starts to break down, partly canceling the isolated environment of the fetus and thus
restoring the possibility of transabdominal fetal ECG recording. As a consequence of
the holes that are thus generated in the vernix caseosa, preferred conduction paths for
the electrical signals arise [39]. These conduction paths constitute a transition from
uniform conduction before 28 weeks of gestation to non-uniform conduction after
32 weeks of gestation, significantly affecting the transabdominal fetal ECG [63].
After about 37 weeks of gestation the vernix caseosa dissolves in the amniotic fluid
restoring the uniform conduction characteristics of the volume conductor [37]. Since
problems that arise from attenuation or amplification of the fetal ECG signals can be
properly dealt with (as will be discussed in 7), limitations in fetal ECG analysis due
to fetal movement and non-uniformity of the volume conductor are mainly expected
between 28 weeks and 37 weeks of gestation.

Another change in the volume conductor that causes fetal ECG distortions on the
abdominal surface is caused by fetal breathing. By filling its lungs with amniotic
fluid [107], the fetus changes the impedance of the conduction path from its heart to
the abdominal electrodes, affecting the recorded fetal ECG.

A final reason for changes in the volume conductor mentioned here is movement
of the electrodes, resulting from movement of the mother. At first glance, electrode
movement might seem more appropriately placed among non-physiological interfer-
ences of the fetal ECG, rather than among changes in the volume conduction. How-
ever, movement of the electrodes causes the conductive layer between the skin and
the electrodes to change and hence causes a change in the properties of the volume
conductor. This conductive layer is generated by the thermal excitation of metallic
ions in the electrode [108]. These ions spread through the electrolyte, forming a layer
balancing the electrode charge [108]. Although the ions can move freely through the
electrolyte, the speed of movement is limited and hence electrode movement is likely
to disturb the balancing layer and hence the electrode-skin bias [108], resulting in
artifacts in the recorded fetal ECG.

2.3 Fetal data acquisition

The setup for the acquisition of the non-invasive fetal ECG throughout this thesis
basically consists of three parts: the patient, the sensors, and the data acquisition
system. This setup is depicted in Fig. 2.9 and each part is separately discussed below.

Besides the acquisition of the non-invasive fetal ECG, i.e. the fetal ECG recorded
from the maternal abdomen, a few other signals from the fetus may be acquired as



36 Background

Figure 2.9: Photograph of the data acquisition in operation. Self adhesive
electrodes are positioned upon the maternal abdomen. The sig-
nals measured by these electrodes are stored on the panel PC via
digitization by the NEMO amplifier. (Photo by Bart van Over-
beeke.)

well. These signals are mainly used for validation of the abdominally assessed fetal
health parameters and consist of ultrasound recordings of the fetus and the invasively
recorded fetal ECG. The latter signal is only recorded for a small number of patients.
The acquisition of the ultrasound images is included in the measurement protocol and
therefore performed for all patients.

2.3.1 Patient

In total about 50 patients were followed longitudinally throughout their pregnancy.
Measurements started at 14 weeks of gestation and from then, were regularly repeated
until term. To be precise, the measurements were, provided patient availability, con-
ducted at 14, 18, 22, 24, 26, 30, 34, 36, 38, 40, 41, and 42 weeks of gestation. Up
till 36 weeks, the measurements lasted 45 minutes and after 36 weeks they lasted 60
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Table 2.1: General information on patients that completed the longitudinal
study. The asterisk ∗ denotes that not for all patients the provided
information is available.

Mean (Minimum – Maximum)

Number of patients 40
Age (years) 31.4 (21.1 – 41.0)
Gestational age at birth (weeks+days) 39+2 (31+3 – 42+0)
Birth weight (grams) 3380 (1020 – 5160)
1-minute Apgar scores 9.0∗ (8 – 10)
5-minute Apgar scores 9.9 (9 – 10)
Arterial blood pH 7.23∗ (7.07 – 7.42)
Venous blood pH 7.32∗ (7.21 – 7.48)
Number of recordings performed per patient 8.5 (3–10)

minutes. This elongation of the measurement length stems from the wish to eliminate
the influence of fetal behavioral states on the results, which with progressing preg-
nancy will change less frequently. The study was approved of by the medical ethical
committee of the Máxima Medical Center.

The choice for 50 patients was dictated by the aim to have 25 healthy women
complete the study and provide a basis for defining preliminary, normal fetal pa-
rameter values. The other 25 women were anticipated to leave the study because of
either complications arising after inclusion in the study or loss to follow up (”non-
attenders”). In the end, over 40 women completed the study without complications.

Inclusion criteria for the patients were healthy women (low risk population) with
an uncomplicated singleton pregnancy of at least 14 weeks of gestation. The par-
ticipants were included in the study after informed consent. Exclusion criteria were
women under the age of 18 years and multiple pregnancies. Pregnancies complicated
by e.g. hypertension, preeclampsia, fetal growth restriction, diabetes mellitus, or fe-
tal congenital malformations were also excluded from the longitudinal study, but in
some cases analyzed separately. To ensure maximum signal quality, patients were
prepared by gently scrubbing of their skin to remove dead cells. In Tables 2.1 some
detail on patients that were included in the study is provided.

It has to noted that due to the alternative circulation of the fetus, as opposed
to the circulation after birth, the arterial blood pH is lower than the venous blood
pH (Table 2.1). After birth, this relation is inverted with the arterial blood carrying
higher oxygen levels than the venous blood.
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2.3.2 Non-invasive fetal ECG

Abdominal electrode configuration

The fetal ECG recordings comprise 8 bipolar signals, all with a common reference
placed near the maternal umbilicus. A ground electrode, with right leg drive, is posi-
tioned near the side of the mother to minimize interference from the powerline grid.
The electrode configuration is depicted in Fig. 2.10.

The choice for this particular electrode configuration constitutes a trade-off be-
tween patient comfort and signal processing capabilities on the one hand and the
recorded amount of information on the other hand. Specifically, in order to assess the
fetal health with as much accuracy as possible, as many as possible fetal ECG signals
are preferred. This large number of fetal ECG signals, however, requires a multitude
of electrodes on the maternal abdomen and many signals to be processed. To avoid
significant patient discomfort resulting from all these electrodes and to facilitate real-
time analysis of the recorded information, the number of abdominal electrodes should
be kept rather small. Hence, the number of electrodes is chosen as 8. To ensure that,
irrespective of the fetal position within the uterus, at least some of the electrodes are
close to the fetal heart and thus record the fetal ECG with sufficient amplitude, the
circular configuration of Fig. 2.10 is adopted.

Due to the rounding of the abdomen, this circular configuration exists in three-
dimensional space. Specifically, the electrodes on the side of the abdomen (i.e. elec-
trodes 1, 4, 5, and 8 in Fig. 2.10) are positioned closer to the back of the mother than
the center electrodes (i.e. electrodes 2, 3, 6, and 7). The presence of this third dimen-
sion (i.e. the transversal direction; from front to back) enables the estimation of the
fetal VCG in three dimensions (see Chapters 4 and 7). For pregnancies at low gesta-
tional ages, however, the rounding of the abdomen is smaller and hence, the accuracy
of the three-dimensional electrode positions is relatively low. Based on photographs
of the abdomen, taken from orthogonal directions, a fair indication on the electrode
positions can nevertheless be obtained (see Fig. 2.10).

The electrodes used are Ag/AgCl electrodes. To minimize loss of signal quality
during the conduction of the ECG signals from the electrode to the data acquisition
system, the electrode cables are actively shielded.

Data acquisition

The ECG signals are digitized and stored by the NEMO system. This system com-
prises a programmable amplifier for acquiring electrophysiological signals and a
panel PC for controlling the amplifier settings and storage of the recordings. This am-
plifier is based on the Maastricht Programmable AQuisition (M-PAQ) system (Maas-
tricht Instruments BV, the Netherlands), but modified to maximize its performance in
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(a)
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(b)

Figure 2.10: Frontal view (a) and side view (b) of the electrode configuration
used for recording the fetal ECG.
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Table 2.2: Technical specifications and settings of the NEMO amplifier.

Technical specifications

ADC resolution 20 bit
Filters 2nd order IIR high-pass (0.01 Hz) and notch (50 Hz)
Maximum gain 200
Input impedance 100 MΩ

Input range ±10 V
Interface USB 2.0
Number of channels 8 differential with common reference
Sampling rate 1 kHz per channel
Noise level < 5 µVRMS (0.1–100 Hz)
Least significant bit 95 nV

recording the non-invasive fetal ECG. A few specifications of the NEMO amplifier
are presented in Table 2.2.

With the general amplitude of the fetal ECG between 5 and 10 µV, the maximum
allowed noise levels of the NEMO amplifier (Table 2.2) still require the most of the
signal processing methods to extract the fetal ECG from the noise. At this moment,
the largest part of this signal processing is done offline, but the panel PC of the
NEMO system is capable of performing this processing in real-time, simultaneous
with acquisition of the data.

2.3.3 Ultrasonic signals

Besides acquisition and storage of ECG data, the panel PC on the NEMO system
is also capable of importing images acquired by a medical ultrasound device. The
ultrasound device used is an Aloka SSD1100 (Aloka, Japan). This ultrasound device
uses a standard obstetric probe to transmit 3.5 MHz ultrasound into the body and
obtain images from the fetus. These images are transmitted via a coaxial cable to a
frame-grabbing card in the panel PC, enabling synchronized acquisition of both the
fetal ECG and ultrasound images.

2.3.4 Invasive fetal ECG

To evaluate newly developed signal processing techniques for non-invasive fetal ECG
analysis, for some patients also the invasive fetal ECG is recorded simultaneously.
As mentioned before, these measurements can only be performed during labor and
impose some risk to the fetus. Hence, they are only performed based on medical need
and as a result for only few of the women enrolled in the studies these signals have
been acquired. The electrode used for these specific recordings entails a helix-shaped
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Figure 2.11: Photograph of scalp electrode with a single helix needle.

needle that is screwed into the fetal scalp. Hence, this electrode is generally referred
to as a scalp electrode (Fig. 2.11).

For medical safety issues the invasive fetal ECG recordings are performed us-
ing a standard CTG monitor, albeit a rather old version (HP8040; Hewlett-Packard,
USA). The advantage of this HP8040 is that it contains an analog output. This analog
output is connected to the input of a 16-channel M-PAQ system, enabling simulta-
neous acquisition of the non-invasive and the invasive fetal ECG (Fig. 2.12). This
16-channel system has the same specifications as the NEMO system of Table 2.2,
with the exception that the maximum selectable gain of the M-PAQ is increased to
2000.

2.4 Final remarks

In Section 2.1 of this chapter, the relevance of fetal ECG monitoring for supporting
the diagnosis of the fetal condition was illustrated by exemplifying some clinically
relevant parameters that can be extracted from the ECG. These examples only con-
stitute a small fraction of the parameters that are used by clinicians to assess the
fetal condition. Other parameters include results from fetal blood sampling [22],
nuchal translucency [109] and fetal fibronectin [110]. The examples described in
Section 2.1, nevertheless, are among the most relevant parameters and, moreover, are
the ones extracted, assessed, or estimated throughout this thesis.

In Section 2.2 some of the problems that are encountered while trying to deter-
mine the non-invasive fetal ECG were discussed. Like with the fetal ECG parameters,
also for Section 2.2 it holds that the listed problems only constitute a small part of
the problems that are encountered in clinical practice. Similar as above, however,
the problems discussed in this chapter are the ones most likely to occur and the ones
for which this thesis aims to contribute in solving them. Other problems/challenges



42 Background

Figure 2.12: Photograph of the 16-channel M-PAQ system on the left and
the HP8040 CTG device on the right.

that can occur while recording the non-invasive fetal ECG in clinical practice include
the separation of fetal ECG signals in twin or multiple pregnancies [111] and high
electrode impedances that lead to low SNRs.

A high electrode impedance can originate from a bad galvanic contact between
the skin and the silver plate in the electrode and can be avoided by careful preparation
of the patient and positioning of the electrodes. In Section 2.3 this preparation was
briefly addressed. Besides the patient preparation, Section 2.3 also addressed the data
acquisition employed throughout the thesis and the included patient population. For
the patient population, it needs to be mentioned that not all measurements were of
similar quality, not only due to progressively alternating insights in the best measure-
ment setup, but also due to differences in the position and size of the fetus, the skin
impedance of the mother, and the presence of the vernix caseosa. As a consequence,
in the various chapters of this thesis, different fetal ECG recordings are used to evalu-
ate and illustrate the developed signal analysis technologies, each of these recordings
selected based on favorable properties or features for its intended use.
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In Part I of the thesis, the non-invasive fetal electrocardiogram (ECG) is analyzed.
This analysis concerns the extraction of the fetal ECG from the mixture of signals that
is recorded from the maternal abdomen and the further processing to yield the fetal
vectorcardiogram (VCG). This VCG will be used as starting point in Part II of this
thesis.

In Part I the ECG has to undergo a conversion in its dimensionality: the abdomi-
nally recorded fetal ECG consists of eight individual ECG signals while the intended
result (i.e. the VCG) consists of three individual ECG signals. Moreover, in the pro-
cess of getting from the eight-dimensional ECG to the three-dimensional VCG, the
ECG is at first reduced to a one-dimensional signal. This signal is a linear combina-
tion of the eight fetal ECG signals and is merely used to detect the periodicity of the
ECG (i.e. the heart rate). This periodicity is subsequently used as a basis for further
processing of the eight-dimensional ECG towards the three-dimensional VCG.

The outline of this part of the thesis is as follows. In Chapter 3 a method is pre-
sented to suppress the maternal ECG from the abdominal recordings. This method
operates by subsequent estimation and subtraction of individual ECG segments and
performs more accurately in maternal ECG suppression than already existing meth-
ods. In Chapter 4 the signals remaining after suppression of the maternal ECG
are linearly combined, based on a underlying physiological model, to yield a one-
dimensional ECG signal with superior properties – as opposed to each of the eight
signals remaining after maternal ECG suppression – to facilitate detection of the heart
rate. The method used to detect this heart rate is discussed in Chapter 5. In Chap-
ter 6 the heart rate is used as input for a filter that exploits the quasi-periodicity of the
ECG, in the meantime ensuring that physiologically relevant variations in the, again
eight-dimensional, ECG morphology are retained. Chapter 7 finally uses the eight
filtered ECG signals to estimate the fetal VCG.
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Chapter 3

Dynamic segmentation and linear
prediction for maternal ECG suppression
in antenatal abdominal recordings

In this chapter, a method is presented to suppress the maternal ECG from the non-
invasive abdominal recordings and, hence, to enhance the signal to noise ratio of
the remaining fetal ECG. The method operates by subdividing the maternal ECG
complex into multiple physiological segments, by generating a dynamic template for
each segment of the maternal ECG, and subsequently subtracting this template from
the original signal.1

3.1 Introduction

Currently the most widespread method to monitor fetal health is cardiotocography
(CTG) [112], which consists of the simultaneous monitoring of the fetal heart rate
(fetal heart rate) and maternal uterine activity. However, in many cases the CTG
does not provide conclusive information for accurate assessment of fetal health and,
therefore, additional information is needed for clinical decision-making [28, 113].

The main additional sources of information to support the CTG are fetal blood
sampling and fetal electrocardiogram (ECG) analysis using an invasive electrode.
Both these methods require invasive measurements and consequently can only be ap-
plied during labor and entail an increased risk of infection. The spectral analysis of
the fetal heart rate can also offer additional information [114, 115]. If this is per-
formed on the non-invasively determined fetal heart rate, it can be applied in stages
of pregnancy earlier than labor.

The non-invasive fetal heart rate is generally determined by means of Doppler
ultrasound. This method, however, does not allow long-term monitoring since it is

1This chapter is based on the paper published as R. Vullings, C.H.L. Peters, R.J. Sluijter, M. Mis-
chi, S.G. Oei and J.W.M. Bergmans, ”Dynamic segmentation and linear prediction for maternal ECG
removal in antenatal abdominal recordings”, Physiol Meas. 2009 Mar;30(3):291-307.
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sensitive to maternal and fetal motion, resulting in a relatively low signal to noise
ratio (SNR), and since the ultrasound transducers transmit energy into the fetal body,
potentially endangering fetal health.

To overcome low SNR problems, in modern CTG devices a buffer of consec-
utive heart beats is autocorrelated at constant frequency to provide a reliable, but
slightly smoothed, fetal heart rate signal. Although this fetal heart rate measurement
approaches the ’gold standard’ of the fetal heart rate determined from a invasively
recorded fetal ECG [15], particularly the high frequency parameters in the spectral
analysis of the fetal heart rate are affected by the smoothing of the autocorrelation
method.

From this it is clear that any non-invasive method to support the CTG, resolving
the problems associated with Doppler ultrasound, can be highly valuable. One such
method is fetal ECG monitoring with abdominal electrodes. Besides the fetal ECG,
this method also enables accurate spectral analysis of the unsmoothed fetal heart rate,
i.e., it can provide the fetal heart rate on a beat-to-beat basis, and due to its passive
nature and relative insensitivity to fetal motion it can be used for long-term monitor-
ing. In addition to improved spectral analysis of the fetal heart rate, the abdominally
recorded fetal ECG also enables analysis of the fetal ECG. Relative changes in the
segments and intervals of the fetal ECG are associated with fetal distress [2] and
growth [55], implying that fetal ECG monitoring provides additional information on
the fetal condition.

The fetal ECG recorded from the maternal abdomen is affected by noise con-
sisting of a mixture of several interferences. As, in general, the maternal ECG is
the predominant interference [116], several techniques for maternal ECG suppres-
sion from the abdominal signals are presented in literature [90–92, 94, 96, 117–120].
However, none of these techniques can suppress the maternal ECG completely or
extract the fetal ECG [95] as the interferences in the abdominal recordings do not
completely satisfy the assumptions implicitly made by the presented techniques.

Therefore, in this chapter a new technique is presented for the suppression of the
maternal ECG. This technique is an extension of maternal ECG template subtraction
techniques [92,96,118,120] and is referred to as the weighted averaging of maternal
ECG segments (WAMES). WAMES operates by dynamically dividing the maternal
ECG complex in separate segments and generating an estimate for each individual
segment. Each estimate is hereby obtained by the linear combination of time-shifted,
offset compensated, and scaled corresponding segments in preceding maternal ECG
complexes. This process can also be viewed as a dynamic segmentation and lin-
ear prediction of maternal ECG segments. By time-aligning, offset compensating
and scaling the individual segments before linearly combining them, morphological
variations in the maternal ECG complex can be dealt with accurately since the only
assumption of WAMES is a quasi-periodicity of the maternal ECG segments. This is
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1 2 3

Figure 3.1: Schematic view of fetal ECG extraction techniques.

in contrast to other template subtraction techniques, which assume a larger degree of
periodicity in the maternal ECG.

WAMES is evaluated in terms of maternal ECG estimation and fetal heart rate
detection. Its performance is quantified on both modeled and real antenatal abdom-
inal recordings, and compared to the performance of spatial filtering [91], adaptive
filtering [117], template subtraction techniques [96,118] and independent component
analysis (ICA) [95, 111].

In Section 3.2 this new technique is described. Section 3.3 is devoted to the
other techniques for comparison and validation. Section 3.4 discusses the abdominal
recordings used for the comparison and details on the methodology of this compari-
son. Finally, Section 3.5 discusses the results and in Section 3.6 our conclusions are
drawn.

3.2 Dynamic segmentation and linear prediction for mater-
nal ECG suppression

Antenatal abdominal recordings generally constitute a mixture of fetal ECG, mater-
nal ECG, and noise such as motion artifacts, muscular activity, and powerline inter-
ference. Consequently, most fetal ECG extraction techniques operate by means of
consecutive suppression of each interference. Schematically, this can be seen as the
two step procedure in Fig. 3.1, in which suppression of motion artifacts, muscular ac-
tivity and powerline interference is referred to as preprocessing. This preprocessing
block is detailed in Section 3.4. The abdominal recordings are represented in Fig. 3.1
by V1, which is a [N×T ] matrix with N the number of electrodes on the maternal
abdomen and T the length of the recording. The preprocessed signals V2 are sub-
sequently fed into the maternal ECG suppression block; for WAMES this block is
shown schematically in Fig. 3.2. Commonly, ECG complexes consist of a P-wave,
a QRS complex (which can be subdivided into a separate Q-wave, R-wave, and S-
wave), and a T-wave [9] (Fig. 3.3). Each maternal ECG complex in V2 is segmented
by the maternal ECG segmentation block in Fig. 3.2 into individual waves, i.e., a sep-
arate P-, Q-, R-, S-, and T-wave. Each segment is subsequently estimated by linear
prediction, using corresponding segments from preceding maternal ECG complexes.
These estimated segments are finally combined to generate an estimate V̂2 of the
maternal ECG signal.
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3.2.1 Dynamic maternal ECG segmentation

At a certain distance the heart can be modeled by a time-dependent dipole with vari-
able amplitude and orientation [121]. In this framework, the ECG can be seen as the
projection of the electrical field generated by this dipole on the measurement vector.

Respiration causes motion of the maternal abdomen and as a result the orientation
of the measurement vector with respect to this electrical field varies over time. As
each wave in the ECG exhibits its own orientation of the dipole, this variation is not
proportional for each wave and therefore causes variability in the morphology of the
ECG.

This morphological variability is the main reason for inaccuracies in existing
template subtraction techniques. The template is not capable of accounting for all
variations and consequently residuals of the maternal ECG remain after subtraction
of the template. These residuals can have amplitudes that exceed the amplitude of
the fetal ECG and therefore affect fetal heart rate detection. By generating a template
for each individual wave the morphological variability can be accounted for more
accurately, resulting in an improved maternal ECG subtraction.

The segmentation of the maternal ECG is performed in two steps. In the first
step the signals are divided into individual maternal ECG complexes, based on the
locations of the QRS complexes, and in the second step each maternal ECG complex
is subdivided into the individual waves.

Maternal QRS detection

Depending on the position of the electrode on the maternal abdomen with respect to
the position of the heart, some of the waves in Fig. 3.3 can be difficult to distinguish.
Therefore, to facilitate the detection of maternal QRS complexes, the SNR of the
maternal QRS complexes is enhanced by linearly combing the signals V2 in such
way as to maximize the variance (principal component analysis, PCA) [122]. The
linear combination with maximum variance is referred to as the principal component
~VPC.

Maternal QRS complexes are detected in ~VPC by means of a peak detection
method that is discussed in Chapter 5.

Dynamic segmentation of maternal ECG complexes

The segmentation of maternal ECG complexes is performed in two steps. In the first
step for each wave a window is defined in which the wave is assumed to be present; in
the second step the wave is detected in this particular window. Hereby each window
is defined by its onset and its width which are both based on a physiological model
and shown schematically in Fig. 3.4.
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The P-wave is associated with the depolarization of the atria and therefore the
width of this wave is related to the size of the atria and the conduction speed of the
action potential through the atrial tissue. This conduction speed and size are assumed
to be proportional to the conduction speed and size of the ventricles. Consequently,
the width of the P-wave window is set proportional to the width of the QRS com-
plex, which is associated with the conduction of the depolarization wave through the
ventricles. The onset of the P-wave window is determined by the length of the PR
interval (Fig. 3.3), which depends on the conduction speed through the AV node. As
this conduction speed is regulated by the autonomous nervous system and this sys-
tem is also responsible for heart rate variability, the onset of the P-wave window is
set dependent on the instantaneous maternal heart rate.

Definition of the window for detecting the T-wave is analogous to the definition
of the P-wave window. The main difference is that the length of the RT interval, and
thus the onset of the T-wave window, is set at a fixed value C as the length of this
interval is not regulated by neural stimulation. The width of the T-wave window is
related to the repolarization of the ventricular tissues and is set proportional to the
width of the QRS complex.

The windows for detecting the Q-, R-, and S-wave are set at fixed values assuming
no cardiac pathology like bundle branch blocks. These fixed values are chosen small
enough to enable WAMES to deal with high maternal heart rates adequately.

Ideally, the start and end of each wave are detected in the windows as the first
local extrema on either side of the peak. However, generally the P-wave and T-wave
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have a low SNR and, consequently, the detection of the start and end of the wave is
less accurate. By defining an adaptive threshold that depends on the SNR within the
window and performing the detection of the local extrema for the samples that do
not exceed this threshold, the accuracy of this detection can be improved. The SNR
within the window is approximated as the mean modulus of samples with moduli
smaller than the mean modulus of all samples within the window.

Samples that are not detected in the individual ECG waves are included in the
isoelectrical periods. These periods are associated with zero amplitude of the dipole
or perpendicular orientation of the measurement vector with respect to the electrical
field.

3.2.2 Linear prediction of maternal ECG segments

Alignment and scaling

Each wave in the maternal ECG is estimated by the weighted averaging of n corre-
sponding waves in preceding maternal ECG complexes. Prior to averaging, the waves
are aligned by synchronization on the start of the wave. As a result of the robustness
in the maternal ECG segmentation, however, the accuracy of the segmentation is not
optimal and hence this alignment can be inaccurate up to a few sampling period. To
improve the alignment the waves are synchronized by minimizing the mean squared
error (MSE):

bmin = argmin
bi−k

1
M

M

∑
j=1

(
Zi, j−Zi−k, j+bi−k

)2
,bi−k ∈Z, (3.1)

with M the length of the wave, bi−k the integer shift, Zi, j the wave that is esti-
mated and Zi−k, j the corresponding wave of the kth preceding maternal ECG com-
plex (Z = {P,Q,R,S,T, iso} , iso = isoelectrical period). Hereby, for each i and k the
value of M is set equal to the shortest length of the waves Zi, j and Zi−k, j. Hence,
for longer waves only part of the wave is estimated. However, as in practice the
lengths of the waves vary only gradually, this omission has a negligible effect. Each
of the preceding waves Zi−k, j is thus shifted over a length bmin corresponding to the
minimum MSE for that particular wave.

Due to respiration the DC component and amplitude of Zi−k, j differ from the DC
component and amplitude of Zi, j. Moreover, because of the finite sampling frequency
(1 kHz, see Section 3.4.1), misalignments smaller than one sampling period are ex-
pected, further decreasing the accuracy of the estimation. To improve accuracy, the
DC component and amplitude of Zi−k, j have to be scaled properly and the time-shift
(3.1) has to be extended with shifts smaller than one sampling period. To calculate the
optimal parameters, in a least mean squared error sense, Zi−k, j require interpolation
to obtain quasi-continuous signals. In this chapter a parabolic interpolation scheme



54 Maternal ECG suppression

is used, i.e., for each sample a parabola is fitted through that particular sample and
the adjacent samples on either side:

Z̃i−k, j = ζ1, j j2 +ζ2, j j+ζ3, j. (3.2)

Here Z̃i−k, j is the interpolated wave and~ζ j are the parabolic coefficients. The reason
for using parabolic interpolation is that it is the lowest-order polynomial interpolation
that can account for local extrema and has a continuous first derivative. Moreover, it
computational simplicity is favored over more complex interpolation schemes. The
time-shifted, DC offset compensated, and scaled wave Z′i−k, j can be calculated by:

Z′i−k, j = aZ̃i−k, j+b + c,

a ∈R,b ∈ {R∩ (−∆ts,∆ts)},c ∈R, (3.3)

with a the scaling parameter, b the required time-shift, c the DC component, and
∆ts the length of one sampling period. It has to be noted here that, as Z̃i−k, j is an
interpolated wave, Z′i−k, j is an interpolated wave as well. The optimal parameters â,
b̂, and ĉ are calculated by minimizing the MSE between the estimated wave Zi, j and
the time-shifted, offset compensated, scaled, and interpolated wave Z′i−k, j:

~∇

(
1

M′ ∑
j∈Fi−k

(
Zi, j−Z′i−k, j

)2

)
=~0, (3.4)

where ~∇ stands for the gradient
(

∂

∂a ,
∂

∂b ,
∂

∂c

)
. Here Fi−k is the set of samples that

do not contain artifacts of fetal ECG complexes and M′ is the number of samples
included in Fi−k.

Artifacts and fetal ECG complexes affect the calculation of the parameters â, b̂,
and ĉ and therefore reduce the accuracy of the maternal ECG estimation. By exclud-
ing samples that possibly contain artifacts and fetal ECG complexes from the calcu-
lation of these parameters, the accuracy can be improved [123]. Artifacts and fetal
ECG complexes generally distort the maternal ECG wave. Comparison of waves
with normalized amplitudes provides information about the rate of distortion and
consequently enables detection of samples containing artifacts or fetal ECG com-
plexes [123].

Prediction

The waves Zi, j in the maternal ECG are estimated by the weighted averaging of the
aligned and scaled waves of preceding maternal ECG complexes Z′i−k, j (3.3). The
weights used in this averaging are determined as the reciprocals of the MSE:

wi−k =

(
1

M′ ∑
j∈Fi−k

(
Zi, j−Z′i−k, j

)2

)−1

. (3.5)
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Since several preceding waves are included in the averaging, it can occur that
both Zi, j and Zi−k, j for a particular k are similarly distorted by a fetal ECG complex.
Consequently, exclusion of samples from Fi−k can be erroneous and as a result the
weight wi−k can be too large, i.e., a similar distortion of Zi, j and Zi−k, j causes the MSE
to be relatively small and hence the weight to be relatively large. Furthermore, it can
occur that preceding waves suffer from large distortions, resulting in relatively small
weights wi−k. These waves, however, still affect the averaged estimate of Zi, j. To
overcome these effects, only preceding waves are included in the weighted averaging
for which the weights wi−k are in the interval:

µw−σw≤wi−k≤µw +σw, (3.6)

with µw the mean weight and σw the square root of the weight variance.
The average maternal ECG wave Ẑi, j can subsequently be calculated by:

Ẑi, j =
∑k∈G wi−kZ′i−k, j

∑k∈G wi−k
. (3.7)

Here, G is the set of preceding waves with weights satisfying (3.6). The maximum
number of waves in G is restricted to the number of preceding waves N included in
the estimation of the maternal ECG. Assuming that the fetal ECG and maternal ECG
are not synchronized and disregarding the scaling of the waves, the amplitude of the
fetal ECG in the average maternal ECG wave Ẑi, j is reduced by a factor equal to the
number of waves included in G. The desired reduction of the fetal ECG amplitude in
the averaging is empirically set at 10. Since only preceding waves with weights satis-
fying (3.6) are included in the averaging, the number of preceding waves n included
in the estimation has to exceed 10. Assuming a normal distribution of the weights,
applying (3.6) results in n = 15.

3.2.3 Maternal ECG segment combination

As the waves Zi, j are estimated independently from each other, combination of the
individual estimates Ẑi, j into an estimate of the maternal ECG signal V̂2 (Fig. 3.2)
can result in discontinuities at the segment transitions due to different DC offsets.
To avoid this, linear interpolation is applied on the segment transitions. This inter-
polation is performed in an interval of 10 ms centered around the actual segment
transition.

3.3 Other methods for maternal ECG suppression

Several other techniques are implemented in the maternal ECG suppression block
of Fig. 3.1 for comparison to WAMES. These techniques are discussed briefly in
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this section. In addition, the performance of WAMES in fetal heart rate detection is
compared to the performance of ICA and hence ICA is discussed in this section as
well.

3.3.1 Spatial filtering

By regarding the abdominal maternal ECG as a superposition of three independent
and orthogonal sources, three independent signals ~V1, ~V2, and ~V3 are sufficient to
construct a fourth maternal ECG signal ~V4 [91]:

~V4 = λ1~V1 +λ2~V2 +λ3~V3. (3.8)

The coefficients λ1, λ2, and λ3 can be estimated by λ̂1, λ̂2, and λ̂3 by using the
optimization procedure of Hildreth and d’Esopo [124].

According to [91] the estimated coefficients are stable for 4 seconds. Conse-
quently, the optimization procedure is repeatedly applied on signal windows of 4
seconds. Moreover, the information contained in three signals appeared to be insuf-
ficient for all recordings [91], resulting in a suboptimal estimation of ~V4. For this
reason, in this chapter (3.8) is extended to 8 signals ~Vi with i = {1, . . . ,8}; each of
the 8 recorded signals (Fig. 3.5) is estimated using the other 7 signals. The reason
for extending (3.8) to 8 signals is the employed electrode configuration consisting of
8 abdominal electrodes; this configuration is discussed in Section 3.4.

3.3.2 Adaptive filtering

Noise canceling is a variation of adaptive filtering that can be highly advantageous
for maternal ECG suppression in antenatal abdominal recordings [90]. Adaptive
noise cancelers (ANC) build a reference maternal ECG and subtract this from the
abdominal recordings that contain both maternal ECG and fetal ECG. As a result,
the maternal ECG is attenuated whereas the fetal ECG remains unaffected. By using
an artificial reference, generated by the event-triggered averaging of maternal ECG
complexes, problems arising by the nonlinear propagation of the maternal ECG can
be overcome [117]. In the case of antenatal abdominal recordings this means that a
maternal ECG template is generated by averaging several consecutive maternal ECG
complexes, synchronized on the QRS complex. This maternal ECG template is sub-
sequently used as reference signal in the ANC; this technique is referred to as event
synchronous adaptive interference canceling (ESAIC) and implemented as described
in [117].

3.3.3 Template subtraction

Standard template subtraction techniques generate a maternal ECG template for the
complete maternal ECG complex by event synchronous averaging, i.e. before aver-
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aging the maternal ECG complexes are synchronized on the QRS complexes. This
template is subsequently linearly scaled to minimize the MSE with respect to the
maternal ECG complex that is estimated and subtracted [92].

Two different techniques to further improve this template and to generate this
template are mentioned in literature: the event synchronous interference canceler
(ESC) [96, 119] and linear prediction (LP) [118, 120], respectively.

Event synchronous interference cancelling

As respiration can cause variation in the amplitude of the maternal ECG complex,
gain adaption is preferred within each maternal ECG complex [96, 119], i.e., the
template is segmented and the required linear scaling is calculated for each segment
separately. Implementation of ESC is performed according to [96]; segmentation of
the template is performed similar to WAMES, as detailed in Section 3.2.1.

Linear prediction

After synchronization on the QRS complexes, for LP, the maternal ECG complexes
are not averaged like for the ESC (with equal weights), but rather are the weights for
the averaging calculated to minimize the MSE. Hence, the maternal ECG complex
~̂Vi can be estimated by the linear combination of preceding maternal ECG complexes
~Vi− j with weights λi− j:

~̂Vi =
nLP

∑
j=1

λi− j~Vi− j, (3.9)

with nLP the order of the prediction model. By minimizing the MSE between the esti-
mate ~̂Vi and the actual maternal ECG complex ~Vi the weights~λi = [λi−1, . . . ,λi−nLP ]

T

can be calculated:
~λi =

(
VT

i Vi
)−1 VT

i
~Vi (3.10)

with Vi =
[
~Vi−1, . . . ,~Vi−nLP

]T
. Implementation of LP is performed according to [118]

and hence nLP is set at 7.

Main differences with WAMES

As WAMES is based on template subtraction as well, both ESC and LP resemble
WAMES to some extent. However, the main differences with ESC are that with
WAMES the scaling of interpolated segments is performed before averaging, while
ESC does not use interpolation and generates an average template before scaling its
segments. Moreover, synchronizing of the segments in WAMES is not based on
synchronization of the QRS complexes, but rather on minimizing the MSE between
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the separate segments. Finally, in WAMES samples containing possible fetal ECG
complexes or artifacts are excluded from scaling parameter calculations and not all
preceding segments are included in the averaging (3.6). All these differences serve
to increase the accuracy of maternal ECG estimation.

With respect to ESC, WAMES and LP are more different. LP does not use seg-
mentation and artifact exclusion. Moreover, the weights for averaging in LP are de-
termined on a minimum MSE basis while this approach is not beneficial for WAMES;
due to segmentation, the contribution of noise in the weight calculation for the sep-
arate segments is too large, resulting in a reduced performance in the maternal ECG
estimation.

3.3.4 Independent Component Analysis

ICA is a statistical signal processing technique for separating observed signal mix-
tures into latent source signals. Given a set of observed signals V and assuming that
this set is generated by the statistically independent source signals S ICA, it can be
stated that [125]:

V = MICAS ICA +H. (3.11)

Here MICA is a constant full-rank matrix, referred to as the mixing matrix and H is
additive noise.

The goal of ICA is to estimate the independent source signals matrix S ICA, or
equivalently, to estimate the mixing matrix MICA. When ICA is applied to antenatal
abdominal recordings, the observed signals V are represented by the preprocessed
signals V2 (Fig. 3.1) and the independent source signals S ICA are represented by,
among others, the fetal ECG and maternal ECG.

To account for non-stationarities in the mixing matrix MICA due to e.g. fetal
movement, ICA is repeatedly applied on temporal windows of V2 with length of 4
seconds (Section 3.3.1), i.e. for each 4 seconds of data ICA is applied on the observed
signals, resulting in a mixing matrix MICA that is updated every 4 seconds.

Restriction of ICA is that the order of the independent signals cannot be con-
trolled and as a result, in consecutive calculations the source signals can be swapped.
To overcome this signal swapping problem, half-overlapping windows are used in
combination with a correlation scheme to re-order the independent signals [111].

The independent source signal representing the fetal ECG is selected automati-
cally based on a physiological model of the fetal heart rate [126]. Independent source
signals representing the maternal ECG but satisfying this model are excluded based
on maternal heart rate information obtained through detection of the maternal QRS
complexes in the recorded signals. When none of the independent signals satisfies the
physiological fetal heart rate model, the window length used for the input signals of
ICA is adapted; large non-stationarities can require shorter windows whereas estima-
tion of a stationary mixing matrix is improved when the window length is enlarged.
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Figure 3.5: Electrode configuration on the maternal abdomen.

For implementation of ICA the Joint Approximate Diagonalization of Eigenma-
trices (JADE) algorithm [127] is employed; a non-Gaussianity based solution to the
ICA problem.

3.4 Data and methodology for evaluation

The performance of WAMES in estimating the maternal ECG is assessed by com-
parison with the performance of other techniques on modeled antenatal abdominal
recordings. Reason for using modeled recordings is that in real abdominal record-
ings, the maternal ECG is affected by noise and fetal ECG and hence the absolute
performance cannot be assessed quantitatively.

In addition, the performance of WAMES in fetal heart rate detection is assessed
by comparing the performance to the performance of other techniques on real an-
tenatal abdominal recordings. The detected fetal heart rate values are validated by
comparison to the fetal heart rate detected from a simultaneously performed invasive
fetal ECG recording from the fetal scalp.

