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ABSTRACT

W
ide and ultra-wide bandgap materials are able to give the high performance neces-

sary for applications such as LIDAR and wide bandwidth communications. These

applications result in high power densities that must be managed, making inno-

vative heat extraction techniques vital. In this work, heat flow and diamond heat spreading

solutions are studied in novel device designs fabricated in GaN, AlGaN, and β−Ga2O3 to ensure

that these materials can be utilised to their full potential.

GaN-on-diamond material properties are studied through nanoparticle assisted Raman

thermography and transient thermoreflectance. Seeding and growth conditions are shown to

impact the thermal properties, with an optimal seed size suggested to be ≈ 50 nm. The impact

of GaN buffer thickness on GaN-on-diamond device operating temperature is assessed using

photoluminescence. Excellent electrical performance and thermal resistances as low as 9 ± 1

K/(W/mm) are demonstrated in devices with a buffer thickness of 354 nm.

Superlattice castellated field effect transistors are efficient RF switches, but power density

is localised periodically along the gate. The operating temperature of these devices was found

through micro-Raman thermography, gate resistance thermometry, and finite element simula-

tions. The 3D gate was found to aid heat flow by providing a high thermal conductivity heat

pipe; the devices have a thermal resistance of 19.1 ± 0.7 K/(W/mm) which is similar to that of

GaN-on-SiC devices.

The first thermal study of β−Ga2O3 devices is presented, with a thermal resistance of 88 ±
3 K/(W/mm) found, as well as the first study of it’s phonon lifetimes. Devices fabricated in low

thermal conductivity materials such as β−Ga2O3 will need innovative thermal management.

This is explored using simulations, with a diamond passivation layer recommended.
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1
INTRODUCTION

1.1 Development of high power, high frequency transistors

S
olid state electronics have been integral to our way of life since the invention of the first

point contact transistor at Bell Laboratories in 1947 [1]. That work is most commonly

attributed to Shockley, Brattain, and Bardeen, and was followed by a bipolar junction

transistor orginally made in germanium due to its lower melting point and higher carrier mobility

when compared to silicon, which earned the trio the Nobel prize in physics in 1956 [2]. However

germanium’s low bandgap (0.67 eV) gave high leakage currents and hence came the first silicon

bipolar transistor, developed independently at both Bell Laboratories and Texas Instruments [3].

The theory for Field Effect Transistors (FETs) actually preceded these first transistors, and can

be dated back to Lilienfeld in 1928 and then Shockley and Pearson in 1948 [4, 5]. However it was

not until 1953 that Dacey and Ross showed the first unipolar FET using germanium. Khang and

Atalla then developed the first Metal Oxide Semiconductor Field Effect Transistor (MOSFET) in

silicon in 1960, an enabling technology for Complimentary Metal Oxide Semiconductors (CMOS)

on which so much of the worlds computing relies today [6].

Although silicon transistors continue to be imperative in our lives, alternative materials with

improved fundamental properties have been sought since the early days of the transistor. GaAs

1



CHAPTER 1. INTRODUCTION

technology was used as an alternative for high frequency operation as its electron mobility is

almost 6 times higher than that of silicon [7, 8]. MOSFET technology is not compatible with all

compound semiconductors as the lack of a native oxide often led to surface traps at the gate,

meaning new architectures were required. As a result, the first GaAs MEtal-Semiconductor Field

Effect Transistor (MESFET) was fabricated by Mead in 1965, utilising a Schottky gate contact

[9]. The desire for higher frequency operation also led to the development of the High Electron

Mobility Transistor (HEMT) in GaAs by Mimura et al in 1980 [10]. In these devices, the formation

of a 2 Dimensional Electron Gas (2DEG) at the interface of a GaAs-AlGaAs heterostructure leads

to an enhancement in the electron mobility [11].

Interest in Wide BandGap (WBG) materials developed from the desire for higher power,

higher temperature operation. Silicon’s 1.1 eV bandgap means that the thermal activation of

carriers, which follows an Arrenhius relationship with respect to bandgap, is significantly larger

than in materials such as wurtzite gallium nitride (GaN) and 4H silicon carbide (SiC), which have

bandgaps of 3.4 eV and 3.2 eV respectively at room temperature [7, 12–14]. The wider bandgap of

these materials affords them higher critical fields which allows for higher voltage operation and

increased power densities [15]. Of these two WBG materials SiC has the advantage in thermal

conductivity with a value of up to 450 W/m.K, compared to 160 W/m.K for GaN [16]. However,

issues remain with the cost efficient production of high quality SiC due to basal plane dislocations,

although in spite of this 15 kV devices are currently used in power conversion [17]. GaN has

an advantage in that heterostructures can be created with AlGaN to allow for the fabrication

of HEMTs. This, coupled with its larger bandgap make it ideal for both high power and high

frequency applications [18]. In the high power electron device sector, GaN HEMTs will compete

with SiC FETs and silicon Insulated Gate Bipolar Transistors (IGBTs) as an enabling technology

in fields such as electric vehicle power transformation and high speed charging [19].

An ideal transistor has zero resisitance when it is on, and zero current when it is off. It should

also be able to withstand infinite electric fields such that it can block whatever voltage necessary,

and to switch between off and on instantaneously. As all materials have a finite breakdown

voltage, when exceptionally high voltages must be blocked it is often accomplished in stages,

which increases the switching inefficiencies in the circuit. Whilst all wide bandgap materials
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can operate at higher voltages, GaN offers low ON-resistance and faster switching because of

its heterostructures [20]. Ultimately, the maximum operating voltage of GaN power devices

is limited by the available GaN buffer thickness, which in turn is limited by the shortage in

native substrates. The use of non-native substrates leads to an inherent stress in the GaN layers,

meaning there is a critical thickness above which the GaN cracks and delaminates.

In the RF sector GaN technology has been available since 2005, originally on sapphire

substrates until SiC substrates were shown to enable devices to operate at significantly higher

powers [21, 22]. Whilst GaAs HEMTs perform well at high frequency, the wide bandgap of GaN

allows for smaller device footprints and higher operation temperatures [23]. In addition to this,

GaN’s high mobility allows for higher frequency operation. This makes GaN the material of choice

in high power Ku and Ka band applications such as LIDAR, high bandwidth communications,

and military uses [18, 24, 25].

However GaN device reliability continues to be a concern. The high drain voltages and small

device dimensions result in extremely high electric fields which peak at the gate edge, causing

mechanical stress due to GaNs piezoelectricity and activating a range of trap states which

degrades device performance [26, 27]. This peak in electric field also causes a local maximum

in the power dissipation and temperature. It is important to understand the device channel

temperature as device efficiency is impacted by ON resistance and threshold voltage, both of which

are temperature dependent. The Mean Time To Failure (MTTF) of a device is also temperature

dependent, following the Arrenhius relationship

MTTF= A exp
−Ea

kbT
, (1.1)

where A is a constant of proportionality, Ea is the activation energy of the lowest energy failure

mechanism which can be thermally induced, kb is the Boltzmann constant and T is the channel

temperature [28, 29]. Because of this, to ensure the reliability of GaN devices the maximum

operating conditions are often de-rated.

The desire for higher and higher power densities, either through increased operating voltage

or reduced device footprint, makes near junction thermal management necessary to utilise devices

to their full capacity and avoid temperature related accelerated breakdown. Heat extraction from
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the channel is impeded by low thermal conductivity materials such as the interfaces between

epitaxial layers or the epitaxial layers themselves, and their effect can be minimised either by

changing the device design or introducing high thermal conductivity elements to aid in heat

spreading.

Diamond is often considered as the ideal candidate to assist in effective heat spreading due to

is wide bandgap and high thermal conductivity which is the highest known in a bulk material at

over 2000 W/m.K [30]. However, the integration of diamond with other WBG semiconductors is

non-trivial as there is often a large mismatch in coefficients of thermal expansion, and diamond is

also incredibly stiff [31]. In 2010 Francis et al. demonstrated the first four inch GaN-on-Diamond

wafer with polycrystalline diamond grown onto the GaN as the substrate material [32]. The

grain boundaries present in polycrystalline diamond mean it has a somewhat reduced thermal

conductivity when compared to single crystal diamond, meaning it is not as efficient at heat

spreading. Wafer bonding of single crystal diamond substrates onto GaN has been attempted,

although this has not been scaled up to large areas and often results in poor thermal boundary

resistances [33–35]. Currently the state-of-the-art GaN-on-polycrystalline diamond devices have

a thermal resistance of 10 K/(W/mm), compared to 19 K/(W/mm) for GaN-on-single crystal

diamond, and 15 K/(W/mm) for GaN-on-SiC [35, 36].

Whilst the use of diamond is most commonly as a substrate for heat spreading in high power

dissipation devices, this is not the only way diamond can be used. Reduced temperatures were

demonstrated by Tadjer et al. in GaN HEMTs where nanocrystalline diamond films were grown

as a passivation layer, before the deposition of the gate [37]. However, they found that the ON-

resistance of these devices increased, which was attributed to the diamond putting the channel

under tensile stress and creating a non-uniform 2DEG density [38]. Nanocrystalline diamond

which has been heavily boron doped has also been used to create a rectifying gate contact which

provides decreased on resistance and off state leakage, but also induces a negative threshold

voltage shift and adds little in terms of heat spreading due to its small volume [39].

As GaN has entered a more commercial stage in its life cycle, academic research has adjusted

to study "generation after next technology", primarily ultra-wide bandgap materials (UWBG) [40].

