17 research outputs found

    Opto-VLSI processing for reconfigurable optical devices

    Get PDF
    The implementation of Wavelength Division Multiplexing system (WDM) optical fibre transmission systems has the potential to realise this high capacity data rate exceeding 10 Tb/s. The ability to reconfigure optical networks is a desirable attribute for future metro applications where light paths can be set up or taken down dynamically as required in the network. The use of microelectronics in conjunction with photonics enables intelligence to be added to the high-speed capability of photonics, thus realising reconfigurable optical devices which can revolutionise optical telecommunications and many more application areas. In this thesis, we investigate and demonstrate the capability of Opto-VLSI processors to realise a reconfigurable WDM optical device of many functions, namely, optical multiband filtering, optical notch filtering, and reconfigurable-Optical-Add-Drop Multiplexing (ROADM). We review the potential technologies available for tunable WDM components, and discuss their advantages and disadvantages. We also develop a simple yet effective algorithm that optimises the performance of Opto-VLSI processors, and demonstrate experimentally the multi-function WDM devices employing Opto-VLSI processors. Finally, the feasibility of Opto-VLSI-based WDM devices in meeting the stringent requirements of the optical communications industry is discussed

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators

    Structures plasmoniques pour le renforcement des effets nonlinaires et la réalisation de fonctions tout-optiques en photoniques sur silicium

    Get PDF
    With the rapid increasing bandwidth of data transmission and signal processing, integrated electronics encounters bottlenecks. Silicon photonics provides a low-cost solution to overcome some of these bottlenecks by introducing on-chip optical links. After a decade of development, silicon photonics is now the most active discipline and most promising platform within the field of integrated optics. However, in the process of further development, new stumbling blocks emerge, among which the fact that the size of photonic devices is limited by the diffraction limit, which results in a large mismatch between photonic and electronic components. Plasmonics seems to be an ideal solution to overcome this obstacle thanks to its ability to confine the optical field into nanoscales beyond the diffraction limit. Meanwhile, the localized strong field enhancement in plasmonic structures enhances interaction of light and matter, which is promising for nonlinear applications.In this dissertation, we combine the plasmonic and organic technologies onto the silicon photonics platform to create silicon plasmonic organic structures and investigate the nonlinear effects induced in them. Silicon plasmonic organic structures combine the advantages of silicon with ultra-compact performance of plasmonics and ultrafast property of organic materials that have great potentials in nonlinear integrated optics.A full-vectorial nonlinear coupled-wave equation model which is valid for lossy plasmonic waveguides is proposed and then utilized to analyze the nonlinear effects in silicon plasmonic waveguides. This dissertation addresses the use of two kinds of plasmonic waveguides, plasmonic slot waveguide (PSW) and hybrid plasmonic waveguide (HPW), for nonlinear applications. Specifically, enhanced second harmonic generation, electro-optical /optical rectification effect in PSW and enhanced second harmonic generation in HPW and ring resonators are proposed. The mode phase matching technique is applied for the phase matching of the nonlinear processes. Based on the effective nonlinear effects within short distances, possible applications in optical signal processing such as phase regeneration, modulation and detection are envisaged.Design, fabrication and measurement of PSW are also provided. By spin-coating a commercial available second order nonlinear polymer, preliminary results regarding the nonlinear response of the PSW are investigated.L’augmentation des flux d’information sur puce conduit l’électronique intégrée à un certain nombre de limitations, liées en particulier à la saturation des débits binaires transmissibles entre blocs et cœurs et au niveau excessif de puissance dissipée. Dans ce contexte, la photonique silicium a été proposée il y a plusieurs années comme une solution intéressante pour lever certains verrous. Ce domaine, qui a connu un intérêt marqué depuis, repose sur le développement de liens optiques sur puce, donc sur le développement de toutes les structures nécessaires pour l’émission, le guidage, la modulation, et la détection des signaux optiques. Au stade actuel, les progrès ont été spectaculaires mais des difficultés demeurent : d’une part, la puissance consommée par les composants optoélectroniques, en particulier de modulation, se situe toujours au-dessus des niveaux requis par les applications ; d’autre part, la taille des composants optiques intégrées classiques ne peut pas être miniaturisée en-dessous de la limite de diffraction (de l’ordre de 250nm dans les cas usuels de la photonique silicium, dans la fenêtre des longueurs d’onde télécoms λ=1,55µm), ce qui ne permet pas d’envisager une co-intégration poussée de l’optique avec l’électronique CMOS.Dans cette thèse, nous avons exploré les potentialités de l’utilisation de matériaux organiques non-linéaires au sein de structures métalliques pour la réalisation de guides d’ondes plasmoniques nonlinéaires. Les propriétés de la plasmonique autorisant la réalisation de structures sub-longueur d’onde à confinement extrême du champ électromagnétique, les composants qui en découlent sont caractérisés par un renforcement significatif des effets optiques non-linéaires et leur co-intégration avec l’électronique devient envisageable en terme de compacité et d’encombrement.Nous avons développé une approche basée sur la théorie des modes couplées applicable à des guides à pertes (absorption par les métaux) et, couplées à des calculs par éléments finis, nous l’avons appliquée à l’exploration des plusieurs effets. Deux types de guides ont été considérés, guides plasmoniques et guides plasmoniques hybrides. Les phénomènes de génération de seconde harmonique et de rectification optique (assistée électriquement ou pas) ont été étudiés principalement ; les compromis entre pertes de propagation (par absorption) et confinement du champ électromagnétique ont été explorés et l’ensemble a conduit à proposer plusieurs configurations caractérisées par des longueurs d’interaction de quelques dizaines de µm typiquement et des efficacités (de conversion de longueur d’onde, de rectification, etc) se situant au-delà de l’état de l’art actuel.Ces propositions théoriques ont été complétées par un volet expérimental, concrétisé par la fabrication de structures plasmoniques, et qui a permis de valider la possibilité d’une injection efficace de la lumière depuis une fibre optique vers des guides plasmoniques très sub-longueur d’onde