3.4.1 Data acquisition and modeling

The abdominal recordings are conducted with an M-PAQ amplifier (Maastricht In-
struments B.V., the Netherlands), a 16-channel system for physiological measure-
ments with programmable gain and sampling frequency and high input impedance
(108 Ω). For the abdominal recordings the gain is set at 500 and the sampling fre-
quency at 1 kHz.

The adopted electrode configuration consists of eight contact electrodes on the
maternal abdomen with a common reference as shown in Fig. 3.5. This configuration
has been chosen since it covers most of the uterine surface, while patient discomfort,
resulting from too many electrodes, is minimized.
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Modeling antenatal abdominal recordings

Ten 8-channel abdominal recordings of 60 seconds each are performed on a non-
pregnant subject with the electrode configuration of Fig. 3.5. To model antenatal
abdominal recordings, a fetal ECG signal recorded directly from the fetal scalp during
parturition and a Gaussian white noise source are superimposed on the maternal ECG
recordings. Note that this model is not an accurate representation of actual antenatal
abdominal recordings. However, it is suitable for the assessment of the maternal ECG
suppression performance.

For each 8-channel recording, 49 modeled antenatal abdominal recordings are
generated having different amplitude ratios between the maternal ECG, fetal ECG,
and Gaussian noise. Moreover, the fact that the models are generated using ten dif-
ferent abdominal recordings ensures that the models comprise different degrees of
variability in the maternal ECG morphology.

The amplitude ratios between maternal ECG, fetal ECG, and noise are defined as
the ratio between the root mean squared (RMS) amplitudes. The employed maternal
ECG to noise amplitude ratios range from 7 dB to 17 dB and the employed maternal
ECG to fetal ECG amplitude ratios range from 3 dB to 13 dB. Finally, the morpho-
logical variability of the different abdominal recordings ranges from 0.15 to 0.32.
This variability is defined as the RMS error between the normalized maternal ECG
complexes and an maternal ECG template, generated by averaging the normalized
maternal ECG complexes.

Real antenatal abdominal recordings

Seven 8-channel antenatal abdominal recordings of 10 minutes each are performed
on pregnant subjects during parturition with the electrode configuration of Fig. 3.5.
In addition, the direct fetal ECG is recorded simultaneously by an electrode posi-
tioned on the fetal scalp and passed on to the M-PAQ through the analog output of an
HP8040 fetal monitor (Hewlett-Packard).

The patients have gestational ages ranging from 37 to 41 weeks and the med-
ical indication for the group varies from healthy to preexistent hypertension and
preeclampsia.

3.4.2 Preprocessing

As stated previously, antenatal abdominal recordings generally constitute a mixture
of fetal ECG, maternal ECG and interferences such as motion artifacts, muscular
activity, and powerline interference. In preprocessing the abdominal recordings each
of these interferences is suppressed by means of applying a linear-phase filter.

Motion artifacts are suppressed by a 1000 tap FIR high-pass filter with fixed
cutoff frequency of 1.5 Hz. This cutoff frequency maximizes the suppression of
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the artifacts while minimizing distortion of the fetal ECG signals. The powerline
interference is centered around 50 Hz and suppressed by a 1000 tap FIR notch filter
with stop-band between 49 and 51 Hz. Harmonics of the powerline interference
and part of the noise originating from muscular activity (electromyogram, EMG) are
suppressed by a 1000 tap FIR low-pass filter with fixed cutoff at 70 Hz. As the EMG
exhibits spectral properties ranging from 0 to 200 Hz this filter only suppresses part
of the EMG. However, as the frequency range of the fetal ECG is limited by a upper
bound of 70 Hz [99], a lower cutoff frequency would result in distortion of the fetal
ECG.

3.4.3 Methodology of evaluation

The performance of WAMES in estimating the maternal ECG in the modeled antena-
tal abdominal recordings is compared to the performance of spatial filtering, ESAIC,
ESC, and LP by assessing the normalized MSE ε between V2 and V̂2 (Fig. 3.2):

ε =
∑∑

(
V2− V̂2

)2

∑∑V2
2

. (3.12)

In addition, the performance of WAMES is compared to ICA by assessing the
fetal heart rate detection in real antenatal abdominal recordings. The detection of the
fetal heart rate is performed by calculating the interval lengths between consecutive
fetal QRS complexes. In the independent source signal representing the fetal ECG
the QRS complexes are detected as described in Chapter 5, i.e. as local extrema
exceeding a variable threshold.

Detection of the fetal heart rate in the signals obtained by maternal ECG suppres-
sion through WAMES is not as straightforward as detection of the fetal heart rate in
the independent source signals; in contrast to ICA, WAMES provides an fetal ECG
signal for each recorded signal. Through PCA the inter-channel correlation of these
fetal ECG signals can be exploited, performing the previously described fetal heart
rate detection method on the principal component and hence solving this problem.

Performance of the fetal heart rate detection by both WAMES and ICA is assessed
by the sensitivity Se and the positive predictive value PPV:

Se (%) =
TP

TP+FN
·100, (3.13)

PPV (%) =
TP

TP+FP
·100. (3.14)

Here TP is the number of correctly detected fetal QRS complexes, FN the number of
undetected QRS complexes, and FP the number of falsely detected QRS complexes.
The golden standard to establish whether fetal QRS complexes are correctly detected
or missed are the QRS complexes detected from the simultaneously recorded fetal
ECG signal from the fetal scalp.
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Figure 3.6: Results of maternal ECG subtraction on (a) modeled antena-
tal abdominal recordings and 3.6(b) preprocessed real ante-
natal abdominal recordings. The maternal ECG subtraction
in (a) is performed by spatial filtering, ESAIC, ESC, LP, and
WAMES. The upper graph shows the modeled antenatal abdom-
inal recording with maternal ECG to noise ratio 17 dB and ma-
ternal ECG to fetal ECG ratio 6 dB. The 5 centered graphs show
the resulting signals after subtraction of the maternal ECG esti-
mates. The bottom graph shows the fetal ECG signal (for clar-
ity shortened to fECG) used in the modeled abdominal record-
ing. The maternal ECG subtraction in 3.6(b) is performed by
WAMES alone and comprises a best-case scenario in the up-
per two graphs and a worst-case scenario in the bottom two
graphs. The dotted lines indicate the positions of detected fetal
QRS complexes. Note that for the worst-case scenario the peaks
are detected in the principal component which, in contrast to the
real signal shown, does exhibit some fetal ECG signal.

3.5 Results and discussion

3.5.1 Comparison on maternal ECG estimation

Fig. 3.6(a) shows a modeled antenatal abdominal recording and the signals result-
ing after subtraction of the maternal ECG estimates by the different techniques. The
depicted signals comprise 3 seconds of a 60 second recording. To evaluate the mod-
eled antenatal abdominal recordings with respect to real recordings, in Fig. 3.6(b)
the subtraction of maternal ECG estimates by WAMES on real antenatal abdominal
recordings is depicted. Fig. 3.7 shows ε for different amplitude ratios between the
maternal ECG, the fetal ECG, and the noise and for different degrees of variability in
the maternal ECG morphology.

The results depicted in Fig. 3.7 show that WAMES performs better in subtracting
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Figure 3.7: Normalized mean squared error ε between the maternal ECG
(here, for clarity shortened to mECG) used in the modeled an-
tenatal abdominal recordings and the estimate of this mater-
nal ECG for (a) different maternal ECG to noise amplitude ra-
tios, (b) different maternal ECG to fetal ECG (also shortened
to fECG) amplitude ratios, and (c) different degrees of maternal
ECG morphological variability. For each plot the values of ε

are obtained by averaging over the other dimensions, e.g. for
(a) the values of ε are obtained by averaging over all maternal
ECG to fetal ECG amplitude ratios and maternal ECG variabil-
ity values.
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Table 3.1: Performance assessment of the detection of fetal QRS complexes.
The values in this table represent percentages (%).

Se σSe range PPV σPPV range

Spat. fil. 82.7 3.4 80.0-90.4 91.6 2.8 85.7-94.1
ESAIC 89.8 3.6 87.2-97.2 94.2 2.8 88.4-96.7
ESC 90.1 3.5 87.6-97.5 94.4 2.7 88.9-96.8
LP 90.1 4.0 86.3-97.6 94.2 2.8 88.7-98.9
ICA 91.8 4.0 88.2-99.4 94.8 2.6 89.6-97.3
WAMES 94.8 3.7 89.6-99.3 95.1 1.8 92.5-97.7

the maternal ECG than spatial filtering, ESAIC, ESC, and LP for almost all modeled
antenatal abdominal recordings. Moreover, although the differences in performance
by WAMES on the one hand and ESAIC, ESC, and LP on the other hand appear to
be small, in particular for Fig. 3.7(a) and Fig. 3.7(b), even these small differences in
performance can be of major significance. The error in the maternal ECG subtraction
is generally of the same order of magnitude as the fetal ECG, especially in early
stages of pregnancy, and hence it can significantly corrupt the remaining fetal ECG
signal.

For recordings with a small maternal ECG to fetal ECG amplitude ratio, i.e. a
large fetal ECG signal, WAMES underperforms ESC. The large amplitude of the fetal
ECG complexes causes significant inaccuracies in the maternal ECG segmentation,
resulting in a decreased accuracy of maternal ECG estimation. Since ESC performs
segmentation after averaging of consecutive maternal ECG complexes, the fetal ECG
amplitude is reduced in this average maternal ECG complex and hence the segmen-
tation is affected to a smaller extent. It has to be remarked, though, that this maternal
ECG to fetal ECG amplitude ratio is not commonly encountered in medical practice.

Increased variability in the maternal ECG morphology causes no significant dif-
ference in estimation error ε for WAMES. In contrast, the other techniques suffer
from an increased ε with increasing variability.

3.5.2 Comparison on fetal heart rate detection

In total 70 minutes of data is analyzed, containing 104 fetal QRS complexes. The
performance of the detection of these complexes by the aforementioned techniques
including ICA is presented in Table 3.1, in which Se and PPV are the values averaged
over the 7 recordings, σSe and σPPV are the standard deviations, and range indicates
the minimum and maximum values.

The results presented in Table 3.1 show that the performance of WAMES in de-
tecting the fetal heart rate is slightly better than the performance of the other tech-
niques; the Se of WAMES is 3% larger than the Se of the second best technique
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(ICA). The PPV of WAMES is nearly equal to the PPV of the other techniques.

3.5.3 Discussion

In general, WAMES performs better in maternal ECG subtraction and fetal heart rate
detection than the other techniques. At first, the 3% difference with ICA might seem
rather small. However, since WAMES provides spatial information on the fetal ECG,
whereas ICA cannot provide this information unless three independent fetal ECG
sources are determined, this 3% difference should be considered as an additional
advantage.

Notwithstanding this advantage of WAMES, in cases of maternal ectopic beats,
WAMES is expected to underperform in suppressing the maternal ECG and detect-
ing the fetal heart rate with respect to ICA. WAMES is incapable of handling the ad-
ditional maternal ECG complexes sufficiently accurately as WAMES assumes only
small variations in the maternal ECG morphology.

Moreover, subtraction of the estimated maternal ECG signal by WAMES is anal-
ogous to the superposition of an error signal to the fetal ECG signal. This error signal
constitutes the difference between the maternal ECG and the maternal ECG estimate,
and generally has a peaky nature. For recordings with a smaller fetal ECG ampli-
tude, i.e., recordings in stages of pregnancy much earlier than labor, these peaks can
be expected to have the same order of magnitude as the fetal ECG and hence might
affect the performance of WAMES. For these recordings the fetal heart rate detection
by ICA is therefore expected to outperform the fetal heart rate detection by WAMES.
In future implementations of fetal heart rate detection methods it can, however, be
advantageous to use WAMES as preprocessing step for ICA, exploiting the strong
features of both techniques.

A final remark about the presented fetal heart rate detection performances can be
made by stating that these results can be improved by applying a dedicated fetal QRS
detection method instead of the method discussed in Section 3.2.1.

3.6 Conclusions

In this chapter, a new technique (WAMES) is presented to suppress the maternal ECG
from antenatal abdominal recordings in order to extract the fetal ECG and fetal heart
rate. WAMES is compared to several other maternal ECG suppression techniques,
viz. spatial filtering, ESAIC, ESC, and LP. Moreover, the suitability of WAMES for
fetal heart rate monitoring is assessed by comparing the performance in detecting the
fetal QRS complexes to the performance of the aforementioned techniques plus ICA.
WAMES proves to be more accurate in maternal ECG suppression than the other
techniques and performs also better in fetal heart rate detection. In addition, imple-
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mentations of WAMES in Matlab R© (The Mathworks, Inc.) on a laptop computer
with a 1.7 GHz Pentium R© processor show that the maternal ECG can be suppressed
in real-time. This implementation is executed on a clinical prototype, NEMO, that is
currently evaluated in the Máxima Medical Center, the Netherlands. Provisional ex-
perience of clinicians is very positive; the added value of the fetal ECG and spectral
analysis of the fetal heart rate, however, still needs to be further investigated.

Although WAMES outperforms the other techniques in maternal ECG subtrac-
tion, the differences in performance by WAMES and the other techniques appear to
be rather small. However, in clinical practice the variability in the maternal ECG mor-
phology is significantly larger than the variability in the recordings used in this study.
The reason for this is that the subjects participating in this study were, due to ethi-
cal considerations, in general healthy women lying in a comfortable position during
the recordings. However, in practice, the most relevant cases are those pregnancies
where either mother or fetus is suffering from illness or distress and consequently the
mother is not lying comfortable and still anymore. In these situations the maternal
ECG morphological variability is expected to be 0.25 or larger (Fig. 3.7(c)) and, as a
result, the performance of WAMES is expected to improve with respect to the other
techniques.

In conclusion, it can be stated that WAMES provides a tool for maternal ECG
suppression in antenatal abdominal recordings for which the performance is relatively
insensitive to noise and variability in the maternal ECG morphology. When the main
interest for maternal ECG suppression is monitoring of the fetal heart rate, no con-
clusive statement can be made whether WAMES should be preferred over the other
techniques as the available amount of abdominal recordings is not sufficient to ren-
der statistical significance. However, for the recordings that are available, WAMES
slightly outperforms the other techniques. When the aim is to monitor and analyze of
the fetal ECG, WAMES is preferred over the other techniques as it provides relatively
accurate spatial information on the fetal ECG, possibly enabling future implementa-
tions of fetal vectorcardiography.

Future research, besides the combined employment of WAMES and ICA, fetal
vectorcardiography, and development of a dedicated fetal QRS detection method,
includes extraction and enhancement of fetal ECG complexes and assessment of the
performance of WAMES in cases of maternal or fetal pathology.
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Chapter 4

A robust physiology-based source
separation method for QRS detection in
low amplitude fetal ECG recordings

The signals remaining after subtraction of the maternal ECG in general do not have a
signal to noise ratio that renders them suitable for estimation of the fetal VCG right
away. In order to enhance the signals, the periodicity of the ECG can be exploited.
However, in order to exploit the periodicity, the instantaneous fetal heart rate needs to
be accurately known. To facilitate detection of the heart rate, in this chapter a method
is presented that utilizes physiological information of the fetal ECG to produce a
linear combination of the signals remaining after maternal ECG suppression. This
linear combination entails an ECG signal with improved signal to noise ratio and
hence facilitates detection of the fetal heart rate.1

4.1 Introduction

High-risk pregnancies are becoming more prevalent because of the progressively
higher age at which women get pregnant. Ten to twenty percent of all pregnancies are
complicated by preterm delivery, fetal hypoxia, fetal growth restriction, or hyperten-
sion, yielding a large need for pregnancy monitoring technologies. For monitoring of
the well-being of the fetus, the cardiotocogram (CTG; a recording of fetal heart rate
in combination with uterine contractions) is commonly used. Subtle changes in fetal
heart rate variability may occur as the first signs of fetal distress [8], which could still
be reversible at this point if appropriately treated. Extensive studies have, however,
shown that the diagnostic predictive value of the CTG is low [20]. To improve this
predictive value, additional information is needed, either from more sophisticated
analysis of the CTG, such as spectral analysis of the fetal heart rate variability [115],

1This chapter is based on the paper published as R. Vullings, C.H.L. Peters, M.J.M. Hermans, P.F.F.
Wijn, S.G. Oei, and J.W.M. Bergmans, ”A robust physiology-based source separation method for QRS
detection in low amplitude fetal ECG recordings”, Physiol Meas. 2010;31(7):935–51.
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or from other sources such as the fetal electrocardiogram (ECG).
With respect to fetal ECG monitoring as an additional source of information, the

currently available technique has one important limitation. This limitation is that
recording of the fetal ECG is currently only possible during labor, by applying an
electrode to the fetal scalp. Applying this electrode is cumbersome for both patient
and clinician. As an alternative, the fetal ECG can also be recorded non-invasively
from the maternal abdomen. In contrast to the invasive ECG, this abdominal ECG
recording can be performed in all stages of pregnancy, but due to the typically low
signal to noise ratio (SNR) of the abdominal fetal ECG, this non-invasive technique
has not found its way to clinical practice yet.

The maternal ECG is generally the dominant interference in the abdominal fe-
tal ECG recordings. Numerous methods to suppress this maternal ECG have been
proposed in literature [92, 94, 95, 118] and in Chapter 3, of which many perform rea-
sonably well. Even so, because the fetal ECG recordings are also corrupted by other
interferences and noise, even after suppression of the maternal ECG, the SNR of
the fetal ECG is generally still relatively low. The most straightforward approach to
overcome this problem is to enhance the SNR of the fetal ECG by averaging several
consecutive ECG complexes, all synchronized on their QRS complex. Unfortunately,
this approach requires knowledge on the locations of QRS complexes, which are dif-
ficult to determine from the low SNR fetal ECG recordings [128, 129].

Consequently, in order to fully exploit the time correlation of the fetal ECG,
the abdominal fetal ECG recordings need additional processing – next to maternal
ECG suppression – to facilitate detection of the QRS complexes. In a simplified
model, the electrical activity of the heart can be assumed to be represented by a single
electrical field vector that varies in amplitude and orientation over time [32, 64]. The
time-path of this field vector is referred to as the vectorcardiogram (VCG). In this
model, each ECG signal corresponds to the projection of the VCG onto the lead
vector indicating the electrode position with which the ECG signal is obtained. This
projection constitutes a linear combination of the three orthogonal components into
which the VCG can be decomposed. As a consequence all abdominal fetal ECG
signals have to be spatially related to one another.

To exploit this spatial relation, several powerful mathematical techniques are
available, of which principal component analysis (PCA) and independent compo-
nent analysis (ICA) are the most prominent [130, 131]. These techniques operate
by linearly combining the fetal ECG signals in such way that the resulting combina-
tions exhibit either maximum variances (PCA) or maximum statistical independency
(ICA) [132]. A disadvantage of these techniques is that the resulting linear com-
binations are randomly ordered, requiring additional processing to determine which
combination should be attributed to the fetal ECG.

Another disadvantage is that PCA and ICA, although they are categorized as
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source separation techniques, in general do not provide all three independent, or-
thogonal components (i.e. separate sources) of the VCG, but usually only one or
two [133]. In addition, they do not include physiological considerations and, hence,
are generally referred to as blind source separation (BSS) techniques. This lack of
physiological basis can render the BSS techniques less effective in separating the fe-
tal ECG signals from a mixture of these ECG signals and noise. In fact, typically
in cases of low SNR, it occurs frequently that the BSS techniques are not capable
of extracting the fetal ECG signals. To overcome this problem of robustness against
noise – and as a side effect, also the problem of unknown order of the generated
linear combinations – in this chapter a physiology-based source separation (PBSS)
technique is developed.

The PBSS technique operates by spatially combining the abdominal signals, ba-
sed on knowledge about the positions of the recording electrodes, to obtain a three-
dimensional representation of the signals. This three-dimensional representation is
related to the fetal VCG and, although it is still corrupted by noise, typically exhibits
a higher SNR than the signals that were available before the spatial combining. The
main advantage of this SNR enhancement is that it is relatively robust to noise. After
spatial combination of the fetal ECG signals, the three-dimensional representation
is approximated by fitting an ellipse to the combined data points. The paradigm of
fitting a two-dimensional ellipse to three-dimensional data is explained in Section 4.2.
The sources that are associated to the fetal ECG can, subsequently, be obtained by
projecting the three-dimensional representation of the abdominal signals onto the
long axis, the short axis and the normal vector of this ellipse.

To recapitulate, in this chapter a PBSS technique is developed that overcomes
robustness issues that are associated with blind techniques such as PCA and ICA.
The PBSS technique is used to generate a linear combination of fetal ECG signals
in such way that it exhibits increased SNR with respect to the original fetal ECG
signals, thus facilitating detection of the QRS complexes. By averaging consecutive
ECG complexes, synchronized on the QRS complexes, in turn, the non-invasive fetal
ECG signals can be enhanced, potentially providing them with sufficient quality to
support clinical decision-making.

The PBSS technique is evaluated by assessing its performance in spatially com-
bining fetal ECG signals obtained from real abdominal recordings on women with
various gestational ages and detecting the QRS complexes from the spatially com-
bined signal. The performance is gauged by comparing it to the performance of both
PCA and ICA on the same abdominal signals. More specifically, the performance of
the PBSS technique is compared to that of PCA and ICA on unprocessed abdominal
recordings (i.e. without suppression of the maternal ECG) and to that of PCA and
ICA on preprocessed abdominal recordings (i.e. after suppression of the maternal
ECG). The latter two approaches are expected to improve the performance of the re-
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Figure 4.1: Block scheme of the physiology-based source separation tech-
nique. Each of the blocks is discussed in detail in Section 4.2
with the exception of the Preprocessing block, which is discussed
in Section 4.4. On the right, typical examples of the signals that
are used as inputs for the various blocks are depicted.

spective BSS techniques PCA and ICA in the sense that the maternal ECG does not
longer play a role in the source separation. The PCA and ICA technique are briefly
discussed in Section 4.3, while the methodology for the comparison is discussed in
Section 4.4. The results are presented in Section 4.5 and finally discussed in Sec-
tion 4.6.

4.2 Physiology-based source separation

The PBSS technique is discussed in separate parts, each in a different subsection.
The mutual connection between these parts of the PBSS technique is schematically
depicted in Fig. 4.1.
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4.2.1 VCG estimation

The abdominal fetal ECG signals can be assumed linear combinations of three or-
thogonal signals that together constitute the VCG. This implies that three indepen-
dent ECG signals are enough to fully describe the VCG, meaning that all additional
ECG signals are redundant, yet can be used to enhance the robustness of the VCG
determination against noise. Taking the VCG to be represented by the [3×T ] matrix
S, where each row represents one of the orthogonal signals of length T , and taking
the N abdominal fetal ECG signals to be represented by the [N×T ] matrix V, the
relation between the VCG and ECG can be described by

V = DS, (4.1)

with D the [N×3] matrix containing electrode positions. This matrix is determined
from analysis of photographs of the abdomen, taken from several, orthogonal direc-
tions. The linear combination of the three orthogonal signals is, thus, described by
the projection of the VCG S onto the electrode position vector (i.e. lead vector), as
mentioned in Section 4.1. Inverting Eq. (4.1) gives

S =
(
DT D

)−1 DT V = D†V (4.2)

where D† is the Moore-Penrose inverse of the matrix D, also referred to as the inverse
Dower matrix [47]. The calculation of the VCG is illustrated in Fig. 4.1 as VCG esti-
mation. It has to be noted, here, that the ECG signals V comprise several heartbeats
and that the VCG S therefore shows the time path of the electrical field vector for
several heartbeats overlayed on one another.

In addition, it has to be noted that the VCG estimation limits the SNR gain that
can be potentially reached by the PBSS technique. That is, by the weighted combi-
nation of individual ECG signals – as done, albeit in different forms, by PCA and
ICA – the possible increase in SNR is larger than can be reached from the projection
of S onto any vector. However, since the goal of the PBSS technique is not to obtain
a maximum SNR but to provide a means for robustly detecting QRS complexes, this
limitation of the PBSS technique is of minor concern. In fact, the reason for adopting
the VCG estimation approach in the PBSS technique is to ensure that spatial correla-
tion is exploited in all cases – even when this correlation cannot be directly assessed
from the ECG signals themselves – to, at least, some extent.

4.2.2 Amplitude sorting

The QRS complexes of the ECG generally entail the parts with the largest amplitude.
However, because these QRS complexes also comprise only a small fraction of the
ECG signals, the fetal VCG S usually represents itself as a scatter plot in which most
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points in the plot will be focused near the origin of the axes system. Since these points
(i.e. the points near the origin) are not associated to the QRS complexes, omitting
these points from the scatter plot results in a scatter plot in which most points are
associated with the QRS complexes. This omission is justified since the purpose of
the PBSS technique is to spatially combine the fetal ECG signals in such way that the
SNR of the QRS complexes is enhanced, rather than that the SNR of the complete
ECG signals is enhanced. As the QRS complex of a fetus lasts about 40 ms [55] and
the time between two heartbeats lasts about 400 ms (i.e. a heartrate of 150 beats per
minute), only the top 10% of the points needs to be retained (i.e. the points with the
largest distance from the origin of the scatter plot). To prevent potentially present
artifacts from affecting the further processing of the data points, any point that is
further away from the origin than twice the mean distance, determined over the points
remaining after omission of the bottom 90%, is omitted as well. The omission of the
low amplitudes and potential artifacts in the VCG scatter plot is indicated in Fig. 4.1
as amplitude sorting.

Besides the fact that the QRS complexes exhibit a superior SNR with respect to
the rest of the ECG, they have another property that renders them advantageous to
the purpose of the PBSS technique: they have an almost planar shape [134]. As a
consequence of this planar shape, the scatter plot of the overlayed QRS complexes
can be approximated by a two-dimensional mathematical function. Since random
noise would cause the scatter plot to have a circular shape (i.e. a spherical shape in
three dimensions), any spatial correlation would interfere with the symmetrical shape
of this circle, causing it to obtain a preferential direction. This preferentially directed
scatter plot of overlayed QRS complexes is approximated here by an ellipse.

4.2.3 Ellipse fitting

To facilitate the fitting of the two-dimensional ellipse to the three-dimensional scatter
plot, each point in the scatter plot can be projected onto the three orthogonal planes
of a Cartesian coordinate system. In each of these planes, the scatter plot can again
be approximated by an ellipse, but now in a two-dimensional plane. At first sight
this might pose a problem to the ellipse approximation in the three-dimensional scat-
ter plot, as the three orthogonal ellipses fitted in the two-dimensional planes cannot
readily be combined to yield a single ellipse in three-dimensional space. However,
the main interest in the PBSS technique is to find the preferential direction of the
scatter plot (i.e. the direction of the long axis of the ellipse) and this direction can
be readily obtained from combination of the preferential directions in the three two-
dimensional ellipse fits. In addition, as in each of the orthogonal planes two compo-
nents of the three-dimensional preferential direction are determined, each component
is determined twice. That is, in the xy-plane, the x and y component of the prefer-
ential direction are determined and in the xz-plane the x component is determined a
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second time. The match between these two independent determinations yields a di-
rect way to assess the reliability of the ellipse fits; good correspondence between the
various components signifies an accurate ellipse fit in each of the orthogonal planes,
whereas poor correspondence signifies an inaccurate ellipse fit and thus an inaccurate
estimation of the preferential direction in the scatter plot.

The ellipses are fitted in the two-dimensional planes using a least squares ap-
proach. In this approach the ellipse is described by the conic equation:

f (~x,~a) = a1x2 +a2xy+a3y2 +a4x+a5y+a6 = 0. (4.3)

For given ~a, the ellipse is fully described and only for points ~xi that lie exactly on
the ellipse the conic equation of Eq. (4.3) will equal zero. Any deviation in the conic
equation for ~xi will therefore yield a measure for the error of the ellipse fit. By
minimizing the mean square of this error, ε:

ε =
1
T

T

∑
i=1

(
a1x2

i +a2xiyi +a3y2
i +a4xi +a5yi +a6

)2
(4.4)

the optimal estimate ~̂a for the ellipse parameters can be assessed.
Prior to estimation of the ellipse parameters, the potential bias of the ellipse is

removed by subtracting the mean value of the scatter points across each dimension.
The fitting of an ellipse to the scatter plot is indicated in Fig. 4.1 as ellipse fit.

4.2.4 Orthogonal heart axis definition

As mentioned previously, the preferential direction of the scatter plot is approximated
by the direction of the long axis of the ellipse. In the two-dimensional planes onto
which the scatter plot is projected, the direction and the amplitude of this long axis
can be readily assessed by determining the distance |~rlong| and the orientation φlong
between the origin of the fitted ellipse and the point on the ellipse for which the
distance to the origin is largest.

With the amplitude and orientation of the long axis determined for each orthogo-
nal plane, the long axis can be decomposed into two components; e.g. for the xy-plane
it can be decomposed into

rx
long =

∣∣~rlong
∣∣cosφlong and ry

long =
∣∣~rlong

∣∣sinφlong. (4.5)

The direction of the long axis in three-dimensional space follows from fitting the
ellipse in all three orthogonal planes and subsequent averaging of each of the twice
determined (as discussed in Section 4.2.3) long axis components, i.e. rx

long, ry
long, and

rz
long.
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By projecting the scatter plot onto this three-dimensional long axis, one of the
three fetal ECG sources S PBSS can be obtained. The other two sources can be de-
termined straightforwardly, i.e. by projecting the scatter plot onto the short axis of
the fitted ellipse and onto the normal vector of the ellipse plane. The direction of the
short axis of the ellipse is determined similarly as the direction of the long axis, ex-
cept that the length |~rshort| and orientation φshort of the short axis are determined from
the point on the ellipse at orientation φshort = φlong +

π

2 . The direction of the normal
vector, in turn, is determined by

~rnormal =~rlong×~rshort, (4.6)

where •×• denotes the vector-product. The determination of the directions of these
three axes (i.e. the long axis, short axis, and normal vector) are indicated in Fig. 4.1
as orthogonal heart axis definition.

4.2.5 VCG projection

Although the projection of the scatter plot onto the three axes of the fitted ellipse
provides three linearly independent sources of the fetal ECG, the method as described
in this section may not seem a source separation technique. However, when recalling
that the scatter plot of the fetal VCG is obtained by multiplying the ECG signals
matrix V with D†, the mixing matrix MPBSS that maps the ECG signals onto the
independent sources can be expressed as

MPBSS =


~rlong
~rshort
~rnormal

...

D†. (4.7)

Here, the dots on the bottom rows indicate potential projections onto other directions.
These latter projections, however, do not represent any of the fetal ECG sources. The
independent sources S PBSS are subsequently determined as

S PBSS = MPBSSV. (4.8)

The projection of the VCG onto the axes of the fitted ellipse is indicated in
Fig. 4.1 as VCG projection.

In Fig. 4.2, the PBSS method is illustrated by means of three examples. These ex-
amples comprise some of the original fetal ECG signals, the amplitude sorted VCG’s
and their corresponding ellipse fits, and the fetal ECG signals originating from the
VCG projection. The three depicted examples each have different SNR; the first has
relatively high SNR, the second has average SNR, and the last has an SNR of zero
(i.e. the fetal ECG signals are replaced by Gaussian noise signals).
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(a)

(b)

(c)

Figure 4.2: Illustration of the PBSS method. In (a) the method is applied on
fetal ECG signals with a relatively high SNR, in (b) the method
is applied on signals with an average SNR, and in (c) the method
is applied on Gaussian noise signals. For each of the examples,
the graphs on the left show two of the N recorded fetal ECG
signals. The center plot shows the scatter plot of the amplitude
sorted VCG and its associated ellipse fit. The right plot shows
the source signal resulting from projection of the VCG onto the
long axis of the ellipse.
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From the examples in Fig. 4.2 it can be seen that, as expected, the fitted ellipse
becomes more and more spherical with lower SNR. That is, the VCG scatter plot
loses its preferential direction when the noise becomes more dominant.

4.3 Blind source separation

4.3.1 Principal component analysis

In PCA the correlated fetal ECG signals V are transformed into a number of uncor-
related signals called principal components. The first principal component accounts
for as much of the variability in V as possible. In turn, each succeeding components
accounts for as much of the remaining variability as possible.

The principal components can be calculated using the covariance method [135].
In this method, the fetal ECG signals V are multiplied with an orthonormal transfor-
mation matrix P such that the resulting sources S PCA are uncorrelated:

S PCA = PT V (4.9)

with the constraints that cov(S PCA) is a diagonal matrix and that PT = P−1. Conse-
quently, with substitution of Eq. (4.9)

cov(S PCA) = E
[
S PCAS T

PCA
]

= PT E
[
VVT ]P

= PT cov(V)P. (4.10)

Since cov(S PCA) is a diagonal matrix, Eq. (4.10) is nothing more than an Eigenvector
problem:

Pcov(S PCA) = cov(V)P. (4.11)

Thus, by solving the Eigenvector problem of Eq. (4.11), the orthonormal transforma-
tion matrix P can be assessed and, using Eq. (4.9), the sources S PCA determined.

The source that represents the fetal ECG is selected from the N sources by visual
inspection.

4.3.2 Independent component analysis

The assumption of uncorrelated source signals in PCA is extended by the assumption
of statistical independency for ICA. ICA operates by estimating both the independent
sources of the fetal ECG S ICA, defined as

S ICA = MICAV, (4.12)
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and the mixing matrix MICA by linearly combining the fetal ECG signals V in such
way that the resulting combinations exhibit a distribution that is as little Gaussian as
possible. The Central Limit Theorem states that the distribution of a sum of random
variables tends towards a Gaussian distribution [136]. Thus, a combination of two
random variables exhibits a distribution that is closer to a Gaussian distribution than
the distribution of any of the two original variables. Hence, minimizing the Gaus-
sianity of the source signals, maximizes their statistical independency.

In fact, the ICA approach is to some extent similar to the developed PBSS tech-
nique. Since signals containing only Gaussian noise would yield a spherical scatter
plot in the PBSS technique, the search for a preferential direction in the scatter plot
can be regarded as the maximization of the non-Gaussianity of the source signals.
The main difference between the two techniques, however, is that the PBSS tech-
nique, before maximizing the non-Gaussianity, uses physiological knowledge on the
spatial correlation of the signals by calculating the VCG, reducing the dimension of
the problem from N to 3.

For implementation of ICA implementation, the FastICA algorithm [137] is used.
As with PCA, the source representing the fetal ECG is selected from the calculated
independent sources by visual inspection.

4.3.3 Application of BSS techniques

The PCA and ICA techniques are both applied on the fetal ECG signals in two dif-
ferent ways. In the first way, they are applied similar to the PBSS technique: both
PCA and ICA are applied on fetal ECG signals that have been preprocessed to sup-
press the maternal ECG. The results of these approaches are labeled as augmented
PCA (aPCA) and augmented ICA (aICA). In the second way, both BSS techniques
are applied on fetal ECG signals in which the maternal ECG has not yet been sup-
pressed. The reason for using this second approach as well is that both PCA and ICA
are capable of extracting a fetal ECG source signal from unprocessed abdominal fetal
ECG recordings [130, 131]. The source signals resulting from this approach might
differ significantly from the ones determined from the preprocessed ECG recordings
as potential negative aspects of the maternal ECG suppression do no longer play a
role. The source signals resulting from the second approach are labeled PCA and
ICA.

It has to be noted the comparison between the PBSS technique, aPCA, and aICA
on the one hand and PCA and ICA on the other hand at first sight seems to be un-
fair as PCA and ICA have to deal with more interferences (i.e. the maternal ECG)
than PBSS, aPCA, and aICA. However, as most applications of PCA and ICA in the
field of fetal monitoring are used in the way that PCA and ICA are used here, the
application of PCA and ICA is included in this chapter for reasons of completeness.

As with the aPCA and aICA approach, also for PCA and ICA the source sig-
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Figure 4.3: Photograph of the electrode configuration and the NEMO data
acquisition system. The common reference electrode near the
umbilicus is not attached in this photograph. (Photo by Bart
van Overbeeke.)

nal that represents the fetal ECG is selected from the calculated sources by visual
inspection.

4.4 Evaluation

4.4.1 Fetal ECG signals

Data acquisition and preprocessing

The fetal ECG signals are recorded from the maternal abdomen using 8 contact elec-
trodes on the maternal abdomen with a common reference near the umbilicus (see
Fig. 4.3). The signals recorded with these electrodes are digitized using the NEMO
system (Maastricht Instruments BV, the Netherlands), an 8-channel dedicated ampli-
fier with programmable gain and sampling frequency, set at 500 and 1 kHz, respec-
tively, and high input impedance.

The signals acquired from the maternal abdomen contain a mixture of fetal ECG,
maternal ECG, muscular activity, and other interferences. The maternal ECG, be-
ing the predominant interference, is suppressed by the dynamic template subtraction
technique presented in Chapter 3. The other interferences are partly suppressed using
frequency-selective filtering, but due to the overlap with the frequency content of the
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fetal ECG [99] a significant fraction of these interferences remains. The filtering and
the suppression of the maternal ECG are referred to in Fig. 4.1 as preprocessing.

Patient demographics

In total, 17 recordings of 5 minutes each are performed on 17 different patients,
ranging between 21 weeks of gestational age and term. For one of the recordings
at term, also the invasive fetal scalp ECG was simultaneously recorded. All women
were healthy and had uncomplicated singleton pregnancies.

4.4.2 Evaluation criteria

The performance of the developed PBSS technique is evaluated by comparing it to the
performance of the BSS techniques aPCA and aICA (and PCA and ICA). To quantify
the performance, the quality of the determined linear combination (i.e. source signal)
of the fetal ECG signals, two approaches are used.

In the first approach, the percentage of fetal QRS complexes that are detected
correctly in the linear combination serves as measure of the performance. The per-
centage of correctly detected QRS complexes is expressed here by the sensitivity Se
and positive predictive value PPV:

Se (%) =
TP

TP+FN
·100 (4.13)

PPV (%) =
TP

TP+FP
·100, (4.14)

with TP the number of correctly detected fetal QRS complexes (true positives), FN
the number of undetected QRS complexes (false negatives), and FP the number of
falsely detected QRS complexes (false positives). For the first sixteen recordings
mentioned above, these numbers are assessed by visual analysis, while for the last
recordings they are assessed from the comparison to the simultaneously performed
invasive scalp ECG recording. The QRS complexes are detected in the linearly
combined signal as peaks exceeding an adaptive threshold [46, 138]. This detection
method is further detailed in Chapter 5.