The major contenders in this field are diamond, gallium oxide (predominantly in its β polymorph)
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and AlGaN HEMTs (an Al1−xGaxN buffer with AlN heterojunction) [30]. Diamond-based devices

have long been proposed as the ultimate in power electronics due to the combination of UWBG

and exceptional thermal conductivity, however devices have been held back due to a lack of

low level dopants and low mobilities [41, 42]. To get around this, attempts have been made to

create diamond HEMTs through surface transfer doping and nanometric delta doping. Power

dissipation is not likely to be an issue in such devices [43, 44], but power dissipation is likely to

be an issue for both AlGaN and β−Ga2O3 devices as both have low thermal conductivities with

respect to other semiconductors. In the case of AlGaN, alloy scattering reduces the phonon mean

free path and hence the thermal conductivity, with values of approximately 20 W/m.K for alloying

concentrations greater than 10% [45]. β−Ga2O3 has an anisotropic thermal conductivity which

is 27 W/m.K along the [010] direction and 10 W/m.K otherwise [46].

The main theme of this work is understanding and thereby improving the thermal perfor-

mance of novel FETs by measuring and simulating their temperature profiles. The goal is to

aid device development such that they can be utilised efficiently and reliably in an industrial

environment. The GaN-on-diamond interface is a key component of wafer epitaxies; if this ther-

mal bottleneck were removed devices would be able to be operated at significantly higher power

densities, making them more economically viable. This work improves the understanding of

what causes the interface effective thermal boundary resistance, how it can be improved, and

how it must be considered in device design. For new materials or devices which are aiming to

enter the market it is important that their thermal performance is studied such that reliability

concerns can be addressed. Two device structures which have not been thermally characterised

are investigated, the superlattice castellated FET and the β−Ga2O3 MOSFET. Both device sets

have thermal challenges which must be addressed. The particular problems are identified, and

recommendations made for the next generation of device sets.

1.2 Thesis outline

To understand the heat flow in novel FET designs, micro-Raman thermography, nanoparticle

assisted Raman thermography, and photoluminescence will be used to probe active device tem-
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peratures. These measurements will then be combined with finite element simulations of device

structures to provide an insight into how the devices behave thermally and to understand their

peak temperatures. Finite element simulations will also be used to explore how diamond can be

used most effectively with the latest UWBG materials. An understanding of key material para-

meters in WBG and UWBG systems will also be established by the use of Raman thermometry

and transient thermoreflectance.

Chapter 2 will focus on the theoretical background of this work. Phonons and their origins

are discussed. The inherent properties, growth, and applications of GaN, AlGaN, β−Ga2O3, and

diamond, the key materials in this work, will be discussed. Each material has its own advantages

and challenges that make it suitable for certain applications, and interesting for research and

these will be highlighted. A discussion of heat transport will then follow, with reference to the

specific nature of heat flow in device structures.

Chapter 3 will explore the experimental techniques utilised in this work, discussing both

their theory and laboratory implementations. The two major experimental techniques utilised are

Raman scattering, which is used for both spectroscopy and thermography, and photoluminescence,

which is also used for thermography. Transient thermoreflectance, which is used for material

characterisation, is also explained. Finally the underlying principles behind finite element analy-

sis are discussed. This is used as a tool to further the understanding gained from experimental

results, and must be optimised to make the process accurate and efficient.

Following this will be the research segment of this work. Chapter 4 studies how GaN-on-

diamond material and devices can be optimised. Transient thermoreflectance is used to measure

the effective thermal boundary resistance of GaN-on-diamond systems. Nanoparticle assisted

Raman thermography will be employed to measure the temperature profile of suspended thin

diamond films which allows for the thermal conductivity of the film to be determined through

comparison with finite element simulations. Following this, the thermal resistance of two GaN-

on-Diamond wafers which have different buffer thickness is determined. Photoluminescence is

performed to determine the temperature in the device active area, before finite element analysis

is used to determine the device peak temperature. The results show that using ultra-thin buffer

layers of as low as 350 nm is not detrimental to device performance. As effective thermal boundary
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resistances are optimised, thinner buffers have the ability to offer improved thermal and electrical

characteristics.

Chapter 5 discusses thermal transport in SuperLattice Castellated FETs (SLCFETs), of which

there are no thermal examinations in the literature. The small feature sizes and localised power

dissipation in SLCFETs makes heat extraction more complex. Raman thermography is used to

measure their buffer temperatures, whilst gate resistance measurements are used to measure

gate temperatures. These measurements are used as an input to a finite element simulation of

the structures, highlighting how the three dimensional gate structure aids thermal transport by

providing a high thermal conductivity heat pipe through to the device buffer.

Finally, Chapter 6 studies the UWBG materials AlGaN and β−Ga2O3. The lifetimes of

certain optical phonons in β−Ga2O3 are determined using Raman spectroscopy. The likely decay

mechanisms of these phonon’s modes is found by studying the temperature dependence of the

lifetime. Nanoparticle assisted Raman thermography is used to show the high thermal resistance

of β−Ga2O3 devices. Finite element simulations will then be used to investigate how diamond

can be used to address the challenge of efficient heat extraction in these low thermal conductivity

materials.
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MATERIAL AND DEVICE THEORY

For the analysis of heat transport in high performance electronic devices it is necessary to

understand the nature of heat flow, how this is impacted by the materials and device structures

used, and how the heat is generated. A discussion of heat flow in metals, semiconductors and

amorphous materials is provided, as well as a more in depth discussion on the properties of

phonons; the primary heat carrier in semiconductors. For each of the semiconductors studied in

this work, the microscopic and macroscopic properties are explored. A discussion of the relevant

growth processes and device designs follows this, considering the industrially relevant aspects

which impact their use. Finally, these are amalgamated for a discussion on how the device

structures generate heat and how this is spread throughout a wafer containing both high and

low thermal conductivity elements.

2.1 Phonons and heat transport

2.1.1 Phonon theory

Phonons are quasiparticles used to describe quantised lattice vibrations. They are a useful tool

for understanding heat flow in solids, as heat itself is energy stored in crystals, often through

vibrations. Consider an infinite, one-dimensional, monatomic lattice as demonstrated in Figure
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FIGURE 2.1. A sketch of a monatomic 1D lattice with the atoms shown in green and
the bonds represented by springs with spring constant C. The atomic spacing is a,
and the atom n is displaced by an amount xn

.

2.1 where each atom is a point mass, the bonds are represented by springs of constant C, and

the atoms only interact with their nearest neighbour. If the nth atom is at position xn Newton’s

second law of motion states that the force of displacement F on this atom is

F = m
d2xn

dt2 , (2.1)

where m is the atom’s mass. For the central mass of a linear 3 mass system connected by springs,

Hooke’s law states that the force on this atom will be

F = C(xn−1 − xn)−C(xn − xn+1)= C(xn+1 + xn−1 −2xn) (2.2)

where the subscripts n−1 and n+1 refer to the preceding and proceeding atoms in the chain

respectively. By equating Equations 2.1 and 2.2 there results a second order differential equation

in xn

m
d2xn

dt2 = C(xn+1 + xn−1 −2xn). (2.3)

By substituting in a trial wave solution of

x = Aei(kna−ωt) (2.4)

where A is the wave amplitude, a is the inter-atomic spacing, ω is the frequency of the wave, and

k is the wavevector, the differential equation takes the form

−ω2mei(kna−ωt) = C(ei(k(n+1)a−ωt) + ei(k(n−1)a−ωt) −2ei(kna−ωt)). (2.5)

By cancelling the common terms in the exponentials this reduces to

−ω2m = C(eika + e−ika −2). (2.6)
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Using Euler’s formula to simplify the right hand side and rearranging for the frequency gives

−ω2 = C
m

(2cos(ka)−2)= −2C
m

(sin2(
ka
2

)), (2.7)

where the final step employs the cosine double angle formula. Hence solving for frequency gives

the dispersion relation

ω=
√

2C
m

| sin
ka
2

| (2.8)

confirming the wave like nature of lattice vibrations in crystals, and it is these waves that are

named phonons [47].

The Brillouin zone is a tool commonly used in crystallography and the definition of phonons.

It is the reciprocal space equivalent of the Wigner-Sietz unit cell in that it defines the smallest

repeating unit in the reciprocal lattice. As it is in reciprical space, the size of the Brillouin zone is

given in terms of wavevector k = 2π
λ

where λ is the wavelength. The Γ point is always considered

the centre of the unit cell where k = 0, and other high symmetry reciprocal lattice directions are

denoted by letters. The wavevector-frequency dispersion curves in the Brillouin zone are shown

in Figure 2.2 (a). In the one-dimensional, monatomic case considered here the Brillouin zone has

width k = π
a . From Equation 2.8 the phonon frequency is zero at the Γ point, at its maximum

at the Brillouin zone edge, and is repeating in 2π. Phonons of this nature are named acoustic

phonons [48].

When a diatomic lattice is considered, the differential equation shown in Equation 2.3 becomes

a paired system of two differential equations of the same form. The solution to these equations in

matrix form is 2C−m1ω
2 −2C coska

−2C coska 2C−m2ω
2


A1

A2

= 0 (2.9)

where the subscripts distinguish between the properties of the different atoms of the lattice.

There are non-zero solutions to this equation system when the determinate of the matrix on the

left hand side is zero, i.e when

(2C−m1ω
2)(2C−m2ω

2)− (−2C coska)2 = 0. (2.10)

This can be rearranged to

m1m2

2C
ω4 − (m1 +m2)ω2 +2C(1−cos2 ka)= 0 (2.11)

11



CHAPTER 2. MATERIAL AND DEVICE THEORY

which is a quadratic equation in ω2 and hence can be solved by the quadratic equation giving

solutions of

ω2 = C(m−1
1 +m−1

2 )±C

√
(m−1

1 +m−1
2 )2 − 4sin2ka

m1m2
. (2.12)

This adds an extra branch of solutions to the earlier discussed acoustic phonons as shown in

Figure 2.2 (b). At the Γ point the second term under the square root is zero, resulting in

ωΓ =
√

C(m−1
1 +m−1

2 )±C(m−1
1 +m−1

2 ) (2.13)

which gives zero when the minus sign is taken but is non-zero when the positive sign is taken.