    Ultraschnelle optische Kohärenztomographie am Augenhintergrund

    Get PDF

    Roadmap on holography

    Get PDF
    From its inception holography has proven an extremely productive and attractive area of research. While specific technical applications give rise to 'hot topics', and three-dimensional (3D) visualisation comes in and out of fashion, the core principals involved continue to lead to exciting innovations in a wide range of areas. We humbly submit that it is impossible, in any journal document of this type, to fully reflect current and potential activity; however, our valiant contributors have produced a series of documents that go no small way to neatly capture progress across a wide range of core activities. As editors we have attempted to spread our net wide in order to illustrate the breadth of international activity. In relation to this we believe we have been at least partially successful.This work was supported by Ministerio de Economía, Industria y Competitividad (Spain) under projects FIS2017-82919-R (MINECO/AEI/FEDER, UE) and FIS2015-66570-P (MINECO/FEDER), and by Generalitat Valenciana (Spain) under project PROMETEO II/2015/015

    Ultraschnelle optische Kohärenztomographie am Augenhintergrund

    Get PDF

    Membrane-Based Broadband Semiconductor Light Sources for Optical Coherence Tomography

    Get PDF
    Optical coherence tomography (OCT) has experienced tremendous progress over the last three decades and has nowadays become a standard optical imaging modality in the field of biomedicine. High-resolution, multi-dimensional imaging including information about depth is provided in real-time for clinical in-vivo applications even while the field is rapidly growing pushed by continuous technological advance. The scope of the thesis is to advance OCT technology along two main avenues: i) more versatile membrane-based sources for visible wavelength range; ii) development of polarization sensitive OCT (PS-OCT) as an advanced technique providing information of birefringence. For the first path several membrane external-cavity surface-emitting lasers (MECSELs) were demonstrated targeting operation at difficult wavelength ranges, i.e., the red and near-infrared spectral range, and broad-band tuning, an essential feature for OCT. Main results including tunable emission were successfully demonstrated yet full scale implementation into OCT set-ups would require more advanced engineering to stabilize the operation for wavelength tuning. Broad-emitting MECSEL structures were presented based on novel design structures, including the incorporation of quantum dots in the gain region, as well as using two different quantum well types in the same active region. Also, the characterization of a novel design criterion to mitigate undesired spectral effects inherent in MECSELs is presented. For the PS-OCT the impact of changes in temperature of a setup was characterized using a technique to obtain depth information from a measured set of interference fringes using reference signals with known distances. This approach has never been carried out for fiber-based polarization-sensitive systems, which are known to be highly sensitive to dispersion changes. This study can contribute to further development of this approach to image birefringence. In addition to this, a novel approach is proposed to demonstrate super-luminescence operation based on the membrane emitting platform. As in the case of MECSEL, this allows to surpass the limitations of carrier injection that edge emitting laser devices are facing when operating at short wavelength ranges

    Development of high-performance quantum dot mode-locked optical frequency comb

    Get PDF
    This PhD thesis focus on the development of high-performance optical frequency combs (OFCs) generated by two-section passively mode-locked lasers (MLLs) based on novel optimised InAs quantum dot (QD) structures grown on GaAs substrates. Throughout the thesis, several important aspects are covered: the epitaxial structures, the device designs, the fabrication process, the characterisation of the fabricated laser devices and the evaluation of their performance. To gain a deep level comprehension of the mode-locking mechanisms in two-section QD MLLs, a detailed study is presented on a series of QD MLLs with different saturable absorber (SA) to gain section length ratios (from 1: 3 to 1: 7) in either ridged-waveguide structure or tapered waveguide structure. The effect of temperature on different device configurations is experimentally examined. And the data transmission capability of the QD MLLs is systematically investigated in different scenarios. In this thesis, an ultra-stable 25.5 GHz QD mode-locked OFC source emitted solely from the QD ground state from 20 °C to a world record 120 °C with only 0.07 GHz tone spacing variation has been demonstrated. Meanwhile, a passively QD MLL with 100 GHz fundamental repetition rate is developed for the first time, enabling 128 Gbit s−1 λ−1 PAM4 optical transmission and 64 Gbit s−1 λ−1 NRZ optical transmission through 5-km SSMF and 2-m free-space, respectively. All of the studies aim to prove that our two-section passively InAs QD MLLs can be used as simple, compact, easy-to-operate, and power-efficient multi-wavelength OFC sources for future high-speed and large-capacity optical communications

    Roadmap on holography

    Get PDF
    From its inception holography has proven an extremely productive and attractive area of research. While specific technical applications give rise to 'hot topics', and three-dimensional (3D) visualisation comes in and out of fashion, the core principals involved continue to lead to exciting innovations in a wide range of areas. We humbly submit that it is impossible, in any journal document of this type, to fully reflect current and potential activity; however, our valiant contributors have produced a series of documents that go no small way to neatly capture progress across a wide range of core activities. As editors we have attempted to spread our net wide in order to illustrate the breadth of international activity. In relation to this we believe we have been at least partially successful

    Optical Sensors

    Get PDF
    This book is a compilation of works presenting recent developments and practical applications in optical sensor technology. It contains 10 chapters that encompass contributions from various individuals and research groups working in the area of optical sensing. It provides the reader with a broad overview and sampling of the innovative research on optical sensors in the world
    corecore