For the second approach of quantifying the performance, the SNR of the deter-
mined linear combination is estimated. This is achieved by using the detected QRS
complexes to calculate an average ECG complex for the linear combination. By com-
paring this average ECG complex ~̂V to the various ECG complexes ~Vi in the linear
combination, a measure ψSNR for the SNR can be obtained:

ψSNR (dB) = 10log
1
n

n

∑
i=1

~̂V~̂V T(
~Vi−~̂V

)(
~Vi−~̂V

)T , (4.15)
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with n the number of ECG complexes in the 5 minute long signals. Note that both the
averaged ECG and the individual ECG complexes are represented by a [1×T ] row
vector here instead of by a [N×T ] matrix as in Eq. (4.1) because the linear combina-
tion yields only one signal.

4.5 Results

In Fig. 4.4(a) an example of an 8 lead fetal ECG recording is shown for the pa-
tient at term, for which also the invasive fetal ECG was recorded simultaneously. In
Fig 4.4(b) the calculated sources for each source separation technique (i.e. PBSS,
aPCA, aICA, PCA, and ICA) are shown, together with the simultaneously recorded
fetal scalp ECG signal. The circles in the plot indicate the detected QRS complexes
and for the PBSS technique only the source along the long axis of the fitted ellipse
is depicted. Note that for the aPCA method, at about 8.7 s, one of the fetal QRS
complexes is missed by the peak detection algorithm. The graphs in Fig. 4.4 only
show the signals for a period of 10 s and for one patient.

The results of the evaluation of either method in terms of the sensitivity, the
positive predictive value, and the SNR for all recordings is shown in Figs. 4.5, 4.6,
and 4.7.

The results in Figs 4.5–4.7 indicate that PCA and ICA perform worse than the
other techniques for almost all recordings. Intuitively, this difference in performance
can be explained by the fact that both PCA and ICA can maximally calculate 8 source
signals from the 8-channel abdominal fetal ECG recordings [135,136]. Without prior
suppression of the maternal ECG and other interferences, most of the 8 calculated
source signals still are a linear combination of the actual source signals. That is, if
each of the abdominal signals constitutes a linear combinations of e.g. 10 indepen-
dent source signals, the [8×T ] matrix V cannot be fully decomposed into a [10×T ]
matrix S but only into a [8×T ] matrix. Hence, the 8 source signals calculated by PCA
and ICA cannot fully correspond to the 10 original independent sources signals. This
implies that the source signal representing the fetal ECG will be a linear combination
of the actual fetal ECG and noise. For PBSS, aPCA, and aICA, on the other hand,
some of the independent source signals (i.e. maternal ECG and part of other interfer-
ences) are a priori suppressed from V, facilitating improved decomposition of V into
the original source signals.

From Figs. 4.5–4.7 it can also be seen that where aPCA and aICA show occa-
sional reductions in Se, PPV, or ψSNR, the performance of PBSS is rather constant.
Moreover, the performance of the PBSS technique is in most cases larger, albeit
marginally, than the performance of aPCA and aICA. From this finding it can, there-
fore, be concluded that the PBSS technique performs similarly well as, or even better
than, the aPCA and aICA techniques and has the additional advantage that its perfor-
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(b)

Figure 4.4: Example of (a) 8 lead fetal ECG signals obtained with the elec-
trode configuration of Fig. 4.3 and (b) the calculated sources sig-
nals from PBSS (top graph), aPCA (second graph), aICA (third
graph), PCA (fourth graph), and ICA (fifth graph) plus the si-
multaneously recorded invasive fetal scalp ECG (bottom graph).
The detected fetal QRS complexes are indicated with the circles.
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Figure 4.5: Sensitivity of the QRS detection for all 17 recordings and for
each of the source separation techniques.
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Figure 4.6: Positive predictive value of the QRS detection for all 17 record-
ings and for each of the source separation techniques.
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Figure 4.7: SNR ψSNR of the source signals for all 17 recordings and for
each of the source separation techniques.

mance is more robust.
Finally, Figs. 4.5–4.7 show that the performance of all methods exhibits a reduc-

tion between 26 and 32 weeks of gestation. This reduction in performance can be
explained by the development of the vernix caseosa, a waxy layer that electrically
isolates the fetus from its surroundings, develops around 28 weeks of gestation, and
start to shed around 32 weeks of gestation. In addition, it can be seen that, whereas
the performance in terms of the Se is rather constant, the performance in terms of
ψSNR and PPV value fluctuates more and shows a relation between ψSNR and PPV.
That is, for high σ also the PPV is relatively high; for low ψSNR, also the PPV is low.
This relation can be explained by the fact that a small ψSNR signifies more noise in
the ECG signal. This higher noise level, in turn, increases the possibility of the noise
to be (incorrectly) detected as a QRS complex. The fact that Se is less affected by
noise can be explained by the fact that the Se is governed by the ratio between the
correctly detected QRS complexes (TP) and the missed QRS complexes (FN). These
missed complexes not only occur as a result of increased noise levels, but also occur
due to the fact that during the suppression of the maternal ECG some of the fetal
QRS complexes are suppressed or affected as well. The latter effect is independent
of noise levels and hence explains the relation between Se and ψSNR.

As mentioned in Section 4.1, a side effect of the developed PBSS technique is that
it also overcomes the problem of unknown order of the source signals determined by
aPCA and aICA (and PCA and ICA). Due to this problem, these techniques required
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Figure 4.8: Three source signals determined for the fetal ECG recording at
28 weeks of gestation. The top graph shows the projection of the
VCG onto the long axis of the fitted ellipse. The middle graph
shows the projection on the short axis of the ellipse and the bot-
tom graph show the projection onto the normal vector of the
ellipse plane.

additional signal processing to identify which of the calculated source signals repre-
sents the fetal ECG. Although this is a triviality in source signals with a relatively high
SNR, for signals with a low SNR this can impose a significant problem to automated
applications of the techniques. In addition, neither of these BSS techniques provides
all three orthogonal sources of the ECG in all situations. The PBSS technique, on the
other hand, is capable of calculating all three sources, as shown in Fig. 4.8 for the
patient at 28 weeks of gestation.

In each of the three sources in Fig 4.8 the fetal ECG can be distinguished, al-
though the projection normal to the ellipse plane shows significant artifacts. These
artifacts are caused by residues of the maternal ECG, originating from imperfections
in the dynamic template subtraction technique [46].
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4.6 Discussion & Conclusions

The developed PBSS technique provides a method for linearly combining low SNR
fetal ECG signals in such way that the linear combination has an improved SNR,
thus facilitating detection of the fetal QRS complexes. The method performs more
robustly than the BSS techniques aPCA and aICA and has the additional advan-
tages that no additional signal processing for identifying the source signal that repre-
sents the fetal ECG is required and that it always provides three linearly independent
sources of the fetal ECG. In addition, the PBSS technique (and also aPCA and aICA)
significantly outperforms PCA and ICA for all abdominal fetal ECG recordings.

In terms of the SNR of the determined source signals, the PBSS technique does
not perform optimally. The reason for this suboptimal performance is the fact that
the technique is aimed to enhance the SNR of the QRS complexes alone and does
not consider the other features of the ECG. Consequently, in some situations aPCA
and aICA outperform the PBSS technique as these techniques do consider the whole
ECG complex, rather than the QRS complex alone. So when the interest of the source
separation is not on QRS complex detection alone, but on ECG segment or interval
analysis, it can be advantageous to use the source signals determined by aPCA and
aICA. To overcome the problem of unknown order of the source signals in these
situations, the source signals from the PBSS technique can be used as reference.
That is, the aPCA and aICA source signal that shows maximum correlation with the
PBSS source signals is most likely the source signal that represents the fetal ECG.

Since the amplitude of the fetal ECG is expected to rise with progressing preg-
nancy due to the growth of the fetus and its heart, the SNR of the abdominally
recorded fetal ECG signals is also expected to rise. Naturally, with the exception
of the period between 28 and 32 weeks, in which the fetus is covered by the vernix
caseosa. Taking this expectation into account, then from Fig. 4.7 it can be concluded
that the difference between the SNR of the source signals determined by the PBSS
technique on the one hand, and the SNR of the source signals determined by aPCA
and aICA on the other hand decreases with increasing SNR of the abdominal record-
ings. This effect can be explained by the fact that aPCA and aICA operate by max-
imizing the variance and statistical independency of the source signals, respectively.
Although these approaches suffer from significant inaccuracies for low SNR record-
ings, they are relatively accurate for high SNR recordings. The ellipse fit employed
by PBSS, on the other hand, suffers less from inaccuracies in low SNR recordings as
it uses prior, physiology based information to spatially combine the abdominal ECG
signals and enhance the SNR. However, in all cases, also for high SNR recordings,
the ellipse fit in PBSS is not completely accurate, reducing the performance of PBSS.
This reduction in performance becomes more evident for the high SNR recordings.

The inaccuracies in the ellipse fit originate from the fact that the least squares
fitting employed does not guarantee an optimal fit as fitting errors can be unwillingly
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weighted and are generally biased [139]. These problems can be resolved using a
geometric fitting approach in which the mean orthogonal distance between the el-
lipse and each data point is minimized. This method, however, requires an iterative
approach and significantly larger computation times. The latter is the main reason
why in our technique the less accurate, yet faster, least squares fit is preferred; With
this least squares fit approach, the PBSS technique requires, on average and on a
standard-issue desktop computer, 1.2 seconds to calculate the source signals for fetal
ECG recordings with lengths of 1 minute.

Besides the fact that the performance of the PBSS technique depends on the SNR
of the recorded fetal ECG signals, the performance is also expected to depend, al-
beit less strongly, on the orientation of the fetus within the uterus. Variations in the
orientation of the fetus mostly result in rotations of the VCG and, thus, also in ro-
tations of the fitted ellipse and its associated orthogonal axes. The projection of the
rotated VCG onto these rotated axes will nevertheless be the same as before the fetal
rotation. However, for each orientation of the fetus, the distances between the fetal
heart and the abdominal electrodes will be different. These differences, in turn, result
in different signal attenuations for each ECG signal and, as a result, in distortion of
the VCG [140]. This distortion can affect the performance of the PBSS technique to
some extent. However, as the shape of the QRS loop is expected to remain planar and
will therefore still allow for elliptic fits, this effect is expected to be small. Naturally,
larger signal attenuations will reduce the SNR of the fetal ECG signals and, as such,
still affect the performance of the PBSS technique.

In future, for developing real-time fetal monitoring applications, the PBSS tech-
nique can be used for estimating which of the abdominal fetal ECG signals has the
largest SNR. That is, by determining which signals contribute most to the linear com-
bination, it can be assessed which abdominal signal contains the most fetal ECG. This
abdominal signal ”ordering” can be used to reduce computation times (i.e by omit-
ting signals that do not contain a fetal ECG with sufficient SNR) or improve patient
comfort by reducing the number of electrodes on the abdomen, and is therefore sub-
ject of ongoing research. Next to this ongoing research, another subject for research
is to explore whether the improved accuracy of a geometric ellipse fitting approach
outweighs the associated increase in computational complexity.
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Chapter 5

Fetal heart rate detection

In the two previous chapters the detection of the maternal and fetal QRS complexes
was already briefly addressed. However, both in Chapter 3 and Chapter 4 the fe-
tal heart rate detection was only used to quantitatively evaluate the performance of
the maternal ECG suppression method (Chapter 3) or the performance of the source
separation technique (Chapter 4). In neither of these chapters, the fetal heart rate
detection constituted an essential part of the presented methodology. The maternal
heart rate detection, or equivalently the detection of the maternal QRS complexes, in
Chapter 3, on the other hand, constitutes an essential part of the maternal ECG sup-
pression method. As this QRS complex detection might have been done using a more
simple peak detection method [122], elaboration of the QRS detection was postponed
until the current chapter. The reason for this was that, when considering the chain of
signal processing and analysis steps shown in Fig. 1.4, the correct position of the
discussion on fetal heart rate detection is here: after Chapters 3 and 4.

The goal of this chapter is to elaborate on this detection method, provide a general
discussion on its shortcomings, and present a solution to overcome some of these
shortcomings.

5.1 Introduction

The fetal heart rate variability (HRV) has direct clinical significance and is, in fact, the
most widely used fetal health parameter currently used in clinical practice. Moreover,
when using Doppler ultrasound to determine the fetal heart rate non-invasively, the
fetal HRV is basically the only source of information available.

Since HRV is regulated by the autonomous nervous system, analysis of the HRV
can provide information on the functioning and stage of development of this nervous
system. More particularly, since the sympathetic and parasympathetic parts of the
nervous system operate in different bandwidths of the HRV spectrum, spectral ana-
lysis of HRV can provide information on both parts of the nervous system. This, in
turn, can provide clinicians with information to assess fetal distress.

To ensure accurate and reliable spectral analysis, however, the HRV information
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needs to be determined on a beat-to-beat basis and should essentially be artifact free
[141,142]. Doppler ultrasound devices generally provide a heart rate that is averaged
over several beats and hence obscures HRV [143]. To overcome this problem of not
having a beat-to-beat heart rate from the Doppler ultrasound, in Peters et al. [23] a
method is presented that is capable of providing a fetal heart rate on a beat-to-beat
basis. This method operates by processing the signal obtained from the analog output
of a second-generation fetal CTG-monitor with a 1.024 MHz probe. Apart from
demodulation, bandpass filtering between 100 and 475 Hz, and taking the envelope
of the ultrasonic signal, this analog output is the same as the input to the ultrasound
device and as such still contains beat-to-beat information on the fetal heart rate [23].

Notwithstanding this solution to the beat-to-beat problem, HRV determined with
Doppler ultrasound typically also suffers from substantial artifacts (e.g. movement
of the fetus often leads to the need of repositioning the ultrasound probe; in the
time between repositioning no heart rate data can be recorded) and thence provides
inaccurate and unreliable spectral analysis results.

Both the aforementioned problems (i.e. HRV not available on beat-to-beat basis
and artifacts in the data) can be solved when determining the HRV from the fetal
electrocardiogram (ECG). During labor, this ECG can be recorded with an invasive
electrode connected to the fetal scalp. Using electrodes positioned on the maternal
abdomen, however, the fetal ECG can also be obtained in earlier stages of pregnancy.

Several approaches to detect the heart rate from an ECG signal are mentioned
in literature, of which matched filtering [144–146], autocorrelation [128], wavelet
analysis [147, 148], and thresholding [128, 145] are mentioned the most. It has to
be noted here, that thresholding approaches in general use a preprocessing step (e.g.
wavelet analysis or matched filtering) prior to detecting the QRS complexes as (pre-
processed) signal components that exceed a specific threshold. The approach adopted
in this chapter operates as a thresholding approach and, although it might perform less
accurately or reliably as some of the other approaches, it was chosen for its mathe-
matical simplicity and low computational complexity.

Finally, it has to be noted that, despite the direct value of HRV in clinical practice,
the main goal for detecting the fetal heart rate in this thesis is to enable exploitation of
the (quasi-)periodicity of the fetal ECG. Specifically, by aligning consecutive ECG
complexes on their QRS complex and subsequently averaging the complexes, the
signal to noise ratio (SNR) can be improved significantly.

This chapter is organized as follows. In Section 5.2 the detection of the QRS
complexes is discussed and in Section 5.3 the performance of this detection method
is briefly evaluated. Finally, Section 5.4 provides a discussion on the QRS detection
method.



5.2 QRS detection 89

a
^

Signal 
transfor-
mation

Threshold 
definition

Peak 
detection in 
transformed 

signal

Peak 
detection 
in ECG 
signal

Artifact 
reduction

SADV Fetal heart 
rate

Pre-
processing

ECG

Figure 5.1: Block diagram of fetal heart rate detection method.

5.2 QRS detection

The detection of QRS complexes is performed through a series of signal processing
steps, illustrated in Fig. 5.1. With exception of both peak detection blocks, each of
the blocks in Fig. 5.1 is discussed in more detail below. Elaboration on the two peak
detection blocks (i.e. Peak detection in transformed signal and Peak detection in
ECG signal) is integrated in the discussions on the other blocks.

5.2.1 Preprocessing the ECG signal

Prior to detecting the QRS complexes, the ECG signals can be enhanced by exploiting
knowledge on the spectral properties of the QRS complexes. Specifically, for the
fetal ECG, the frequency content of the QRS complex is dominated by the 10 to
30 Hz range [99] (see also Fig. 2.7). Hence, by applying a bandpass filter set for this
specific range, the SNR of the QRS complexes can be a priori enhanced.

It has to be noted that the application of the bandpass filter causes distortion of
the QRS complexes. However, this effect is too small to have negative effects on
the detection of the QRS complexes. After the QRS complexes have been detected
in the bandpass-filtered ECG signals, the temporal information on these QRS com-
plexes can be used on the unfiltered ECG signals to exploit their (quasi-)periodicity,
as discussed in Section 5.1.

5.2.2 Signal transformation to enhance QRS complexes

One of the main shortcomings in QRS detection methods that operate by means of
thresholding is that (physiological) artifacts or other parts of the ECG can cause the
recorded signals to exceed the threshold. These events result in erroneously detected
QRS complexes and therefore need to be minimized as much as possible. One way
to do this is by exploiting a priori knowledge on the physiological origin of the ECG,
and more particularly, of the QRS complex. The QRS complex is associated with
depolarization of the heart’s ventricles. This depolarization originates from the prop-
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Figure 5.2: Example of an ECG signal (solid line) with the corresponding
SAD signal (dotted line) and the threshold (dash-dot line) re-
quired for detecting the peaks in the SAD signal. The advan-
tages of using the SAD signal are most evident for the artifacts
around 1.0 and 1.8 seconds: these are significantly smaller in
the SAD signal.

agation of an activation wave through the ventricular tissues and is characterized by
the simultaneous electrical activation of numerous cells. In addition, the propagation
of the activation wave is basically the same in both direction and speed for each heart-
beat and is relatively fast with respect to the repolarization of the ventricles. Hence,
the gradient of the QRS complex is expected to be large with respect to the gradient
of other parts of the ECG. In addition, while the QRS complex lasts for about 90 ms
in adults and 45 ms in neonates and fetuses [55], artifacts generally last much shorter.

Therefore, by summing the absolute values of the gradient of the ECG signal ~V
(or ~VPC, as discussed in chapter 3) over a time window MQRS that corresponds to the
length of the QRS complex, the amplitude of the resulting signal is expected to be
substantially higher for the QRS complex than for other parts of the recorded signals.
Moreover, as the gradient of the QRS complex generally changes sign more than
once during contraction of the ventricles, the absolute value of the gradient should
be summed. This process is commonly known as the sum of absolute differences
(SAD) [149] and used mostly in the field of video compression:

SADt =
MQRS

∑
j=1

∣∣Vt+ j+1−Vt+ j
∣∣ . (5.1)

An example of an ECG signal and its associated SAD signal are shown in Fig. 5.2.
From Eq. (5.1) it can be derived – or analogously from Fig. 5.2 it can be seen

– that the peaks in the SAD signal precede the QRS complexes in the ECG signal.
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Hence, after the peaks in the SAD signal are detected as local extrema that exceed
the threshold, the QRS complexes can be detected in the ECG signal as local extrema
within a a priori specified time interval (depending on MQRS) after the peaks in the
SAD signal.

5.2.3 Threshold definition

As mentioned, the method operates by detecting local peaks that exceed a certain
threshold. The definition of this threshold is therefore critical in ensuring that all QRS
complexes – or, in fact, the SAD transformations of the QRS complexes – exceed the
threshold and that all other events in the signal do not exceed the threshold. Since,
in particular for the fetal ECG, the signal properties (e.g. the noise level) can vary
substantially and abruptly, the use of a variable threshold is favored over the use of a
fixed threshold.

The instantaneous threshold is taken to be ξt :

ξt = gmax{|SADt−τRR | , . . . , |SADt |} (5.2)

with g a parameter that is empirically determined at 0.6 and τRR the time interval
corresponding to the interval between the last two detected QRS complexes. The
threshold at sample t is, thus, determined at 60% of the maximum amplitude within
the window of length τRR that precedes sample t. We denote the estimated variance
of this instantaneous threshold as σ2

ξ,t , i.e. the variance of the SAD signal within the
same time window.

To avoid artifacts in the SAD signal causing abrupt variations in the threshold, a
new augmented version of the threshold is defined: ξa,t . This augmented threshold
essentially constitutes a filtered counterpart of the instantaneous threshold ξt and the
output of the filter is sequentially updated as a non-stationary mean of the instanta-
neous threshold ξt . In a state-space representation, the evolution of the augmented
threshold and its relation to the instantaneous threshold can be described as (see also
Fig. 5.3): {

ξa,t+1 = ξa,t +νt

ξt+1 = ξa,t+1 +ηt+1
. (5.3)

Here, νt represents the variation between the states ξa,t+1 and ξa,t and is assumed to be
Gaussian distributed with zero mean and variance σ2

ν,t . Analogously, ηt+1 describes
the contribution of artifacts in the instantaneous threshold ξt+1 and is also taken to
be Gaussian distributed with zero mean and variance σ2

η,t+1. The assumption for
Gaussian distributions is dictated by the wish to have an analytical solution and small
computational complexity for the estimation of the augmented threshold.

The uncertainties in the state-space model of Eq. (5.3) suggest the use of a proba-
bilistic approach for finding the solution to the augmented threshold estimation prob-
lem. Using Bayes’ rule [150], the posterior probability distribution p(ξa,t |ξt ,σ

2
ν,t ,σ

2
η,t)
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Figure 5.3: Illustration of the state-space model that describes the evolution
of the augmented threshold for QRS detection. In the square
box, the evolution of the augmented threshold is depicted.

for the augmented threshold ξa,t , given the instantaneous threshold ξt and the vari-
ances σ2

ν,t and σ2
η,t , can be written as:

p
(
ξa,t+1

∣∣ξt+1,σ
2
ν,t ,σ

2
η,t+1

)
p
(

ξa,t+1
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2
η,t+1

)
p
(
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2
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η,t+1

)
p
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)
∝p
(
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2
η,t+1

)
p
(
ξt+1

∣∣ξa,t+1,σ
2
ν,t ,σ

2
η,t+1

)
. (5.4)

The last two terms in Eq. (5.4) are referred to as the prior and likelihood, respectively.
Given the Gaussian behavior of νt , the prior can be written as N (ξ̂a,t ,σ

2
ξa,t

+σ2
ν,t)

where ξ̂a,t represents the estimate for ξa,t , σ2
ξa,t

is the variance of ξa,t and N (x,y) is
a Gaussian distribution with mean x and variance y. Analogously, the likelihood can
be written as N (ξa,t+1,σ

2
η,t+1). Substituting these expressions in Eq. (5.4) gives:

p
(
ξa,t+1

∣∣ξt+1,σ
2
ν,t ,σ

2
η,t+1

)
= N

(
ξ̂a,t+1,σ

2
ξa,t+1

)
, (5.5)

with
ξ̂a,t+1 = ξ̂a,t +Kt

(
ξt+1− ξ̂a,t

)
(5.6)

and
σ

2
ξa,t+1 = σ

2
ξa,t +σ

2
ν,t −Kt

(
σ

2
ξa,t +σ

2
ν,t

)
. (5.7)

The Kalman gain Kt in Eq. (5.6) and (5.7) is determined as:

Kt =
(

σ
2
ξa,t +σ

2
ν,t

)[
σ

2
η,t+1 +σ

2
ξa,t +σ

2
ν,t

]−1
. (5.8)

The initial settings ξ̂a,0 and σ2
ξa,0

are set equal to the instantaneous threshold de-
termined over the time window comprising the first two seconds of the SAD signal
and the variance of the SAD signal in this time window, respectively. The choice for
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two seconds is made to ensure that at least one QRS complex is present in the time
window. Note that in case of normal fetal heart rate (i.e. a heart rate between 110 and
150 beats per minute (BPM) [1]), it is more likely that 4 or 5 fetal QRS complexes
are present within the two-second time window.

To demonstrate the estimation of the augmented threshold, the threshold is de-
picted in Fig. 5.2 alongside its parental SAD signal.

5.2.4 Artifact reduction

Despite the preprocessing and signal transformation to minimize the occurrence of
artifacts or noise exceeding the threshold and leading to incorrectly detected QRS
complexes, it cannot be excluded that some of the detected QRS complexes are still
incorrect. In addition, besides erroneously detected QRS complexes (e.g. artifacts
that exceed the threshold), it can also occur that the transformed QRS complex does
not exceed the threshold and thus that the QRS complex is not detected.

To overcome both problems to some extent, the physiological properties of the
heart can be exploited. Specifically, due to the relatively slow operation and rela-
tively small influence of the autonomous nervous system in regulating the heart rate,
variations in the instantaneous RR intervals (i.e. the interval between consecutive
heartbeats) are gradual rather than abrupt. In addition, the heartbeat is generally also
restricted by a physiological upper and lower bound. More specifically, RR intervals
smaller than 0.2 s or larger than 1 s are labeled as incorrect. In addition, fluctuations
in the RR interval that are larger than 25% of the mean RR interval of the 5 directly
preceding heartbeats are also labeled as incorrectly detected.

The most common events that are labeled as incorrect are due to QRS complexes
that do not exceed the threshold, yielding an RR interval that is about twice as large as
the preceding RR intervals or two consecutive RR intervals of which the first is small
and the second large (or vice versa) and the mean is in line with the preceding RR
intervals. The latter event occurs as a result of a incorrectly detected QRS complex
between two correctly detected QRS complexes. Both examples (i.e. missing QRS
complex and incorrectly detected QRS complex) are illustrated in Fig. 5.4.

It has to be noted that the margins listed above are rather wide. In practice, the
upper and lower limits of the fetal RR interval will be about 0.6 s and 0.3 s and varia-
tions will constitute much less than 25% of the mean RR interval. However, to ensure
that bradycardias (heart rates below a certain, age-dependent range), tachycardias
(heart rates that exceed the healthy range), and extrasystoles, generally originating
from immaturities of the heart and not from regulation of the nervous system, are not
erroneously labeled as incorrect, these margins are chosen as wide as this.

Once incorrect RR intervals have been labeled, in some situations they can be
adapted by improving the detection of the involved QRS complexes. This is achieved
by performing a local search near the expected location of the QRS complex. This
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Figure 5.4: Example of detected fetal heart rates with (top graph) and with-
out (bottom graph) correction for artifacts. The heart rate on
the vertical axis is expressed in BPM.

expected location is defined based on the location of the previously detected QRS
complex and the mean RR interval of the last five heartbeats. Only when a local ex-
tremum is found near the expected location and when this local extremum shows suf-
ficient correlation with other detected QRS complexes, the originally detected QRS
complex is replaced or the ”gap” between two detected complexes is filled.

5.3 Evaluation of QRS detection

The QRS detection algorithm is evaluated here by comparing the fetal heart rate in-
formation assessed from a non-invasive fetal ECG recording to the heart rate assessed
from a simultaneously performed invasive fetal ECG recording (see Section 2.3 for
details on the acquisition of the invasive ECG). The patient on which this recording
was performed had a gestational age of 40+1 weeks and the length of the recording
was slightly over 20 minutes. For analgetic reasons, the patient was given an epidural
injection.

In Fig. 5.5 the heart rate traces for both the non-invasive and invasive fetal ECG
signals are depicted.

From Fig. 5.5 it can be seen that both heart-rate traces resemble one another to
a large extent. To quantify this resemblance, in Fig. 5.6 both heart-rate traces are
related to one another as a scatter plot. This scatter plot contains over 2500 heart
beats and shows a correlation coefficient between both heart rate traces of over 97%.

The correlation coefficient of 97% is relatively high and signifies that the fe-
tal heart rate determined from the non-invasive fetal ECG is almost identical to the
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Figure 5.5: Fetal heart rate traces assessed from both the non-invasive fetal
ECG (top graph) and the invasive fetal ECG (bottom graph).
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96 Fetal heart rate detection

110 120 130 140 150 160
−15

−10

−5

0

5

10

15

Mean of heart rates (BPM)

D
iff

er
en

ce
 b

et
w

ee
n

he
ar

t r
at

es
 (

B
P

M
)

Figure 5.7: Bland-Altman plot of the fetal heart rates determined from the
invasive and non-invasive fetal ECG. On the horizontal axis
for each heartbeat the mean value between both methods is
shown. On the vertical axis the difference between both meth-
ods is shown. The solid horizontal line in the graph represents
the mean of the depicted points. The dash-dot lines indicate the
standard deviations with respect to this mean.

fetal heart rate detected from the invasive fetal ECG. This is confirmed in the Bland-
Altman plot [151] of Fig. 5.7. In this plot, the mean value on the vertical axis is
0.0 BPM with a standard deviation of 1.6 BPM. The Bland-Altman plot hence is
consistent with the regression plot of Fig. 5.6, indicating good resemblance between
the invasively and non-invasively determined fetal heart rates.

However, most of the recordings from the patient study mentioned in Section 2.3
do not show the same signal quality as the recording used here. As a result, the
accuracy of heart-rate traces determined from non-invasive fetal ECG recordings is
expected to be worse. The potential implications of this expectation are detailed in
the next section.

5.4 Discussion

In this chapter a method for detecting QRS complexes in an ECG signal was pre-
sented. This method operates by transforming the ECG signal by calculating the
SAD function and detecting peaks in this SAD function by using an adaptive thresh-
old. The peaks in the SAD function serve as reference points for a restricted search
for local extrema in the ECG signal.

As mentioned in Section 5.1, the presented method is not expected to perform
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better than some of the methods mentioned in literature, but because of its computa-
tional efficiency and sufficiently good performance, it is anyhow used throughout this
thesis. The statement of sufficiently good performance however raises the question
of which degree of accuracy is considered to be still good. In addition, it also raises
the question of how this performance can be assessed in cases where no objective
evaluation as in Section 5.3 can be made. It needs to be stressed here that the evalu-
ation in Section 5.3 is not completely objective. The QRS complexes detected in the
non-invasive fetal ECG recording are compared to the QRS complexes detected in the
invasive recording. This comparison implicitly assumes that the developed detection
method operates flawlessly on the invasive fetal ECG signal. Otherwise, evaluation
of the developed method would be performed by comparing the detected QRS com-
plexes to an erroneously determined golden standard. Moreover, this golden stan-
dard will probably be biased towards a good correlation since possible shortcomings
in the detection method will have a similar effect on the QRS detection in both the
invasively and non-invasively recorded ECG signals. Hence, to prevent such a bias,
the QRS complexes detected in the invasively recorded fetal ECG are validated by
visual inspection.

The answer to the first question above depends on the intended goal. If the goal
of the fetal heart rate is visual analysis of the CTG, then relatively low correlation
coefficients are good enough. Even when the heart rate data is significantly corrupted
by artifacts, visual analysis as a rule is not affected much. This is illustrated in Fig. 5.4
in which visual analysis of the bottom graph indicates a similar pattern as can be seen
in the top graph; Artifacts are usually ignored by the analyst. Determination of the
correlation coefficient between the bottom graph of Fig. 5.4 and the heart rate data
obtained from the invasive fetal ECG (Fig. 5.5), however, yields a correlation of
67%, demonstrating that for visual analysis relatively low correlation coefficients are
indeed still good enough.

If the goal is accurate and reliable spectral analysis of HRV, then larger correlation
coefficients are required. In fact, to ensure accurate spectral analysis, the artifact
reduction algorithm cannot be permitted to correct more than 25% of the determined
fetal QRS locations [142].

Finally, if the goal of the heart rate data is to aid in the enhancement of fetal ECG
signals (as is the mainly intended goal in this thesis), required correlation coefficients
for reliable enhancement are expected to lie somewhere in between the required cor-
relations for visual CTG analysis and spectral analysis. Because several consecutive
ECG complexes will be aligned on their QRS complexes and subsequently averaged,
the erroneous contribution of a complex that is misaligned due to inaccurate QRS
detection is reduced by the averaging process. In fact, since consecutive ECG com-
plexes have to resemble one another to a significant extent, a sanity check, e.g. by
means of the correlation coefficient between ECG complexes, can be used to a priori
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detect misaligned ECG complexes and exclude these from the averaging.

The fact that consecutive ECG complexes resemble one another can also be ex-
ploited to improve the QRS detection. Specifically, by generating a template of the
ECG complex through averaging of several consecutive, aligned ECG complexes,
this template can serve as a matched filter, enhancing the ECG signal prior to QRS
detection.

The second question raised was how to assess the performance of the QRS de-
tection in cases where no objective means of validation are present. One possible
approach for this assessment was presented in Chapter 4. In fact, using the PBSS
technique of Chapter 4 to preprocess the ECG signals, the performance of the QRS
detection method was demonstrated to be, on average, around 90% in terms of the
sensitivity (see Eq. (4.13)) and, on average, around 70% in terms of the positive pre-
dictive value (Eq. (4.14)). Although these are different performance measures than
the correlation coefficient, these measures indicate that the general performance of
the QRS detection can be anticipated to be adequate for the enhancement of fetal
ECG signals. This enhancement is discussed in Chapter 6.

It can be noted here that, when not using an averaging process to enhance the
ECG, the requirements for the performance of the QRS detection in this thesis can
be lower. Apart from the ECG enhancement in Chapter 6, the fetal ECG signals that
remain after suppression of the maternal ECG in Chapter 3 (see Fig. 1.4) are essen-
tially only further analyzed during the estimation of the fetal VCG in Chapter 7 and
during the subsequent estimation of the fetal orientation in Chapter 9. The estimation
of the fetal VCG only assumes spatial correlation between the fetal ECG complexes
recorded at different locations on the maternal abdomen and no temporal correlations
or (quasi-)periodicity. Since the fetal ECG complexes in all abdominal signals are
defined similarly, based on the QRS complexes that are detected in a single signal
(see Chapter 4), the spatial correlation between the fetal ECG complexes is not af-
fected by misdetection of a QRS complex. The estimation of the fetal orientation in
Chapter 9 aligns the VCGs of consecutive heartbeats by, among other transforma-
tions, time-synchronization of the VCGs. Any delay in either one of the involved
VCGs can therefore be accounted for during the time-synchronization, irrespective
whether this delay originates from an erroneously detected QRS complex or from an
physiological event.

Hence, the propagation of errors in the QRS detection further down the chain of
signal processing and analysis steps occurs mainly during the averaging of fetal ECG
complexes. The complications caused by the inclusion of misaligned ECG complexes
in the averaging process are, nevertheless, not expected to be substantial. During
the averaging, the misaligned ECG complex is essentially smeared out over more
complexes. Particularly, for each average in which n ECG complexes are included,
a misaligned complex contributes to about (1/n)th of the average ECG complex. On
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the one hand, this smearing out of the effect of an erroneously detected QRS complex
is convenient, as it can prevent artifacts from disturbing signal processing or VCG
and ECG interpretation steps further down the chain. The fact is, in most cases, the
erroneous detection of an QRS complexes is caused by the presence of an artifact
with an amplitude that is so large that the amplitude of the SAD transformed artifact
still exceeds the threshold. On the other hand, the averaging of n complexes of which
one is misaligned also means that n averaged ECG complexes are to some extent
(i.e. (1/n)th) distorted in case the averaging is performed using a moving window of
length n. The effect of these often relatively small but yet persistent distortions on
other links in the signal processing chain has to be studied in the future.

Other subjects for future study are the overall improvement of the QRS detection.
Besides using a matched filter as indicated above, also wavelet-based QRS detec-
tion methods, whether or not in combination with statistical models such as hidden
Markov models [152] , need to be considered.
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Chapter 6

An adaptive Kalman filter for ECG signal
enhancement

As mentioned in the beginning of Chapter 4, knowledge on the fetal heart rate, or
more particularly on the QRS locations, can be used for the enhancement of the ECG
signals. This enhancement typically occurs by aligning individual ECG complexes
on their QRS complex and subsequently averaging the complexes. However, as a
result of averaging, physiologically relevant variations in the ECG can be lost. To
avoid this loss, the number of ECG complexes used in the averaging process needs
to depend on the dynamics of the signal. In this chapter, a method is presented that
does exactly this; it varies the number of preceding ECG complexes included in the
enhancement of a particular ECG complex.1

6.1 Introduction

Monitoring and analysis of the electrocardiogram (ECG) has long been used in clin-
ical practice. In recent years, the application field of ECG monitoring is expanding
to areas outside the clinic. An example of such an area is at-home monitoring of
patients with sleep apnea [153]. Also within the clinic a transition in ECG monitor-
ing applications is taking place. With developments in sensor technology (e.g. textile
electrodes and capacitive electrodes), sensors that are incorporated in garments or the
matrass of an incubator [154] have become available.

As a result of these new sensor technologies, the comfort of the patient is im-
proving progressively. Where some years ago the patient had to reconcile him- or
herself with the discomforts of the only available technology, nowadays patients pre-
fer the more comfortable ways of recording the ECG. However, in most cases, this
increased comfort comes at the expense of signal quality. Electrodes that are in-
corporated in garments generally provide signals with a lower signal to noise ratio
(SNR) and more artifacts than contact electrodes that are glued to the body [155].

1This chapter has been submitted as R. Vullings, B. de Vries, J.W.M. Bergmans, ”An adaptive
Kalman filter for ECG signal enhancement” to be considered for publication.
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Another example of ECG signals with a typically low SNR are fetal ECG signals,
either recorded invasively after membrane rupture [13] or non-invasively from the
maternal abdomen [116].

Some of the SNR and artifact problems that arise during these recordings can
be suppressed by simple, frequency-selective filtering [116, 156, 157]. However, due
to the partial overlap of signal and noise bandwidths [99, 158], this frequency selec-
tive filtering can only help to some extent. Further improvement of the ECG can be
achieved by exploiting its (quasi-)periodicity. Consecutive ECG complexes resem-
ble one another and are, moreover, in general uncorrelated with noise and artifacts.
Hence, by averaging several consecutive ECG complexes, the SNR can be improved.
For additive Gaussian noise, this improvement is directly related to the number of
ECG complexes included in the average [159]. The drawback of averaging multiple
consecutive ECG complexes is that, besides noise, also the physiological dynamics
of the ECG are suppressed. That is, changes in the ECG that originate from phys-
iological events – for instance, changes in the ST segment that might be associated
to metabolic acidosis [2] – are suppressed in the averaging, complicating clinical
diagnosis.