These phonons which have non zero energy at the Γ point are named optical phonons. They can

have energy at the Brillouin zone centre as they represent a symmetric oscillation of the two

atoms about their lattice point, meaning there is no long range translation. It is these optical

phonons that are of interest later in this work as Raman scattering, one of the primary techniques

used, probes zone centre phonons. Optical phonons also have higher energy than acoustic phonons

as they have higher frequencies, meaning they are the primary heat carrier at room temperature.

As is implied by Equation 2.12, the phonon dispersion is still symmetrical about the Γ point

although the Brillouin zone now has width of k = π
a , as the two atom system means the unit

cell of the 1D lattice now has length 2a. As the complexitiy of the lattice is increased to more

realistic systems, the solutions become more varied, but they are still separated into acoustic and

optical phonons. The modes can also be longitudinal, oscillating in the direction of the bond, or

transverse, oscillating normal to the direction of the bond and these will have different energies

[49].

Another property of phonons which is important for thermal transport is that they have

zero spin. This makes them Bosons and as such they obey Bose-Einstein statistics, meaning the

population n of an energy level E is given by

n(E,T)= 1
exp(E/kbT)+1

(2.14)

where kb is the Boltzmann constant and T is the temperature. As will be discussed in Section

2.1.2, heat transport in a material is dependent on the phonon population as phonons are the

dominant heat carrier in many dielectric systems. As Bosons do not obey the Pauli exclusion
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(a) (b)

FIGURE 2.2. (a) The wavevector-frequency dispersion curve of a monatomic one-
dimensional lattice in the Brillouin zone. (b) The dispersion curve of a diatomic
one-dimensional lattice. There are now two phonon branches known as the acoustic
phonons (red) which are linear close to the Brillouin zone centre, and the optical
phonons (blue) which are non-zero at the zone centre.

principle they form a Bose-Einstein condensate as T tends to 0 K and hence n tends to zero.

This means all phonons will accumulate in their ground state, meaning there will be no thermal

carriers. As the temperature increases, the number of carriers increases following Equation

2.14. In the case where the thermal energy kbT À E the Bose-Einstein statistics approach the

Rayleigh-Jeans law which states that

n = kbT
E

(2.15)

suggesting that the phonon population, and hence the thermal carriers, will increase linearly

with temperature.

This is of importance when considering the heat capacity of a dielectric material. Debye

theory states that the specific heat capacity tends to a constant value of 3kb at high temperatures.

This value is found from the Dulong-Petit law and is derived from the equipartition theorem

which states that the vibrations in all three axis directions will have thermal energy kbT. This

law holds at temperatures above the Debye temperature, which is defined as

TD = hv
2kb

3
√

6N
πV

(2.16)

where h is Planck’s constant, v is the sound velocity, N is the number of atoms, and V is is the
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volume. The Debye temperature physically represents the temperature needed to excite the

highest energy vibrational mode. Above this temperature, all the modes are activated and hence

the specific heat capacity ceases to increase. However below this value, the specific heat capacity

is temperature dependent following approximately a T3 relationship as the occupation of the

modes in three dimensions increases.

2.1.2 Heat flow in solids

.

Phonons also play a crucial role in the thermal conductivity of semiconductors. The thermal

conductivity of a material in one dimension x is defined as the κ which relates the heat flux in

one dimension jx to the temperature gradient in that direction via Fourier’s law [50]

jx =−κx
dT
dx

. (2.17)

The thermal conductivity can be found by assuming that the quasiparticles carrying the heat in a

solid, such as phonons in semiconductors and electrons in metals, act as an ideal gas [49]. These

quasiparticles have a flux of nvx where n is the number of particles per unit volume and vx is

their mean velocity. Now consider the situation where these particles are in an area of relative

high temperature and are moving to an area of relative low temperature. Once they reach the low

temperature area, each of these particles will possess energy equivalent to c×∆T where c is the

heat capacity of a single quasiparticle and ∆T represents the difference in temperature between

the hot and cold areas. For a particle that travels a distance dx, this change in temperature will

be the rate of change of temperature with respect to distance, multiplied by that distance, i.e

∆T = dT
dx

×dx. (2.18)

The flux of heat is the carrier flux multiplied by the carrier energy. Assuming the particles travel

a distance lx before they are scattered, the heat flux becomes

jx =−nvxc∆T =−nvxclx
dT
dx

, (2.19)

and by comparison with Equation 2.17 it can be seen that

κ= nvxclx. (2.20)
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The heat capacity of the quasiparticle gas per unit volume C is given by n× c which gives

κ= 1
3

Cvl, (2.21)

when generalised to three dimensions [48]. Therefore changes in any of these parameters will

result in changes in the thermal conductivity. The temperature dependence of a material’s thermal

conductivity can be explained through the temperature dependence of C, the heat capacity, and

l, which is commonly referred to as the mean free path of the quasiparticle. This will now be

discussed in more detail for metals, semiconductors, and amorphous materials.

Heat transport in metals

Metals are used as contacts and heat sinks in semiconductor devices and as such play a role in

heat spreading in high power density electronics. In the case of ideal metals, thermal transport

is dominated by free electrons. To understand the thermal properties of metals it is important

to understand the energy population statistics of the electrons which are carrying the heat. As

electrons are Fermions, they obey Fermi-Dirac statistics which state that the probability of an

energy level E being occupied is given by

f (E)=
(
exp

(E−E f

kbT
)+1

)−1
(2.22)

where E f is the Fermi energy [47]. By definition, the Fermi energy is the energy level which

has a 0.5 probability of occupation, as can be seen by setting E = E f . In the case where E À E f

the probability of occupation is effectively 0, meaning there are no electrons of sufficient energy

to occupy these states. In the case of E ¿ E f the probability of occupation is 1. An electron in

one of these energy levels cannot be thermally excited, as all energy levels within kbT of its

original energy level are also occupied and as electrons must obey the Pauli exclusion principle

the electrons cannot be excited to an already occupied level. Therefore, only electrons which

occupy an energy level within ≈ kbT of the Fermi energy can be excited and the mean energy of

thermally active electrons can be approximated as the Fermi energy. As both the Fermi energy E f ,

and the electron effective mass me can be approximated as constant with respect to temperature,

the electron velocity ve can also be approximated as temperature independent due to the kinetic
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energy relationship

E f =
1
2

mev2
e . (2.23)

However, the remaining thermal conductivity parameters from Equation 2.21 are not temperature

independent, meaning the thermal conductivity is not constant at all temperatures.

As temperature increases, so does the thermal energy and hence the number of thermally

active electrons increases. As stated in Equation 2.20, the specfic heat capacity of the electron

gas increases as the electron density in that gas increases since there are now more particles

which can store energy. This results in an increase in the heat capacity of the metal with the

relationship [48]

C ∝ T. (2.24)

This linear increase competes with the temperature dependence of the electron mean free path,

which has two major contributing factors; electron-phonon scattering and defect scattering. At

temperatures significantly lower than the Debye temperature of the material the optical phonon

population is low meaning the electron scattering is dominated by lattice defects and the mean

free path is approximately constant as the number of lattice defects is temperature independent

[51]. Electron self scattering interactions are weak at all temperatures and therefore have mini-

mal impact on the thermal conductivity. However as temperature increases and the population of

the optical phonon modes increases, the electron-phonon interactions become significant. This

causes a decrease in the mean free path with a T−2 dependence at low temperature which then

saturates at T−1 once all phonon modes are activated. This T−1 dependence counteracts the heat

capacity increase due to the activation of new carriers, resulting in an approximately constant

thermal conductivity in metals at room temperature and above. In alloys, the secondary atoms

are effectively defects, and as such they limit the electron mean free path resulting in a lower

thermal conductivity [51].

Heat flow in semiconductors

In materials where there are few free electrons such as the wide and ultra-wide bandgap

semiconductors which make up the majority of the devices studied in this work, the main

method of heat transfer is through phonons. The thermal conductivity can still be approximated
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by Equation 2.21 [47]. The heat capacity obeys Debye theory, which results in the thermal

conductivity increasing rapidly at low temperatures as the phonon modes are activated, and

the mean free path is limited by scattering from static defects or the boundaries of the material.

As the temperature approaches the Debye temperature and the heat capacity is approximately

constant, the phonon mean free path becomes limited by the interactions of the phonons with

themselves. Phonon interactions in crystals must obey conservation of momentum, meaning

their wavevectors during interactions are constrained. If two phonons of wavevectors ~K1 and ~K2

interact with each other, the wavevector of the resulting phonon ~K3 is given by the relationship

~K1 + ~K2 = ~K3 + ~G (2.25)

where ~G is a reciprocal lattice vector. The simplest type of scattering is called the normal process,

shown in Figure 2.3, where ~K3 exists in the Brillouin zone and ~G is zero. This type of scattering

does not inhibit heat transport as it is simply a linear combination of the momentums of the two

orginal phonons [51]. However if ~K3 exists outside of the Brillouin zone it can be the case that ~G

does not equal 0 and the wavevector of the resulting phonon is mapped back into the Brillouin

zone. This scattering does inhibit the heat flow as the wavevector, and hence the momentum, of

the resulting phonon is less than that of the two original phonons, and the non-zero ~G represents

a contribution from the phonons to the momentum of the whole lattice. This is called umklapp

scattering, with a visual representation shown in Figure 2.3, and it results in a thermal resistance

[52]. Only phonons of high enough energy can scatter oustide of the Brillouin zone in this way,

which is why there is limited umklapp scattering at low temperatures. As temperature rises

the higher energy modes become occupied as described in Equation 2.14 and the phonon mean

free path and hence the thermal conductivity sees an exponential decay. As the temperature

approaches the Debye temperature all phonon modes are active and the umklapp scattering

results in a T−1 decay [48]. It is this umklapp process which dominates at room temperature

and above, and hence most material thermal conductivities in this work have a temperature

dependence of close to T−1, although the exponent is often larger than -1 as thermal expansion of

the lattice also causes a decrease in the phonon velocity and four phonon process can contribute

to a reduced mean free path [51].
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FIGURE 2.3. A visual representation of the normal phonon scattering process and the
umklapp scattering process. The Brillouin zone is marked by the dashed lines. In
the normal process there is no resistance to heat flow. In the umklapp process the
phonons scatter outside of the Brillouin zone and interact with a lattice vector G,
which inhibits heat flow.

