438 research outputs found

    Amorphous ultra-wide bandgap ZnOx thin films deposited at cryogenic temperatures

    Full text link
    Crystalline wurtzite zinc oxide (w-ZnO) can be used as a wide band gap semiconductor for light emitting devices and for transparent or high temperature electronics. The use of amorphous zinc oxide (a-ZnO) can be an advantage in these applications. In this paper we report on X-ray amorphous a-ZnOx thin films (~500 nm) deposited at cryogenic temperatures by reactive magnetron sputtering. The substrates were cooled by a nitrogen flow through the copper substrate holder during the deposition. The films were characterized by X-ray diffraction (XRD), Raman, infrared, UV-Vis-NIR spectroscopies, and ellipsometry. The a-ZnOx films on glass and Ti substrates were obtained at the substrate holder temperature of approximately -100 oC. New vibration bands at 201, 372, and 473 cm-1 as well as O-H stretch and bend absorption bands in the a-ZnOx films were detected by FTIR spectroscopy. Raman spectra showed characteristic ZnO2 peaks at 386 and 858 cm-1 attributed to the peroxide ion O22- stretching and libration modes, respectively. In addition, the films contain neutral and ionized O2 and O2- species. The a-ZnOx films are highly transparent in the visible light range (approx. 87%) and exhibit a refractive index of 1.68 at 2.25 eV (550 nm). An optical band gaps is 4.65 eV with an additional band edge absorption feature at 3.50 eV. It has been shown that the deposition on actively cooled substrates can be a suitable technique to obtain low temperature phases that cannot be deposited at room temperature.Comment: 24 pages, 8 figure

    AlGaN/GaN High Electron Mobility Transistors with Ultra -Wide Bandgap AlN buffer

    Get PDF
    International audienc

    Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal

    Get PDF
    This paper reports a comprehensive modeling and experimental characterization of a three-dimensional phononic crystal composed of a single material, endowed with an ultra-wide complete bandgap. The phononic band structure shows a gap-mid gap ratio of 132% that is by far the greatest full 3D bandgap in literature for any kind of phononic crystals. A prototype of the finite crystal structure has been manufactured in polyamide by means of additive manufacturing technology and tested to assess the transmission spectrum of the crystal. The transmission spectrum has been numerically calculated taking into account a frequency-dependent elastic modulus and a Rayleigh model for damping. The measured and numerical transmission spectra are in good agreement and present up to 75 dB of attenuation for a three-layer crystal

    Demonstration of GaN-on-silicon material system operating up to 3 kilovolts with reduced trapping effects

    Get PDF
    International audienceWe report on the first demonstration of low trapping effects up to 3000 V within GaN-on-silicon epitaxial layers using a local substrate removal (LSR) followed by a thick backside ultra-wide-bandgap AlN deposition. The fabricated AlGaN/GaN devices deliver low specific on-resistance below 10 mΩcm 2 together with unprecedented 3-terminal blocking voltage while substrate ramp measurements show reduced hysteresis up to 3000 V. These results pave the way for beyond 1200 V applications using large wafer diameter GaN-on-Si high electron mobility transistors

    Wide and ultra-wide bandgap oxides : where paradigm-shift photovoltaics meets transparent power electronics

    Get PDF
    Oxides represent the largest family of wide bandgap (WBG) semiconductors and also offer a huge potential range of complementary magnetic and electronic properties, such as ferromagnetism, ferroelectricity, antiferroelectricity and high-temperature superconductivity. Here, we review our integration of WBG and ultra WBG semiconductor oxides into different solar cells architectures where they have the role of transparent conductive electrodes and/or barriers bringing unique functionalities into the structure such above bandgap voltages or switchable interfaces. We also give an overview of the state-of-the-art and perspectives for the emerging semiconductor β- GaO, which is widely forecast to herald the next generation of power electronic converters because of the combination of an UWBG with the capacity to conduct electricity. This opens unprecedented possibilities for the monolithic integration in solar cells of both self-powered logic and power electronics functionalities. Therefore, WBG and UWBG oxides have enormous promise to become key enabling technologies for the zero emissions smart integration of the internet of things

    p-Type Ultrawide-Band-Gap Spinel ZnGa2O4: New Perspectives for Energy Electronics

    Get PDF
    The family of spinel compounds is a large and important class of multifunctional materials of general formulation AB2X4 with many advanced applications in energy and optoelectronic areas such as fuel cells, batteries, catalysis, photonics, spintronics, and thermoelectricity. In this work, it is demonstrated that the ternary ultrawide-band-gap (∼5 eV) spinel zinc gallate (ZnGa2O4) arguably is the native p-type ternary oxide semiconductor with the largest Eg value (in comparison with the recently discovered binary p-type monoclinic β-Ga2O3 oxide). For nominally undoped ZnGa2O4 the high-temperature Hall effect hole concentration was determined to be as large as p = 2 × 1015 cm–3, while hole mobilities were found to be μh = 7–10 cm2/(V s) (in the 680–850 K temperature range). An acceptor-like small Fermi level was further corroborated by X-ray spectroscopy and by density functional theory calculations. Our findings, as an important step toward p-type doping, opens up further perspectives for ultrawide-band-gap bipolar spinel electronics and further promotes ultrawide-band-gap ternary oxides such as ZnGa2O4 to the forefront of the quest of the next generation of semiconductor materials for more efficient energy optoelectronics and power electronics
    • …
    corecore