From this it is clear that the averaging of ECG complexes entails a trade-off be-
tween the pursued increase in SNR and the time scale at which physiologically rel-
evant changes in ECG morphology are expected to occur. Hence, for each specific
application, the number of complexes n included in the averaging needs to be recon-
sidered. If it were possible, however, to dynamically adapt the number of complexes
in the average, based on newly arriving data, the problem of selecting a proper value
for n could potentially be overcome. In this paper, we develop a filter that can do
exactly this.

The filter is derived using a Bayesian framework and constitutes a Kalman filter
in which the dynamic variations in the ECG are modeled by a covariance matrix that
is adaptively estimated every time new data arrives. In contrast to filters that filter the
ECG by modeling it by parametric functions [160], the presented filter uses the actual
recorded ECG as basis and infers whether this ECG is corrupted by noise or dynamic
variations. As a result, unanticipated physiological anomalies in the ECG, that cannot
be easily captured by simple parametric functions, can be accurately modeled. For
parametric functions, to capture such physiological anomalies, large families of ana-
lytical functions or many function parameters need to be considered, both inherently
slowing down the filter process.

The derivation of this filter is provided in Section 6.2. The ECG data set, on
which the filter is evaluated, is discussed in Section 6.3 and the results of this evalua-
tion are provided in Section 6.4. Finally, discussion and conclusions are provided in
Section 6.5.
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Figure 6.1: (a): Illustration of the state-space model that describes the evo-
lution of the ECG over time. The evolution of the state vectors is
indicated by the dotted box. (b): Illustration of the measurement
noise estimation.

6.2 Derivation of adaptive Kalman filter

6.2.1 Bayesian model

Typically, ECG complexes that originate from consecutive heartbeats are very similar
but not identical. Moreover, when recording the ECG, the signals are corrupted to
some extent by noise and artifacts. In a simplified form, both the relation between
consecutive ECG complexes and the corruption of the recorded ECG can be described
by means of a state-space model (see also Fig. 6.1(a)):{

~Vk+1 = ~Vk +~Λk,

~yk+1 = ~Vk+1 +~ηk+1.
(6.1)

Here, ~Vk denotes the [1×T ] ECG complex for heartbeat k and ~yk denotes the [1×T ]
recorded signal where T is the length of the ECG complex. The isolation of individual
ECG complexes from the recorded signals is discussed in Section 6.3.3. Also in this
section, the choice for T and the implicit assumption of equal lengths for all ECG
complexes is discussed. The evolution of the ECG complexes between heartbeats
is modeled by the [1×T ] stochastic component ~Λk (also referred to as the process
noise). The measurement noise, i.e. corrupting signals such as electromyographic
signals, movement artifacts, and interferences from the powerline grid, is represented
by the [1×T ] vector~ηk.

When critically assessing Eq. (6.1) and Fig. 6.1, it is clear that based on the
state-space model alone, no clear distinction between the process noise ~Λk and the
measurement noise ~ηk can be made. Therefore, a separate model (illustrated in
Fig. 6.1(b)) is used for estimating the measurement noise. In this model, the spa-
tial correlation between ECG signals recorded simultaneously at different locations
is exploited. This spatial correlation renders it possible to approximate a particular
ECG signal by the combination of the other, simultaneously recorded ECG signals.
The part of the ECG signal that cannot be approximated by the combination of the
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other signals, is subsequently assumed to be measurement noise. The estimation of
the measurement noise will be discussed in more detail below in Section 6.2.2. With
regard to the process noise, ~Λk is assumed to be zero mean with adaptive covariance
ΣΛk . Similarly, the measurement noise~ηk is assumed to be zero mean with covariance
Σηk . The assumption of zero mean for both ~Λk and ~ηk can be justified by highpass
filtering the ECG signals, as will be described in Section 6.3.2.

In the state-space description of Eq. (6.1), the problem of enhancing the SNR of
the ECG is reduced to the problem of sequentially estimating the model parameter
vector~Vk+1 and the noise covariances Σηk and ΣΛk . Here, sequential estimation refers
to the estimation of the relevant parameters based on the previous estimate and all
newly arriving data.

6.2.2 Estimation of measurement noise

When recording several ECG signals simultaneously, these signals are spatially cor-
related to some extent. Specifically, the electrical activity of the heart can be modeled
as a time-dependent dipole that is variable in both amplitude and (three-dimensional)
orientation. In this model, each ECG signal constitutes the projection of the electri-
cal field generated by this dipole onto the vector that describes the position of the
recording electrode. Hence, each ECG signal can be constructed from the linear
combination of three independent ECG signals [64]. For N recorded ECG signals
this means that the ECG signal ~Vi can be modeled (see also Fig. 6.1(b)) as

~Vi =~λV−i. (6.2)

Here, V−i is a [(N−1)×T ] matrix of which the N ECG signals ~Vj constitute the
row vectors and for which the ith row is missing. The [1×(N−1)] vector~λ comprises
the coefficients of the linear combination. The index k that denotes the heartbeat in
Eq. (6.1) is omitted from this description for clarity.

With the adopted dipole model of the heart’s electrical activity, it can be argued
that dynamical variations in the ECG morphology are reflected in all recorded ECG
signals Y. Analogously, measurement noise ~η that does not exhibit the same spatial
correlation as the ECG is suppressed in the linear combination of ECG signals. As a
result, the measurement noise vector~ηi for ECG signal i can be approximated by ~̂ηi

using the estimate ~̂yi =~λY−i:
~̂ηi =~yi−~̂yi, (6.3)

also yielding an estimate for the measurement noise covariance Ση.

The estimates~̂λ that minimize the mean squared error (MSE) between yi and its

estimate ~̂yi =~̂λY−i can be determined by:

~̂λ =~yiYT
−i
(
Y−iYT

−i
)−1

. (6.4)
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0.05 s

Figure 6.2: Example of the estimation of the measurement noise in an
ECG complex obtained from an eight-channel, non-invasive fe-
tal ECG recording (see Section 6.3). The solid line represents
the recorded ECG complex and the dash-dot line represents the
estimate of this ECG complex obtained by the linear combina-
tion of the 7 simultaneously recorded signals. The differential
signal, represented by the dotted line, constitutes an approxima-
tion of the measurement noise. Note that for clarity the measure-
ment noise signal is depicted with a vertical offset; The scalings
of all signals are the same.

The matrix inversion in this equation exists in case the row vectors in Y−i are linearly
independent [161]. This condition of linear independence is satisfied in the case of
ECG signals, for one due to the fact that each row vector is corrupted by independent,
additive noise. The estimation of the measurement noise is illustrated in Fig. 6.2.

The main limitation of this method for estimating the measurement noise is that,
at any time, at least four ECG signals have to be recorded: three independent ones to
estimate the fourth. For most cases exemplified in Section 6.1, however, the recording
of multiple ECG signals is standard procedure and hence, the requirement for more
than three signals does not impose a serious restriction to the applicability of the
proposed SNR enhancement method.

6.2.3 Kalman filter for parameter estimation

The uncertainty in the state-space model of Eq. (6.1) and in the associated noise
parameters suggests the use of a probabilistic approach for solving the parameter es-
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timation problem [162]. In addition, the sequential nature of the estimation problem
motivates the use of a Bayesian framework in which the prior probability distribution
assigned to the unknown parameters is updated every time new data arrives. Here,
again, sequential refers to the estimation of model parameters based on previous pa-
rameter estimates and on newly arriving data.

Using Bayes’ rule, the solution to the parameter estimation problem can be de-
scribed as

p
(
~Vk+1 |~yk+1,ΣΛk ,Σηk

)
=

p
(
~yk+1

∣∣∣~Vk+1,ΣΛk ,Σηk

)
p
(
~Vk+1 |~yk,ΣΛk ,Σηk

)
p(~yk+1 |~yk,ΣΛk ,Σηk )

. (6.5)

The conditional probability density function p(~Vk+1|~yk+1,ΣΛk ,Σηk) is referred to as
the posterior. Since it contains all statistical information about ~Vk+1 given the mea-
surement~yk+1 and the initial ECG complex~V0, this posterior constitutes the complete
solution to the parameter estimation problem [163]. The probability density functions
on the right-hand side of Eq. (6.5) are referred to as the likelihood and the prior, re-
spectively, for the numerator and as the evidence for the denominator.

By assuming the prior and likelihood to be Gaussian, the posterior and evidence
are necessarily Gaussian as well. The use of Gaussian approximations is dictated by
the fact that they render the posterior describable by a limited number of parameters
and, as such, enable the estimation of the ECG in a maximum a posteriori (MAP)
fashion [162]. For applications in which the posterior is expected to be multi-modal
(i.e. a function with several peaks), a combination of Gaussians can be used, each
describing a different mode of the posterior. The fact that, here, the posterior is
assumed as a single Gaussian, implies that the parameter vector estimate ~̂Vk+1 and
its associated covariance ΣVk+1 together completely describe the posterior probability
density function and can be inferred analytically. Hence, using Eq. (6.5) and the
assumptions in the state-space model, the posterior is given by [162]:

N
(
~̂Vk+1,ΣVk+1

)
=

N
(
~Vk+1,Σηk+1

)
N
(
~̂Vk,ΣVk +ΣΛk

)
N
(
~̂Vk,ΣVk +ΣΛk +Σηk+1

) , (6.6)

where N (x,y) denotes a Gaussian probability distribution with mean x and covari-
ance y.

By rewriting Eq. (6.6), the optimal Bayes estimate ~̂Vk+1 and its variance ΣVk+1 ,
(i.e. optimal in the sense of the MAP estimate), can be sequentially updated according
to:

~̂V T
k+1 = ~̂V T

k +Kk+1

(
~yT

k+1−~̂V T
k

)
(6.7)

ΣVk+1 = ΣVk +ΣΛk −Kk+1 (ΣVk +ΣΛk) , (6.8)
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where Kk+1 is known as the Kalman gain [164]:

Kk+1 =
ΣVk +ΣΛk

Σηk+1 +ΣVk +ΣΛk

. (6.9)

Together, Eqs. (6.7), (6.8), and (6.9) constitute the Kalman filter equations.

6.2.4 Adaptive process noise covariance estimation

A limitation of the derived Kalman filter is its implicit assumption of known a priori
statistics for the measurement noise~ηk and process noise ~Λk. Moreover, in the ECG
monitoring applications for which the filter is intended, the noise statistics are ex-
pected to be non-stationary and hence, any choice for particular noise covariances po-
tentially leads to large estimation errors [165]. These estimation errors can nonethe-
less be restricted by including a sequential estimation of the noise statistics in the
Kalman filter equations.

The estimation of the measurement noise statistics has been discussed in Sec-
tion 6.2.2. The discussion in this section is hence limited to the estimation of the
process noise covariance ΣΛk .

Again using Bayes’ rule, the conditional probability density function for ΣΛk ,
given the recorded signal~yk+1 is given by:

p(ΣΛk |~yk+1,Σηk ) =
p(~yk+1 |~yk,ΣΛk ,Σηk )

p(~yk+1 |~yk )
p(ΣΛk |~yk,Σηk ) . (6.10)

It can be noted here that the likelihood of the noise covariance p(~yk+1 |~yk,ΣΛk ,Σηk )
is identical to the evidence function in the parameter estimation level of Eq. (6.5).
Hence, maximizing the evidence function in this parameter estimation level is anal-
ogous to maximizing the likelihood of ΣΛk for newly arriving data. Maximization of
the evidence function, however, yields that the estimated noise covariance constitutes
the maximum likelihood (ML) estimate instead of the MAP estimate, implying the
assumption of no knowledge of the prior at the noise estimation level [162].

When defining the model residual to be

~ρk+1 , ~yk+1−E [~yk+1 |~yk,ΣΛk ,Σηk ]

= ~yk+1−~̂Vk, (6.11)

it can easily be calculated that E[~ρk+1|~yk] =~0 and E[~ρT
k+1~ρk+1|~yk] =ΣVk +ΣΛk +Σηk+1 .

Since in addition E[~ρT
k~ρl|~yk] = 0, it follows that

p(~ρk+1) =
exp
[
−1

2~ρk+1
(
ΣVk +ΣΛk +Σηk+1

)−1
~ρT

k+1

]
(2π)T/2 ∣∣ΣVk +ΣΛk +Σηk+1

∣∣1/2
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is equivalent to the evidence function at the parameter estimation level, given in
Eq. (6.6). Hence by maximizing p(~ρk+1) with respect to the process noise covari-
ance ΣΛk , the ML estimates for this covariance can be obtained.

The maximization of p(~ρk+1) can be simplified if we return to the intended pur-
pose of the Kalman filter; to adaptively vary the number of averages n used in the
enhancement of the ECG complexes, depending on the dynamic variations in sig-
nal morphology. From Eq. (6.7) it can be inferred that this purpose means that the
Kalman gain Kk can be simplified to a scalar matrix (i.e. a diagonal matrix with all
entries equal), or even a scalar. Specifically, by varying the scalar value of Kk in
Eq. (6.7), either more or less weight can be ascribed to the newly arriving ECG com-
plex ~yk+1. In other words, the relative contribution of preceding ECG complexes to
the estimate ~̂Vk+1 varies with the value of Kk, essentially similar to adaptation of the
number of averages used. The scalar value for Kk here ensures that all T samples in
~yk+1 and all T samples in ~̂Vk are assigned the same weight (Kk for~yk+1 and (1−Kk)

for ~̂Vk), preventing distortion of the ECG complexes. With the assumption of the
Kalman gain being a scalar matrix, from Eq. (6.9) it then follows that also ΣVk , ΣΛk ,
and Σηk can be assumed scalar matrices (i.e. σ2

Vk
I, σ2

Λk
I, and σ2

ηk
I, respectively, with

I the [T×T ] identity matrix I and where σ2
x is the variance of vector ~x), implicitly

also assuming that both the measurement and process noise are spatially uncorre-
lated. The effect of the latter assumptions will be discussed in Section 6.5. With this
simplification, not only can each of the scalar covariance matrices be regarded as the
matrix representation of the variances of the vectors ~Vk, ~Λk, and ~ηk, but also does
the maximization of (the logarithm of) p(~ρk+1) reduce to the derivative of ln p(~ρk+1)
with respect to σ2

Λk
equated to zero:

∂

∂σ2
Λk

ln p(~ρk+1) =

1
2

tr
[
~ρk+1

(
σ

2
Vk

I+σ
2
Λk

I+σ
2
ηk+1

I
)−2

~ρT
k+1

]
−1

2
tr
[(

σ
2
Vk

I+σ
2
Λk

I+σ
2
ηk+1

I
)−1
]
= 0. (6.12)

Here, tr[·] denotes the matrix’ trace. The use of ln p(~ρk+1) instead of the use of
p(~ρk+1) is justified by the monotonic behavior of the logarithm function.

Solving Eq. (6.12) for σ2
Λk

yields an estimate for the process noise covariance:

σ̂
2
Λk

=
1
T
~ρk+1~ρ

T
k+1−σ

2
Vk
−σ

2
ηk+1

. (6.13)

By computing the second derivative of p(~ρk+1) it is straightforward to prove that this
result indeed corresponds to a global maximum in p(~ρk+1). In case the model errors
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Figure 6.3: Illustration of the algorithmic implementation of the developed
adaptive Kalman filter.

1
T~ρk+1~ρ

T
k+1 are smaller than what the theoretical value of the measurement noise σ2

ηk+1

predicts, no additional process noise input is required. This leads to the estimator:

σ
2
Λk

=


1
T~ρk+1~ρ

T
k+1−σ2

Vk
−σ2

ηk+1
if positive,

0 otherwise.
(6.14)

The operation of the filter can be explained as follows. In case the model error
1
T~ρk+1~ρ

T
k+1 is larger than what its theoretical value σ2

ηk+1
predicts, σ2

Λk
increases and

this in turn leads to an increase in the Kalman gain. Hence, more emphasis is put on
newly arriving data [162]. To improve the robustness and statistical significance of
the estimator of Eq. (6.14), instead of a single residual~ρk+1, the sample mean of N
residuals will be used [165]. The effect of the chosen value for N will be evaluated
in Section 6.4.

Implementation of the methods described above in an algorithm constitutes the
sequential execution of Eqs. (6.4) and (6.3) to estimate the measurement noise covari-
ance and, subsequently, Eqs. (6.9), (6.7), (6.8), (6.11), and (6.14) for estimation of
the ECG signals and process noise covariances. The algorithm is illustrated schemat-
ically in Fig. 6.3.

6.3 Data preparation and initial filter settings

6.3.1 Data acquisition

To evaluate the developed Kalman filter a diversity of ECG signals is used. These
signals comprise ECG signals of adult patients that suffer from T-wave alternans
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(TWA; a condition that renders the amplitude or shape of the ECG’s T-wave to often
vary significantly between heartbeats), fetal ECG signals recorded from the maternal
abdomen, and neonatal ECG signals recorded with textile electrodes.

The three categories of ECG signals are mainly used to illustrate the performance
of the filter. The first category (i.e. adult ECG signals with TWA), however, is also
used for quantitative evaluation of the filter. In total, 12-lead ECG signals from 23
patients suffering from TWA and of 2 minutes length each are used in this evaluation.
The signals are obtained from the MIT-BIH TWA challenge database [166]. To map
the filter’s performance as a function of the SNR of the recorded signals as well, next
to the performance’s dependence on N, the ECG signals are corrupted with additive
Gaussian noise of various amplitudes, yielding ECG signals with SNR’s ranging from
-3 dB to 18 dB.

The TWA signals comprise a rather ideal data set for evaluating the performance
of the developed filter. They exhibit relatively high SNR values that can be made
smaller by additive Gaussian noise and that moreover facilitate quantitative assess-
ment of the filtered ECG signals (i.e. by comparing the filtered, with additive noise
corrupted, ECG signals to the original ECG signals). In addition, the TWA signals
exhibit morphological variability in the ECG that originates from underlying physi-
ology.

6.3.2 Preprocessing

The acquired ECG data is preprocessed to remove noise, artifacts, and baseline wan-
der that do not exhibit spectral overlap with the ECG. To this end, two fourth-order
Butterworth filters [167] are used; one high-pass filter with cutoff frequency at 0.5 Hz
and one low-pass filter with cutoff frequency at 90 Hz.

To suppress the interferences from the powerline grid, a notch filter centered
around 50 Hz (or 60 Hz for USA recordings) is used. Again this filter is implemented
as a fourth order Butterworth filter. In contrast to the high-pass and low-pass filters
mentioned above, this filter, however, also affects the ECG due to the fact that the
frequency content of the ECG extends from frequencies of about 1 Hz to frequencies
beyond 50 Hz. By choosing the width of the notch filter relatively small – but wide
enough to account for fluctuations in the power-line frequency – the distortion of the
ECG signals can be kept small.

For the transabdominally recorded fetal ECG recordings, it has to be noted that
these are processed as described above, but with an additional processing step in
which the interfering maternal ECG is eliminated. The details of this maternal ECG
removal are provided in [46] and Chapter 3.
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6.3.3 Demarcation of individual ECG complexes

The consecutive individual ECG complexes that are used as input for the filter are de-
fined based on their QRS complexes. Specifically, the QRS complexes are detected
in the signals by the method presented in Chapter 5 and the ECG complexes are
subsequently defined as the signal within a predefined time-window around the QRS
complex. After these ECG complexes have been filtered by the developed Kalman
filter, the filtered counterparts of the original ECG signals are generated by placing
the filtered ECG complexes back on their original positions. Because the Kalman fil-
ter is limited by the fact that the length of the input ECG complexes needs to be fixed
(i.e. the length should be T seconds) and because the interval between consecutive
ECG complexes varies over time, this ECG signal generation approach suffers from
the drawback that in some cases there will be overlap between consecutive filtered
ECG complexes and in some cases there will be a gap. By choosing the time-window
for the ECG complexes such as to minimize the number of gaps, as much of the orig-
inal ECG signals as possible is filtered. The gaps that inevitably remain are smoothed
by interpolation of the data between successive complexes. The overlapping signal
parts, in turn, are smoothed by gradually averaging the contributions of both overlap-
ping complexes. Specifically, the contribution of the first ECG complex is gradually
reduced and the contribution of the trailing complex is gradually increased. The value
of T chosen here is 120% of the mean interval between consecutive heartbeats.

As mentioned above, before defining the individual ECG complexes, the QRS
complexes need to be detected. To facilitate this detection, the SNR of the ECG sig-
nals is a priori enhanced by linearly combing the signals in such way as to maximize
the variance (principal component analysis, PCA) [122]. The linear combination with
maximum variance is referred to as the principal component. The QRS complexes
are subsequently detected in the principal component as local extrema that exceed
an adaptive threshold (Chapter 5). This adaptive threshold is updated continuously
by means of a simple Kalman filter and depends on the SNR of the ECG signals
complexes in the principal component [46]; when the SNR changes, the threshold is
adapted to prevent noise from exceeding it, in the mean time ensuring that the QRS
complexes still exceed the threshold. For a more detailed description of the QRS
complex detection, the reader is referred to [46] and [138].

6.3.4 Initializing the filter

Before commencing the filtering of the ECG signals, all variables and parameters
need to be initialized. For the initial estimate of the ECG complex ~̂V0 the mean ECG
complex over N heartbeats is used. Here, N is the same value as used for estimation
of σ2

Λ
. The initial estimate for the measurement noise vector ~̂η1 is determined accord-

ing to its description in Section 6.2.2. The initial estimates for the noise variances σ2
V0
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and σ2
η1

are determined as the variances of the respective vectors ~̂V0 and~η1.
For N, various values ranging between 1 and 25 are used and the performance of

the filter for each particular value is evaluated in Section 6.4.

6.4 Evaluation of filter

6.4.1 TWA signals

As mentioned above, the performance of the filter is assessed as a function of both
N (i.e. the number of residuals~ρ averaged for robust estimation of the process noise
covariance) and the SNR, using the TWA signals of 23 different patients. The per-
formance is quantified by calculating ε, the normalized mean squared error (MSE)
between the filtered ECG signals ~̂V and the original ECG signals ~V used (i.e. the
signals without additive noise):

ε =
∑k

(
~Vk−~̂Vk

)(
~Vk−~̂Vk

)T

∑k~Vk~V T
k

, (6.15)

where the summation indicates that ε is averaged over all heartbeats in the TWA
signals. In addition, as the TWA signals comprise 12 individual ECG signals, ε is
averaged over these signals as well (not indicated in Eq. (6.15) for clarity). Note
that the original ECG signals ~V are not completely free of noise. However, as the
amplitude of this noise is small compared to the amplitude of the ECG signals, the
effect of this noise on the calculated ε values is small and disregarded in further
discussions on the performance of the filter.

In Fig. 6.4 the normalized MSE ε is plotted as a function of both N and the SNR.
The results in Fig. 6.4 are averaged over all 23 TWA patients.

From Fig. 6.4(a) it can be seen that for the ECG signals with SNR of -3 dB and
0 dB, ε decreases with increasing N. That is, for the 0 dB signal, ε increases until
N = 5 and decreases slightly for larger N. For the ECG signals with SNR larger
than 0 dB, ε increases with N. These findings can be explained as follows. The fact
that for high-SNR ECG signals ε is minimal for small N stems from the fact that,
with almost no noise present, most variations in the ECG signals are of physiolog-
ical origin. Since a large value for N causes slow adaptation of the process noise
covariance, a large N would yield underestimation of the process noise covariance
σ2

Λ
and consequently a too small weight ascribed to newly arriving data. Low-SNR

signals, on the other hand, are mostly affected by measurement noise rather than by
morphological variability. In this case, large values for N ensure that the process
noise covariance is not overestimated, hence rendering the weight ascribed to newly
arriving data relatively small.
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(a)

(b)

(c)

(d)

Figure 6.4: In (a) the performance of the developed Kalman filter, expressed
in terms of the normalized MSE ε, is plotted as a function of the
SNR and the number of ECG complexes N used in the estimation
of the noise covariances. The SNR values corresponding to each
of the lines are provided in the graphs and expressed in dB. In
(b), (c), and (d) examples of the TWA signals are plotted (each
4 seconds long). The SNRs of these signals are -3 dB, 6 dB, and
24 dB, respectively.
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Figure 6.5: Examples of TWA signals before filtering (top graph), after pre-
processing (center graph), and after filtering with the developed
adaptive Kalman filter (bottom graph) filtering, with N = 5. In
(a) the SNR of the TWA signal is 8 dB and in (b) this SNR=0 dB.

From the discussion above, it is straightforward to state that the choice for N
involves a trade-off between robustness against measurement noise and flexibility of
the process noise estimation. In Fig. 6.5 the performance of the developed filter (with
N chosen as 5) is exemplified on two TWA signals.

To illustrate this trade-off, in Fig. 6.4(a) it can be seen that for all recordings,
specifically the high-SNR recordings, the normalized MSE ε saturates at about -
12 dB. This saturation is due to the persistent underestimation of the process noise
covariance for large N. As a result, the output of the filter cannot fully keep track
of morphological variations in the TWA signal, leading, in this particular case, to an
estimation error of -12 dB. To ensure optimal performance of the developed filter,
the choice for N should be based on expected signal behavior. For the TWA signals,
N is chosen as 5. Due to the larger measurement noise amplitudes anticipated in
the fetal and neonatal ECG signals that will be discussed shortly, for these signals
N will be chosen as 10. From the relatively small gradients in Fig. 6.4(a) it can,
nevertheless, be concluded that the specific choice for N does not strongly affect the
performance of the filter. In other words, irrespective which value for N is used, the
performance of the developed filter will be about the same. Based on this conclusion,
it can be argued that with the adaptive noise covariance estimation, the problem of a
priori selecting the noise covariances, mentioned in the beginning of Section 6.2.4,
is overcome and replaced by the much less critical problem of selecting N. To sub-
stantiate this remark, in Fig. 6.6 the performance of the developed filter is compared
to the performance of the same Kalman filter, but now with the adaptive noise co-
variance estimation replaced by a fixed a priori estimation. The estimation of the
measurement noise covariance is kept the same for both filters. The values for σ2

Λ

in this comparison range between -40 dB and 40 dB and are defined relative to the
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Figure 6.6: Plot of the performance of the developed Kalman filter, ex-
pressed in terms of ε, as a function of the SNR of the ECG sig-
nals. The performance of the filter with adaptive noise covari-
ance estimation is indicated with the solid line (N is chosen as
5). The performances of the filters with fixed noise covariance
are represented by the dotted lines. The selected noise covari-
ances σ2

Λ
are indicated in the graphs. Due to overlapping, the

graphs for 10 dB, 20 dB, 30 dB, and 40 dB are jointly labeled as
10 – 40.

amplitude of the ECG signals.
From Fig. 6.6 it can be seen that for the Kalman filter with fixed process noise

covariance, for simplicity from here on referred to as the fixed Kalman filter, the
performance improves with decreasing σ2

Λ
, until σ2

Λ
=-20 dB; from here on, the per-

formance slightly deteriorates. This behavior is consistent with the discussion above
that the choice for σ2

Λ
affects the performance of the filter more strongly than the

choice for N. Underestimation of σ2
Λ

will result in a relatively small Kalman gain
and hence little flexibility of the filter output to account for morphological variations
in the ECG. Overestimation of σ2

Λ
on the other hand, yields a relatively large Kalman

gain leading to an output of the filter that not only accounts for morphological varia-
tions but also for measurement noise. Straightforwardly, an optimal value exists for
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which the performance of the filter is rather good. In the case of the TWA signals
used in Fig. 6.6, this optimal value is around -20 dB, but for other ECG signals, this
value needs to be re-evaluated.

6.4.2 Fetal ECG signals

When comparing the performance of the fixed filter with σ2
Λ

=-20 dB in Fig. 6.6 to the
performance of the adaptive Kalman filter, it can be concluded that this performance
is about the same, with the fixed Kalman filter performing slightly better for high-
SNR signals. It however needs to be emphasized once more that the fixed Kalman
filter operates with a process noise covariance that is fixed at a rather optimal value.
When employing both filters for long-term monitoring tasks, a proper a priori se-
lection of σ2

Λ
becomes virtually impossible. Moreover, even when it is possible to a

priori assess for which value of σ2
Λ

the filter will perform optimally, the long-term na-
ture of the recording renders the ECG signals likely to exhibit dynamical variations.
With these variations, the a priori assessed value for σ2

Λ
needs to be re-evaluated

and adapted. Since the adaptive Kalman filter is capable of making this adaptation,
it is expected to outperform the fixed Kalman filter for long-term monitoring tasks.
To study the behavior of both filters for a dynamical variation in the ECG signal, in
Fig. 6.7 a transabdominally recorded fetal ECG signal is presented, exhibiting signif-
icant morphological variation as a result of movement.

From Fig. 6.7 it can be seen that, as expected, the estimated adaptive process
noise covariance σ2

Λ
increases when variations in the ECG signal occur (e.g. around

5 seconds and 45 seconds). Especially the variation in the ECG around 45 seconds is
of relevance because the fetus shows significant movement here, as was demonstrated
by a echocardiographic analysis performed simultaneously with the ECG recording.
After the movement epoch, the fetus has taken a slightly different orientation with
respect to the electrodes on the maternal abdomen, affecting the morphology of the
ECG signal. When the movement sets in, the increased process noise covariance
causes an increase in the Kalman gain, hence ascribing more weight to the newly
arriving data, as intended.

When comparing the Kalman gains of both the adaptive and fixed Kalman filter –
for the latter, σ2

Λ
is empirically set at 2 ·10−13 V2 – it strikes that the gain of the fixed

filter shows significantly fewer fluctuations than the gain of the adaptive Kalman
filter. Consistent with the discussion above on long term monitoring, this rigidity of
the fixed Kalman filter renders the fixed Kalman filter less capable of accounting for
fast morphological changes in the ECG. This statement is substantiated by the filtered
ECG signals in the top panel of Fig. 6.7. After the movement of the fetus, the fixed
Kalman filter needs about 10 seconds to completely adapt its output to the new ECG
morphology, whereas adaptation by the Kalman filter with adaptive noise covariance
is almost instantaneous.
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Figure 6.7: (a): The top panel shows a fetal ECG signal recorded from the
maternal abdomen, before filtering (top graph), after filtering
with the adaptive Kalman filter (center graph) and after filtering
with the fixed Kalman filter (bottom graph). The ECG complexes
indicated in the rectangles are shown zoomed in on in the ac-
companying graphs. The second panel shows the estimated pro-
cess noise covariance σ2

Λ
for the adaptive Kalman filter (solid

line), the process noise covariance for the fixed Kalman filter
(dash-dot line) and the estimated measurement noise covariance
σ2

η (dotted line). The bottom panel shows the Kalman gain K for
both the adaptive (solid line) and fixed (dash-dot line) filters. For
the estimation of σ2

Λ
and K in the adaptive Kalman filter, N is

chosen equal to 10. Since the process noise covariance is often
estimated as 0 (see Eq. (6.14)), σ2

Λ
cannot be expressed in dB

as in Fig. 6.6. Hence, σ2
Λ

is expressed here in an absolute sense
(i.e. in V2). In (b) a zoom of the top panel between 42 and 55
seconds is depicted.
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Regarding the measurement noise covariance σ2
η, it can be seen in Fig. 6.7 that

it decreases as a result of the fetal movement. This decrease can be explained by
the fact that, whereas the noise amplitude remains about the same, the signal ampli-
tude increases as a result of the movement. This rise in the ECG amplitude can be
explained by e.g. a movement-inflicted reduction in the heart-electrode distance.

6.4.3 Neonatal ECG

For the (maternal) movement artifact occurring around 5 seconds in Fig. 6.7, it can
be argued that the fixed Kalman has an advantage over the adaptive Kalman filter in
that it is less affected by the movement artifact. However, when examining the origi-
nal, unfiltered ECG signal, this signal appears so corrupted that it hardly contains any
ECG information. The output generated by the fixed Kalman filter therefore mostly
comprises information from previous heartbeats. Naturally, in case of a local artifact
that only affects a single ECG signal also the adaptive Kalman filter does not update
the estimated ECG. That is, when the artifact occurs locally, the estimated measure-
ment noise covariance will be relatively large, significantly decreasing the Kalman
gain. Conversely, in cases where the artifact occurs simultaneously at more than one
location, the estimated measurement noise will decrease and both the estimated pro-
cess noise covariance and Kalman gain will increase. This process is illustrated in
Fig. 6.8 in which a neonatal ECG, recorded in an incubator with textile electrodes, is
depicted.

The neonatal ECG signals shown in Fig. 6.8 illustrate that in case of an artifact
that occurs in more than one ECG signal at the same time, the newly arriving data is
ascribed more weight (i.e. the Kalman gain is increased) to ensure rapid updating of
the ECG estimate. For local artifacts, such as in the upper neonatal ECG signal occurs
around 55 seconds, the Kalman gain changes only little, ensuring that the artifact is
no longer present in the filtered ECG signal.

6.5 Discussion & Conclusions

In this paper a Kalman filter with adaptive noise covariance estimation has been de-
veloped and evaluated on a variety of ECG signals to assess whether the filter is
capable of enhancing the SNR of these signals, while at the same time preserving
clinically relevant morphological variations in the ECG. The filter operates by se-
quentially estimating the measurement and process noise covariances and uses these
covariances to estimate the Kalman gain and update the estimated ECG complexes.
In cases where the variations between consecutive ECG complexes can no longer be
explained as measurement noise, the variations are taken to be morphological varia-
tions and the process noise covariance is increased. This, in turn, leads to an increase
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Figure 6.8: In the top panel, two neonatal ECG signals recorded in the in-
cubator using textile electrodes are depicted. The first and third
signal from above are the preprocessed ECG signals and the
second and fourth signals are the corresponding signals after
filtering with the adaptive Kalman filter. In the bottom panel,
the Kalman gains for both filtered signals are plotted. The solid
line corresponds to the upper ECG signal and the dotted line
corresponds to the lower ECG signal.
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of the Kalman gain and consequently, more weight is ascribed to the newly arriving
ECG complex.

The performance of the filter is compared to the performance of a similar Kalman
filter with fixed process noise covariance. For this fixed Kalman filter the process
noise covariance needs to be a priori estimated and hence, to ensure adequate perfor-
mance of the filter, requires rather detailed information on the ECG signal dynamics.
The comparison between the fixed and adaptive Kalman filters demonstrates that the
adaptive filter performs almost as well as a fixed Kalman filter with optimally chosen
process noise covariance. In addition, for long-term monitoring tasks in which the
ECG signal characteristics change, the adaptive Kalman filter is capable of quickly
adapting its noise estimation to match the filter’s output to the new input. The fixed
Kalman filter, on the other hand, needs about 10 seconds to adjust its output due to
its less flexible estimation of the Kalman gain.

In the derivation of the adaptive Kalman filter several assumptions are made for
mathematical simplicity, but that might limit the applicability of the filter. For one,
the ECG is assumed to have a Gaussian probability distribution, or equivalently, both
the process and measurement noise are assumed to be Gaussian. In addition, the mea-
surement and process noise are assumed to be uncorrelated. The latter assumption
might limit the performance of the filter to some extent as, in particular, the process
noise generally exhibits spatial correlation across the individual ECG signals. This
limitation seems however small, as evidenced by the results. The same thing holds
for the assumption of Gaussian noise. Although this assumption might impose a
rather severe limitation to the filter’s applicability, the evaluation of the filter on the
fetal and neonatal ECG signals – that are corrupted by physiological noise, rather
then by Gaussian noise – demonstrates that the filter also performs relatively well for
non-Gaussian ECG signals. Besides providing a rather elegant solution to the filter
problem, the mathematical simplification also relaxes the computational complexity
of the filter, rendering an implementation of the filter in Matlab R© (The Mathworks,
Inc.) capable of filtering at least 12 ECG signals simultaneously in real-time.

Another decision that might limit the applicability of the developed filter is the
fixed choice for the length of the ECG complexes (i.e. 120% of the mean interval
between consecutive heartbeats). In cases of significant heart rate variability, it can
occur that a single ECG complex contains information that originates from two con-
secutive heartbeats. Problems associated with this fixed ECG complex length can,
however, be circumvented by only including those parts of the ECG complex that
correspond to the same heartbeat in the calculation of the measurement noise, pro-
cess noise, and Kalman gain. Upon reassembling the filtered ECG complexes into a
filtered ECG signal that is composed of a multitude of heartbeats, the redundant parts
of the filtered ECG complexes can be omitted.

As mentioned previously, the TWA signals comprise a rather ideal set for quanti-
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tative evaluation of the developed filter. Here, however, distinction needs to be made
between TWA signals that exhibit morphological variability at the microvolt level and
macroscopic TWA signals that exhibit substantially more morphological variability.
In our evaluation, only the latter TWA signals were used. With regard to the pre-
processing of the TWA (and fetal and neonatal ECG) signals, the high-pass filter is
expected to slightly distort the susceptible ST segment. Preprocessing is nevertheless
performed to ensure that the measurement noise has indeed zero mean, as assumed
in Section 6.2. The effect of omitting the preprocessing, in order to yield as little
distortion of the filtered ECG signals as possible, on the performance of the filter is
subject of future research. Also subject of future research is the evaluation of the
filter’s performance on ECG signals that are even more ideal than the TWA signals,
such as ECG signals with isolated or slow pattern changes.

The accurate estimation of the measurement noise covariance is rather critical
for the performance of the adaptive Kalman filter. When this covariance is overesti-
mated, all ECG signal variations will be be ascribed to measurement noise and hence
the process noise covariance will be underestimated, rendering the filter less capable
of quickly adapting to dynamical signal variations. Conversely, underestimation of
the measurement noise covariance leads to overestimation of the process noise co-
variance, causing the filter to also ascribe more weight to ECG complexes that are
corrupted by measurement noise. The estimation of the measurement noise covari-
ance is performed by exploiting the spatial correlation of simultaneously recorded
multi-channel ECG signals. In a simplified model, all ECG signals can be assumed
to originate from the same three-dimensional source and hence, three independent
ECG signals should be enough to predict the morphology of a fourth ECG signal.
Those parts of the fourth ECG signal that cannot be accounted for by the three other
ECG signals, can therefore be marked as noise contributions. One of the main draw-
back of this approach is that for enhancing the ECG of one signal, at least three
other ECG signals need to be recorded. However, for most clinical applications sev-
eral ECG signals are recorded and even if there is no clinical relevance of recording
several channels, it hardly constitutes a technological challenge to record more than
three ECG signals simultaneously. Another drawback lies in the adopted model for
the spatial correlation between the ECG signals. In this model, all ECG signal com-
ponents that cannot be accounted for by the three-dimensional source are taken to be
measurement noise, leading to underestimation of the process noise. By using more
than four ECG signals, e.g. a standard configuration of 12 electrodes, this problem
can be largely overcome.