.

In this work diamond is studied as a passive heat spreader due to its exceptionally high

thermal conductivity. More detail will be given on the properties of diamond in Section 2.4, but

this high thermal conductivity is due to high phonon velocities vp and long phonon mean free

paths lp, although the heat capacity of diamond is similar to many other semiconductors. The

exceptionally high phonon velocities can be sustained as diamond’s stiff bonds and low density

which, when considering the Hooke’s law approximation of bonding, gives a large ‘spring constant’

and restoring force [53]. These properties result in a phonon velocity which has been measured

as high as 17500 ms−1, which is 2× higher than in Si and 1.5× higher than in silicon carbide [54].

The long phonon mean free path is due to a low probability of umklapp scattering relative to

other semiconductors. One model for the umklapp scattering frequency τ−1 is

τ−1 = Bω2Te−TD /3T , (2.26)

where ω is the phonon frequency, TD is the Debye temperature, and T is the temperature. The

value B determines the likelihood of umklapp scattering, and can be approximated by

B = ~γ2

Mv2
pTD

(2.27)

where M is the average atomic mass and γ is the Grüneisen parameter [55]. In addition to the

large sound velocities possible in diamond, the Debye temperature is also relatively large. The
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average Grüneisen parameter describes how the phonon properties vary with volume and for

diamond is of a similar magnitude as for other semiconductors, making the overall umklapp

scattering probability low [54].

Heat flow in amorphous solids

In a device stack, amorphous materials such as silicon nitride are often used in passivation

layers or gate dielectrics where they are adjacent to the heat source, and in interfacial layers to

non-native substrates as their amorphous nature means they are insulating, preventing leakage

currents, and they can conform to their surrounding structures [56]. In both cases, although the

amorphous layer is very thin (nanometre scale), it can still pose a problem for heat flow as they

have thermal conductivities of approximately 1 W/m.K. This low thermal conductivity is caused

by the lack of long range order inherent in amorphous materials. The quasi-random arrangement

of atoms means that phonons cannot be sustained over long periods, and electrons are still bound

to their ion cores. This results in a lack of available heat carrying quasi-particles and instead the

majority of heat diffuses through the material, which is a slower process [57].

2.2 GaN and AlGaN high electron mobility transistors.

2.2.1 Material properties

Gallium nitride (GaN) is a III-V compound semiconductor which is studied in this work as the

buffer and channel material for HEMTs. It has a metastable zinc blende allotrope, but more

commonly exists in a hexagonal wurtzite structure, shown in Figure 2.4, which is used for devices

and hence will be the focus of the following discussion [58]. The wurtzite unit cell contains a

pair of gallium atoms and a pair of nitrogen atoms with a bond length of 1.95 Å, a c parameter

of 5.19 Å and an a parameter of 3.19 Å [59]. One of the key reasons that GaN is considered an

exciting option for high performance electronics is that it has a wide bandgap of 3.4 eV, which

is over 3 times that of silicon (1.1 eV) and two and a half times that of gallium arsenide (1.4

eV). A key property of the III-nitride semiconductors is that they can be alloyed together to give

a continuous range of possible bandgaps ranging from the 0.7 eV of InN to the 6.2 eV of AlN
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(a)

(b)

FIGURE 2.4. Wurtzite structure of GaN with gallium atoms in red and nitrogen in blue.
(a) shows the structure from the m-plane and (b) shows the structure from the
c-plane.

[60]. This tunability has already made GaN a key opto-electronic material in LEDs, but it is

also important in transistors as it allows for the formation of heterostructures [61]. GaN has a

refractive index which varies from 2.25 in the far infra-red to 2.615 at its bandgap edge, which

can make light extraction difficult [62].

The GaN band structure is shown in Figure 2.5. The curvature of the conduction and valence

bands can be used to predict the mobility of the electrons and holes respectively, as carrier

effective mass is proportional to the second derivative of the dispersion relation. Based on this

it would be predicted that electrons are more mobile than holes, and that proves to be the

case with reported electron mobilties in undoped GaN of 1150 cm2V−1s−1 and hole mobilities

of 170 cm2V−1s−1 literature [63, 64]. These values are lower or comparable to narrow bandgap

semiconductors such as silicon, germanium and gallium arsenide, but are higher than GaN’s

main wide bandgap competitor SiC, which has an electron mobility of 700 cm2V−1s−1 [15].

Furthermore the AlGaN/GaN heterostructure, a key factor in high electron mobility transistors,

gives an enhancement to these mobilities, and this will be discussed in more detail in Section

2.2.4.

The mechanical properties of semiconductors impacts the fabrication of hetero-epitaxial
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FIGURE 2.5. The electronic band structure of wurtzite GaN along high symmetry
directions. There is a direct bandgap along the Γ direction of 3.4 eV. Image adapted
from Yeo et al. [65]. Reprinted with permission from AIP Publishing.

wafers, where strain is often incorporated during the growth processes. GaN has a fracture

toughness of 0.8 MPa.m1/2 and a direction averaged Young’s modulus of 287 GPa. The elastic

constants of GaN suggest it is less stiff than AlN and BN, but is otherwise more stiff than most

other compound semiconductors [66]. A more stiff material can be difficult to integrate with other

semiconductors as it can result in greater amounts of strain at interfaces when they expand and

contract at different rates. This is most commonly seen in wafer fabrication when the materials

are integrated at high temperatures and have different coefficients of thermal expansions. GaN

has a room temperature coefficient of thermal expansion of 3.95×10−6 K−1 in the a-plane and

3.53×10−6 K−1 in the c-plane, which is comparable with most compound semiconductors [15, 67].

The thermal conductivity of GaN was found to be heavily dependent on the dislocation

density present in the material. Zou et al. found that below densities of ≈ 1011 cm−3 the room

temperature thermal conductivity was constant at approximately 160 W/m.K , but at higher

dislocations it dropped off rapidly with values of 30 W/m.K at dislocation densities of ≈ 1013 cm−3

[68]. Computational methods have found ideal thermal conductivities of 180 W/m.K and phonon

mean free paths of approximately 50 nm [69, 70]. Materials with higher thermal conductivities

are desirable since the heat which is generated during device operation can be extracted more

efficiently from hot spots and this will result in lower device temperatures. The GaN thermal
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conductivity values are comparable to silicon, but lower than silicon carbide, meaning thermal

management must be considered more carefully in GaN devices. The heat capacity of GaN is 0.44

Jmol−1K−1, and its Debye temperature is 912 K [70].

2.2.2 Material synthesis

As it stands, bulk growth of GaN is expensive and difficult when compared to silicon which limits

its scalability in terms of industrial production. Whereas other semiconductors such as silicon

can be synthesised through cost effective melt-growth techniques, the high binding energy of

the Ga-N bond means GaN is susceptible to decomposition rather than melting except at high

pressures [71, 72]. Melt growth techniques can provide low cost material because the growth

rate is high and large area synthesis is possible, and the material is typically of high quality as

the defects do not crystallise. Whilst melt growth techniques are desirable, alternative methods

must be sought for GaN synthesis. The synthesis of GaN can be split into two main branches, the

growth of bulk GaN which can be used for substrates and the growth of GaN films which can be

used as active layers in devices.

There are four main techniques for growing bulk GaN, and as these cannot be from the melt

they focus on the crystallisation of GaN on seeds from a solution or a gas phase. Ammonothermal

growth is very commonly used. In this process a GaN containing starting mixture is heated in

super-critical ammonia until it dissolves. It then moves via convection to a hotter part of the

growth chamber and crystallises on the GaN seeds located there [73]. For ammonia to become

supercritical it requires pressures of approximately 250 MPa and temperatures of approximately

500◦C, which is the lowest growth temperature of all the bulk growth techniques discussed

here. An alternative which uses higher pressures of approximately 2 GPa and temperatures of

approximately 1400◦C is High Nitrogen Pressure Solution (HNPS) growth, where the nitrogen is

instead dissolved in a gallium solution containing GaN seeds. The seeds are placed in a cooler

part of the chamber, so when the nitrogen in the solution reaches them via convection, it is in a

supersaturated state which drives crystallisation on the seeds [74]. The third solution growth

technique is the sodium flux technique, which uses the lowest pressures at between 5 and 10

MPa and temperatures of approximately 750◦C. In this technique GaN synthesises on a seed
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from a starting solution consisting of gallium and sodium nitride. The mixture is heated in an

isolated environment containing the GaN seed until a melt is created. The GaN then crystallises

on the seed as the temperature is reduced [75]. Of these growth techniques ammonothermal

growth appears to be the most industrially scalable, although the sodium flux technique has

been used to produce free standing 6-inch high quality GaN crystals [76]. Denis et al. report that

HNPS and sodium flux can give lower dislocation densities than ammonthermal growth, but that

all techniques can incorporate significant oxygen concentrations if care is not taken, which can

reduce wafer resistivity [72].