For non-invasive fetal ECG recordings performed on the maternal abdomen, the
requirement of at least four ECG signals of which three are linearly independent
could be troublesome. Approximately between the 28th and 34th week of gestation,
the fetus is covered by a waxy layer (i.e. vernix caseosa) that electrically isolates the
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fetus, apart from a few places that are hypothesized to be over the oro-nasal area and
the umbilical cord [39]. As a result of this layer, preferred conduction paths for the
ECG signals arise, potentially making the number of independent ECG signals drop
below three. Additional research to determine whether the presented method indeed
fails in presence of the vernix caseosa is however required.

Additional research is also required to assess whether the application field of the
filter can be extended. For ECG enhancement, the filter basically operates by aver-
aging consecutive ECG complexes and varying the number of complexes included
in the average, based on the amount of variation in the data. This approach can,
however, also be applied in enhancement of other quasi-periodical signals that may
vary due to either changes in the process or changes in the measurement noise. An
example of such an application is the SNR enhancement of event-related potentials
in electroencephalography studies [168].

6.6 Comments

In Chapter 5, it was mentioned that the effect of incorrectly detected QRS complexes
is relatively small because upon averaging the contribution of the corresponding ECG
complexes is reduced. The averaging filter developed in this chapter can nevertheless
assign a relatively large weight to the incorrect ECG complex under the assumption
of a physiological event occurring. However, because the noise covariances are esti-
mated based on several consecutive ECG complexes (for the fetal EGC, N is chosen
10), the influence of an incorrectly detected QRS complex is relatively small.
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Chapter 7

Bayesian approach to patient-tailored
vectorcardiography

The enhanced fetal ECG signals can be combined with knowledge on the employed
electrode configuration to yield the fetal VCG. In general, the VCG is calculated
by linearly combining the recorded ECG signals based on the locations of the elec-
trodes that recorded them. In case of the fetal VCG, the amount of maternal tissue
in between the fetal heart and the abdominal electrodes is different for each elec-
trode. As a result, signal attenuation effects are different for each abdominal fetal
ECG signal and hence, calculation of the VCG using only the electrode locations and
not compensating for attenuation effects will yield a VCG that can be significantly
distorted. In this chapter, the relation between VCG, ECG, and signal attenuation is
described in a simplified model. Based on this model and the recorded ECG signals,
the (undistorted) VCG and signal attenuation are subsequently estimated by means
of an iterative procedure.1

7.1 Introduction

Cardiac contractions originate from the propagation of an action potential through the
cardiac tissues. The front of the propagating action potential causes the occurrence of
numerous electrical dipoles. By superimposing these electrical dipoles at each point
in time, the electrical activity of the heart can be modeled as a single electrical field
vector, originating in the heart, that varies in both amplitude and orientation over
time [32,33]. The time path of this electrical field vector during a single cardiac con-
traction is referred to as the vectorcardiogram (VCG). The electrocardiogram (ECG)
recorded at the cutaneous surface can be viewed as the potential caused by this elec-
trical field vector and therefore depends on both the distance between the recording
electrode and the heart and on the conductive properties of the intermediate tissues.

1This chapter is based on the paper published as R. Vullings, C.H.L. Peters, S.I. Mossavat, S.G.
Oei and J.W.M. Bergmans, ”Bayesian approach to patient-tailored vectorcardiography”, IEEE Trans
Biomed Eng. 2010 Mar;57(3):586-95.
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It has to be noted here that in this dipole model, the electrical field vector (and with
that the VCG) is reported to only describe between 70 and 95% of the power of the
ECG [33,169,170]. The remaining 5 to 30% of the ECG originates from insufficien-
cies in the dipole model such as the inclusion of non-dipolar components [31] and
movement of the dipole origin [30].

The problem of improving the dipole model, with the goal of completely imaging
and visualizing the electrical activity of the heart, has been addressed by researchers
in the field of cardiac electrical imaging [171–173]. However, as nearly all the pro-
posed methods for imaging the electrical activity are based on body surface potential
maps (BSPM), i.e. lead systems consisting of a relatively large number of elec-
trodes [174], for reasons of workability none of these methods has made its way into
clinical practice. Clinicians generally prefer to use the standard 12-lead ECG for as-
sessing the condition of the heart, in spite of the diagnostic inferiority of the 12-lead
ECG with respect to BSPM.

With recent improvements in (wireless) data acquisition technology, the interest
in ambulatory ECG monitoring is rapidly increasing. In order to increase patient
comfort and reduce bandwidth requirements, the use of as few ECG leads as possible
is preferred. However, as mentioned above, clinicians are accustomed to using the
12-lead ECG, theoretically implying that all 12 ECG leads need to be recorded and
subsequently transmitted. By determining the VCG from fewer than 12 leads and
using this VCG to predict the remaining leads, nevertheless, the problem of patient
discomfort can be overcome. In addition, for assessing specific cardiac pathologies
like right ventricular hypertrophy and myocardial infarcts, direct analysis of the VCG
is considered to be superior with respect to 12-lead electrocardiography [48].

As mentioned previously, the relation between the ECG at the cutaneous surface
and the VCG depends on the distance between the heart and the electrodes and the
conductive properties of the intermediate tissues. The currently most widely used
method to determine the VCG from a ECG recording, referred to as the inverse Dower
method [47], accounts for both this distance and conductive properties. It entails a
fixed, numerical description of a matrix that maps the VCG onto the 12-lead ECG.
Due to this fixed numerical description, however, it assumes the same geometry and
conductive properties for all patients. Consequently, it cannot provide accurate VCGs
for patients that do not conform to the assumed conduction characteristics, such as
patients that suffer from severe obesity. This category of patients has an increased
risk of cardiac failure [175] and is therefore in more need of VCG examination than
”standard” patients.

When determining the VCG of the fetus through ECG recordings on the ma-
ternal abdomen, the problem of patients not conforming to the model is even more
evident [39]. Not only does the position of the fetal heart with respect to the ab-
dominal electrodes vary between patients, but also do, among other variations, the
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amount of amniotic fluid, placental position, and abdominal fat differ from one preg-
nant woman to the other. Hence, for determining the fetal VCG, the inverse Dower
matrix can only contain information on the electrode positions and not on the un-
known heart-electrode distance and conduction properties. These conduction proper-
ties are unknown as, in contrast to the regular VCG, few models on the fetal signal
propagation exist and the models that do exist cannot account for all possible posi-
tions of the fetal heart [63]. Even so, determining the fetal VCG can have significant
value in fetal health monitoring. Changes in orientation of the QRS loop, for instance,
can be an indication of fetal movement [176], while fetal ECG analysis – which can
provide information on fetal oxygenation [2] – is facilitated by projecting the VCG
onto leads that are familiar to physicians [177]. In addition, early-stage diagnosis
of fetal congenital heart disease might in future become treatable and is facilitated
by vectorcardiography, i.e, by projecting the VCG onto the leads used in standard
12-lead ECG analysis.

The common problem in these VCG applications is the lack of a way to account
for variations in the composition and geometry of the tissues between the heart and
cutaneous surface, leading to inaccurate VCG estimates for patients that do not con-
form to the standard. Naturally, by performing MRI or ultrasound imaging prior to
the ECG recording, the geometry of the intermediate tissues can be estimated and
accounted for [104]. However, particularly in case of the fetal VCG, the geometry is
not expected to remain the same throughout the recording. Moreover, for ambulatory
applications the use of MRI or ultrasound imaging is not practical. To nevertheless
account for variations in the composition and geometry of intermediate tissues, in this
chapter a method is developed for patient-tailored vectorcardiography (PTV), i.e. for
determination of the VCG from multi-lead ECG recordings considering the geomet-
rical and compositional variations. For quantitative evaluation, the method is applied
to both non-standard adult ECG and fetal ECG recordings.

The method uses Bayesian probability theory to determine the joint probability
distribution for both the VCG and a scaling matrix that models the attenuation at each
recording site, given the recorded ECG. This probability distribution is based on a
simplified model of the relation between the VCG and ECG. This model stipulates
that the ECG at each recording site is generated by the projection of the VCG onto
the corresponding ECG lead vector. To account for attenuation effects, each projected
VCG is scaled by an a priori unknown scaling parameter. Inaccuracies in the model
and noise in the ECG are assumed to originate from a Gaussian distribution. The
optimal VCG estimate, in the sense of the maximum a posteriori (MAP) solution, is
obtained from the joint probability distribution by means of an approximate inference
technique referred to as variational inference [132].

Besides analysis of the contour and orientation of the QRS loop, the VCG is
mainly used for predicting the shape of ECG signals that are not physically recorded.
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This provides a way for evaluating the developed method, namely, the method can be
evaluated by recording separate reference ECG signals and comparing these to the
prediction of these signals from the VCG. To quantitatively evaluate the performance
of the developed method on nonstandard adult patients, this evaluation approach is
applied on randomly scaled adult ECG signals.

To recapitulate, the developed method for vectorcardiography models the con-
ductive properties of the tissues between cutaneous electrodes and the heart and esti-
mates the parameters of this model to obtain a patient-tailored estimate of the VCG.
Applications of this method include improved assessment of the adult VCG, in par-
ticular for non-average patients, and assessment of the fetal VCG from non-invasive
recordings. As a basis of reference for the developed method in Section 7.2 the in-
verse Dower matrix method is discussed briefly. In Section 7.3 the developed method
is presented. Section 7.4 discusses the acquisition of the data and the evaluation of
the method, while in Section 7.5 the results are presented. Finally, in Section 7.6
these results are discussed and conclusions are drawn.

7.2 Inverse Dower matrix for vectorcardiography

The Dower matrix was introduced by Dower et al. in [47] and describes the matrix
that maps the VCG onto the 12-lead ECG signals, taking into account standardized
electrode positions and non-linear signal attenuation effects. Even though the Dower
matrix does not account for inter-patient variability, in practice the resulting VCG
estimate is clinically useful [47].

By defining V as the [N×T ] ECG matrix and D as the [N×3] Dower matrix, the
relation between these matrices can be described by

V = DS+H, (7.1)

with S the [3×T ] VCG matrix and H a [N×T ] noise matrix with zero-mean Gaussian
distribution for each row.

The model of Eq. (7.1) is significantly simplified. In reality, not only is the noise
expected to be non-Gaussian, including non-dipolar components of the electrical ac-
tivity of the heart, but also do boundary effects and inhomogeneities of the conduc-
tive medium play a significant role. To account for these effects, the fixed numerical
Dower matrix D is defined in such a way that is does not only consider the electrode
positions with respect to one another, but also considers the boundary and conduc-
tivity effects to some extent. More in particular, for an infinite uniform medium the
mapping matrix between the VCG and ECG would only contain electrode positions.
Any difference between the Dower matrix and electrode positions has, thus, been
intended to account for boundary effects and tissue inhomogeneities.
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In this simplified model of Eq. (7.1), the optimal VCG estimate ŜDower can be
assessed as the maximum likelihood (ML) solution:

ŜDower =
(
DT D

)−1 DT V = D†V, (7.2)

with D† the Moore-Penrose pseudoinverse [178, 179] of the Dower matrix.

7.3 Bayesian vectorcardiography

7.3.1 Inter-patient ECG variability

For each patient the position of the heart with respect to the cutaneous electrodes
and the conductive properties of the intermediate tissues is different. Because of its
fixed numerical nature, the Dower matrix cannot account for any of these differences.
However, although the matrix that maps the VCG onto the ECG is expected to vary
in a non-linear way as a function of inter-patient differences in geometry and con-
ductivity, by assuming an individual scaling for each ECG signal, these non-linear
variations can be approximated to a first order as (see also Fig. 7.1):

V = αDS+H. (7.3)

Here, α is an [N×N] diagonal scaling matrix of which the diagonal elements αi rep-
resent the linear scaling of the ECG signals ~Vi and H is a [N×T ] matrix representing
noise in the ECG signals. The reason that α is taken a diagonal scaling matrix follows
directly from the assumption of individual scaling for each ECG signal. Namely, the
ith row of the matrix V represents the projection of the VCG S onto the ith row of D,
scaled with a constant αi. The matrix representation of this scaling yields a matrix
with αi on the diagonal and zeros elsewhere. The reason for keeping the matrix mul-
tiplications D and α separated in this model is the fact that the matrix D is assumed
known, i.e. the Dower matrix, while the elements of α are as yet unknown model
parameters.

Since both S, α, and H are unknown, the VCG S cannot be readily assessed
from V. However, by employing a statistical analysis, the VCG can be estimated,
given only the ECG V, Dower matrix D, and noise variance Σ plus some assumptions
on statistical independencies and noise characteristics, which are made explicit in
Section 7.3.2.

7.3.2 Statistical analysis

Assuming the noise H to have a Gaussian probability distribution with zero mean and
variance Σ and using Bayes’ theorem [150], the joint probability distribution of S and
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Figure 7.1: Schematic overview of the model describing the relation between
the VCG and the ECG. The VCG is projected onto the matrix D
containing electrode positions and subsequently scaled by the
diagonal matrix α to model attenuation effects. Imperfections
in this model and additional noise are described by the noise
matrix H.

α, given V, D, and Σ obeys

p(S,α |V,D,Σ) = p(S,α |D,Σ)
p(V |D,S,α,Σ)

p(V |D,Σ)
. (7.4)

The reason for assuming the noise to have a zero-mean Gaussian distribution is sim-
ilar as for Eq. (7.1); boundary effects and tissue inhomogeneities are taken to be
accounted for by the definition of the Dower matrix D. In addition, inter-patient vari-
ability in these boundary effects and inhomogeneities are approximated by the linear
scaling α. The reason for using this simplified model of the inter-patient variability
and noise is to yield an analytical tractable solution for the VCG estimation problem.

Considering the evidence p(V|D,Σ) in Eq. (7.4) a normalization term, assuming
α and S a priori statistically independent, and assuming no prior knowledge on S,
hence taking p(S|D,Σ) to be a uniform distribution, Eq. (7.4) can be rewritten as

p(S,α |V,D,Σ)∝p(α |D,Σ) p(V |D,S,α,Σ) . (7.5)

The terms on the right-hand side of Eq. (7.5) are referred to as the prior probability
distribution and likelihood, respectively. The assumption of α and S to be a priori
statistically independent can, intuitively, be explained by the fact that S is affected by
changes in the electrical activity of the heart while α is only affected by changes in
the propagation path between the heart and the cutaneous surface.

As mentioned previously, α represents a first-order approximation of the varia-
tions in the ECG caused by inter-patient differences in boundary effects and tissue
inhomogeneities. As a result, the elements of α are, among other factors, related
to the distance between heart and electrodes. With information on the distance be-
tween the heart and electrode i also providing information on the distance between
the heart and electrode k, the elements αi are mutually dependent. For reasons of
mathematical simplicity, however, the elements of α are assumed to be statistically
independent [180] and thus the prior probability distribution can be expressed as

p(α |D,Σ) = ∏
i

p(αi |D,Σ) . (7.6)
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The probability distribution for each of the individual scaling elements, p(αi|D,Σ),
can be defined based on available models of torso geometry and conductivity [181,
182]. This would, however, lead to a mathematically complex prior distribution. To
simplify the final algorithm, the prior distribution is chosen uniform yielding no prior
information on α:

p(α |D,Σ) = constant. (7.7)

The impact of these physically unjustified – but mathematically simplifying – as-
sumptions, i.e. mutual independency of the elements of α and an uniform prior prob-
ability distribution for p(α|D,Σ), on the performance of the developed PTV method
is discussed later on in Section 7.6.

As mentioned previously, the noise H is assumed to have a zero-mean Gaussian
distribution with variance Σ. Combining this with the model of Eq. (7.3) and the
assumption that the rows of both V and H are statistically independent, the likelihood
is given by:

p(V |D,S,α,Σ) = ∏
i

exp
[
− 1

2σ2
i

(
~Vi−αi~DiS

)(
~Vi−αi~DiS

)T
]
, (7.8)

where σ2
i is the variance of the ith row of H. Moreover, ~Vi is a time vector describing

the ECG signal recorded at position ~Di, so that~Vi is a [1×T ] vector and ~Di is a [1×3]
vector.

The statistical independence between the rows of V is justified by applying d-
separation [132] on the likelihood. Intuitively, this independence can be explained by
the fact that for given D, S, α, and Σ, variations in one ECG signal do not affect any
of the other ECG signals. More precisely, although the ECG signal changes, none of
the variables D, S, α, and Σ change (as they are given), hence not affecting the other
ECG signals. The assumption on statistical independence between the rows of H is
justified analogously.

Substituting Eq. (7.7) and (7.8) in Eq. (7.5) yields the joint posterior probability
distribution for S and α:

p(S,α |V,D,Σ) ∝ ∏
i

exp
[
− 1

2σ2
i

(
~Vi−αi~DiS

)(
~Vi−αi~DiS

)T
]

= exp

[
−∑

i

1
2σ2

i

(
~Vi−αi~DiS

)(
~Vi−αi~DiS

)T
]
. (7.9)

7.3.3 Variational inference on the vectorcardiogram

Although the MAP solution for the VCG, which in this case is equivalent to the
maximum likelihood solution, can be assessed by integrating Eq. (7.9) over α and
determining for which S the resulting probability distribution is maximal, the required
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integral is impossible to evaluate analytically. However, by employing variational
inference [132], in factorized form also known as mean field theory [183], the MAP
solution for the VCG can be approximated.

In variational inference, the posterior probability distribution p(S,α|V,D,σ2) is
approximated by the variational distribution q(S,α):

p
(
S,α

∣∣V,D,σ2 )≈ q(S,α) . (7.10)

The goal of variational inference is now to restrict the family of possible distributions
q(S,α) sufficiently that it comprises only tractable solutions, while at the same time
allowing it to be sufficiently rich and flexible to obtain a good approximation to the
true posterior probability distribution.

A way of restricting the family of distributions is by assuming it to factorize into

q(S,α) = qS (S)∏
j

qα j (α j) . (7.11)

Substituting the factorized probability distributions from Eq. (7.11) into a lower
bound for the true posterior, provided and discussed extensively in [132], results in
an expression for the optimal solutions q̂S(S) and q̂α(α) [132]:

ln q̂S (S) = Eα [ln p(V,S,α |D,Σ)]+ const. (7.12)

ln q̂α (α) = ES [ln p(V,S,α |D,Σ)]+ const. (7.13)

Here, Ey[x] denotes the expected value of x with respect to the probability distribution
q(y).

Assuming a Gaussian distribution for qα j = N (α j|µα j ,σ
2
α j
) with mean µα j and

variance σ2
α j

, the optimal solution for the VCG S can be evaluated as

ln q̂S (S) =
∫

∏
j

N
(

α j

∣∣∣µα j ,σ
2
α j

)
ln p(S,α |V,D,Σ)dα j + const. (7.14)

= −∑
i

{
1

2σ2
i

(
~DiS
)(

~DiS
)T (

σ
2
αi
+µ2

αi

)
−~DiSσ

−2
i
~V T

i µαi

}
+ const.

Since the term on the right-hand side of Eq. (7.14) is quadratic with respect to
S, q̂S(S) is a Gaussian distribution. For reasons of convenience this distribution is
expressed with respect to ~DiS. From Eq. (7.14) it follows that this distribution has
mean~µ~DiSi

and variance Σ~DiSi
given by:

~µ~DiSi
=

µαi

σ2
αi
+µ2

αi

~Vi and Σ~DiSi
=

σ2
i

σ2
αi
+µ2

αi

. (7.15)
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Substituting this result in Eq. (7.13) gives, analogous to Eq. (7.14)

ln q̂α (α) =−∑
i

{
α2

i

2σ2
i

(
Σ~DiSi

+~µ~DiSi
~µT
~DiSi

)
− αi

σ2
i
~µ~DiSi

~V T
i

}
+ const., (7.16)

which reflects a Gaussian distribution for q̂α(α) as well, with mean µαi and variance
σ2

αi
given by:

µαi =
~µ~DiSi

~V T
i

Σ~DiSi
+~µ~DiSi

~µT
~DiSi

and σ
2
αi
=

σ2
i

Σ~DiSi
+~µ~DiSi

~µT
~DiSi

. (7.17)

Implementing Eq. (7.15) and (7.17) into an iterative procedure, an estimate for
~DiS can be determined. Convergence of this iteration scheme is ensured by the con-
vexity of Eq. (7.12) and (7.13) with respect to q(S) and q(α), respectively. The VCG
estimate Ŝ can subsequently be determined from

ŜPTV = D†U, (7.18)

with D† the Moore-Penrose pseudoinverse of D and U an [N×T ] matrix with rows
~µ~DiSi

.

7.4 Data acquisition and evaluation

To evaluate both VCG methods, the 12-lead ECG from adult patients and the fetal
ECG are used. The approach used to evaluate both methods is discussed in more
detail below (Section 7.4.2).

To model the VCG of non-standard adult patients, the 12 ECG signals from the
12-lead ECG are randomly scaled. When dealing with real recordings of such pa-
tients this scaling is expected not to be random. In fact, electrodes close to one
another are expected to exhibit similar scaling parameters. However, with a random
scaling being an even more challenging test, this approach suffices for evaluation of
the PTV and Dower method. To minimize the effect of the randomized scaling fac-
tor generation, the final results are averaged over all heartbeats. The scaled 12-lead
ECG, the original 12-lead ECG itself, and the fetal ECG acquisition are discussed in
more detail below.

7.4.1 Data acquisition

12-lead adult ECG

The most widely used clinical ECG system is the 12-lead ECG system, consisting of
the leads: I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6 [9].
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Figure 7.2: Electrode positions for recording the fetal ECG and VCG from
the maternal abdomen. This figure has been adopted from [100].

The 12-lead ECG recordings used in this chapter are taken from the MIT/BIH
PTB diagnostic ECG database [184]. Next to the 12-lead ECG signals, this database
also contains the corresponding Frank XYZ signals. The Frank XYZ lead system is
a system comprising three orthogonal leads that, due to this orthogonality, fully de-
scribe the three dimensions of the VCG [64]. The Frank XYZ signals can, therefore,
be used to evaluate the predicting performance of both the PTV and Dower methods.

A total of 10 recordings is used from the database (Patients 104, 105, 116, 117,
121, 122, 235, 242, 263, and 264) with a total number of 693 heartbeats. All record-
ings are 60 seconds long and all patients are healthy.

Fetal ECG

As mentioned previously, the fetal ECG can be recorded from the maternal abdomen.
In this chapter, the fetal ECG is recorded from a single patient of 24 weeks of ges-
tation, using the electrode configuration of Fig. 7.2. The total length of the signal is
over 300 seconds and it contains more than 800 fetal heartbeats. For this gestational
age of 24 weeks, the fetus is not yet covered by the isolating vernix caseosa and
hence, the conduction of fetal ECG signals towards the maternal abdominal surface
can be assumed uniform [39, 63].

The signals acquired from the maternal abdomen, at a sampling rate of 1 kHz,
contain a mixture of fetal ECG, maternal ECG, muscular activity and other interfer-
ences. The fetal ECG is extracted from this mixture using filtering and a dynamic
template subtraction method [46] (Chapter 3). The electrode positions on the ma-
ternal abdomen with respect to one another are estimated by positioning the elec-
trodes as accurately as possible in the configuration of Fig. 7.2 and estimating the
shape/rounding of the abdomen.

The electrode configuration of Fig. 7.2 is designed in such way that all electrodes
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are relatively close to the fetal heart. As this configuration is different from the elec-
trode configuration used for the 12-lead ECG [31], the numerical description of the
Dower matrix D cannot be used to determine the fetal VCG. Therefore, for estima-
tion of the fetal VCG, the matrix D only contains the electrode positions and does not
account for boundary effects and tissue inhomogeneities.

7.4.2 Evaluation of methods

As mentioned previously, both the PTV and Dower methods are evaluated by as-
sessing the performance of both methods in predicting ECG signals. This entails the
projection of the VCG onto ECG lead vectors ~D j of which the corresponding sig-
nals ~Vj are not included in the estimation of the VCG. These excluded ECG signals
are the signals from the previously mentioned Frank XYZ system, but also signals
from the 12-lead ECG that are just not used in the calculation of the VCG and that
are randomly selected. The reason for not using all of the 12-lead ECG signals is to
also assess the sensitivity of both VCG methods to the number of electrodes. It has
to be noted here, that for the estimation of the VCG a minimum number of 3 ECG
signals is required at all times. Again, the performance of both methods is described
by means of the resemblance between the ECG signals resulting from projection of
the VCG and the actually recorded ECG signal.

The resemblance between projected and recorded ECG signals is expressed quan-
titatively by means of ε, the normalized mean squared error (MSE) between the
recorded ECG signal and the VCG projection:

εPTV =
1
N

N

∑
i=1

(
~Vi− α̂i~DiŜPTV

)(
~Vi− α̂i~DiŜPTV

)T

~Vi~V T
i

(7.19)

εDower =
1
N

N

∑
i=1

(
~Vi−~DiŜDower

)(
~Vi−~DiŜDower

)T

~Vi~V T
i

. (7.20)

As mentioned previously in Section 7.1, on average about 83% (i.e. approximately
the mean between 70 and 95%) of the power of the ECG signals can be predicted
by projection of the VCG. Consequently, MSE values of about -7.5 dB, i.e. 17%,
signify a relatively accurate VCG. That is, MSE values larger than about -7.5 dB
indicate that, besides imperfections in the dipole model, additional inaccuracies in
the VCG methods have to be present as well.

The fetal VCG determined from real fetal ECG signals cannot be validated with
respect to Frank XYZ signals. Therefore, the performance of both VCG methods is
only evaluated by calculating the fetal VCG with fewer than the 8 electrodes depicted
in Fig. 7.2 and subsequently comparing VCG projections to the omitted ECG signals.
The performance is again expressed quantitatively by means of ε.
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Figure 7.3: Normalized MSE ε between the ECG signals determined from
projection of the VCG and the recorded ECG signals. The MSE
ε is determined for both the PTV method and the Dower method
for both scaled and unscaled ECG signals. In (a), the VCG pro-
jections are compared to the omitted ECG signals and in (b) the
VCG projections are compared to the Frank XYZ leads. Note
that in both graphs, for the unscaled ECG signals, the values
for ε for both methods are practically overlapping.

Finally, for both the adult 12-lead ECG and the fetal ECG recordings, the variance
Σ is determined by assessing, for each individual ECG complex, the variance of the
signal that is obtained by subtracting a template ECG complex from the recorded
ECG complexes. This template ECG complex is generated by averaging all ECG
complexes within each signal.

7.5 Results

7.5.1 12-lead ECG

In Fig. 7.3, the MSE ε is depicted for both the PTV method and the Dower method.
Fig. 7.3(a) and 7.3(b) show ε for the predictive performance of the VCG with re-
spect to omitted electrodes and Frank XYZ leads, respectively. The values of ε are
determined as a function of the number of ECG signals included. As mentioned pre-
viously, the signals that are omitted (i.e. horizontal axis values larger than zero) are
randomly selected and the depicted values represent the mean values across all the
heartbeats for all of the patients.

From Fig. 7.3 it can be seen that the performance of both methods is approxi-
mately the same for unscaled ECG signals, with the developed method performing
marginally better. Since the Dower method has been developed for these recordings,



7.5 Results 135

not much improvement would have been expected here though. It is, however, strik-
ing that even for small numbers of electrodes included, the VCG determined with the
Dower method still is as accurate as a method that can, to some extent, account for
inter-patient differences in signal propagation. The most probable reason for this is
that the inaccuracy in the Dower method, also for few electrodes included, is smaller
than the error originating from non-dipolar effects (Section 7.4.1). This argumen-
tation is confirmed by the fact that all values for ε, except the ones for only 3 or 4
electrodes included, are smaller than -7.5 dB, indicating a relatively accurate VCG
estimation. For the scaled ECG signals, the developed PTV method significantly
outperforms the Dower method with MSE values below -7.5 dB in most situations.

From these figures it can also be seen that the variational inference only approxi-
mates the MAP solution for S in Eq. (7.9). Namely, in case the variational inference
method would generate the true MAP solution, the PTV values for ε between scaled
and unscaled ECG signals would nearly be the same.

In addition, from Fig. 7.3(a) and 7.3(b) it can be seen that, for the modeled non-
standard patients (and thus scaled signals), for the PTV method the number of in-
cluded electrodes larger than the minimally required number of three electrodes can
be halved with respect to the Dower method in order to still obtain similar ε values.
This can result in more patient-friendly, comfortable ECG measurements as fewer
electrodes need to be positioned on the patient’s skin.

Although the difference in performance between the PTV method and the Dower
method for scaled ECG signals appears to be small in Fig. 7.3(b), it yields a sig-
nificant difference in the VCG estimates of Fig. 7.4. More precisely, because the
Frank XYZ leads together comprise the VCG, comparing the VCGs of both methods
to one another gives some insight into how this small difference in MSE ε trans-
lates to actual VCG estimates. Fig. 7.4 indicates that the non-standard patients’ VCG
estimated by the PTV method resembles the VCG determined from unscaled ECG
signals significantly better than the VCG estimated by the Dower method. Here, the
unscaled VCG serves as reference for the VCGs determined from the scaled signals.
The significance in this difference lies in the fact that some ECG applications call
for comparison of two or more vectorcardiographic loops, serial ECG analysis prob-
ably being the most notable [185]. Such comparisons can be considerably affected
by slight inter-recording changes in the VCG. For instance, a small Q-wave in a pro-
jected ECG complex may completely vanish in the consecutive complex. This is
illustrated in Fig. 7.5, in which the VCGs of Fig. 7.4 are projected onto a specific
lead vector. Notwithstanding this improved performance of the PTV method with
respect to the Dower method, the PTV method also suffers from inaccuracies, as can
be seen from the difference between the unscaled VCG and the VCG estimated by
the PTV method in Fig. 7.4. These inaccuracies are mostly due to approximations
made by the variational inference and the fact that attenuation effects are assumed
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Figure 7.4: VCG determined from scaled ECG recordings with the devel-
oped PTV method and with the conventional Dower method. For
reference, also the corresponding VCG from the unscaled ECG
recordings is depicted.

isotropic, i.e. that the ratios between elements within each row of D are kept fixed.

7.5.2 Fetal ECG

In Fig. 7.6, the MSE ε is depicted for the VCG determined from actually recorded
fetal ECG signals.

From Fig. 7.6 it can be seen that also for ECG signals with a lower signal to noise
ratio, the developed PTV method outperforms the Dower method. The difference
between both methods is illustrated once more in Fig. 7.7 in which the fetal VCG
determined with both methods is depicted.

The difference between both VCGs can, according to the model of Eq. (7.3),
be explained by the different attenuation effects on the ECG signals recorded with
different electrodes.

7.6 Discussion & Conclusions

The presented method outperforms the currently existing method for VCG determi-
nation in all situations, although the difference between both methods for patients



7.6 Discussion & Conclusions 137

 

 

Unscaled
PTV
Dower

Figure 7.5: Projections of the VCGs of Fig. 7.4 onto the normalized lead
vector (0, 0.96, -0.27). In contrast to the ECG determined by
the PTV method and the unscaled reference ECG, in the ECG
determined by the Dower method the Q-wave is absent.

8 7 6 5 4 3
−10

−9

−8

−7

−6

−5

−4

# electrodes included

ε 
(d

B
)

 

 

PTV
Dower

Figure 7.6: Normalized MSE ε between the fetal ECG signals determined
from projection of the fetal VCG and the fetal ECG signals that
are omitted from the calculation of the VCG. The MSE ε is de-
termined for both the PTV method and the Dower method.
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Figure 7.7: Fetal VCG determined with both the PTV method and the con-
ventional method.

with standard body composition and geometry is negligible. For patients that do not
conform to the standard, such as fetuses, however, the performance of the developed
method appears to be significantly better than the performance of the conventional
method.

Notwithstanding this improvement in VCG determination, the developed method
is liable to inaccuracies since the applied variational inference method only approx-
imates the MAP solution. By extending this method with other probability distri-
butions, instead of just the Gaussian, performance of this method can be improved,
however potentially leading to a computational higher complexity, e.g. due to re-
quired numerical evaluation instead of analytical evaluation as is the case with the
Gaussian distribution. At this moment, for both scaled and unscaled ECG record-
ings, the PTV method requires, on average, less than 5 iterations to converge to a
stationary solution, yielding a relatively small computational load.

Other ways of improving the developed method are the inclusion of prior infor-
mation on the scaling parameters α, more precisely determined electrode positions,
and the extension of the dipole model to enable it to also deal with non-dipolar com-
ponents. For the latter, an overview of ways to extend the dipole model is provided
in [34], including the addition of another dipole and the use of multi-poles. More
recent extensions of the dipole model include the use of distributed source models,
as discussed in [186]. Including prior information on α implies the inclusion of prior
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information on spatial information, i.e. the heart-electrode distances, as well [187].
Following the principle of maximum entropy [180] to determine the appropriate cor-
responding prior probability distribution and including this distribution in Eq. (7.9)
would result in an analytically unsolvable expression for the posterior probability
distribution. In turn, this would require the use of computationally more complex
numerical approaches to infer the MAP solution. The extension of the dipole model
would also lead to computational more complex numerical approaches. Although all
these improvements are expected to lead to a more accurate VCG estimation, this in-
creased accuracy is expected to be overshadowed by the inaccuracies caused by non-
dipolar contributions in the ECG, as described in the first paragraph of Section 7.1,
with the exception of improvements in the variational inference and the extension of
the model. Hence, the proposed improvements to the developed method are expected
to cause higher computational complexity (improved variational inference, prior in-
formation on α, and extension of the model) and yield more laborious measurements
(more precise electrode positions), while the benefits of most improvements are neg-
ligible. In addition, a higher computational complexity prevents the use of the PTV
method in real-time applications.

For development of the PTV method, several assumptions have been made, in-
cluding the Gaussian distribution of the noise and mutual independence of the scaling
parameters α. The assumption of the noise having a zero-mean Gaussian distribution
is adopted from the inverse Dower matrix method. In this method, inaccuracies in the
dipole model regarding boundary effects, tissue inhomogeneities, and non-dipolar
components are assumed to be accounted for by the numerical description of the
Dower matrix. Although this assumption is not completely valid, resulting in reduced
accuracy in VCG estimation, the method is reported to perform sufficiently well to
support clinical decision-making [47]. With the PTV method outperforming the in-
verse Dower matrix method, the PTV method is expected to also perform sufficiently
well for clinical decision-making. This, however, remains to be demonstrated in clin-
ical practice. The mathematical benefits of the Gaussian noise assumption, yielding
the final algorithm analytically solvable, can, therefore, be considered of larger inter-
est than the modelling error it provokes. The assumption of the scaling parameters
α being mutually independent is, in contrast to other statistical independencies, not
justified by applying d-separation. In fact, both this assumption of independence and
the assumption of a uniform prior for α are inaccurate and result in decreased perfor-
mance of the PTV method. These assumptions are nevertheless needed for the sake of
tractability. However, even with these inaccurate assumptions, the results in Fig. 7.3
and Fig. 7.6 show that the PTV method outperforms the Dower method. Includ-
ing prior information on α is nevertheless expected to lead to substantially improved
performance of the PTV method.

The normalized MSE ε in predicting ECG signals from the VCG is, for the un-
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scaled ECG recordings, smaller than -10 dB for VCGs determined from 6 included
electrodes or more. Although this error can be fully attributed to non-dipolar compo-
nents in the precordial ECG leads, part of this error should be attributed to inaccura-
cies in the linearization of boundary effects and tissue inhomogeneities as well. Here,
the main inaccuracy is caused by the assumption of the scaling α being isotropic –
and hence the assumption of the ratio between the elements within each row of D be-
ing fixed. For scaled ECG signals and the fetal ECG, besides model inaccuracies also
the approximation in the variational inference and decreased signal to noise ratios (for
the fetal ECG) give rise to increased MSE. Based on the differences between scaled
and unscaled PTV results in Fig. 7.3 (as discussed in Section 7.5.1), this increase in
ε due to variational inference can be up to 5 dB.

From Fig. 7.3 and 7.6 it can be seen that the PTV method requires less ECG
signals than the Dower method to obtain similar MSE values in the prediction of
reference ECG signals. Consequently, the use of the PTV method in ambulatory
ECG monitoring is expected to decrease patient discomfort and reduce bandwidth
requirements for wireless data transmission.

Notwithstanding the inaccuracies mentioned above, the developed method pro-
vides a way for estimating a VCG, tailored to each specific patient. For patients con-
forming to the standard, the improvement with respect to the conventional method is
negligible, but for non-standard patients the improvement is significant. On the one
hand, the VCG can be determined with increased accuracy, which for the fetus may
result in improved early stage diagnosis and perhaps even treatment of congenital
heart diseases, whereas, on the other hand, for adult patients it can result in a smaller
number of required electrodes, improving patient comfort and facilitating ambulatory
monitoring applications.

Additionally, since the method also estimates α in Eq. (7.9), for the fetal VCG,
the method can in future be used to estimate the position of the fetal heart with re-
spect to the electrodes – requiring assumptions on tissue homogeneity – and hence
the position of the fetus inside the uterus. In addition, the estimation of α might in
future be used to estimate distributed electrical activity of the heart. Furthermore,
because of the similar nature of the problem in fetal magnetocardiography [188], the
method may also be applied on fetal magnetocardiogram (MCG) signals. With regard
to fetal ECG/MCG monitoring, the capability of the method to predict the morphol-
ogy of fetal ECG/MCG signals that cannot be recorded directly can have significant
value in clinical practice, e.g. through determination of the 12-lead ECG/MCG. This
prediction of the 12-lead ECG and its use in clinical practice is, therefore, a possible
subject of further studies as well.
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Part II

Fetal vectorcardiogram and
electrocardiogram interpretation
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In this part of the thesis, the vectorcardiogram (VCG) that has been estimated
in Part I is used to assess clinically relevant information. The most straightforward
method of extracting information from the VCG is by deriving electrocardiogram
(ECG) signals from the VCG that are similar to the ECG signals recorded from adults
and children. These signals are familiar to clinicians and as such facilitate clinical
interpretation. However, two problems arise when trying to derive these ECG sig-
nals. At first, the fetal heart is different from the adult heart and therefore clinical
guidelines for interpretation need to be reconsidered. Secondly, the orientation of the
fetus within the uterus varies not only between patients but also for the same patient.
As a result of fetal movement, the fetus will change its orientation. These changes in
orientation have immediate and substantial effects on the ECG signals recorded and
derived from the abdominal recordings. As a result, clinical interpretation of the ECG
signals is complicated; it can no longer be conclusively stated whether variations in
the ECG signal originate from movement or from physiological events in the fetal
health.