A common alternative to these solution crystallisation techniques is the gas phase crystallisa-

tion technique Hydride Vapour Phase Epitaxy (HVPE). HVPE growth takes place in a chamber

filled with an inert gas, where the precursor materials flows in a gaseous form. The first step is

to flow chlorine gas over a solid gallium source such that they react and form gallium chloride

gas. Separately, ammonia is introduced into the system, and mixes with the gallium chloride in

a high temperature zone of the chamber. This gas mixture then flows to the seed crystal which

is in a cooler part of the chamber to encourage GaN nucleation [77]. The advantages of HVPE,

that high quality material can be grown very quickly at growth rates up to 1870 µm h−1, have

led to HVPE becoming the most common technique for the growth of commercial GaN substrates

[78, 79]. However a major issue with HVPE technology is the seed crystal on which the GaN

grows epitaxially. If the seed is not GaN, the growth can still occur hetero-epitaxially but there

will be an inherent wafer bow caused by the difference in coefficient of thermal expansion of GaN

and the host substrate of choice, which makes device processing difficult [77, 80]. Alternatively,

a GaN crystal can be used as the seed. It is common to use a GaN substrate grown via the

ammonothermal process as this will be unstressed, but the growth area is limited by the seed

size. Ammonothermal crystals can also have high dislocation densities which will then propogate

through the HVPE grown material [20, 79].

2.2.3 Wafer epitaxy

An alternative to bulk GaN growth is to grow the GaN device layers hetero-epitaxially on

substrates such as silicon, silicon carbide, or diamond. Because of the high material quality and
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high level of control necessary for the GaN device layers, gas phase crystallisation techniques

are preferred to the solution crystallisation techniques discussed in Section 2.2.2. Whilst HVPE

has many advantages for bulk GaN growth, the highly reactive chloride bond means it lacks the

control necessary for device layers where layer thickness can be of the order of nanometres and

the dopant profile must be carefully controlled [81]. Therefore the two most common techniques

for growth of GaN device epitaxies are Metal Organic Vapour Phase Epitaxy (MOVPE) and

Molecular Beam Epitaxy (MBE). In MOVPE metal organic compounds containing gallium and

nitrogen flow across the substrate in a hydrogen carrier gas and nucleate [82]. The growth

takes place in a low pressure chamber (≈ 100 Torr), and with the precursor gases mixed with

a hydrogen carrier gas. This has the benefit of producing high quality, atomically flat material

which grows quickly and is easy to dope [83]. MBE differs in that the growth takes place at

ultra-high vacuum (≈ 1×10−9 Torr) and there is no carrier gas. Pure elemental sources are

disassociated in their own feed chambers with controllable shutters, and when the shutter is open

the elemental radicals diffuse to the substrate and nucleate. The ultra-high vacuum is necessary

to give the feed elements a long mean free path and ensures the purity of the grown material.

The shutter system means dopants can be easily controlled and sharp interfaces can be formed

[84]. MBE also has the advantage that there is minimal waste material. Originally, MOVPE

produced higher quality material, but this is no longer the case and the main disadvantage to

MBE comes from the requirement for ultra-high vacuum which can cause production issues in

commercial environments [83]. Current research into MBE growth centres on the nitrogen source

used. Ammonia is commonly used but this causes impurity corporation, whilst nitrogen plasma

sources are difficult to control.

The substrate used for GaN wafers has implicatons for the rest of the device epitaxy, meaning

the device application should be considered when choosing the design. For instance if cost is the

driving factor, silicon is the cheapest available substrate and provides an option for integration

into the already existing CMOS infrastructure, although GaN growth uses [111] substrates

and CMOS uses [100] substrates [20]. Silicon carbide and diamond are more suitable for high

performance electronics as both have high thermal conductivities making them suitable for

applications which require high power densities and enhanced reliability such as LIDAR for
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autonomous vehicles and high bandwidth satellite communications [21, 32]. Vertical devices are

sometimes preferred for high voltage applications in which case GaN substrates are preferable

as they have less stress meaning thicker device layers can be grown. Vertical structures are

typically used for power devices as it is desireable for electric fields to be as large as possible.

Interfaces are often points of breakdown as they contain defect states, as is the substrate if it

has a smaller bandgap than GaN. As a result, GaN-on-GaN devices will typically have higher

operating voltages than GaN on non-native substrates. Homoepitaxial material can also have

fewer threading dislocations which are electrically active and provide direct leakage paths

through the device [63, 85].

As the devices studied for this work are designed for high power density RF applications, the

focus will be on diamond and silicon carbide substrates. GaN can be grown directly onto silicon

carbide with the help of an AlN interface layer, however the most common approach for GaN-on-

diamond devices is to grow GaN on silicon, attach a handle wafer to the GaN surface, remove the

silicon, grow the diamond on the GaN, and then remove the handle wafer [86]. This process is

discussed in more detail later in Section 4.3, however it is clear that for both GaN-on-diamond

and GaN-on-SiC, good quality GaN growth on silicon and silicon carbide is imperative. In both

cases there is a nucleation layer such as a 100 nm AlN film at the interface between the GaN and

the substrate to prevent silicon diffusion and to isolate the devices from the substrate [87].

Due to the mismatch in the lattice parameter and the coefficient of thermal expansion between

the GaN and the substrate there will be an inherent stress in hetero-epitaxial GaN layers once

the wafer is cooled back to ambient conditions. This must be managed as stress can limit the

buffer thickness, the maximum operating voltage, and the 2DEG properties since it can alter the

piezoelectric polarisation at the AlGaN/GaN heterojunction [20, 88]. To counter this, strain relief

layers are often incorporated in the device structure. These can be either a graded AlGaN layer,

where the Al concentration decreases gradually from the interface layer to the GaN buffer, or

an AlGaN superlattice where the Al concentration reduces with each layer as you move away

from the interface [89, 90]. As well as managing stress, such layers also reduce the dislocation

density at the heterojunction since the reducing Al content changes the stress environment in

the material which causes the dislocations to divert away from the growth axis and eliminate
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each other.

Following the strain relief layer there is often a doped buffer layer designed to be highly

resistive and prevent breakdown at high power operation. The doping is necessary since nominally

undoped GaN will have oxygen defects present from the growth chamber which act as donors,

meaning a compensating acceptor is necessary. Initially iron doping was used to achieve this effect,

but carbon doping has since been found to be more effective, with resistivities of approximately

109 Ω.cm and 1013 Ω.cm respectively [91, 92]. On top of this doped region is a thinner (≈ 500 nm)

channel, on which the hetero-junction sits. The channel region can be doped if required, but care

must be taken not to reduce the conductivity of the 2DEG which forms below the heterojunction.

The heterojunction is typically a 1 nm AlN layer, below a 25% aluminium concentration AlGaN

layer which is approximately 25 nm thick [18, 93]. There can also then be a thin GaN capping

layer on top of this, and a final passivation layer, typically made of amorphous silicon nitride,

which suppresses the impact of surface traps on device operation and reduces surface conduction

[94].

2.2.4 High electron mobility transistor operation

Two-dimensional electron gas formation

The first demonstration of a HEMT in GaN was published by Asif Khan et al. in 1993 using a

100 nm Al14Ga86N barrier on top of a 600 nm GaN buffer[95]. In this device they observed an

order of magnitude increase in both the carrier mobility and density in comparison with bulk

material, signifying the occurance of a 2DEG [96]. This 2DEG is essential to the development of

GaN as a leading semiconductor material. At the interface of the GaN channel and the AlGaN

barrier layer the material is stressed due to the lattice mismatch between the two materials. This

results in an electric field as wurtzite III-nitride semiconductors are piezoelectric. A material is

considered piezoelectric if an applied mechanical deformation results in a change in potential

difference. The potential V of an electric dipole is

V (~r)= 1
4πε0

~r ·~p
r3 (2.28)
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where~r is the direction from the dipole to the calculation position and ~p is the polarisation vector.

If a dipole exists within a crystal, and that crystal then undergoes a mechanical deformation

along the axis of the dipole, the polarisation vector will change, as it is given by

~p = q~d (2.29)

where ~d defines the separation of the two charges in the dipole. In the case of GaN this dipole

exists along the c-axis, since, as can be seen in Figure 2.4 (b), the surface is polar along this

direction. This lack of inversion symmetry results in both a spontaneous polarisation, σsp and a

piezoelectric polarisation σpe at the interface which, combined with the fact that III-nitrides have

larger piezoelectric constants than other compound semiconductors, makes them ideal candidates

for HEMTs [97, 98]. The spontaneous polarisation in AlGaN is higher than in the GaN, so the

net polarisation is given by

σnet =σsp−Al −σsp−Ga +σpe (2.30)

where the subscript Al refers to the AlGaN layer and Ga refers to the GaN layer. HEMT technology

is helped because, as mentioned in Section 2.2.2, most growth technologies have preferential

growth along the c-axis, meaning the polar faces are always presented for fabrication. The

polarisation vector defined in Equation 2.29 is typically defined as pointing from the negative

charge in the dipole towards the positive. In the case of GaN this means it points away from

the nitrogen face and towards the gallium face, as nitrogen is quintvalent whereas gallium is

trivalent. Hence, if GaN is grown along the [0001] direction the induced potential will be negative,

resulting in the accummulation of positive charge and the formation of two-dimensional hole gas.

Alternatively, if GaN is grown along the [0001] direction the induced potential will be positive

and negative charge will form, resulting in the formation of a 2DEG [99]. The ideal barrier

layer is one which maximises the strain in the system, as this will lead to greater polarisation

charges in the heterojunction, but it must also be stable if it is to be used to make a functioning

device. The lattice constant of AlGaN is proportional to the aluminium concentration and the

interface strain increases with increased lattice constant. However there is a maximum possible

aluminium concentration of 33%, as above this value macroscopic relaxation occurs in the barrier

which reduces the strain at the interface.
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FIGURE 2.6. A sketch of the bandgap at a AlGaN/AlN/GaN heterojunction where EC
is the conduction band, EV is the valence band, and EF is the Fermi energy. The
strain at the AlN/GaN interface creates a local electric field due to the piezoelectric
effect, which in turn causes the conduction band to drop below the Fermi level
which leads to charge accumulation and confinement. The opposite effect at the
GaN/AlGaN interface is often suppressed with dopants.