The outline of this part of the thesis is as follows. In Chapter 8 the physiolog-
ical and electrical differences between the fetal heart and adult heart are discussed,
demonstrating the effect of these differences on the fetal electrocardiogram (ECG).
In Chapter 9 variations in the orientation of the fetus within the uterus are monitored
to enable correction for fetal movement and hence avoid erroneous clinical interpre-
tation of the fetal ECG and VCG. Finally, in Chapters 10 and 11 two examples of
clinically interpretable ECG signals that are derived from the VCG are presented.
In Chapter 10 the 12-lead ECG of fetal supraventricular extrasystoles is compared
to the 12-lead ECG representation of normal fetal heartbeats and it is hypothesized
that this ECG representation can be used to predict fetal congenital heart disease. In
Chapter 11 the ECG representation is derived that resembles the invasively recorded
fetal ECG and this ECG representation is subsequently used to perform fetal ST ana-
lysis. It is shown that the signal to noise ratio (SNR) of the non-invasive fetal ECG
approaches that of the invasive fetal ECG. In addition, it is shown that the position
of the currently employed invasive electrode (for fetuses that represent themselves
in vertex position) is, in terms of the accuracy of the ST analysis, not that far from
optimal.
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Chapter 8

Electrical axis of the human fetal heart
during pregnancy - insights into fetal
electrocardiography

In this chapter the physiological and electrical differences between the fetal heart and
the adult heart are discussed. The electrical properties of both hearts are assessed by
determining the maternal VCG and the fetal VCG within the same frame of reference,
hence enabling direct comparison. The consequence of the electrical differences be-
tween both hearts for ECG interpretation are illustrated by considering the Einthoven
leads of the ECG.1

8.1 Introduction

Analysis of the electrocardiogram (ECG) of preterm born infants can have significant
relevance for establishing a strategy for treatment of the newborn. However, clinical
interpretation of the newborn’s ECG is complicated due to the absence of adequate
knowledge of what constitutes a normal ECG for these ages. The reason for this lack
of standards is the fact that, due to the different cardiovascular circulation in fetal
life as opposed to the adult circulation, the fetal heart is adapted to its intrauterine
environment. This adaptation yields an abundance of cardiac muscle in the right ven-
tricle. Accordingly, the electrical axis of the fetal ventricles is assumed to point to
the right-anterior-inferior octant [59, 189]. Upon birth the circulation of the newborn
drastically changes and the newborn’s heart will start to adapt to this new situation.
More particularly, the newborn’s heart will grow towards an abundance of cardiac
muscle in the left ventricle and accordingly, an electrical axis pointing towards the
left-anterior-inferior octant. However, as this adaptation occurs gradually, ECG in-
terpretation in the intermediate period is complicated.

1This chapter has been submitted as R. Vullings, M.J.M. Hermans, C.H.L. Peters, J.W.M. Bergmans,
S.G. Oei, P.F.F. Wijn, ”Electrical axis of the human fetal heart during pregnancy – insights into fetal
electrocardiography” to be considered for publication.
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With recent progresses made in the treatment of fetal congenital heart diseases
[190, 191], the extrapolation of (lacking) neonatal ECG standards to the fetus is be-
coming more important. This extrapolation, among other factors, calls for a verifi-
cation of the above-mentioned assumption that the mean electrical axis of the fetal
ventricles indeed points towards the right-anterior-inferior octant. To the best of our
knowledge, such a verification has hitherto not been attempted due to inadequate and
insufficient technological means. With recent progresses made in the extraction of
the fetal ECG and VCG from non-invasive electrophysiological recordings on the
maternal abdomen [46, 140], we conceived a method to determine the electrical axis
of the fetal heart. In this chapter we show that for 10 healthy fetuses with gestational
ages ranging from 21 weeks to term, the electrical axis indeed points towards the
right-anterior-inferior-octant.

On its own, this verification has little value in fetal monitoring. However, the
combined information of the fetal VCG and the electrical axis provides a basis for
interpretation of the fetal ECG. That is, by rotating the fetal VCG towards the adult
frame of reference, i.e. the frame of reference in which for instance the 12-lead ECG
is recorded, the VCG can be used to produce ECG leads of the fetal ECG that are
familiar to cardiologists. The production of ECG leads from the VCG is detailed on
in Section 8.2.1. However, to correctly interpret the fetal ECG, the orientation of the
electrical axis should be taken into account. As an example, the correct identification
of axis deviation and left or right bundle branch blocks benefits from a priori knowl-
edge on the electrical axis; Not considering the different electrical axis of the fetal
heart could lead to incorrect or inconclusive diagnosis.

To illustrate the differences between a heart with electrical axis pointing towards
the left-anterior-inferior octant and a heart with electrical axis pointing towards the
right-anterior-inferior octant, in this chapter, besides the electrical axis, also the fetal
ECG in the adult frame of reference and the simultaneously recorded maternal ECG
are presented alongside one another.

8.2 Materials and Methods

8.2.1 Relation between ECG and VCG

The heart contracts as a result of an action potential propagating through the cardiac
tissues and depolarizing the cardiac cells. At any point in time, the combined effect
of all the depolarized cells produces an electrical field that can be measured on the
cutaneous surface: the ECG. During the cardiac cycle, this electrical field varies both
in amplitude and orientation. The orientation for which the amplitude of the electrical
field is largest is referred to as the electrical axis. When assuming the electrical field
to originate from a single point, the time-path of the electrical field vector during the
cardiac cycle is referred as the VCG [64].
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In essence, this VCG contains all the electrical information about the heart. Con-
sequently, any ECG signal can be derived from the VCG. This is done by projecting
the VCG onto the vector that indicates the electrode positions that record the ECG
of interest. For the application at hand, this means that calculation of the fetal VCG
makes it possible to derive any ECG signal of interest. In other words, the fetal VCG
can be rotated to the adult frame of reference and then projected onto e.g. the 12-lead
ECG to yield a ”normal” 12-lead ECG of the fetal heart.

8.2.2 Fetal VCG assessment

The results presented in this chapter are obtained from 10 in-vivo measurements
that form part of a study conducted at the Máxima Medical Center (Veldhoven, the
Netherlands). In this study, for pregnant women, longitudinally across their preg-
nancy, the fetal ECG is recorded from the maternal abdomen. The measurements
discussed here were performed on ten healthy mothers, with ages ranging between
28 and 37 years, all with a singleton pregnancy and gestational ages ranging from
21+4 to 40+1 weeks, and who have given informed consent. The use of 10 recordings
ensures that statistical significance of the results can be achieved. All 10 pregnancies
resulted in healthy babies with 1 minute Apgar scores ranging from 9 to 10, and 5
minute Apgar scores all 10, and no congenital heart diseases.

To enable rotation of the VCG towards the adult frame of reference, simulta-
neously with the fetal ECG recording, also an ultrasonic recording was performed,
as depicted in Fig. 8.1. The abdominal fetal ECG signals are obtained with 8 self-
adhesive electrodes on the maternal abdomen and are processed to suppress the inter-
ferences and artifacts from, among other factors, respiration and the maternal ECG
(also indicated in Fig. 8.1). Subsequently, the fetal ECG signals are further enhanced
by averaging 30 consecutive ECG complexes. Since the fetal heart rate is generally
around 150 beats per minute, these 30 ECG complexes are recorded within a time
frame smaller than 15 seconds. Within this time frame, no transient physiological
events are anticipated and thus no significantly relevant clinical information is lost.
To underpin this, the STAN R© monitor (Neoventa Medical, Sweden) also analyzes
fetal ECG complexes that constitute the average of 30 preceding ECG complexes.
Finally, the fetal VCG is estimated from the enhanced fetal ECG complexes by a
method referred to as patient-tailored vectorcardiography [140] (see Chapter 7). This
method is an extension of the commonly known method proposed by Dower [47]
and involves an automated, patient specific estimation of the ECG signal conduction,
yielding an improved accuracy in VCG estimation.
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Figure 8.1: The electrical axis is obtained in two steps. In the first step, the
fetal ECG is recorded from the maternal abdomen (upper left
photo) and processed by successive filtering, suppression of the
maternal ECG, enhancement of the fetal ECG, and estimation
of the fetal VCG (right panel). In the second step, the fetal VCG
is rotated towards the fetal frame of reference, obtained from
the ultrasound image (bottom left) to enable assessment of the
electrical axis of the fetal heart.
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8.3 Results

In Fig. 8.2(a) the result of the determination of the electrical axis of the fetal heart is
shown for a patient at 21+4 weeks of gestation. To exemplify that this axis is pointing
in the opposite direction as it would for an adult, in Fig. 8.2(b) the electrical axis of
the maternal heart is depicted. In these figures, both the VCG and the electrical axis
are plotted together, with the electrical axis, as mentioned previously, defined as the
direction in which the VCG exhibits the maximum amplitude. The VCG amplitude
along the x-axis of the plot, referred to as Vx, constitutes the potential along the vector
pointing normal to the frontal plane, from the posterior side to the anterior. The axis
indicated with Vy points from the right to the left and the Vz axis points from the
inferior side of the fetus to the superior side. The direction in which the QRS loop
evolves over time is indicated as well.

The fetal VCG, more clearly than the maternal VCG, also shows that the direction
of the electrical axis of the atria (i.e. the direction of the maximum P-wave amplitude)
conforms to the electrical axis of the ventricles. The reason that the P-wave is not
that clear in the maternal VCG is the non-standard electrode configuration that is
used to assess the maternal VCG. That is, the maternal VCG is assessed from the
same electrode configuration as is the fetal VCG (see Fig. 8.1).

In Figs. 8.2(c) and 8.2(d) the frontal view of the fetal and adult VCG’s are shown
again, together with their projections on the Einthoven triangle [62]. From these
Einthoven leads of the ECG it is immediate clear that the ECG of a healthy fetus
substantially differs from the ECG of a healthy adult, apart from the obviously lower
signal amplitude (from Figs. 8.2(a) and 8.2(b) it can be deduced that the fetal ECG has
an amplitude that is about 20 times as small as the amplitude of the maternal ECG).
Where for the adult ECG, Einthoven III typically has a relatively small amplitude
whereas Einthoven II has a large amplitude, for the fetal ECG this is the other way
around. Consistently, the polarity of Einthoven I is inverted between the adult and
fetal ECG.

To demonstrate that the findings of Fig. 8.2 are representative for the other 9
recordings, in Fig. 8.3 the directions of the electrical axes from all 10 fetuses and
their mothers are depicted. From this figure it can be concluded that, on average, for
all patients the direction of the fetal and maternal electrical axis is directed towards
the same direction.

8.4 Discussion

The results in Fig. 8.2 and Fig. 8.3 indicate that the direction of the mean electrical
axis of the fetal ventricles is, indeed, as assumed for many years, towards the right-
anterior-inferior octant. In addition, the results indicate that full adaptation of the fetal



150 Electrical axis of fetal heart

−5
0

5 −20
−10

0
10

−4

0

4

Sagittal plane

Transversal

   plane

V
y
 (µV)

Frontal plane

V
x
 (µV)

V
z (

µV
)

−5
0

5 −20
−10

0
10

−4

0

4

Sagittal plane

Transversal

   plane

V
y
 (µV)

Frontal plane

V
x
 (µV)

V
z (

µV
)

(a)

0

100

200 −50 0 50 100

−150

−100

−50

0

50

V
y
 (µV)

Sagittal plane

Transversal

     plane

V
x
 (µV)

Frontal plane

V
z (

µV
)

0

100

200 −50 0 50 100

−150

−100

−50

0

50

V
y
 (µV)

Sagittal plane

Transversal

     plane

V
x
 (µV)

Frontal plane

V
z (

µV
)

(b)

(c) (d)

Figure 8.2: (a) Fetal VCG and (b) Maternal VCG. Both VCG’s are shown
in the frontal plane, with projections onto this plane and onto
the inferior transversal and left sagittal plane shown as well.
The arrows in both plots indicate the direction of the electrical
axis of the ventricles and the direction in which the VCG evolves
over time. To facilitate visual comparison between the fetal VCG
and the adult maternal VCG, both the VCG’s in (a) and (b) are
depicted under the same angle and with the same ratio between
the lengths of the axes. Due to the smaller amplitude of the fetal
VCG, the axes in (a) have smaller scales than the axes in (b).
In (c) and (d) the frontal views of both VCG’s are shown again,
together with their projections on the I, II, and III ECG leads of
the Einthoven triangle.
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Figure 8.3: (a) Frontal view and (b) right-sagittal view of the direction of
the electrical axis of both fetus and mother. All axes amplitudes
have been normalized to enable simultaneous depiction for both
the fetus and mother. The electrical axes of the fetal heart are
depicted with a solid arrow. The electrical axes of the maternal
heart are depicted with dotted arrows.

heart to the larger mechanical load in the right ventricle can be seen at least as early as
21+4 weeks of gestation. This larger mechanical load of the right ventricle originates
from the larger ejection volume of this ventricle, as opposed to the left ventricle. As
both ventricles, due to the ductus arteriosus, eject into the same vascular bed, systolic
pressure in both ventricles has to be the same [60]. Bearing this in mind, the direction
of the electrical axis of the fetal atria, which at first sight is counter-intuitive due to
the location of the sinoatrial node in the right atrium, can also be explained. Namely,
because only one-third of the venous return flows through the foramen ovale from the
right to the left atrium [60], the right atrium has to eject about twice as much blood
to the right ventricle as the left atrium has to eject to the left ventricle.

The results in Figs. 8.2(c) and 8.2(d) show that the alternative direction of the fetal
electrical axis has direct consequences in fetal electrocardiography. The projections
of the fetal and adult VCG onto the Einthoven triangle [62] indicate that clinical
interpretation of the fetal ECG should be made differently from clinical interpretation
of the adult ECG. It can be concluded that our results verify existing assumptions on
the electrical axis of the fetal heart, opening new research opportunities in the as yet
uncharted field of fetal electrocardiography. When normal values for the fetal ECG
can be established, diseases like bundle branch block, typically originating in the
fetus around 18-20 weeks of gestation, can possibly be diagnosed and treated early.
In addition, interpretation of the fetal ECG for assessment of fetal distress [2] could
presumably improve with better knowledge on the electrical axis of the fetal heart.
That is, when using the non-invasive fetal ECG for assessment of fetal hypoxia, full



152 Electrical axis of fetal heart

comprehension of the fetal heart and ECG might lead to the derivation of ECG leads
that exhibit advantageous properties for e.g. assessing ST changes.

8.5 Conclusion

In this report the authors have shown in-vivo that the healthy fetal heart, as assumed
and proven in neonatal studies, is indeed adapted to its alternative circulation by
increased mass of the right atrium and ventricle, already as early in pregnancy as 21
weeks. Moreover, the authors have shown that this adaptation of the fetal heart has
substantial implications in the field of fetal electrocardiography. Notwithstanding
these implications, the authors have shown that the presented methodology makes
fetal ECG analysis possible and might, hence, in the future aid in the assessment of
normal values for fetal electrocardiography. Finally, the presented methodology can
similarly be applied to fetal magnetocardiographic signals, providing also a basis for
signal interpretation in the field of fetal magnetocardiography.
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Chapter 9

Vectorcardiographic loop alignment for
non-invasive monitoring of fetal
movement

In this chapter a method is presented that enables monitoring of variations in the fetal
orientation. The method operates by estimating the rotation and scaling between
consecutive VCG’s. Because of its flexibility in the allowed scaling, the method can
also be used to estimate the rotation between the fetal VCG and the maternal VCG.
This rotation provides information on the orientation of the fetus within the uterus
which in turn can be combined with the VCG to derive ECG signals that are familiar
to clinicians. To ensure that this absolute fetal orientation is estimated accurately, the
differences between the fetal and adult heart, discussed in the previous chapter, are
taken into account.1

9.1 Introduction

High-risk pregnancies are generally monitored by cardiotocography (CTG), the com-
bined assessment of fetal heart rate variability and maternal uterine activity. Unfor-
tunately, the diagnostic value of CTG is relatively low and, therefore, in many cases
additional information to assess the fetal condition is required [20].

A possible additional source of information is the fetal electrocardiogram (ECG).
Analysis of the fetal ECG, recorded with an invasive electrode, in combination with
CTG has been demonstrated to improve perinatal outcome [28]. Despite this im-
provement, the value of fetal ECG analysis in clinical practice is somewhat limited
due to the fact that it requires an invasive electrode and can, therefore, only be applied
during labor. Hence, non-invasive methods to support CTG in fetal monitoring and
that can be applied in all stages of pregnancy – and not only during labor – are still

1This chapter has been submitted as R. Vullings, C.H.L. Peters, S.G. Oei, and J.W.M. Bergmans,
”Expectation-maximization for vectorcardiographic loop alignment and non-invasive assessment of
fetal movement” to be considered for publication.
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urgently needed.

To extend the applicability of fetal ECG analysis to all stages of pregnancy, sev-
eral attempts to record the fetal ECG from the maternal abdomen have been made
over the years [46, 90, 92, 94, 95]. Notwithstanding the significant progress made,
none of these methods is currently employed in clinical practice. This is due in part
to difficulties in the clinical interpretation of the non-invasively obtained fetal ECG
signals. A particular example of such difficulties arises in case of fetal movement.
As a result of fetal movement the ECG signals will change. Without quantitative
information on fetal movement, it is difficult to assess whether changes in the ECG
originate from movement or from clinically relevant changes in the fetal physiologi-
cal condition.

The monitoring of fetal movement can resolve this particular problem, facilitating
clinical interpretation of the fetal ECG, and has an additional benefit. In most cases
of fetal demise, fetal death is preceded by reduced fetal motility [53]. Moreover, as
reduced fetal movement is also associated with fetal hypoxia and fetal growth re-
striction [72], using fetal movement assessment as a screening tool for fetal compro-
mise could potentially become one of the mainstays in fetal surveillance. Presently,
the most widely used method for fetal movement assessment is maternal perception.
However, since maternal perception is liable to significant inter-patient variability,
e.g. due to the variability in the position of the placenta, clinical actions based on fe-
tal movement counting by the mother do not necessarily improve fetal outcome [192].
If it were possible, then, to assess fetal movement in a continuous, safe, objective, and
automated way, this would resolve the issues on maternal partiality and could aid in
the adoption of fetal movement monitoring in everyday clinical practice.

In a simplified model, the electrical activity of the heart can be fully described
by the vectorcardiogram (VCG) [32, 64]. The VCG describes the evolution of the
electrical field vector generated by the heart during each heartbeat. By tracking ro-
tations between the fetal VCG of consecutive heartbeats and relating these rotations
to fetal movement, it is possible to quantify fetal movement and hence facilitate both
clinical interpretation of the fetal ECG and automated and objective monitoring of
fetal movement. With respect to monitoring of fetal movement, it has to be noted
that only a unidirectional relation between VCG rotations and fetal movement is
anticipated. That is, in case VCG rotation is detected, this can be related to fetal
movement. Conversely, no VCG rotation does not mean that the fetus is not moving.
Limb movement, for instance, is not expected to lead to (significant) fetal rotational
movement.

Rotations between the VCG’s of consecutive heartbeats can be tracked by means
of the maximum likelihood (ML) approach presented by Sörnmo [185]. In this ap-
proach, consecutive VCG’s are modeled to be related to one another through a couple
of transformations. Besides rotation, one of these transformations is scaling of the
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complete VCG to account for contraction or dilatation. However, as discussed by
Sörnmo, this scaling is not entirely realistic and improvements in the movement esti-
mation are to be expected in case this scaling is extended to a lead-dependent scaling.

The method presented in this chapter (Section 9.2) builds on Sörnmo’s approach
but is extended with the above-mentioned lead-dependent scaling. The ML estimate
for this scaling and the accompanying rotation estimate are successively inferred us-
ing the expectation-maximization (EM) algorithm. With respect to the intended goal
of Sörnmo (i.e. vectorcardiographic loop alignment in adults) the extension with
lead-dependent scaling is expected to yield only marginal improvements in accuracy.
For the application mentioned above (i.e. tracking of fetal movement), the lead-
dependent scaling is however particularly relevant. That is, translational movement of
the fetus and maternal respiration are both anticipated to cause significant distortion
of the fetal VCG. This distortion can be better accounted for by the lead-dependent
scaling than by the single scaling proposed in Sörnmo. In turn, this improved scaling
estimation results in an improved estimation of the VCG rotations.

The developed method is evaluated in two different ways. At first, the perfor-
mance in VCG alignment for both adult and fetal ECG recordings is assessed quan-
titatively in terms of spatial variability and intralead variability of the aligned VCG’s
and compared to the performance of Sörnmo’s approach (Section 9.3). Secondly,
the developed method is applied on fetal ECG recordings and the determined fetal
movement is evaluated qualitatively by comparing it to movement assessed from a
simultaneously ultrasound recording (Section 9.4). To illustrate the potential of the
lead-dependent scaling, the developed method is also applied on an extreme case
of VCG mismatches (Section 9.4.3); determining the rotation between the maternal
VCG and the fetal VCG both determined from the same abdominal recording. The
estimated rotation yields a measure for the ”absolute” fetal orientation within the
uterus.

9.2 Vectorcardiographic loop alignment

9.2.1 Model for fetal rotation

As mentioned previously, the rotation between the VCG’s of consecutive heartbeats
can be used as a measure for fetal movement. Since they exhibit superior signal to
noise ratio (SNR) with respect to other parts of the VCG and have an almost planar
shape [134], the QRS loops of the VCG are particularly well-suited for this purpose.
The superior SNR of the QRS loops stems from the fact that the QRS loops entail
the parts of the VCG that are associated with electrical activation of the ventricles.
As the ventricles comprise a relatively large fraction of the mass of the heart and the
activation of the ventricles is well synchronized, the amplitude of the QRS loop is
large with respect to other parts of the VCG, hence yielding a relatively large SNR.
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Figure 9.1: Schematic overview of the model proposed by Sörnmo [185],
with the extension that the scaling no longer entails a scalar but
a matrix multiplication.

A model that describes the relation between two consecutive VCG’s has been
proposed by Sörnmo [185] and evaluated extensively by Åstrom et al. [193]. In the
model by Sörnmo, the QRS loop at time t is described by a [3×M] matrix Zt . In this
matrix, each row vector contains the QRS loop of one of the three orthogonal leads
of the VCG. In the model by Sörnmo, Zt is assumed to be derived from the preced-
ing QRS loop Z̃t−1, however altered by a series of transformations. The preceding
reference loop Zt−1 is an [3×(M + 2∆)] matrix and contains 2∆ additional samples
to allow for QRS loops that constitute different subsets of M samples from Z̃t−1 (the
tilde indicates that Z̃t−1 is augmented with additional samples).

The first of the above-mentioned transformations on Z̃t−1 is time synchronization,
as indicated in Fig. 9.1. Time synchronization is considered to increase the resem-
blance between Zt and Z̃t−1 [185]. Since the length of the QRS loop is determined
by the time it takes an action potential to propagate through the ventricular tissues
and since the ventricular propagation properties are rather constant over time, i.e.
not regulated by the nervous system, the length of consecutive QRS loops can be as-
sumed equal. This renders compression or expansion of the QRS loops superfluous.
The time synchronization is described by the shift matrix Jτ, a [(2∆+M)×M] matrix
defined by the time shift τ:

Jτ =

 0∆+τ

I
0∆−τ

 (9.1)

with τ ∈ [−∆,∆]. The zero-matrices in Eq. (9.1) are [(∆+ τ)×M] and [(∆− τ)×M]
matrices, respectively, and the identity matrix I has dimensions [M×M].

The second transformation applied on the preceding QRS loop is scaling. Scaling
serves to compensate for loop distortion originating from variations in the location
of the heart and in the conductivity of the surrounding tissues. Since these variations
are expected to be different for the different electrode positions, a scalar multiplier,
as suggested in Sörnmo [185], yields an inaccuracy in the model. This inaccuracy
can be reduced, yet not fully overcome, by modeling the scaling as a [3×3] diagonal
matrix B with entries~β (Bi j = β jδi j, with δi j the Kronecker delta). For the fetal VCG
the variations in the location of the heart are expected to be even more prominent than
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for adults as variations in the fetal position with respect to the recording electrodes
on the maternal abdomen are more likely to occur.

The last transformation on Z̃t−1 is the rotation, which, as mentioned before,
serves as a measure for fetal movement. In 3-dimensional space, the rotation be-
tween consecutive VCG’s can be described by the rotation matrix R.

Combining the three transformations, i.e. time synchronization, rotation, and
scaling, gives the model (see Fig. 9.1):

Zt = RBZ̃t−1Jτ +H. (9.2)

Here, the QRS loop Zt is assumed to be additively disturbed by the [3×M] Gaussian
noise matrix H.

9.2.2 Maximum likelihood estimation of alignment

With the model of Eq. (9.2), the loop alignment problem is reduced to a parameter
estimation problem in which R, B, and τ constitute the parameters of interest. The
uncertainty in the model and noise parameters suggests the use of a probabilistic
approach for solving the parameter estimation problem. By assuming the noise to be
white in all three VCG leads and have identical variances σ2

v [185] and by furthermore
assuming no a priori information on the scaling and rotation matrices and the time
synchronization parameter τ to be fixed, the likelihood of the model can be described
as

p
(
Zt
∣∣R,B, Z̃t−1,τ

)
∝ exp

[
− 1

2σ2
v

∥∥Zt −RBZ̃t−1Jτ

∥∥2
F

]
. (9.3)

Here, ‖ · ‖2
F denotes the Frobenius norm.

By maximizing this probability distribution with respect to both B, R, and τ, the
ML estimation of these parameters can be assessed. This maximization is performed
by finding expressions for the optimal estimates B̂ and R̂ under the assumption of
fixed τ. By subsequently inferring for which value of τ the probability is maximal,
the optimal estimate τ̂ can be determined.

To solve this maximization problem, let us for now assume that βi = α for all
i. As a result, after realizing that the matrix multiplication with B is equivalent to a
scalar multiplication with α, the approach by Sörnmo can be followed. This approach
stipulates that, since maximization of the probability of Eq. (9.3) is the same as min-
imization of ‖Zt−RBZ̃t−1Jτ‖2

F , the parameter estimation problem can be simplified
to the minimization of

tr
(
ZT

t Zt
)
+α

2tr
(
JT

τ Z̃T
t−1Z̃t−1Jτ

)
−2αtr

(
JT

τ Z̃T
t−1RT Zt

)
(9.4)

with respect to α and R.
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The ML estimate R̂ for R now follows from maximizing the last term in Eq. (9.4):

R̂τ = ΘΓ
T (9.5)

where Θ and Γ are the left and right eigenvectors of the matrix ZtJT
τ Z̃T

t−1, respectively,
and are obtained from the singular value decomposition (SVD) of this matrix. This
ML estimate is indexed with τ to denote that it represents the ML estimate for a
particular value of τ.

With R̂ determined, the ML estimate α̂ and, after that, the estimate τ̂ can be
calculated from [185]

α̂τ =
tr
(
ZT

t R̂τZ̃t−1Jτ

)
tr
(
JT

τ Z̃T
t−1Z̃t−1Jτ

) (9.6)

τ̂ = argmin
τ

∥∥Zt − α̂τR̂τZ̃t−1Jτ

∥∥2
F . (9.7)

Let us now go back to the assumption of different scalings for each VCG lead
(βi 6= β j for i 6= j) and focus on the inference on the scaling matrix B, irrespective of
the rotation matrix R. Furthermore, to clarify the notation somewhat, in the derivation
presented below, the given variables/parameters Z̃t−1 and τ are omitted. In terms of
probability distributions, the inference on B yields the maximization of the probabil-
ity distribution p(B|Zt). Using Bayes’rule [150] and assuming no prior information
on B, it can be shown that

p(B |Zt ) ∝ p(Zt |B) .

Consequently, maximizing of the log probability ln p(Zt |B) constitutes maximization
of ln p(B|Zt) as well. This log probability, in turn, can be re-expressed as:

ln p(Zt |B) = ln
∫

p(Zt |B,R) p(R |B)dR

= ln
∫

p(Zt |B,R)dR. (9.8)

Here, for mathematical simplicity, the prior probability distribution p(R|B) is
assumed to be uniformly distributed. When defining p(R|Zt , B̂old) to be the proba-
bility distribution for R given the VCG loops and an initial estimate of Bold, then the
probability distribution of Eq. (9.8) can be written as

ln
∫

p(Zt |B,R)dR = ln
∫

p
(
R
∣∣Zt ,Bold ) p(Zt |B,R)

p(R |Zt ,Bold )
dR (9.9)

and using Jensen’s inequality [132] it can be further bounded as

ln
∫

p
(
R
∣∣Zt , B̂old ) p(Zt |B,R)

p
(
R
∣∣Zt , B̂old

)dR

≥
∫

p
(
R
∣∣Zt , B̂old ) ln p(Zt |B,R)dR−

∫
p
(
R
∣∣Zt , B̂old ) ln p

(
R
∣∣Zt , B̂old )dR

= E [p(Zt |B,R)]−E
[
p
(
R
∣∣Zt , B̂old )] . (9.10)
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Here, the expectations are expressed with respect to p(R|Zt , B̂old).
The derivation above essentially constitutes the EM algorithm [132, 194]. In the

EM algorithm the lower bound on the righthand-side of Eq. (9.10) is defined by
estimating p(R|Zt , B̂old). Subsequently, this lower bound is maximized, providing
a new estimate for B that yields a larger likelihood than the old estimate B̂old. In
turn, for given B, the ML estimate R̂ can be obtained using Eq. (9.5), where Θ and
Γ are obtained from the SVD of the matrix ZtJT

τ Z̃T
t−1B̂oldT

. This ML estimate R̂ can
subsequently be used to define p(R|Zt , B̂old) as a Dirac delta function:

(E-step): p
(
R
∣∣Zt , B̂old )= δ

(
R− R̂

)
. (9.11)

The use of the delta function in Eq. (9.11) implies that in the E-step the rotation matrix
is assumed to equal the estimate R̂ that is determined in the previous iteration of the
EM algorithm. Moreover, it has to be noted that the delta here constitutes the Dirac
delta function, which is different from the Kronecker delta previously mentioned
(Section 9.2.1).

Using Eq. (9.10) and (9.11), the maximization of the expectation of the log like-
lihood ln p(Zt |B) with respect to B reduces to finding the B̂ that satisfies

(M-step):
∂

∂B
∥∥Zt − R̂BZ̃t−1Jτ

∥∥2
F . (9.12)

Here, the second term of Eq. (9.10) is omitted as this term does not depend on B.
By optimizing τ according to Eq. (9.7) after the M-step, the EM algorithm presented
above operates as a three-step iterative process that maximizes the probability distri-
bution of Eq. (9.3) with respect to B, R, and τ.

9.2.3 Quantification of fetal movement

Quantitative analysis of fetal movement in terms of monitoring the estimated rotation
matrix R̂ is rather complicated. Specifically, visualization of evolutions in the [3×3]
matrix over time is difficult. Hence, in this paper the movement is quantified by a
single parameter: the l2 norm of the rotation matrix R. In fact, as no movement
yields a rotation matrix that equals the [3×3] identity matrix I3, before taking the l2
norm, R is adapted by subtracting I3:

M =
√

∑(R− I3)
2. (9.13)

The parameter M simplifies visualization of the movement, zero M being no
movement at all and M = 2

√
2 signifying maximal movement.
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Table 9.1: Medical conditions of the various patients and the number of pa-
tients for each of these diagnostic classes. For the patients in the
class ”unknown” no medical conditions were specified.

Diagnostic class Number of patients

Myocardial infarction 148
Cardiomyopathy/Heart failure 18
Bundle branch block 15
Dysrhythmia 14
Myocardial hypertrophy 7
Valvular heart disease 6
Myocarditis 4
Miscellaneous 4
Healthy controls 52
Unknown 22

9.3 Performance assessment of vectorcardiographic align-
ment

9.3.1 Signals for performance assessment

For the adult ECG, 549 recordings, most of them 60 seconds long, from 290 different
patients are obtained from the MIT/BIH PTB diagnostic ECG database [184]. The
medical conditions of the patients involved are detailed in Table 9.1. Besides the
full 12-lead ECG, these recordings also comprise the Frank leads [64], i.e. three
orthogonal leads that jointly compose the VCG.

As mentioned in Section 9.1, the developed method for estimating the rotation,
scaling, and time-alignment between consecutive QRS loops (from here on, referred
to as the EM method) is not expected to perform substantially better than Sörnmo’s
method in case of little variability in the QRS loop morphology. On the other hand, in
cases of significant morphological variability, like for the fetal VCG, the difference
between both methods is expected to be larger, favoring the developed method over
Sörnmo’s method. Therefore, both methods are also applied on fetal ECG recordings.

In total, eight fetal ECG recordings (gestational ages ranging from 23+6 to 40+5
weeks) of lengths ranging from 10 to 20 minutes are used to assess the performance of
both VCG alignment methods. These ECG recordings are performed in the Máxima
Medical Center (Veldhoven, the Netherlands) using contact electrodes that are placed
upon the maternal abdomen. The ECG signals are acquired at a 1 kHz sampling
rate using a NEMO system (Maastricht Instruments BV, the Netherlands) and are
processed to eliminate the maternal ECG and some of the other interferences present
[46]. The VCG can subsequently be determined from the processed signals by using
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information on the electrode positions [47, 64]. In addition, to account for VCG
distortion because of signal attenuation that originates from the different distances
between the electrodes and the fetal heart, a statistical approach is employed that
estimates the signal attenuation per electrode and exploits this information to infer a
VCG that is less distorted [140].

9.3.2 Results of performance assessment

The performance of both methods is assessed in terms of spatial variability and in-
tralead variability:

• Spatial variability: the spatial variability ε represents the difference between
the aligned QRS loops, expressed as ‖Zt − R̂B̂Z̃t−1Jτ̂‖2

F for the developed
method. For Sörnmo’s method, the matrix B̂ is replaced by the scalar α̂.

• Intralead variability: the intralead variability is related to the standard devia-
tion across the ensemble of heartbeats. That is, multiple aligned QRS loops
are overlayed on one another and for each sample the standard deviation over
this ensemble of QRS loops is determined. The intralead variability then con-
stitutes the sum over (or area under) these standard deviations. To correct for
variations due to noise, the standard deviations are corrected by subtracting the
standard deviation obtained from intervals 50 ms before QRS onset and 50 ms
after QRS end [185, 195]

For evaluation of both methods, the ECG signals are upsampled to 4 kHz to
enable optimal performance of both methods [185]. Furthermore, to ensure fair com-
parison between both methods, Sörnmo’s method is implemented in its multipass
loop alignment scheme. In this scheme the reference loop Zt is sequentially updated
by averaging of the aligned QRS loops.

In Fig. 9.2 the effect of the loop alignment for both methods is illustrated on both
an adult and a fetal ECG recording. In this figure, 50 consecutive beats are plotted
on top of one another, both before and after alignment, demonstrating that the EM
method performs better than Sörnmo’s method in reducing the intralead variability
(graphs on bottom row of Fig. 9.2) for both the adult and fetal recording.

In Fig. 9.3 the spatial variability and intralead variability for both the EM method
and Sönrmo’s method are depicted as a scatter plot. The standard deviation used
for the assessment of the intralead variability is determined over an ensemble of 50
heartbeats and similarly, the spatial variability is averaged over the same heartbeats.
Due to the fact that not all of the 549 recordings consisted of at least 50 heartbeats, in
total 510 recordings are used in Fig. 9.3. Because only eight fetal ECG recordings are
available, but because all these recordings contain, at least, over 1000 fetal heartbeats,
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Figure 9.2: Example of 50 QRS complexes overlayed onto one another for
both an adult (a) and a fetus (b) (for both lead X of the VCG).
The top row shows the QRS complexes that are synchronized in
time based on the maximum correlation (no rotation and scal-
ing). The second row shows the QRS complexes that are aligned
by Sörnmo’s method. The third row shows the QRS complexes
after alignment by the developed EM method. Finally, the bot-
tom row shows the ensemble standard deviation. Here the ’-.’
line represents the standard deviation for the complexes that are
only aligned in time, the dotted line represents Sörnmo’s method,
and the solid line represents the EM method.
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subsets of 50 heartbeats each are used to demonstrate the difference in the method’s
performances with respect to the performances on adult ECG recordings.

From Fig. 9.3(a), it can be seen that, in terms of minimizing the spatial variability,
the EM method outperforms Sörnmo’s method in all cases. This finding is conform
expectation as the EM method entails an extension of Sörnmo’s method, providing
additional degrees of freedom in aligning the QRS loops. That is, the scaling is no
longer represented by the scalar multiplier α but by the diagonal vector multiplier B.
In a worst case scenario, this diagonal obtains the form of a scalar times the identity
matrix (B = αI), yielding the same result as Sörnmo’s method.

In terms of the intralead variability, the performance of the EM method is not by
definition better than the performance of Sörnmo’s method. However, Figs 9.3(b)-
9.3(d) demonstrate that for most recordings the EM method performs better than
Sörnmo’s method. In addition, from Fig. 9.3 it can also (preliminarily) be concluded
that for fetal ECG recordings the difference in performance between both methods
is slightly larger. This finding can be explained by the fact that for the fetus more
morphological variability between consecutive QRS loops is anticipated and this in-
creased variability can be better accounted for by the EM method than by Sörnmo’s
method.

Despite the reductions in spatial and intralead variability that are achieved with
the EM method, these reductions might also have a downside. Specifically, these re-
ductions can go at the expensive of masking physiological changes. Clinically rele-
vant changes in the morphology of the ECG might be obscured by the lead-dependent
scaling, making it difficult or even impossible for clinicians to make an accurate di-
agnosis. In general, however, physiological changes in the ECG do not occur instan-
taneous but emerge rather gradual. Hence, by frequently updating the reference VCG
loop Zt−1, the masking of physiological changes in the ECG can be kept relatively
small. Irrespective of this comment, comparison between the performance of the EM
method and Sörnmo’s method, in terms of spatial and intralead variability, should
nevertheless be made considering (or even correcting for) physiological changes in
the ECG.