A band diagram showing the impact of this polarisation charge on the electronic structure of

a GaN/AlGaN/GaN heterostructure is shown in Figure 2.6. The positive potential causes a sharp

drop in the conduction band into which the electrons flow. There is a critical thickness of the

barrier layer for which the 2DEG will form, as stress will increase with barrier layer thickness

and so will the piezoelectric polarisation. The greater the net polarisation at the interface the

greater the bending in the conduction band, and the 2DEG will not form until the conduction

band is lowered beneath the Fermi energy [100]. The conduction band minima at the GaN/AlGaN

interface can be considered as a quantum well, which will have within it discretised energy

levels which electrons can occupy. The initial energy level will have a probability density function

with a single maxima at in the quantum well which the electrons will occupy if possible. The

density of states for the energy levels can be found by solving the Schrödinger equation for a

triangular quantum well. Following this process it is found that a 2DEG density of 1.8×1013cm−2

is required to occupy this second energy level which is higher than most 2DEG densities found in

the literature, suggesting the 2DEG is infact confined to the initial energy level [101].
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The confinement of the electrons in the 2DEG leads to a significantly higher charge density

in this region than in the rest of the epitaxy. This is a key reason for the excellent performance of

GaN HEMTs as the conductivity of a semiconductor σ is

σ= qnµ (2.31)

where q is the fundamental charge, n is the number of carriers and µ is the mobility. Therefore

if n is increased, the resistance of the device is reduced and it will operate more efficiently.

The 2DEG concentration can be found through Hall-van der Pauw measurements with values

typically in the region of 1×1013 cm−2. In addition to this, the conductivity in HEMT structures

is also aided by an increase in the carrier mobility in the 2DEG [95]. There are 4 main scattering

mechanisms for carriers in a 2DEG, namely, scattering at ionized impurities (I), scattering at

lattice defects such as dislocations (L), scattering by optical phonons (P), and scattering due to

the alloy concentration and surface roughness of the AlGaN heterostructure (A). Matthiessen’s

rule states that the resistivity ρ is the sum of the scattering components suggesting

1
µ
∝ ρ = ρI +ρL +ρP +ρA (2.32)

In comparison to a standard FET, confining the carriers to a quasi-two-dimensional sheet in-

creases the mobility as the carriers are now spatially separated from many of the lattice based

defects which occur in the device buffer, reducing ρL and ρI [11]. These scattering mechanisms

are further reduced by the increased carrier concentration, as the electrons screen each other from

many defects. However there are also negative impacts to the increased carrier concentration,

although these effects are weaker than those just mentioned. A higher 2DEG concentration leads

to the wavefunction becoming more tightly bound to the interface, resulting in a greater propor-

tion of electrons being in the AlGaN barrier layer where there are many alloying atoms which

increases ρA. The use of a thin AlN layer increases the asymmetry of the quantum well causing

carriers to be more concentrated in the GaN than the AlGaN. Finally, the phonon scattering

is weakly dependent on carrier concentration as more carriers increases the probability of a

scattering event and the phonon scattering gives the mobility a temperature dependence. As

discussed in Section 2.1.1 phonons obey Bose-Einstein statistics and as such their population

is temperature dependent and a higher number of phonons results in an increased scattering
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probability and a decresed mobility. Altogether these effects result in mobilities of up to 2000

cm2V−1s−1, which is a 74% increase on bulk GaN values [102–105].

Transistor operation

The 2DEG supplies the conductive path for current to flow in a HEMT, which will have three

contacts fabricated on its surface as shown in Figure 2.7 (a); the source, the gate, and the drain.

The source and the drain are Ohmic contacts and the drain current (IDS) flows through these

when a drain voltage (VDS) is applied. It is typical to define the source as the ground contact,

and then any bias applied to the gate and drain are defined relative to this, with the gate used

to control the current flowing through the channel. Figure 2.7 (b) is a schematic example of the

current-voltage (IV) characteristics of a typical HEMT structure. Initially, as the drain bias is

increased from VDS = 0 V, the current also increases following Ohms law as the channel resistance

can be approximated as constant. In this region the electron drift velocity v follows the relation

v =µE (2.33)

where µ is the mobility and E is the electric field, where it is assumed the current flow and field

are one-dimensional. Above a certain voltage the drain current will cease to increase and the

current is said to be at saturation. This saturation is caused because Equation 2.33 breaks down

and the electrons reach their saturation velocity, where the kinetic energy of the electrons is

high enough that they can emit phonons which scatter the electrons and limit the mobility. At

higher drain voltages the device heats up and the phonon population increases. As a result, there

will be a further reduction in the mobility of the carriers and the drain current will experience a

‘thermal droop’ from its maximum value.

Also shown in Figure 2.7 (b) is the impact of the gate voltage on the IV characteristics. The

applied gate voltage can either enhance the polarisation charge at the heterojunction in the

case of a positive bias, or diminish it in the case of a negative bias. This impacts the number of

carriers which are present in the channel and, as shown in Equation 2.31, this will impact the

conductivity of the channel. When the gate voltage enhances the conductivity of the channel this

shows as a higher current for the same drain voltage. The converse is true for a negative gate
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(a) (b)

FIGURE 2.7. (a) A schematic diagram of a typical GaN HEMT structure fabricated
on a non-native substrate. The barrier layer is omitted for clarity. The 2DEG is
isolated from the gate by the black passivation layer. The source and drain contacts
diffuse in to the GaN, to allow contact with the 2DEG. (b) A sketch of typically
drain voltage (VDS) vs drain current (IDS) characteristics for a HEMT at three
different gate voltages (VGS)

.

bias. The gate voltage which fully depletes the carriers is named the threshold voltage (VTh) and

for |VGS |>|VTh | there will be no current flow in the channel for all drain voltages and the device

is said to be pinched off.

Given that current flows through the source and drain contacts it is necessary for these to

be ohmic contacts. An ohmic contact forms when the work function of the metal is lower than

that of the semiconductor. When the materials are brought into contact, band bending occurs

such that the Fermi levels are aligned. This creates an electric field and allows electrons to flow

from the metal and into the semiconductor with no barrier. For GaN HEMTs, the ohmic contacts

are typically fabricated using a titanium, aluminium, nickel, gold stack which is annealed at

800◦C so that metal ions diffuse to the 2DEG and charge can flow through the circuit. Whilst

his provides the desired low resistance, the annealing results in rough edges which limit how

small the devices can be made. In addition, the gold means the devices cannot be introduced to

silicon CMOS production lines as gold is extremely detrimental to silicon MOSFET performance

[18, 106, 107].

A Schottky contact occurs when the work function of the metal is higher than that of the
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semiconductor, resulting in the formation of a barrier and a depletion region at the interface

between the materials. This barrier results in a rectifying contact which inhibits current flow

below a critical voltage, but allows it above that voltage. A Metal-Insulator-Semiconductor contact

prevents conduction in either direction as the interface layer provides a large barrier to electron

transport in either direction. This type of contact is used for the gate contact as it is not desireable

for electrons from the 2DEG to be ejected through the gate. A thin dielectric layer is often

incorporated to further limit the gate leakage currents. The gate metal stacks for a GaN HEMT

will typically be made of nickel and gold [108].

As the 2DEG forms spontaneously, GaN HEMTs made from this heterojunction architecture

are normally-on devices; the gate is used to pinch off the device channel rather than enhance

it. This tends to be incompatible with many industry power switch applications which require

devices to be normally-off. A normally-off device acts as a fail-safe since if the device breaks the

circuit is broken. This has lead to the development of GaN cascode circuits, shown in Figure

2.8, where a silicon MOSFET is used in conjunction with the HEMT. For operation, the HEMT’s

source is connected to the MOSFET’s drain, and the HEMT’s gate is connected to the MOSFETs

source. This effectively makes the VDS of the MOSFET the negative of the VGS of the HEMT.

When the MOSFET is off, the VDS is high, and so the HEMT is also off, turning it effectively

into a normally-off device. However, once the MOSFET is switched on, the VDS decreases until it

drops below the threshold voltage of the HEMT, which then begins to conduct [109].

2.3 β−Ga2O3 FETs

2.3.1 Material properties

Gallium oxide has many polymorphs (α, β, γ, δ, ε), but the most commonly used for devices is

β−Ga2O3, which is stable at all temperatures up to its melting point [111]. β−Ga2O3 has a

monoclinic crystal system with its unit cell and relative dimensions shown in Figure 2.9. In

contrast to the GaN unit cell which contains just four atoms, the β−Ga2O3 unit cell has a total

of 30 atoms, 12 of which are gallium and 18 of which are oxygen. It is convention that materials

which have a bandgap wider than that of GaN are defined as ultra-wide bandgap materials, and
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FIGURE 2.8. A circuit diagram of a GaN HEMT in a cascode configuration with a
silicon MOSFET. This arrangement allows the GaN HEMT to be a normally-off
device, which is required for industrial applications. Image from Huang et al. [109].
Reprinted with permission of the IEEE.

β−Ga2O3 fits this classification as it has an indirect bandgap of 4.85 eV, and a direct bandgap

which is only slightly larger at 4.9 eV. It was discussed in Section 2.2.1 how holes have a lower

mobility than electrons in GaN, and this can be judged by the curvature of the band structure.

The same effect is seen in β−Ga2O3, but as shown in Figure 2.10, it is more exaggerated. The

valence band is almost flat across all crystal directions, meaning the hole effective mass is larger

(40 me) whereas the conduction band is parabolic about the Γ point meaning the electron effective

mass is significantly smaller at approximately 0.28 me [111]. Because of this the electron mobility

is found to be approximately 100 cm2V−1s−1 whereas holes are predicted to have mobilities of

order 10−6 cm2V−1s−1 due to strong localisation at the oxygen atoms, making p-type conductivity

challenging [112, 113].

Therefore, devices fabricated in β−Ga2O3 use electrons as the primary carrier, although the

electron mobility is still only a tenth of that of GaN. The dielectric constant of β−Ga2O3 was

calculated to be 13.9 by Lee et al. [114]. Due to its ultra-wide bandgap, β−Ga2O3 is transparent

at wavelengths above 270 nm which makes probing of the bandgap in absorption spectroscopy

difficult due to the lack of availability of short wavelength probe sources [115]. It has a slightly

anisotropic room temperature refractive index which is 1.99 at 400 nm and drops to 1.91 at 1500

nm in its direction of maximum, [010] [116].
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(a)

FIGURE 2.9. The unit cell of β−Ga2O3 is shown along with selected material parameters
taken from Ahman et al. [110]. The oxygen is represented by blue balls and the
gallium by red balls. It is a monoclinic crystal system with 12 Gallium atoms and
18 Oxygen atoms in the unit cell.

Similarly, the thermal conductivity of β−Ga2O3 is also anisotropic with a maximum along

the [010] direction. This maximum has been determined to be 27±2 W/m.K, along with values

of 15±2 W/m.K and 11±1 W/m.K along the [001] and [100] directions respectively [46]. These

thermal conductivities are significantly lower than most other semiconductors, with the maximum

being 17% of the GaN thermal conductivity and 7% of the SiC thermal conductivity. The reason for

the low thermal conductivity of β−Ga2O3 can be seen by studying Equations 2.26 and 2.27, which

state the umklapp scattering rate is dependendent on the square of the Grüneisen parameter,

the negative exponential of the Debye temperature, the inverse of the average atomic mass and

the inverse of the square of the phonon velocity. For β−Ga2O3 the average atomic mass is 37.4

amu, which is slightly lower than GaN (42 amu), although both are significantly higher than
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(a)

FIGURE 2.10. The band structure of β−Ga2O3 as calculated by Varley et al. [117].
There is a close to direct bandgap of 4.9 eV at the Γ point. The valence band is flat,
meaning holes are heavy. Reprinted with permission from AIP Publishing.

diamond (12 amu). Guo et. al reported that the Grüneisen parameter of β−Ga2O3 is similar

to that of GaN and diamond, but the phonon velocity, and Debye temperature are both lower,

which results in the lower thermal conductivity [46]. This brings challenges when designing high

power density electronics as the active device layers will not spread heat effectively. However

one slight benefit is that the temperature dependence of the thermal conductivity is lower than

in GaN, meaning there will be less of a degradation in the thermal transport as the device is

operated. The thermal conductivity follows a typical T−x relationship as shown in Figure 2.11,

with x being 1.12 along [001], 1.21 along [100] and 1.27 along [010]. The specific heat capacity

is 0.56 Jg−1K−1, and the Debye temperature is 872 K [118, 119]. The mechanical properties

of β−Ga2O3 are relatively unexplored with no results in the literature for fracture toughness

or coefficient of thermal expansions. However Nikolaev et al. found the Young’s modulus to be

approximately 230 GPa, making it slightly less stiff than GaN [120].
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(a)

FIGURE 2.11. Thermal conductivity of β−Ga2O3 along the different crystallographic
orientations. Image adapted from Guo et al. [46]. Reprinted with permission from
AIP Publishing.

2.3.2 Material synthesis

One of the major benefits that β−Ga2O3 holds over its wide and ultra-wide bandgap competitors is

that it can be synthesized from a variety of melt-growth techniques, making substrates affordable

and scalable at an industrial level [121]. Initially the floating zone technique was used by Villora

et al. to produce large single crystals and wafers along the 3 major crystal orientations ([100],

[010], [001]) [122]. In this technique, a feed rod is prepared from a Ga2O3 powder precursor

which is cold pressed and annealed to form the rod. This rod is then placed in contact with a

seed crystal of the desired orientation, and a heating coil is used to form a molten interface

between the rod and the seed. The heating coil is moved along the rod at a rate of a few mm per

hour which decreases the temperature of the molten region causing it to crystallise on the seed.

Then, as the heating coil moves up the rod, a new molten interface is formed between the now

smaller rod and larger seed. Whilst this technique was effective, wafers were limited to 50 mm in
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(a)
(b)

FIGURE 2.12. (a) Image of a Ga2O3 wafer grown by Higashiwaki et. al via the edge
defined film fed growth technique [125]. Reprinted with permission from IOP
Publishing. (b) A sketch of a possible Ga2O3 FET structure utilising heavily doped
buffer regions under the contacts to reduce contact resistance. The latest generation
of devices also have field plates on both the source and drain side of the gate.

diameter. As a result, edge defined film fed growth has become the preferred synthesis method,

with an example of a 100 mm diameter wafer grown by edge defined film fed growth shown in

Figure 2.12 [123]. In this process, liquid is pulled up from a Ga2O3 melt using capillary forces

[124]. A pressure gradient is used to pull the material through an aperture which has a seed at

the end [123]. Growth rates are approximately 15 mm per hour, although unintentional dopants

included during growth require compensation defects to be introduced such as iron or magnesium

to ensure the substrate is insulating [125].

To complete wafers suitable for the fabrication of lateral devices it is necessary to perform

epitaxial growth of high quality material on top of these bulk substrates [125]. Similar to GaN,

the preferred techniques for this deposition are MBE and HVPE, although in the case of the latter

the ‘H’ stands for Halide. MBE is the most advanced technique for β−Ga2O3 growth, with the

oxygen supplied as either ozone which gives faster growth rates, or oxygen radicals disassociated

with a plasma. Higashiwaki et al. found that the surface roughness was dependent on the growth

temperature, with the smoothest surfaces having a RMS roughness of 0.4 nm when grown at

600◦C [125]. Whilst MBE may be the most advanced laboratory growth technique, it is a difficult

technique to include in an industrial process due to the ulta-high vacuum required. This isn’t
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required for HVPE, where chlorine is flowed over a gallium source to form gallium chloride. This

then flows over a substrate with an oxygen source to grow the β−Ga2O3. HVPE has a higher

growth temperature at around 1000◦C, but there are not concerns over stress and wafer bow

due to the availability of native substrates. N-type doping of these layers is necessary for FET

fabrication and this is done by including either silicon or tin in the source gas [126]. Alternatively,

doping can be achieved by ion implantation of Si+, which allows for selective area doping as

shown in Figure 2.12 (b) [127]. By controlling the doping concentration, the conductivity can span

continuously from 10−2 Ω−1cm−1 to 102 Ω−1cm−1 with minimal impact on the mobility [128].

2.3.3 FET operation

The most common devices developed in β−Ga2O3 are MESFETs and MOSFETs, being originally

developed by Higashiwaki et al. at the National institute of Information and Communication

Technology in Tokyo, Japan [129]. The MESFET structure came first with a 300 nm thick Sn

doped channel, Ti/Au ohmic source and drain contacts, and a Pt/Ti/Au Schottky gate contact

[129]. The devices were found to perform well, with a pinch off voltage of 20 V and a breakdown

voltage of 257 V, but issues with surface leakage led to the development of MOSFET structures.

These devices came with both Sn and Si doped channels topped by a 20 nm Al2O3 layer. These

improvements were effective in reducing the leakage current such that the ratio of IDS−on to

IDS−of f was as large as 1010, and the breakdown voltage increased to 370 V. The Ohmic contact

linearity was also improved by heavy Si+ doping underneath the contacts to produce n++ regions

[127]. The next iteration in the improvement of the β−Ga2O3 MOSFET was the incorporation

of a T-gate field plate which, when optimised, resulted in a greater than 50% reduction in the

electric field at the gate edge and an increase in the breakdown voltage to 755 V [126].

MOSFET β−Ga2O3 devices have also been developed at the Air Force Research Laboratory.

These devices are similar in many ways with a few key differences. For instance several gate

oxide materials were tested, with HfO2 and SiO2 used in addition to AlO2 [130]. However, a

separate finFET structure was also developed which turns the device into an enhancement mode

device. In this finFET structure, 600 nm long trenches were etched into the gate with the peaks

being 300 nm wide. These peaks act as the channel, and the gate dielectric and gate are applied
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such that they wrap around the fins and deplete the channel, making the devices normally off

[131]. The breakdown voltage in these devices is still high at 612 V, but the ON current is lower

such that the IDS−on to IDS−of f ratio is just 105, which the authors attribute to trapping around

the edge of the fin structures.

Finally, one of the latest β−Ga2O3 device developments is the δ-doping of the channel.

δ-doping is so called because the doping profile resembles a δ function, and it requires the

thickness of the doped layer to be less than the de Broglie wavelength of the electrons [132]. The

carriers will diffuse into the bulk but will also have an attraction to their ion cores resulting

in the formation of a 2DEG just outside this δ-doped layer. This was achieved in β−Ga2O3 by

Krishnamoorthy et al., who used MBE to create 100 nm thick Si doped layers which resulted

in 2DEGs approximately 10 nm thick [133]. Although mobilities measured in these 2DEGs are

currently low (≈ 100 cm2V−1s−1), their formation leads to the exciting prospect of a HEMT made

in an affordable UWBG material [134].

2.4 Diamond for heat spreading

2.4.1 Material properties

GaN and β−Ga2O3 are of interest for devices as their wide bandgaps mean devices can operate at

higher and higher voltages. However this results in ever increasing power densities which lead to

increased device channel temperatures if not managed properly. Diamond is widely considered to

be the optimal heat spreading material since it has the highest bulk thermal conductivity known

to man. Whilst graphite is the thermodynamically stable form of carbon at standard atmospheric

conditions, diamond exists as a metastable polymorph. It has a zincblende structure, a two atom

basis on a face centred cubic Bravais lattice shown in Figure 2.13, and is of interest in many fields

due to a variety of properties. Its bonds are relatively short at 1.5 Å and its lattice parameter

is 3.567 Å giving it a density of 3.51 g/cm3 [135, 136]. The thermal conductivity can reach over

3000 W/m.K in isotopically pure, single crystal diamond [137]. There are two main reasons for

this exceptionally high thermal conductivity, the short strong covalent bonds which promote

high phonon velocities, and a low propensity to umklapp scattering as discussed in Section 2.1.2
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FIGURE 2.13. The [100] face of diamond crystal structure with carbon atoms in green.
It is a face centred cubic lattice with a two atom basis.