9.4 Monitoring fetal rotational movement

9.4.1 Signals and methodology for performance assessment

As mentioned previously, besides for vectorcardiographic loop alignment, the devel-
oped method can also be used to estimate movement of the fetal heart, either for
facilitating clinical fetal ECG interpretation or for monitoring of fetal movement.

For evaluation of the latter application, simultaneously with the electrophysio-
logical recordings, also ultrasound images are acquired using an Aloka SSD1100
ultrasound scanner (Aloka, Japan). Movement is determined from these ultrasound
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Figure 9.3: Scatter plots of the spatial and intralead variability for both
methods, for both the adult (’o’) and fetal recordings (’x’). In
(a) the spatial variabilities are plotted against one another. In
(b)-(d) the intralead variabilities are plotted against each other.
For scatter points below the line ”y=x”, the EM method out-
performs the Sörnmo method. Vice versa, for points above the
line, Sörnmo’s method outperforms the EM method. For the fe-
tal recordings, the variabilities (i.e. spatial and interlead) have
been upscaled in order to visualize the fetal results next to the
adult results.
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Fetal movement

Probe movement

t = t’ t = t’+1

Figure 9.4: Ultrasound images indicating either fetal movement (top row) or
probe movement (bottom row). For each row, the panels on the
left show the ultrasound image at time t, the center panels show
the ultrasound images at the next point in time t + 1, and the
right panels show the difference between the first two panels. As
fetal movement generally occurs rather gradually – for reasons
of clarity – in the top row the time difference between the first
two images is taken to be 0.8 s. For the probe movement, as
this generally occurs more rapidly, the time difference between
the first two images is taken 0.04 s. In the right panels, the ROI
for fetal movement (top row) and the ROI for probe movement
(bottom row) are indicated by the white frames.

recordings in two different ways. In the first way, the movement is assessed based
on visual inspection. In the second way, movement is assessed by determining the
sum of absolute differences (SAD) [149] between consecutive images in the ultra-
sound recording. That is, the absolute difference between corresponding pixels in
each ultrasound image is summed over an a priori assigned region of interest (ROI;
see Fig. 9.4). To ensure that movement of the probe is not erroneously labeled as
fetal movement, images for which the SAD is also relatively large outside the ROI
(again see Fig. 9.4) are disregarded.

The automated analysis of fetal movement from ultrasound images presented
above has the drawback that it cannot discriminate between movement of the limbs
and movement of the heart. Hence, it can be anticipated that the ultrasound approach
will show more movement than the VCG approach. For clinical practice, it can how-
ever be argued that this does not entail a major limitation to the VCG approach.
Namely, one of the goals (and in this paper the principal goal) of VCG alignment
is the correction for movement in the fetal ECG. In addition, because of the fact
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that movement of the limbs will in some situations, due to the confined space of the
uterus, result in movement of the fetal thorax (and its encompassing heart) as well,
the movement assessed by the VCG approach could indeed be a reliable measure to
support mothers or clinicians in fetal movement counting/monitoring.

9.4.2 Results of movement monitoring

In Fig. 9.5, for one of the fetal ECG recordings, the fetal movement M assessed from
both the VCG recording and the ultrasound recording is simultaneously depicted.
Here, the movement assessed from the VCG recordings is expressed in terms of M .

To smoothen the movement traces depicted in Fig. 9.5 (i.e. both for the VCG
recordings and the ultrasound images), they have been low-pass filtered at 0.6 Hz.
The reason for this particular cut-off frequency is mainly to suppress respiration ef-
fects in the ultrasound images. That is, due to respiration, the maternal abdomen
moves, causing variations between consecutive ultrasound images.

From Fig. 9.5 it can be seen that in essence all methods agree with one another.
Only between 200 and 400 seconds, the ultrasound analysis shows significant el-
evation of the baseline, indicating movement in the ultrasound images, while this
movement is not confirmed by the visual inspection. Fig. 9.5 also shows that the de-
veloped EM method is slightly more sensitive to movement than the Sörnmo method.
This increased sensitivity can be explained by the fact that, due to the lead-dependent
scaling in the EM method, the rotation matrix can be estimated more accurately. This
improved estimation, in turn, leads to larger variations in the associated rotation an-
gles [185].

The results for the other fetal ECG recording are consistent with the results of the
recording visualized in Fig. 9.5. The correlation coefficients between the movement
assessed from ultrasound and the movement assessed from either the EM method or
the Sörnmo method range between 0.39 and 0.72 (average: 0.57) for EM and between
0.32 and 0.64 (average: 0.51) for Sörnmo. For the example depicted in Fig. 9.5 the
correlation coefficients were 0.46 and 0.44, respectively.

9.4.3 Absolute fetal orientation estimation

As mentioned in Section 9.1, the EM method is also applied on a more extreme case
of VCG mismatches: aligning the fetal QRS loop with the maternal QRS loop that
is recorded simultaneously. The resulting estimate for the rotation matrix provides
information on the absolute orientation of the fetus within the uterus. That is, by
using a priori knowledge of the orientation of the maternal heart with respect to
the abdominal electrodes and combining this knowledge with the estimated rotation
between the fetal VCG and maternal VCG, the orientation of the fetal heart with
respect to the abdominal electrodes can be assessed.
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Figure 9.5: Results of movement estimation from the ultrasound recordings
(top line) and from the VCG recordings (center line for EM
method and bottom line for Sörnmo’s method) for the fetus at
24+4 weeks of gestation. To avoid unclarities due to overlap-
ping of the lines, the results have been vertically shifted. The
gaps in the movement trace from the ultrasound recordings are
due to detected ultrasound probe movement. The shaded areas
indicate the movement/events assessed from visual inspection of
the ultrasound images. The lightest shade of grey indicates vari-
ations in the ultrasound images due to probe movements and
external events such as changes in the intensity of the images.
The darker shade of grey indicates movement of the limbs and
the darkest grey indicates movement of the thorax and heart. It
has to be noted here that in most cases movement of the heart is
accompanied by movement of the limbs.
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Because each ECG signal basically constitutes the projection of the VCG onto the
lead vector that describes the electrode position with respect to a reference position,
the information on the orientation of the fetus within the uterus can be used to define
lead vectors in such a way that ECG signals arise that are familiar to clinicians from
adult electrocardiography. This makes clinical interpretation more easy. Moreover,
when the fetal orientation can be accurately determined and the VCG can be accu-
rately corrected for fetal movement, the developed EM method provides a platform
for estimating any clinically relevant fetal ECG signal.

In order to align the fetal QRS loop with the maternal QRS loop, several signal
processing and/or preparation steps have to be made that were not necessary for the
VCG alignment applications discussed before. The first step is the determination of
the maternal QRS loop from the abdominal recordings. This is performed the same
way as discussed in Chapter 3, with the only difference that instead of subtracting
the maternal ECG, this ECG is used to derive the maternal VCG. In the second step
the maternal QRS loop is downsampled to match the length of the fetal QRS loop.
Because the maternal heart is generally larger than the fetal heart also the maternal
QRS lasts longer than the fetal QRS complex, making direct use of Eq. (9.2) impos-
sible. The final step is compensation for the different orientation of the fetal VCG
with respect to its heart. Specifically, for adults the electrical axis of the heart (i.e.
the point of the VCG with maximum amplitude) on average points towards the left-
anterior-inferior octant [9] (see Chapter 8). For the fetus, because it has an alternative
cardiovascular circulation (e.g. septum defects and ductus arteriosus [9]), the electri-
cal axis points towards the right-anterior-inferior octant. Alignment of the fetal VCG
with the maternal VCG would therefore give an estimate for the fetal orientation that
is still about 90o off [59].

In Fig. 9.6 an example of a maternal QRS loop and the aligned fetal QRS loops,
determined by both the EM and the Sörnmo method, are depicted. This example is
based on a fetal ECG recording performed at 24+4 weeks of gestation.

From Fig. 9.6 it can be seen that, due to the lead-dependent scaling, the align-
ment for EM method is much more accurate than for the Sörnmo method. For the
EM method the aligned QRS loop is in the same plane as the maternal QRS loop,
indicating accurate estimation of the rotation matrix R. Conversely, the QRS loop
aligned with Sörnmo’s method is in a plane almost perpendicular to the plane of the
maternal QRS loop.

As mentioned, the alignment between maternal and fetal QRS loops can be used
to assess the absolute orientation of the fetus within the maternal uterus. The per-
formance of this orientation estimation is evaluated by comparing the the fetal ori-
entation determined from the VCG alignment to the orientation determined from the
ultrasound recordings. The results of the evaluation are presented in Table 9.2.

The results in Table 9.2 demonstrate that the fetal orientations determined from
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Table 9.2: Estimates of fetal orientation for both fetal ECG recordings by
means of ultrasound and VCG alignment. For the VCG align-
ment, the EM method is used. The gestational age is expressed in
”weeks” + ”days”

Gestational age 23+6 24+1 24+4 36+0

Ultrasound

VCG alignment

36+3 38+2 38+6 40+5

Ultrasound

VCG alignment
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Figure 9.6: Maternal QRS loop (solid black line) jointly depicted with the
aligned fetal QRS loops. The loop aligned by the EM method is
depicted with the solid gray line. The loop aligned by Sörnmo’s
method is depicted with the dotted black line. To illustrate that
the fetal QRS loop aligned by the EM method is indeed in the
same plane as the maternal QRS loop, in (a) and (b) the same
plot is shown from a different point of view.

VCG alignment are consistent with the orientations determined from the ultrasound
recordings. For practically all recordings, differences between the orientations as-
sessed from ultrasound and from VCG alignment can nevertheless be seen. Whether
these differences originate from insufficiencies in the model of Eq. (9.2) (e.g. be-
cause lead-dependent scaling is still not enough to accurately align both QRS loops)
or from inaccuracies in the 90o correction discussed above remains to be studied in
more detail. Nonetheless, based on the available recordings, the latter origin seems
more likely as insufficiencies in the model of Eq. (9.2) are not confirmed to the same
extent by all recordings. To conclusively state something about this, substantially
more recordings are needed.

9.5 Discussion & Conclusions

In this paper a method for aligning vectorcardiographic loops has been developed.
This method entails an extension of the method presented by Sörnmo [185] in that
each lead of the VCG can be scaled separately, as opposed to a single scaling for
Sörnmo’s method. The developed method is based on the EM algorithm [132, 194]
and, therefore, alignment by this method is referred to as EM alignment.

The EM alignment method is derived using a Bayesian probability framework,
enforcing explicit statement of all assumptions made in the derivation. As such, the
method provides a generalized framework for vectorcardiographic alignment meth-
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ods, which can be tailored to each specific application by rephrasing any of the as-
sumptions made. In contrast to this approach, in Stridh et al. [196] a specific solution
to the alignment problem was presented that has a similar form as the presented
EM method, but that is derived using a non-probabilistic approach. Although in
this specific case the iterative method by Stridh is reported to converge for all ECG
signals, this convergence cannot be straightforwardly established with mathematical
proof [197] and might also depend on which of the parameters (i.e. R or B) is es-
timated first [198]. Hence, in this paper, we have chosen to derive the alignment
method using a probabilistic approach, ensuring both convergence of the maximum
likelihood solution and simultaneous consideration of the parameters.

The EM method is evaluated by comparing its performance in aligning QRS loops
from over 500 recordings to the performance of Sörnmo’s method. From Figs. 9.2
and 9.3 it is clear that, in terms of the spatial variability, the developed method out-
performs Sörnmo’s method for all recordings. In terms of the intralead variability,
on the other hand, the difference between both methods is less evident, albeit that the
EM method still performs better than Sörnmo’s method.

For the spatial variability the difference in performance can be explained by the
fact that both methods strive to minimize this variability. With the EM method ex-
ploiting more degrees of freedom (i.e. separate scaling for each VCG lead instead of
a common scaling for all leads), the EM method should always perform at least as
well as Sörnmo’s method.

Figs. 9.2 and 9.3 also indicate that the difference between the performance of both
methods becomes larger in case of fetal ECG signals. This finding can be explained
by the fact that for fetal ECG recordings, more variability between consecutive QRS
loops is anticipated. This increased variability is likely to be more accurately modeled
by the lead-dependent scaling than by the single scaling of Sörnmo’s method. On
this aspect, Sörnmo has raised the fair concern, which was already briefly addressed
in Section 9.3.2, that the use of a lead-dependent scaling can mask physiological
changes in the ECG signal. In Sörnmo [185] it is proposed to use an averaged QRS
loop as the reference Zt loop in the alignment procedure and to update this reference
by including the newly aligned QRS loop in the averaged reference loop after each
new heartbeat. Indeed, scaling and rotating all QRS loops towards this reference
would mask physiological changes. However, since physiologically critical events in
the fetal ECG are generally considered to occur at a time-scale of at least 15 seconds
[1], by ensuring that the reference loop does not include contributions from heartbeats
that are more than 15 seconds old, this masking can be prevented to a large extent. In
fact, for the goal of correcting the fetal ECG signals for rotational movement of the
fetus, it suffices to ignore the assessed scaling matrix B̂ and only correct for R̂. In
this case, only the last QRS loop Zt−1 needs to act as reference loop for aligning Zt .

As mentioned previously, another use for the assessed fetal rotational movement
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is to use it as a direct measure for fetal distress. The results for this movement detec-
tion are depicted in Fig. 9.5 alongside the results from automated and visual analysis
of simultaneously performed ultrasound recordings and show relatively good consis-
tency between the results.

Finally, in Fig. 9.6 and Table 9.2 the potential of the developed EM method is
once more illustrated by demonstrating that the method can also be used to align
fetal QRS loops with maternal QRS loops, providing information on the absolute
orientation of the fetus within the uterus. However, this particular application of the
EM method is at this moment accompanied by some inaccuracies or uncertainties.
Namely, due to the alternative cardiovascular circulation of the fetus, the electrical
axis of the fetal heart is shifted about 90o with respect to the electrical axis in the
adult heart. In addition, the fact that the alignment now concerns QRS loops from
different hearts can also lead to such large mismatches between the QRS loops that
some elements in the estimated scaling matrix B̂ can become negative. Such negative
scalings will significantly affect the estimated rotation matrix R̂ and with that, the
assessed fetal orientation. To make conclusive statements on the influence of these
inaccuracies on the performance of the EM method for assessing the fetal orientation,
more data is required.

Additional data is also required to assess whether the EM method can provide
information on fetal movement in all stages of pregnancy. Specifically, from the
28th week of gestation onwards the fetus gets covered by the vernix caseosa, a waxy
electrically isolating layer that causes distortion of the VCG. Whether or not this
distortion is so large that it prevents movement detection is as yet unclear. Similarly,
this distortion can also complicate assessment of the absolute fetal orientation.

Besides distortion, the appearance of the vernix caseosa also causes a temporary
reduction in the amplitude of the fetal ECG signals. Between about 28 and 32 weeks
of gestation the vernix fully covers the fetus, significantly attenuating the ECG sig-
nals and, as a result, the SNR. After 32 weeks, gaps in the vernix appear and signal
amplitudes return to their original range. For SNR values that have dropped below
a certain level, Sörnmo’s method is reported to break down [193]. Although it is
expected that the EM method will show a similar breakdown in performance, this
remains to be studied.

9.6 Comments
In Section 9.4.3 of this chapter, a method was presented to infer the fetal orientation
within the uterus by aligning the fetal VCG with the maternal VCG. Although the
results of this orientation inference are promising, the method is evaluated on too few
measurements to conclusively state that the method performs well in all situations.
Hence, for the assessment of the fetal orientation in the forthcoming two chapters
ultrasound images will be used (similar as in Chapter 8).
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Chapter 10

Can the 12-lead ECG representation of
fetal supraventricular extrasystoles be
used to assess congenital heart disease?

To illustrate the potential of the technologies developed throughout this thesis, they
are all integrated for application on clinically interesting fetal ECG recordings. In
this chapter, the 12-lead ECG representation of a fetus suffering from extrasystoles is
presented.

10.1 Introduction

Congenital heart disease (CHD) is the most common origin of birth defects [199].
Assessment of CHD in fetuses with four chamber view echocardiography is reported
to be only conclusive in about 65% of the cases [200]. This entails that, irrespective
of the possibilities for treatment and management of CHD [78, 201–203], one of the
main problems to be solved for reducing the incidence of infants born with CHD is
to improve or extend the information on which clinicians can base their diagnosis.

Fetal arrhythmia are generally harmless and associated to the immaturity of the
fetal heart [204]. However, a small number of arrhythmia originates from CHD [77,
205]. Because arrhythmia are rather easily detectable, the occurrence of arrhythmia
could serve as screening tool for assessing fetuses at risk for CHD. What is still
needed then is a way of inferring whether the arrhythmia originates from CHD or
not.

In this chapter a possible approach towards this inference is discussed. This ap-
proach is based on the integration of all fetal electrocardiogram (ECG) and vector-
cardiogram (VCG) processing techniques presented in this thesis to yield a means for
estimating the 12-lead ECG of the fetus. This 12-lead ECG can be used to determine
from where the arrhythmia originate and whether this origin can be related to CHD
or innocent immaturity.

The hypothesis we pose is therefore that the 12-lead ECG presentation of fetal
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arrhythmia can provide information on the origin of these arrhythmia and potentially
relate them to fetal CHD. If so, in the near future for every fetus that shows prenatal
arrhythmia a 12-lead ECG can be determined, providing additional support to clini-
cians in making an accurate diagnosis. In this chapter, we present the 12-lead ECG
of two fetuses, one with no cardiac arrhythmia and one that has supraventricular ex-
trasystoles . Note that neither of these fetuses suffers from CHD but that they do
illustrate our hypothesis.

10.2 12-lead ECG of fetal supraventricular extrasystoles

The in-vivo measurements exemplified in this chapter form part of a larger study
conducted at the Máxima Medical Center (Veldhoven, the Netherlands) in which for
about 50 pregnant women, longitudinally across the pregnancy, the fetal electrocar-
diogram (ECG) is recorded from the maternal abdomen. The measurements were
performed on two patients. The first was a healthy ”DES daughter” mother, 37 years
of age with a singleton pregnancy of 39+0 weeks. The fetus showed supraventricular
extrasystoles (SVES) with a repetition frequency of about 1 in 5, no pulmonary or
cardiac oedema, no signs of CHD showed up during echocardiography, and the fetus
was eventually born healthy without CHD and with 1 and 5-minute Apgar scores of
9 and 10, respectively. The second patient was a healthy mother, 35 years of age with
a singleton pregnancy of 24+1 weeks, diagnosed as placenta previa totalis. This fetus
showed no arrhythmia and was born after 36+5 weeks, with 1 and 5-minute Apgar
scores of 9 and 10, respectively. Both mothers gave their informed consent.

The fetal ECG signals are obtained with 8 adhesive electrodes on the maternal
abdomen and are processed to suppress the interferences and artifacts from, among
other factors, respiration and the maternal ECG [46]. Subsequently, the information
from all 8 electrodes is combined to yield the fetal vectorcardiogram (VCG) [47,140].
In essence this VCG constitutes a 3-dimensional representation of the ECG and en-
ables the estimation of any ECG signal desired. More particularly, by combining the
fetal VCG with information on the fetal orientation, obtained from a simultaneously
performed ultrasound recording, it is not difficult to estimate the standardized 12-lead
ECG. A schematic overview of the recording setup and ECG processing is depicted
in figure 10.1.

In figures 10.2 and 10.3 the 12-lead ECG for both the fetus with SVES and the
fetus without arrhythmia are respectively depicted. From figure 10.2 it can be clearly
seen that the second and seventh heartbeat constitute a SVES, consistently with the
above stated repetition frequency of 1 in 5. The correct clinical interpretation of the
origin and nature of the SVES calls for a thorough consideration of the electrophys-
iological nature of the fetal ECG. That is, due to the adaptation of the fetal heart to
its alternative cardiovascular circulation [57, 59, 206], the electrical axis of the heart
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Figure 10.1: Methodology for assessment of the 12-lead ECG of the fetal
heart. This is achieved in two steps. In the first step, the fetal
ECG is recorded from the maternal abdomen (upper left photo)
and processed by successive filtering, suppression of the mater-
nal ECG, enhancement of the fetal ECG, and estimation of the
fetal VCG (right panel). In the second step, the fetal VCG is
rotated towards the fetal frame of reference, obtained from the
ultrasound image (bottom left) to enable estimation of the 12-
lead ECG representation of the fetus.



176 Fetal supraventricular extrasystoles

  I

 II

III

aVR

aVL

aVF

 V1

 V2

 V3

 V4

 V5

 V6

Figure 10.2: 12-lead ECG of the fetal heart. The 2nd and 7th heartbeat con-
stitute SVES. It has to be noted that the ECG signals differ
from the 12-lead ECG of an adult because the electrical axis of
the fetal heart is typically oriented towards the right-anterior-
inferior octant, rather than towards the left-anterior-inferior
octant as in the adult heart.

is shifted towards the right-inferior-anterior octant. This shift significantly affects
the morphology of the presented ECG leads (see Chapter 8), rendering them largely
different from the corresponding ECG leads in adult electrocardiography.

To provide a benchmark for assessing fetal cardiac pathophysiologies, the pro-
posed 12-lead ECG method should also be applied to ECG recordings on healthy
fetuses (as exemplified in figure 10.3). When analyzing the ECG in figure 10.2 rel-
ative to that in figure 10.3, it can be concluded that the arrhythmia indeed does not
originate from any CHD, consistent with the result of the echocardiography.

Figures 10.2 and 10.3 also demonstrate that when analyzing the fetal ECG, some
aspects need to be taken into account. Besides the aforementioned difference between
the fetal and adult electrophysiology, also the small dimensions of the fetal heart and
the fact that several (maternal) tissues shield the fetal heart from the abdominal elec-
trodes have their effect on the visualized ECG signals. Specifically, both the small
dimension and the intermediate tissues render the signal quality of the 12-lead fe-
tal ECG signals relatively low when compared to the adult ECG signals, potentially
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Figure 10.3: 12-lead ECG for the fetus with no fetal arrhythmia.

complicating accurate diagnostics. In addition, it has to be noted that inaccuracies
in the echocardiographic fetal orientation assessment lead to a relatively large inter-
patient variability in the calculated ECG signals. That is, since the orientation cannot
be accurately determined, the calculation of the 12-lead ECG also suffers from inac-
curacies. Intuitively, these inaccuracies can be regarded as similar to inaccuracies in
the adult 12-lead ECG that originate from inaccurate placement of the electrodes.

10.3 Discussion

In this chapter we hypothesized that visualization of fetal arrhythmia in the 12-lead
ECG representation can aid in early diagnostics on whether the arrhythmia originate
from fetal CHD or not. Early detection of CHD might facilitate treatment of the
disease and improve expectancies on quality of life for the fetus. Although the pre-
sented data does not entail a fetus that suffers from CHD and therefore cannot be
fully used to confirm (or refute) the hypothesis, it shows the potential of the 12-lead
ECG representation of the fetal ECG.

The most diagnostic value for the 12-lead fetal ECG is expected in cases of fetal
bradycardia. Nevertheless, also in cases of fetal tachycardia the 12-lead fetal ECG
can have added value. Approximately half of all fetal bradycardia cases are caused
by associated CHD [77]. With the relatively low sensitivity of four chamber view
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echocardiography [200], only 65% of these bradycardia cases can be conclusively
diagnosed as originating from CHD or not. Introducing the 12-lead fetal ECG in the
standard work-up for fetal bradycardia might increase the sensitivity of the diagnosis
for CHD and, furthermore, might reveal additional detail on the origin of the CHD,
supporting decisions on treatment strategies.

Generally, fetal tachycardia is managed by transplacental administration of digo-
xin, sotalol, flecainide, or amiodarone to convert the heart rate back to sinus rhythm.
In many situations these antiarrhythmic drugs cause a rise in heart rate variabil-
ity [207], yielding Doppler cardiotocography inaccurate or even impossible. That
is, most cardiotocography monitors detect the fetal heart rate by means of an auto-
correlation algorithm [15, 143]. This algorithm operates by determining the average
periodicity of the fetal cardiac activity within a fixed time window. The advantage of
this approach is that it works relatively robustly. The drawback, on the other hand, is
that in cases of high variability the average periodicity does not accurately reflect the
true activity of the heart anymore. In addition, based on the autocorrelation algorithm
alone, arrhythmia like SVES cannot be detected and classified, requiring the need for
additional recording modalities such as M-mode echocardiography. From the fetal
ECG not only these arrhythmia can be recognized, but also the fetal heart rate can be
determined accurately and on a beat-to-beat basis.

Besides using the 12-lead ECG to assess fetal CHD only for patients that suffer
from arrhythmia, the 12-lead ECG might also serve as standard screening tool for
assessing CHD in early pregnancy. In (Dutch) gynaecology and obstetrics practice,
around 20 weeks of gestation an echocardiographic examination is performed to,
among other complications, search for CHD. Given the relatively low sensitivity of
this echocardiographic examination, the 12-lead ECG, when available, might aid in
the accurate detection of CHDs like tetralogy of Fallot and single-ventricle [208].

Nevertheless, before the 12-lead representation of the fetal ECG can have a truly
added value in obstetrical diagnostics, the applications mentioned above need to
be employable both robustly and cost efficiently. The robustness of the presented
methodology concerns the fact that for all cases, the method should be able to pro-
vide a 12-lead ECG. In particular for the period in which the fetus is covered by the
vernix caseosa, problems with the robustness are to be expected. Even when it is
possible to non-invasively record the fetal ECG in this period, this ECG is likely to
be distorted due to preferred propagation paths through the umbilical cord and over
the oro-nasal cavity [105, 106]. This distortion of the ECG might render the correct
interpretation of the fetal ECG impossible and could hence restrict the application of
the 12-lead ECG to gestational ages for which the vernix caseosa has not yet been
developed or has already been shed completely.

Finally, whether or not to introduce the proposed method in obstetrical diagnos-
tics should strongly depend on the possibility of establishing a benchmark for healthy
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fetuses and whether or not these benchmark ECG signals prove to be significantly
different from ECG signals that are associated with CHD. So in conclusion, a large
patient study will have to be performed to validate our hypothesis, map its robustness,
and study its cost efficiency. When all positive, the proposed method could poten-
tially lead to substantial improvement in the early diagnosis and treatment of CHD in
the fetus.
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Chapter 11

ST analysis of the non-invasive fetal
electrocardiogram

Like for the previous chapter, also in this chapter the potential of the developed tech-
nologies is illustrated by applying them all on a clinically interesting case. Here,
however, this interesting case does not concern a fetus suffering from some kind of
physiological event or pathology, but it is intended to show the signal quality that can
be achieved with the non-invasive recordings. In addition, in this chapter the optimal
ECG signal for performing ST analysis is briefly addressed and compared to that of
the invasive ECG signal used by the STAN R© monitor.

11.1 Introduction

The assessment of intrapartum fetal hypoxia is complicated. Currently, cardiotocog-
raphy (CTG; the simultaneous registration of the fetal heart rate and maternal uterine
activity) is the most widespread method used for fetal surveillance. However, poor
specificity of the CTG has led to an increase in the number of operative deliveries
without a decrease in perinatal mortality or cerebral palsy [20]. Combined use of
the CTG with automatic ST-waveform analysis of the fetal electrocardiogram (ECG)
(STAN R©, Neoventa Medical, Sweden) has been demonstrated to reduce the rates of
severe metabolic acidosis at birth and unnecessary instrumental vaginal delivery for
fetal distress [21, 28]. However, it also has been reported that patients showed no
pathological changes in the ST-waveform, but were nevertheless born with evident
metabolic acidosis [51]. In one of these cases, the reason for the absence of patho-
logical changes was a temporary disconnection of the STAN R© monitor [51]. During
this disconnection the T/QRS ratio had risen significantly, but this rise was not cor-
rectly detected as after reconnection the STAN R© monitor determined a new T/QRS
baseline.

It is rather straightforward to argue that the occurrence of antepartum fetal meta-
bolic acidosis cannot always be assessed using STAN R©. Before sufficient cervi-
cal dilatation and membrane rupture the STAN R© cannot be connected and once it
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can, relevant changes in the T/QRS ratio might be obscured by a falsely established
T/QRS baseline. Monitoring of the fetal ECG from the maternal abdomen might
help in these cases, as shown for the ovine fetus [209]. Because these transabdomi-
nal recordings are performed non-invasively, they can provide the fetal ECG in stages
of pregnancy earlier than labor. This avoids issues with late availability and poten-
tially unreliable baseline assessment that are, in some situations, the case with the
invasive recordings. Another potential disadvantage of the invasive ECG recordings,
besides the risks of e.g. infections [210], is that they are expected to have suboptimal
properties for their intended use. Specifically, out of all possible ECG leads available,
the invasive ECG is not selected for its optimal properties for performing ST analysis,
but for its accessibility; i.e. the invasive electrode is for vertex positions connected
to the fetal scalp. For the transabdominal fetal ECG, any desired ECG lead can be
made available and hence, the one with optimal properties for ST analysis can be
selected. In addition, since the transabdominal recordings also provide information
on fetal heart rates [92] and uterine activity [100], they have the potential to serve as
a complete replacement of the invasively recorded fetal ECG.

Up till now, however, these non-invasive recordings are not widely used in clin-
ical practice due to presumed technical difficulties, such as the lower quality of the
non-invasive signals as opposed to the invasive fetal ECG signal. By exploiting the
multi-lead information that can be obtained from the maternal abdomen [46, 140],
nonetheless, most of these technical difficulties can be overcome, yielding fetal ECG
signals that are no longer that inferior to the invasive ones. Notwithstanding the so-
lution to the technical difficulties, ST analysis from non-invasive ECG recordings is
complicated for physiological reasons as well. As reported in Cleal et al. [209], the
amplitude of the fetal T-wave is significantly smaller in abdominal ECG signals than
in the invasive ECG signal. The reason for this is the fact that the abdominal ECG sig-
nals need to propagate through the maternal volume conductor, consisting of vernix
caseosa, amniotic fluids, muscle layers, fat and skin. This conductor is reported to
act as a high-pass filter [37, 38] and hence does mainly affect low frequency events,
such as the T-wave.

In this chapter, the authors quantify the filtering effect of the volume conductor in-
vivo and use this quantitative information, together with in-vitro [37] and theoretical
[38] characterizations of the volume conductor, to correct the transabdominal fetal
ECG recordings for this filter. To enable the in-vivo quantitative characterization
of the volume conductor, we have performed simultaneous fetal ECG recordings on
both the maternal abdomen and on the fetal scalp. We also show the potential of the
corrected non-invasive fetal ECG recordings for performing ST analysis. In addition,
we show that the invasive scalp ECG lead is not that far from optimal for facilitating
ST analysis.
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11.2 Materials and Methods

11.2.1 Participants

The study was performed at the Máxima Medical Center (Veldhoven, the Nether-
lands) in 2006 and comprised the longitudinal monitoring of the fetal ECG and fetal
heart rate from 14 weeks of gestation until term. Fifty healthy women were included
in the study, all at least 18 years of age and with singleton pregnancies. The study was
approved by the ethics committee of the hospital and all women gave their informed
consent before entering the study. In this chapter, the results of only two different
women are presented.

11.2.2 Fetal ECG recording

For the non-invasive recordings, the obstetric wards were equipped with a prototype
of the NEMO system (NEMO Healthcare BV, Eindhoven, the Netherlands and Maas-
tricht Instruments BV, Maastricht, the Netherlands). This system employs 500 times
signal amplification, analog-to-digital data conversion at a rate of 1 kHz and signal
processing to suppress interferences such as from the powerline grid [102] and the
maternal ECG [46].

The recordings were performed by positioning 8 self-adhesive electrodes on the
maternal abdomen with a common reference positioned near the umbilicus (Fig. 11.1)
and a ground electrode in the side. The invasively recorded fetal ECG signal was
simultaneously stored on the NEMO system.

As mentioned, the recordings from the maternal abdomen consist of eight fetal
ECG signals, each recorded on a different position with respect to the fetus. These
eight signals can be combined into the fetal vectorcardiogram (VCG) and this VCG,
in turn, can be used to calculate any desired ECG lead. Naturally, for the compari-
son of the non-invasive fetal ECG with the invasively recorded ECG, the ECG lead
that resembles the invasive ECG most will be used. By using ultrasound images to
determine the fetal orientation within the uterus, this ”non-invasive scalp” ECG lead
can be associated to a specific direction with respect to the fetal heart. Moreover,
as mentioned before, the VCG can also be used to generate an ECG lead that has
optimal properties for ST analysis. By evaluating the direction, corresponding to this
ECG lead, with respect to the fetal heart (again using ultrasound images), it can be
assessed to what extent the invasively recorded ECG is suitable for ST analysis. That
is, when the ”optimal” direction is far from the direction used for the invasive ECG,
the invasive ECG is suboptimal. On the other hand, directions close to one another
render the invasive ECG not far from optimal.

Despite the fact that any desired ECG lead can be calculated from the VCG, the
non-invasive ECG will nonetheless differ significantly from the invasive ECG. The
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Figure 11.1: Setup for the non-invasive fetal ECG recordings with the eight
recording electrodes on the maternal abdomen. Neither the
reference electrode, nor the ground electrode has yet been po-
sitioned. On the left the NEMO system can be seen. (Photo by
Bart van Overbeeke.)

reason for this is that the transabdominally recorded ECG signal need to propagate
through the vernix caseosa, amniotic fluid, fetal membranes and maternal tissues
[37]. The combined effect of all these tissues is a high-pass filter that mainly affects
the amplitude of the fetal T-wave [37, 38] and hence complicates the non-invasive
ST analysis [209]. With the simultaneous recording of the invasive and non-invasive
ECG, this high-pass filter can be quantified in-vivo. Moreover, in this chapter we
compare this so-called transfer function (i.e. quantification of the filter) between
both patients and model it by a few filter coefficients. By subsequently inverting
these coefficients, the non-invasive ECG recordings can be corrected for propagation
effects to resemble the invasively recorded ECG and possibly improve non-invasive
ST analysis.

The consistency between ST analyses performed on the invasively recorded fe-
tal ECG and the non-invasively recorded fetal ECG is assessed by determining the
T/QRS ratios. Naturally, the STAN R© monitor also includes monitoring of biphasic
ST segments, but as the transabdominal ECG cannot (yet) be analyzed by STAN R©,
comparing also these biphasic ST segment would require full copy of the STAN R©
and is beyond the scope of this chapter.
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Figure 11.2: In (a) the magnitude and phase response of the inverted trans-
fer function are depicted. Each line represents the result of
one of the two patients. In (b) part of the non-invasively (af-
ter correcting for the volume conductor) and the invasively
recorded fetal ECG signals are jointly depicted. Note that al-
though the morphology of both ECG signals is similar, their
scale is still different; the amplitude of the non-invasive ECG
is significantly smaller.

11.3 Results

In Fig. 11.2 the characteristics for the inverted transfer function are shown. Also in
Fig. 11.2, the invasively recorded ECG and the resembling non-invasively recorded
ECG (i.e. the ECG lead that resembles the invasive ECG most and that is enhanced
by inverse filtering) are jointly depicted.

From the inverted transfer function in Fig. 11.2(a) it can be seen that correction
for the volume conductor requires enhancement of low frequency events, such as the
T-wave. This finding is consistent between both patients and with earlier findings
in literature [37, 38, 209]. After correcting for the filtering effects of the volume
conductor, the resemblance between the non-invasively and invasively recorded ECG
signals shown in Fig. 11.2(b) is rather good (i.e. the correlation is 95%, p<0.001).
For the patient not depicted in Fig 11.2(b), this resemblance was somewhat smaller
(81%, p<0.001).

The resemblance between the invasively and non-invasively recorded fetal ECG
is once more illustrated in Fig. 11.3 which shows the CTG and ST analysis (T/QRS
ratios) obtained from both ECG signals. The activity of the uterus in Fig. 11.3(a)
is determined from the transabdominal recordings using the electrohysterographic
signal analysis technique presented in [100]. Since the output of a simultaneously
applied tocodynamometer was not digitized, the uterine activity in Fig. 11.3(b) is also
obtained from the transabdominal recordings and hence the same as in Fig. 11.3(a).
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(a)

(b)

Figure 11.3: In (a) the fetal cardiotocogram (CTG) and T/QRS ratios deter-
mined from the transabdominal recordings are depicted. In (b)
the CTG and T/QRS ratios determined from the simultaneously
performed invasive fetal ECG recording are depicted.
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Figure 11.4: Direction of the ECG lead that maximizes the accuracy of the
ST analysis for the two patients involved in this study (light
colored arrows) and the approximate direction of the invasively
recorded ECG (dark colored arrow).

The results depicted in Fig. 11.3 are for the same patient as the ECG signals in
Fig. 11.2(b); The results for the other patient are consistent.

As mentioned previously, the VCG can also be used to calculate any desired
ECG lead, including the one that is optimal for ST analysis. Since the ST analysis
mainly involves the determination of the T/QRS ratio and the assessment whether
the ST segment is biphasic, this analysis can be performed most accurately when the
amplitude of the T-wave is maximal. That is, because in general the noise amplitude
remains the same, a larger T-wave amplitude signifies a larger signal to noise ratio.
In Fig. 11.4 for both patients the ECG lead direction that maximizes the T-wave is
depicted. At the same time, also the approximate direction of the invasively recorded
ECG is depicted, indicating that the direction of the invasively recorded ECG is rather
close to optimal. The direction of the invasive fetal ECG is here approximated as the
direction from the fetal heart to the scalp. In fact, the invasive fetal ECG is recorded as
a bipolar recording with one electrode fixed in the fetal scalp and the other attached to
the maternal leg: in literature often referred to as a unipolar recording [1, 28]. When
assuming the maternal leg to be free of any fetal ECG components, the assumption
of unipolarity is somewhat justified and the origin of the invasive ECG lead vector
can be assumed to lie near the fetal heart [49].
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11.4 Discussion

In this chapter, it was demonstrated that, using novel technologies, the human fetal
ECG can be recorded non-invasively from the maternal abdomen with such quality
that it enables ST analysis in stages of pregnancy earlier than labor. Naturally, the two
recordings discussed in this chapter yield insufficient statistical significance to make
any statements on the reliability of these recordings, but they clearly demonstrate the
potential of present-day technologies. In fact, with regard to the reliability of these
recordings, it is expected that the reliability is largest between 20 and 28 weeks of
gestation and near term. In the former period, the fetal heart is large enough to gener-
ate ECG signals of sufficiently large amplitude. The same holds for the latter period.
The intermediate period (i.e. from about 28 weeks till about 37 weeks), the fetus is
fully (28-32 weeks) or partly (32 weeks and later) covered by the vernix caseosa [36].
This vernix electrically isolates the fetus from its surroundings, drastically affecting
the amplitude of the ECG signals that can be recorded from the maternal abdomen.

In Fig. 11.2(b) one of the at-term fetal ECG signals, recorded from the maternal
abdomen, was depicted alongside the simultaneously recorded invasive fetal ECG.
The most striking difference between both ECG signals is the amplitude. Where the
invasive signal is recorded close to the fetal heart, the non-invasive ECG signals have
to propagate through amniotic fluids, uterine tissues, abdominal muscles, fat, skin,
etc. These tissues cause significant signal attenuation – the amplitude of the non-
invasive fetal ECG is about 100 times smaller than the amplitude of the invasive fetal
ECG – and because of the even higher noise levels in the transabdominal recordings,
this signal attenuation yields a significant reduction in signal-to-noise-ratio (SNR).
However, as can be seen in Fig. 11.2(b), by processing the ECG signals this SNR can
become similar to the SNR of the invasive recordings. In Fig. 11.2(b) it also strikes
that the non-invasive transabdominal ECG signals have a smaller S-wave than the
invasively recorded ECG. This difference can be explained by the fact that, although
the non-invasive ECG lead is selected as such that it provides an ECG signal that
resembles the invasive ECG, both ECG signals can never fully be the same. In this
particular case, this difference expresses itself mainly in the S-wave. For ST analysis,
this difference is not critical. ST elevations or biphasic ST segments will not be
obscured by differences in the QRS amplitude; These amplitude differences merely
affect the accuracy of the assessed T/QRS ratios.

In Fig. 11.3 the CTG and ST analysis on both ECG signals were presented; for
the transabdominal ECG in Fig. 11.3(a) and for the invasive ECG in Fig. 11.3(b).
The CTG’s of both signals are consistent with one another and show a correlation
of over 97% (p<0.001). The correlation between the T/QRS ratios is smaller: 65%
(p<0.001). Because of the different ECG signals a lower correlation than for com-
parison between the ECG signals was expected here. Whether or not this correlation
renders the non-invasive recordings reliable and accurate for assessment of signifi-
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cant ST changes, e.g. because of fetal hypoxia, remains to be studied. Results from a
study on the ovine fetus [209] are promising, but many more recordings are required
to conclusively state something about this.

As discussed, the main advantage of the transabdominal ECG recordings lies
in their non-invasiveness and the associated benefits that they do not expose either
mother or fetus to any risks and they can be performed in earlier stages of pregnancy
than the invasive recordings can. An additional advantage is that the non-invasive
recordings can be performed using more electrodes providing more information than
the single invasive electrode. Moreover, by combining the spatial information on
the fetal ECG with information on the orientation of the fetus within the uterus (e.g.
assessed by means of echography) any desired ECG signal can be estimated. Con-
versely, ECG signals calculated from the VCG can be linked to ultrasound images to
approximate the direction of the corresponding ECG lead with respect to the heart.
As an example, the ECG signals that optimize ST analysis were determined for both
patients, indicating that the invasive ECG lead used by the STAN R© monitor is in fact
not far from optimal. Here again, it needs to be stressed that the two patients included
in this study are not enough to ensure statistical significance of these conclusions. For
future research, therefore, one of the goals should be to perform the determination of
the transfer function, the non-invasive ST analysis, and the search for optimal ECG
leads on more patients to assess whether the results presented in this chapter can be
made statistically significant. In addition, a large patient study would ensure the in-
clusion of patients that suffer from metabolic acidosis, the principal target group for
the non-invasive ST analysis.

11.5 Conclusions

In this chapter, it was shown that a similar ECG signal quality can be obtained with
the non-invasive recordings as with the invasive recordings. In addition, a prelimi-
nary comparison between (partial) ST analyses performed on both an invasive and
a non-invasive recording was presented. These partial ST analyses comprised the
calculation of the T/QRS ratios and showed promising, but as yet not satisfactory,
agreement between the invasive and non-invasive recordings. A larger patient study
is required to further investigate the agreement between non-invasive and invasive ST
analysis and assess whether the non-invasive recordings can be used to predict fetal
hypoxia. Finally, it was studied whether the accuracy of the determined T/QRS ratios
might be improved by calculating a different ECG lead from the fetal VCG; One that
yields maximum amplitudes of the T-waves. It turned out that only small improve-
ment in accuracy can be expected as the currently employed fetal scalp lead vector
was demonstrated to be already close to the vector that maximizes the T-waves.
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Chapter 12

Conclusions and future directions

12.1 Conclusions

The timely recognition of fetal distress is important to ensure that treatment or in-
tervention of pregnancy can be done effectively. At present, the most widely used
method to assess the fetal condition in the uterus is cardiotocography (CTG; the si-
multaneous monitoring of the fetal heart rate and maternal uterine activity). Unfor-
tunately, the poor specificity of CTG has, since its introduction in clinical practice,
resulted in increased rates of intervention without a significant reduction in perinatal
mortality or cerebral palsy. The combined assessment of CTG and the fetal electro-
cardiogram (ECG) has been demonstrated to reduce the incidence of severe metabolic
acidosis and the rate of instrumental deliveries. However, this fetal ECG must be
measured invasively and consequently, this combined assessment is only possible
during labor, after sufficient cervical dilatation and membrane rupture.

Monitoring of the non-invasively recorded fetal ECG, on the other hand, can, in
principle, be performed in all stages of pregnancy and could hence become one of the
mainstays in fetal surveillance. However, before the non-invasive fetal ECG can be
applied in clinical practice several important aspects of this ECG need to be improved
or studied. For instance, the reliability and signal quality of the non-invasive record-
ings need to be improved to ensure that clinical diagnosis based on the signals can
be performed reliably at all times. In addition, the appropriate physiological context
and background of the acquired signals need to be studied to make correct overall
diagnosis possible. This thesis aims to contribute on the technological aspects (i.e.
reliability and signal quality) and to advance the interpretation of the non-invasively
recorded fetal ECG signals.

The main problems with reliability and signal quality stem from interferences
that need to be suppressed. The maternal ECG is the dominant interference, but also
interferences from the uterus, the abdominal muscles and powerline grid obscure the
fetal ECG. The first part of this thesis (i.e. Chapters 3 to 7) deals with the suppres-
sion of some of these interferences and the estimation of the fetal vectorcardiogram
(VCG). The VCG is used as starting point for studying the physiological aspects of



192 Conclusions and future directions

fetal ECG monitoring.

In Chapter 3, a technique was presented to suppress the maternal ECG from
recordings performed on the maternal abdomen. The technique is referred to as
weighted averaging of maternal ECG segments (WAMES) and can be viewed as an
extension of existing template subtraction techniques. The main difference with ex-
isting techniques is that WAMES builds a template for each separate wave (segment)
in the ECG, rather than generating a template for the ECG as a whole. The advantage
of the latter approach is that it does not depend on the recognition of the separate
segments and hence can be more robust. The disadvantage is that morphological
variabilities in the ECG cannot be completely captured in the template. Although the
inaccuracies in the template that originate from such variability are relatively small,
they often lead to maternal ECG residues that are in the same order of magnitude as
the fetal ECG. By a priori segmenting the ECG and generating templates for each
separate segment, these variabilities can be more accurately modeled in the tem-
plate. As a result of this accurate template, WAMES does not only outperform other
template subtraction techniques in suppression of the maternal ECG, but also out-
performs other maternal ECG suppression techniques such as adaptive filtering and
blind source separation. Naturally, the need for ECG segmentation causes WAMES
to be more susceptible to artifacts and noise. By including physiological information
about the origin of the ECG in the segmentation, this susceptibility was minimized.

To further enhance the fetal ECG signals and suppress other interferences and
noise, the quasi-periodicity of the fetal ECG can be exploited. Consecutive ECG
complexes resemble one another to a large extent and hence averaging of several ECG
complexes suppresses the noise without significantly distorting the ECG. However,
to enable exploitation of the periodicity, the instantaneous fetal heart rate needs to be
known. Conversely, for detecting the heart rate, the signal to noise ratio (SNR) of the
signals needs to be sufficiently high. This yields a circular reasoning: to enhance the
SNR the heart rate needs to be known, but to determine this heart rate the SNR needs
to be sufficiently high. In Chapter 4 a method was presented that breaks this circular
reasoning. It exploits a priori knowledge on the spatial correlation between fetal ECG
signals recorded at different positions on the maternal abdomen. Based on this spatial
correlation, a linear combination of the fetal ECG signals can be determined that has
superior SNR with respect to the individual ECG signals. Moreover, because the
method is based on physiological knowledge, it is relatively insensitive to noise levels
and as such is more robust than blind source separation techniques like independent
component analysis or principal component analysis.

To stress that the heart rate detected from the linear combination of ECG signals
is still the correct heart rate, it needs to be mentioned that any linear combination of
ECG signals still constitutes an ECG signal with the same periodicity. More specifi-
cally, each ECG signal is a one-dimensional projection of the three-dimensional elec-
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trical activity of the heart. In a simplified model this three-dimensional activity can be
represented by the VCG. As such, each ECG signal is the projection of the VCG onto
the vector that indicates the recording position with respect to the reference position.
Any linear combination of ECG signals therefore only entails the use of a different
projection of the same three-dimensional electrical activity. In Chapter 5 a method
was presented to detect the heart rate from the ECG signal. This method operates
by transforming the signal, based on the physiology of the fetal QRS complexes, and
subsequently detecting the QRS complexes in the transformed signal as local extrema
exceeding a variable threshold. This method is not optimal in the sense of robustness
and accuracy, but due to its computational simplicity and adequate performance, suf-
fices for the purposes intended in this thesis.

The averaging of several ECG complexes, synchronized on their QRS complexes,
entails a trade-off between signal enhancement and suppression of clinically relevant
morphological variability. By averaging only few ECG complexes, the SNR will
not be significantly enhanced, while averaging too many ECG complexes means that
variations in the ECG are lost and their clinical relevance can no longer be assessed.
In Chapter 6 a method was presented that, in essence, adaptively estimates the num-
ber of ECG complexes to be used in the averaging. In case of small morphological
signal variations, this number is increased. Conversely, in case of significant signal
variations this number is reduced. The presented method uses a Kalman filter with se-
quential adaptive noise covariance estimation. For the estimation of the measurement
noise, the spatial correlation between ECG complexes recorded at several locations
on the maternal abdomen was exploited. For the estimation of the process noise co-
variance (i.e. a measure for morphological signal variations), the evidence function
of the Bayesian ECG estimation was maximized.

The performance of the developed filter was compared to the performance of a
similar Kalman filter with fixed noise covariance. For this fixed Kalman filter the
process noise covariance needs to be a priori estimated and hence, to ensure ade-
quate performance of the filter, proper application of the filter requires rather detailed
information on the ECG signal dynamics. The comparison between the fixed and
adaptive Kalman filters demonstrated that the adaptive filter performs almost as well
as the fixed Kalman filter in cases where the process noise covariance was chosen
optimally. In other cases, the adaptive Kalman filter outperformed the fixed Kalman
filter. In addition, for long term monitoring tasks in which the ECG signal character-
istics change, the adaptive Kalman filter proved to be capable of quickly adapting its
noise estimation to match the filter’s output to the new input. The fixed Kalman filter,
due to its less flexible estimation of the Kalman gain, was demonstrated to require
about 10 seconds before it had adjusted its output to the new input.

As stipulated before, the VCG entails a simplified representation of the three-
dimensional electrical activity of the heart. For adults, the VCG is generally recorded
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using fixed electrode positions with respect to the heart, or by using a fixed transfor-
mation that converts a multitude of ECG signals into the VCG. For the fetus, neither
of these approaches works. For each recording the position of the fetal heart with re-
spect to the abdominal electrodes will be different and for each position of the heart,
its distance to the electrodes on the maternal abdomen differs. As a result, the prop-
erties of the volume conductor through which the ECG signals have to propagate are
different for each recording and are even expected to change during the recordings as
a result of fetal movement. Hence, the use of either specific electrode positions or a
fixed transformation does not work for the fetal VCG and an alternative method that
can adapt to each specific recording is required. In Chapter 7 of this thesis, a method
was presented that does exactly this. The method is based on a statistical model in
which the volume conductor is approximated by a diagonal scaling matrix that rep-
resents an individual attenuation for each ECG signal. More specifically, each ECG
signal is modeled to be a scaled projection of the VCG and additive noise. The VCG
and the scaling matrix are inferred by maximizing the joint probability distribution
over both variables, given the observed ECG signals. Since an analytic solution to
the maximization of this probability distribution was not available, an approximation
technique referred to as variational inference was used. Evaluation of the developed
method showed that, as expected, the fetal VCG was determined more accurately
than by using a fixed method. In addition, also for adults the developed method was
demonstrated to provide a more accurate estimate of the VCG.

With the fetal VCG available, the relation between the VCG and the ECG de-
scribed above was used in the second part of this thesis to calculate any desired ECG
lead. In theory, the ECG signals that are frequently used in adult electrocardiogra-
phy could be calculated, enabling clinicians to employ standardized guidelines for
interpretation. Unfortunately, this approach is complicated by two distinct problems.
Firstly, the fetal heart is not the same as the adult heart and thus similar ECG leads
will provide different ECG morphologies. Secondly, due to variations in the fetal
orientation the vectors onto which the VCG should be projected to obtain the desired
ECG signals need to be assessed again for each individual case. In fact, upon every
movement of the fetus, these vectors need to be reassessed. In Chapters 8 and 9 these
two problems were discussed in more detail and, where possible, dealt with.

In Chapter 8 one of the main differences between the fetal and adult heart was
discussed, namely the fact that the electrical axis of the fetal heart points in a different
direction than the electrical axis of the adult heart. The reason for this difference lies
in the alternative cardiovascular circulation of the fetus. In the adult circulation the
blood is oxygenated in the lungs and then returns to the left side of the heart to
be propelled throughout the body. Hence, the left side of the adult heart has more
muscular tissue than the right side, causing the electrical axis to point towards the
left ventricle. In the fetal circulation, on the other hand, the blood is oxygenated
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in the placenta rather than in the lungs. The associated higher load that needs to
be exerted by the right ventricle – as opposed to the left ventricle – yields a shift
of the fetal electrical axis towards the right ventricle. In Chapter 8 this shift was
visualized for the first time ever in-vivo and the consequences of this shift for the
interpretation of the ECG were illustrated by projecting both the adult and fetal VCG
onto standardized ECG leads.

In Chapter 9, the morphological variations in the ECG that arise as a result
of variations in the fetal orientation were briefly discussed and a method to cor-
rect for these fetal movements was presented. This method operates by tracking
the rotations between the VCG’s of consecutive heartbeats. To this end, a statisti-
cal model was formulated that relates the VCG’s of consecutive heartbeats to one
another through a couple of transformations: rotation, lead-dependent scaling, and
time-synchronization. The parameters associated with these transformations were
assessed by maximizing the likelihood function of the statistical model, using the
expectation-maximization (EM) algorithm. The presented method was evaluated by
comparing its performance in aligning VCG’s to that of the state-of-the-art method
(i.e. a method in which the scaling is lead-independent); it was demonstrated that the
presented method outperforms the state of the art under almost all circumstances, and
especially at poor SNRs.

By correcting the VCG for the assessed rotations, the fetal VCG can be kept
within the same frame of reference with respect to the abdominal electrodes during
a recording. In addition, it was demonstrated that the presented method can also
be used to determine the rotation between the fetal VCG and the maternal VCG.
Combining this rotation with the orientation of the fetal heart axis (from Chapter 8),
it is possible to estimate the absolute fetal orientation within the uterus. With this
orientation determined, all information required to project the VCG onto standardized
ECG leads has become available. Finally, besides facilitating correct interpretation
of the fetal VCG, the tracking of fetal movement can have a direct value in clinical
practice. Reduced fetal motility is associated with deterioration in the fetal condition.
Although the VCG does not provide information on the movement of e.g. fetal limbs,
the automated and objective means of monitoring fetal movement that has been made
possible by the developed method could strongly aid clinicians in their diagnosis of
the fetal condition.

To recapitulate, in this thesis technology has been developed that can be used to
determine a fetal VCG of relatively high SNR from the maternal abdomen, correct
this VCG for fetal movement, and interpret it within a clinically familiar frame of
reference. To illustrate the potential value of this technology in clinical practice, in
Chapters 10 and 11 two applications of the technology were presented; the standard-
ized 12-lead ECG representation of both normal fetal heartbeats and fetal supraven-
tricular extrasystoles (Chapter 10) and the derivation of a virtual invasively recorded
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ECG signal for performing fetal ST analysis (Chapter 11). In the latter application,
it was also shown that the currently employed invasive scalp electrode is, in terms of
the electrode position, not that far from optimal for fetuses that present themselves in
vertex position (i.e. the most common position during labor).

12.2 Future directions

Today, in general clinical practice, the fetal ECG is only monitored using an invasive
electrode. Moreover, the only purpose of the recorded fetal ECG is to extract the
fetal heart rate and to perform ST analysis. For long, clinicians and researchers have
attempted to monitor the fetal ECG and its associated parameters in a non-invasive
way, but in spite of the success achieved by some, none of these attempts has as yet
led to an application that is used in clinical practice. Although it is unlikely that
the methods presented in this thesis will quickly converge to such an application,
they do (hopefully) provide a step in this direction and illustrate the potential of non-
invasive ECG recordings. Not only is it possible to monitor the fetal ECG in earlier
stages of pregnancy than just labor, but also do the non-invasive fetal ECG recordings
facilitate the determination and clinical diagnosis of other parameters and signals than
the heart rate and ST segment alone. Examples of these parameters and signals are
fetal movement and the 12-lead ECG.

To increase the chances of the developed methods to lead to an actual non-
invasive fetal ECG monitoring application, several improvements need to made. For
each method the most critical points for improvement are listed and briefly discussed.

The maternal ECG suppression method that was presented in Chapter 3 suffers
from the main drawback that it is computationally too complex. Although the method
is capable of suppressing the maternal ECG online in about 4 channels using a stan-
dard PC, for employment in clinical practice the method should not only be able to
suppress the maternal ECG from more than 4 channels, but also should the com-
putational complexity be reduced so much that sufficient processor time is left for
performing other required analyses.

Two of these required analyses were exemplified in Chapters 4 and 5. From
the results presented in Chapter 4 it can, however, be concluded that – although the
presented methods for finding fetal ECG source signals and detect the fetal heart
rate perform more robustly than existing source separation techniques – their perfor-
mance is not so good that a fetal heart rate can be determined for all patients and in
all situations. The most critical improvement that is expected to be achievable here
is in the detection of the fetal QRS complexes. The presented QRS detection method
suffices for ECG signals in which the SNR is already relatively high. For low-SNR
signals, on the other hand, the sensitivity and specificity of the method are expected
to decrease significantly. By employing a method that is e.g. based on the com-



12.2 Future directions 197

bination of wavelet analysis and a hidden Markov model more robustness to noise
is anticipated. More specifically, by approximating the signals by wavelets and re-
stricting the (quasi-)periodicity of these wavelets by means of a statistical model that
describes the allowed and expected variations in the RR intervals, the effect of noise
in the resulting fetal heart rate should be significantly reduced.

One of the critical improvements to be made in both the fetal ECG enhance-
ment method presented in Chapter 6 and the fetal VCG estimation method presented
in Chapter 7 is to loosen the rather restrictive assumptions of white Gaussian noise
and Gaussian distributed model parameters. For one, due to preprocessing of the
ECG signals by frequency-selective filtering and maternal ECG suppression (both
presented in Chapter 3), the noise is (no longer) white. Similarly, in Chapter 7 it
was discussed that the variational inference, in which the model parameters were
assumed to be independent and Gaussian distributed, yields a relatively large inaccu-
racy in the estimated fetal VCG. Improvement of the methods by assuming colored
noise or different distributions will however go at the expensive of the computational
complexity and should, therefore, be a trade-off between this computational com-
plexity and the increase in accuracy of the methods. Another key improvement that
can be made to the VCG estimation in Chapter 7 is to omit the assumption of a fixed
origin for the electrical field vector that describes the VCG. However, by admitting
additional parameters in the model that describes the relation between the VCG and
the recorded ECG signals (Eq. (7.3)), more ECG signals are required to infer these
parameters [171–173], not only reducing patient comfort but also increasing the com-
putational complexity.

The method for monitoring the fetal orientation that was presented in Chapter 9,
is relatively robust to noise and has a limited computational complexity. However,
the estimation of the fetal orientation with respect to the maternal abdomen can suffer
from quite some inaccuracies. One of the main inaccuracies is the a priori assumed
shift of 90o between the electrical axis of the fetal VCG and that of the maternal
VCG. In practice, this shift is not expected to be exactly 90o and, moreover, is ex-
pected to differ between patients. Unfortunately, due also to the relatively large inac-
curacy in the fetal orientation that is assessed from ultrasound images, the accuracy
in the estimation of this shift in Chapter 8 is not expected to be easily improvable.
Nevertheless, a large patient study (at least another 50 patients, but preferably more)
should be performed to obtain some insights on both the amplitude of the shift and in
the accuracy of the determined fetal orientation.

Such a large patient study could also aid in the assessment of the clinical rele-
vance of the applications presented in Chapters 10 and 11. Not only is a large patient
population more likely to yield fetuses with congenital heart diseases (CHD) like
tetralogy of Fallot, single-ventricle, or bundle branch blocks, but also is this popula-
tion more likely to yield fetuses that suffer from hypoxia during delivery. The former
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group of fetuses can be used to assess whether the 12-lead ECG facilitates detection
of these CHD. The latter group can be used to assess whether the non-invasive fetal
ECG can be used for ST analysis that is as accurate as the ST analysis performed on
the invasively recorded fetal ECG.

More in general, one of the ultimate goals of further technology development or
improvement should be to boost the reliability of signal measurement and analysis,
as well as communication availability, to such a standard that at-home monitoring of
patients at risk can become routine procedure. This could not only spare the huge
costs involved with hospitalizations and monitoring of pregnant women, but also
could improve quality of life for these women and reduce the morbidity. To ensure
broad application of this technology, the technology should be capable of providing
the required information on the fetal condition at all times and for all patients. A
factor that will play a large role in this technology development is the influence of
the vernix caseosa on the signal quality. To obtain a thorough understanding of this
factor and, in addition, to evaluate which aspects of the signal acquisition and analysis
play a critical role in the further improvement of signal quality and interpretation, a
large patient study would again be advisable. Another factor that will be of relevance
in at-home monitoring is the comfort and positioning of the electrodes. Not only
should the electrodes not restrict the mother in daily activities (too much) but also
should the positions of the electrodes be monitored somehow to ensure that the spatial
information in the ECG can be fully exploited (Chapters 4 and 7).

Finally, as mentioned throughout this thesis, some of the developed technologies
also have the potential to contribute to other fields of healthcare as well. Exam-
ples are the enhancement of dynamic ECG signals (Chapter 6), the patient-tailored
technique for estimating the (adult) VCG (Chapter 7), and the improved accuracy in
vectorcardiographic loop alignment (Chapter 9). More study within the appropriate
specialization fields of healthcare is, however, required to conclusively state some-
thing about this.
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Dankwoord

Het afronden van dit proefschrift betekent voor mij dat er een einde is gekomen aan
een periode van enkele jaren waarin ik onderzoek heb gedaan naar nieuwe en ver-
beterde technologien voor de bewaking van de foetus in de buik van de moeder. De
methodes en technieken die tijdens dit onderzoek ontwikkeld zijn hebben gaandeweg
geleid tot een prototype bewakingssysteem, dat al snel NEMO (Non-invasive Elec-
trophysiological Monitor for Obstetrics) werd gedoopt. Mijn promotieonderzoek, het
ontwikkelen (en verbeteren) van dit NEMO systeem, kan logischerwijs als Finding
Nemo betiteld worden. Al met al zijn de afgelopen jaren voorbij gevlogen en is het
schrijven van het proefschrift redelijk voorspoedig gegaan. Met andere woorden, en
om in de zwangerschapssfeer te blijven, het was geen heel zware bevalling. Niet in
de laatste plaats valt dit toe te schrijven aan de onmisbare bijdrage en ondersteuning
die ik van een groot aantal mensen heb mogen ontvangen en die ik hier graag wil
benoemen.

In de eerste plaats wil ik mijn beide promotoren, Prof. Jan Bergmans en Prof.
Guid Oei, bedanken voor de mogelijkheid die ze mij geboden hebben in dit onder-
zoeksproject deel te nemen. In het bijzonder wil ik Jan bedanken voor zijn bereid-
heid om mij te allen tijde te helpen en voor zijn (opbouwende) kritische houding ten
opzichte van mijn werk. Volgens mij was de eerste versie van het manuscript dat tot
hoofdstuk 3 van dit proefschrift heeft geleid na jouw eerste correcties meer rood dan
zwart. Echter, deze kritische houding heeft er naar mijn mening wel toe geleid dat dit
proefschrift zijn huidige niveau heeft bereikt en dat een aantal van de hoofdstukken
inmiddels gepubliceerd is. Tevens wil ik je bedanken voor de tijd die je me hebt ge-
gund om in alle rust te revalideren na mijn verkeersongeluk. Doordat ik geen enkele
druk opgelegd kreeg om weer aan het werk te gaan (en zelfs afgeremd werd wan-
neer ik mijzelf wel enige druk oplegde) is het mogelijk geweest om vrijwel geheel
te herstellen, al heeft dit uiteindelijk wel een heel jaar moeten duren. Guid, jou wil
ik bedanken voor je enthousiasme en je klinische inbreng. De ontelbare voorbeelden
die je aandroeg vanuit de klinische praktijk hadden een motiverend effect om toch
weer door te gaan na elke tegenslag en hielpen ook om de klinische (ir)relevantie van
de technologische uitdagingen te doorgronden.

De totstandkoming van dit proefschrift was nooit gelukt zonder de bijdrage van
mijn co-promotor dr. Massimo Mischi en co-promovendus, voormalig afstudeer-
begeleider en ”zaken partner” ir. Chris Peters. Massimo, thank you for your enor-



220 Dankwoord

mous patience in reviewing papers, posters, presentations and, above all, my thesis.
No matter how many times I carefully checked my work, every time you managed to
find some errors or mistakes that I (and often also others) didn’t see. I can only hope
that I’ve picked up some of your meticulousness. Also thank you for all the nice times
at conferences. Chris, jou wil ik in de eerste plaats bedanken voor de mogelijkheid
die je me ooit geboden hebt om op dit onderwerp af te komen studeren. Zonder dat
afstudeerproject zou ik nooit zijn gaan promoveren en zouden we nooit de plannen
hebben gemaakt – en inmiddels met NEMO Healthcare zelfs gerealiseerd – om een
eigen bedrijf op te zetten dat zich op bewakingstechnologie voor de verloskundige
praktijk richt. Jouw vertrek uit Veldhoven om in Breda, en later Den Bosch, klinisch
fysicus te worden maakte het minder gezellig in het MMC. Eerlijkheidshalve moet
ik wel zeggen dat die gezelligheid af en toe een negatief effect had op mijn produc-
tiviteit (vooral wanneer er Subs gehaald moest worden of er ”belangrijke dingen”
verteld werden), maar dit werd over het algemeen ruimschoots gecompenseerd door
de vruchtbare discussies die we hadden over alle inhoudelijke onderwerpen.

Prof. Karl Rosén, prof. Maria Signorini, and prof. Pieter Wijn are thanked for
the efforts they made in reading and improving the thesis and for sitting on the core
committee at the PhD defense. Prof. Frank Vandenbussche wordt bedankt voor het
zitting nemen in de uitgebreide promotiecommissie. Pieter Wijn, behalve voor het
zitting nemen in mijn promotiecommissie, wil ik je ook bedanken voor de mogeli-
jkheid die je me hebt geboden om op jouw afdeling in het MMC te (blijven) werken
en voor jouw inbreng in het totale onderzoek.

Dit promotie onderzoek was onderdeel van het ’electrophysiological monitoring
of the fetal condition’ project en werd financieel ondersteund door STW. Ik wil alle
leden van de gebruikerscommissie bedanken voor hun opmerkingen, kritieken en
suggesties tijdens de halfjaarlijkse voortgangsbesprekingen.

Natuurlijk kan ik in mijn dankwoord alle moeders (en baby’s) die aan het on-
derzoek hebben meegedaan niet vergeten. Zonder de toewijding die zij hadden om
elke keer weer naar het MMC te komen – wat voor sommigen een hele reis was –
en bijna een uur stil te liggen, had ik nooit over de data kunnen beschikken die ik nu
had en nooit deze resultaten kunnen verkrijgen. Gek genoeg waren de moeders die
de beste metingen hebben opgeleverd juist die moeders die het beste op de hoogte
waren van mijn onderzoek: betrokkenheid lijkt dus van invloed op de kwaliteit van
de metingen. Ook bedankt aan Anne, Maartje, Judith, Marc, Lean en Rianne voor
het uitvoeren en opzoeken van alle metingen en aan Barbara voor het onderhoud aan
de meetopstelling.

Het feit dat de periode van mijn promotie onderzoek zo snel en prettig verlopen
is heb ik ook te danken aan de vele collega’s met wie ik samen heb kunnen werken
en aan het werk van de studenten die ik heb mogen begeleiden bij hun stages (Fiere)
of afstudeeronderzoeken (Satish en Maarten). Het werk van Maarten heeft (met een
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kleine uitbreiding van 2D naar 3D) rechtstreeks geleid tot hoofdstuk 4 van dit proef-
schrift. Bedankt voor het werk dat je hiervoor hebt verricht en natuurlijk voor het
Belgische bier, je verrijkingen aan de Nederlandse taal en alle verhalen over de illus-
tere Bicky-burger. Ik heb er nog naar gezocht toen ik in de Ardennen was, maar het
schijnt dat ze hem alleen in Vlaanderen kennen?!? De collega’s en andere studenten
(zowel op de TU/e als in het MMC) waarmee ik samen met mogen werken kan ik niet
allemaal bij naam noemen, maar een aantal van hen wil ik toch specifiek vermelden.
Iman, Bert, Rob, Yvonne, Anja, Diana, Tanya, Ward, Job, Carola bedankt voor jullie
uiteenlopende bijdragen aan dit proefschrift, variërend van ondersteuning in adminis-
tratieve zaken, tips over het gebruik van bepaalde computerprogramma’s en feedback
op stukjes van het onderzoek tot substantiële bijdragen in methodiek en berekenin-
gen en de introductie in het voor mij nieuwe gebied van ’Bayesian machine learning’
technieken. Chiara, thanks to you for all our discussions on pregnancy monitoring,
the coffees, and the fun times during the various conferences. I have particular nice
memories on the champagne in Lyon, the lunch on the hill in Florence, and the pubs
in New York. Rian, bedankt voor alle gezellige ochtenden koffie drinken en alle
koekjes en snoepjes die je meebracht.

Zonder af en toe te kunnen ontspannen en de moeders, foetussen en ECG’s even
te vergeten was mijn onderzoek nooit zo voorspoedig verlopen. Hiervoor wil ik dan
ook een aantal mensen bedanken. Mijn vrienden voor de avondjes stappen, feesten,
Wiien, Rikken (ik zal de nette naam maar gebruiken), weekendje(s), barbecues en
weet ik veel wat nog meer, KDDB voor de altijd gezellige repetities en optredens en
het voetbalteam Leunen 5+2-1 (elke jaargang weer met een langere naam). Ooit zal
de dag komen dat jullie kampioen worden, ondanks (of juist vanwege) dat ik er niet
meer bij ben.

Mijn familie wil ik bedanken voor alle steun en interesse tijdens mijn studie en
mijn promotie, maar ook voor alle andere dingen (teveel om op te noemen). Jullie
geduld met mij, als ik weer eens gefrustreerd was omdat een probleem niet meteen
opgelost kon worden, was (en is) bewonderenswaardig. Fam. Schwachöfer wil ik
bedanken voor de vakanties, weekendjes, etentjes en jullie enorme gastvrijheid: het
is niet moeilijk om je bij jullie thuis te voelen. Janneke en Pleun worden bedankt
voor hun foto’s die ik in het proefschrift en/of op de kaft heb mogen gebruiken.

Tenslotte, maar zeker niet op de laatste plaats, wil ik Patricia bedanken voor
alle leuke dingen die we samen gedaan hebben, voor je steun en geduld, niet alleen
tijdens mijn promotie onderzoek, maar ook in de periode dat ik zolang thuis zat en
niet bepaald een zonnetje zal zijn geweest, voor je liefde en voor nog zoveel andere
dingen die ik hier niet allemaal kan vermelden. Helaas hebben we onlangs te horen
gekregen dat je ziek bent, maar ik heb goede hoop en vertrouwen dat je snel weer
helemaal beter zult zijn, vooral gezien jouw immer positieve instelling en vechtlust.
Ik hoop dat we samen nog heel veel mooie en kankervrije tijden gaan beleven en ik
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ben ervan overtuigd dat je volgend jaar je examens, die je nu helaas uit hebt moeten
stellen, gaat halen. Op het moment van dit schrijven is het nog niet bekend of onze
geplande reis naar Patagonië en Antarctica door zal gaan, maar ik hoop dat we samen
heel veel van deze reis kunnen gaan genieten, bovenal omdat dit zou betekenen dat
je weer beter bent.
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12-lead ECG, 8, 131, 176

actin filament, 23
action potential, 20, 22
adaptive filtering, 56
adaptive noise canceling, see adaptive

filtering
anatomy of adult heart, 19
anatomy of fetal heart, 21
aorta, 21
apex, 20
asphyxia, 29
atrioventricular (AV) bundle, 20
atrioventricular (AV) node, see atrioven-

tricular (AV) bundle
atrium, 19
autonomic nervous system, 2

parasympathetic system, 2
sympathetic system, 2

baroreceptor, 2
Bayes’ rule, 91, 106

evidence, 106, 128
likelihood, 92, 106, 128
posterior, 91, 106, 129
prior, 92, 106, 128

Bayes’ theorem, see Bayes’ rule
biphasic ST segment, 28
bipolar ECG recording, 6, 24
Bland-Altman plot, 96
body surface potential map (BSPM),

124
bradycardia, 93
bundle branches, 20

cardiac vector, see heart vector

cardiotocography (CTG), 3, 47, 153,
181, 191

cell membrane, 22
Central Limit theorem, 77
congenital heart disease (CHD), 173
conic equation, 73

depolarization, 22
depolarization wave, 23
dipole, 23
Doppler ultrasound, 2
Dower matrix, 126

inverse Dower matrix, 127
Dower transformation, see Dower ma-

trix
ductus arteriosus, 21
dynamic ECG segmentation, 51, 51

Eigenvector problem, 76
Einthoven triangle, 149
electrical axis, 26, 145, 146, 149
electrical field vector, see heart vector
electrocardiogram (ECG), 24, 146

isoelectrical period, 53
lead, 6
P-wave, 24, 49, 51
PR interval, 24, 52
QRS complex, 24, 49, 89
RT interval, 52
ST segment, 3
T-wave, 25, 49, 52

electrode configuration, 59
electrode movement, 35
electrohysterogram (EHG), 32
electromyogram (EMG), 32
EM method, 160
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expectation-maximization (EM) algo-
rithm, 159

expected value, 130
extracellular fluid, 22
extrasystoles, 14

supraventricular extrasystoles (SVES),
30, 174

fetal blood sampling, 3
fetal breathing, 35
fetal ECG source signal, 74
foramen ovale, 21
Frank XYZ lead system, 132
Frobenius norm, 157
frontal plane, 149

gas exchange, 21
glycogenolysis, 29

heart vector, 26
His bundle, see atrioventricular (AV)

bundle
hypoxemia, 1
hypoxia, 1

independent component analysis (ICA),
58, 68, 76

augmented ICA (aICA), 77
intracellular fluid, 22
intralead variability, 161

Kalman filter, 107
adaptive Kalman filter, 116
fixed Kalman filter, 115

Kalman gain, 92, 107

lead vector, 6, 25
lead-dependent scaling, 155, 156
linear prediction, 53, 57
long axis of ellipse, 73

M-PAQ system, 41, 59
main heart axis, see electrical axis

maternal ECG template, 10
maximum a posteriori, 106
maximum likelihood, 107, 158
mean squared error (MSE), 53, 61, 112,

133
measurement vector, see lead vector
membrane permeability, 22
metabolism

aerobic, 28
anaerobic, 29

mixing matrix, 58
Moore-Penrose inverse, 71, 127
(fetal) movement, 9, 154
multi-modal, 106
myofibril, 23
myosin filament, 23

NEMO system, 38, 78
nodal fibers, 20
noise

Gaussian noise, 60, 74, 110, 129
measurement noise, 103
process noise, 103

orientation of fetus, 166

parabolic interpolation, 53
PBSS, 69
peripheral circulation, 20, 21
positive predictive value, 61, 79
powerline interference, 33
preferential direction, 72
principal component analysis (PCA),

51, 68, 76
augmented PCA (aPCA), 77

PTV, 125
pulmonary artery, 21
pulmonary circulation, 21
Purkinje fibers, 20

quasi-periodicity, 192
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repolarization, 23
rest-activity cycles, 30
rotation, 157

sarcoplasmic reticulum, 23
scalar matrix, 108
scalp electrode, 32, 41
segmentation, see dynamic segmenta-

tion
sensitivity, 61, 79
singular value decomposition (SVD),

158
sinoatrial (SA) node, 20
source separation technique, 69
spatial filtering, 56
spatial variability, 161
spectral analysis, 87
STAN R© monitor, 3, 147
state-space model, 91, 103
sum of absolute differences (SAD), 90,

165
supraliminal stimulus, 23

T-wave alternans (TWA), 109
tachycardia, 93
template subtraction, 56
threshold

augmented threshold, 91
instantaneous threshold, 91

thresholding, 88
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