[53]. For this high quality diamond the thermal conductivity is found to have a temperature

dependence relationship of T−1.26 [138]. Whilst the thermal conductivity is remarkable, the heat

capacity is not, with a reported value of 600 JK−1kg−1 at room temperature, which approaches

2150 JK−1kg−1 at diamond’s Debye temperature of 1860 K [53, 139]. The phonon mean free path

in single crystal diamond is estimated to be 180 nm, making deviations from the perfect crystal

which occur on this length scale particularly inhibitive to the thermal conductivity [140].

Diamond is renowned for being an exceptionally hard material, as its strong bonds make it

difficult to compress [141]. However it is prone to brittle fracture, as its high order means there

are crystal planes along which it cleaves particularly easily, such as along the [111] direction. In

spite of this, its fracture toughness of 6.7 MPa.m1/2 is still higher than that of GaN [142–144].

It’s Young’s modulus of approximately 1200 GPa makes it one of the stiffest bulk materials and

as such it has low room temperature coefficient of thermal expansion of 1.06×10−6 K−1, which

is lower than most traditional semiconductors [145, 146]. The coefficient of thermal expansion

is of particular importance for wafer fabrication, which often takes place at high temperatures

meaning there will be a significant difference in the rate of expansion and contraction between

diamond and its partner which can result in strain at the interface. As an example, the coefficient

of thermal expansion of GaN, discussed in Section 2.2, is approximately three times larger.

Diamond has the widest bandgap of all the materials discussed in this work with an indirect

ultra-wide bandgap of 5.5 eV [147]. Carrier mobilities in single crystal diamond are large
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in comparison to the semiconductors previously discussed, again due to its ordered nature.

With 4500 cm2V−1s−1 electron mobilities and 3800 cm2V−1s−1 hole mobilities quoted in the

literature for room temperature, diamond devices seem to be an attractive research area for high

power density devices [148]. However when dopants are introduced into the lattice to increase

carrier concentration the mobilities are significantly reduced, with values at approximately

30 cm2V−1S−1 [149, 150]. This is a major reason why diamond is only considered as a heat

speader in this work. Holes and electrons have both heavy and light effective masses where for

electrons the heavy mass is 1.4 me and the light is 0.4 me, and for holes these are slightly lower

at 1.1 me and 0.3 me [151, 152]. The dielectric constant of diamond is approxiately 6, and its

refractive index is 2.387 at room temperature [153, 154]. Diamond is a material of interest in

photonics applications due to its range of colour centres, but it is its clear absorption window,

except for the multi-phonon processes in the mid-IR range, that makes these centres accessible

[155].

2.4.2 Material synthesis

Diamond has many applications beyond the heat spreading discussed in this work, and the

way the diamond is synthesised is specific to each application. In the case of diamond heat

spreaders the requirements are that the thermal conductivity is as high as possible, it must be

fabricated in a planar fashion such that it can be integrated with wafers, and the growth should

be economical, making large sizes and inexpensive processes preferable. There are two common

growth methods for synthetic diamond, High-Pressure High-Temperature (HPHT) and Chemical

Vapour Deposition (CVD). HPHT growth aims to mimic how diamond is formed naturally in the

earth’s mantle where the high pressures and temperatures create an environment where diamond

is thermodynamically stable [156]. Typically a carbon source of either diamond or graphite powder

is combined with a catalyst in a capsule. This capsule is pressurised to approximately 5 GPa and

a temperature gradient at approximately 1500◦C is applied across the container such that at one

end the carbon source dissolves into the catalyst and at the other end it recrystallises as diamond

[157]. This technique was used to grow the largest synthetic diamond at 32.26 ct and can produce

very high quality material [158]. However it is not suitable for integration with electronics on a
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large scale as films cannot be grown, and hence it is difficult to integrate.

Alternatively CVD can be used for more precise diamond growth. A majority hydrogen feed

gas containing between 0.5% and 5% methane is disassociated at high temperatures (≈ 3000

K) and low pressures (1-100 Torr) over a substrate [159]. The radical species then nucleate on

the substrate and diamond is formed [160]. The two most common flavours of CVD are the Hot

Filament (HF CVD) and MicroWave assisted Plasma Enhanced (MW PE CVD). They vary in how

they activate the gas with HF CVD using thermal activation brought about by heating a resistive

wire, and MW PE CVD using microwaves to inject energy into the chamber and create a plasma

[161]. As CVD can grow diamond films and provide more control, it is the most commonly used

technique for semiconductor integration with diamond.

CVD growth of single crystal diamond would be ideal, giving the combination of growth

control with the high thermal conductivity. Single crystal growth is possible on native diamond

substrates and on iridium, although this is limited by the original substrate size and growth

rates must be slow [162]. Single crystal diamond also cannot be grown directly onto common

semicondutors meaning an extra integration step would be necessary. An alternative is to grow

polycrystalline diamond, which can be synthesised faster, giving better economy, and on a greater

variety of non-native substrates such as silicon, gallium nitride, aluminium nitride, and cubic

boron-nitride [163–166]. However it has the downside that the introduction of grain boundaries

leads to a reduced thermal conductivity.

To speed up the nucleation process a variety of techiques are used to create nucleation sites.

Mechanical abrasion of the substrate leads to scratches and defect formation which increases

nucleation as these sites have lower bonding energies, with the cost of damaging the substrate

[167]. Bias enhanced nucleation attracts radical species present in the plasma to the substrate

by applying a bias to the substrate. The resulting bombardment of ions leads to the formation of

an amorphous carbon layer which aids the nucleation of diamond, although the high energy of

the radicals can lead to sub-surface damage of the substrate [168, 169]. Finally, diamond seeds

ranging from nanometres to microns in diameter can be deposited onto the surface, typically

through the use of electrostatics. One approach changes the ζ potential of the particles by

adjusting their surface chemistry such that the charge of the particles is opposite to the surface

42



2.4. DIAMOND FOR HEAT SPREADING

potential of the substrate. The substrate is then submerged in the seed solution allowing the

seeds to accumulate on the surface [170]. Alternatively the substrate and the solution can have

opposing biases, and the solution sprayed at the substrate such that the seeds again accumulate

on the surface [171].

Once the diamond has nucleated, growth begins laterally and conditions should be optimised

such that a complete film is formed as quickly as possible to reduce substrate damage and pinhole

formation [169]. Once this film is completed the vertical growth begins in earnest from each

nucleation site. Certain seeds will grow faster than others, leading to a competitive columnar

structure which has fewer grain boundaries as growth continues as shown in Figure 2.14 (a)

[172]. The change in the density of the grain boundaries results in an inhomogeneous thermal

conductivity throughout the diamond layer, meaning diamond in which the grains expand rapidly

is preferred as the density of the grain boundaries will be reduced. However it is also important

to consider the quality of the grain boundary. In the ideal case a grain boundary is similar

to a dislocation, with a carbon atom incorrectly bonded to another carbon atom. However in

reality this layer can have a finite thickness with several incorrectly bonded carbon atoms and it

can also include pockets of impurities such as boron or hydrogen. The worse the quality of the

grain boundary, the worse the thermal conductance across that boundary will be as the lack of

crystallinity and long range order prevents wave transport.

The effect of nanostructure on diamond film thermal conductivity was studied by Anaya

et al. with the data shown in Figure 2.14 (b) [173]. In a previous paper the authors found the

thermal conductivity of a range of diamond films of varying thickness [174]. By studying the

microstructure it was found that the thermal conductivity of the film was a convolution of the

thermal conductance in the grains and the thermal resistance at the boundary. The thermal

conductivity of the individual grains was found to scale with the grain size, whilst the inter-

granular thermal resistance increased towards the growth surface, as the amount of impurities

increased. With this information in hand they calculated the in-plane and cross plane thermal

conductivity of different portions of a 95 µm thick diamond film where the grain structure had

been mapped via a transmission electron microscopy cross-section. In all cases the cross-plane

thermal conductivity is higher, although the anisotropy decreased as the film thickened.
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Whilst it is typical for a material’s thermal conductivity to reduce as the temperature is

increased, it is desirable for this effect to be as small as possible, since reducing the heat spreading

capability as temperature is increased compounds the problem. However higher quality material

tends to have a higher temperature dependence. This is because the temperature dependence of

the thermal conductivity, as discussed in Section 2.1.2, is caused by umklapp scattering reducing

the phonon mean free path. When material is poor quality the mean free path is limited by

defect scattering which is constant with temperature. The room temperature effective cross-plane

thermal conductivity of the 95 µm diamond substrate was approximately 1800 W/m.K, and the

in-plane was approximately 1400 W/m.K. As expected this is significantly higher than the room

temperature thermal conductivity of the first 1 µm of the film, which is approximately 150 W/m.K

in-plane and 300 W/m.K cross-plane.

Hydrogen is of particular importance to CVD diamond growth. Graphitic carbon is pref-

erentially etched by the hydrogen, promoting diamond growth. The hydrogen also suppresses

renucleation, which increases grain size, increasing the thermal conductivity, but also surface

roughness, making integration more difficult [176]. In the gas phase, the hydrogen radicals react

with carbon species, which results in carbon-containing radicals which contribute to diamond

growth. It also passivates and stabilizes the surface, but can react with hydrogen radicals to form

gaseous hydrogen, leaving a carbon dangling bond on which the gaseous carbon radicals can bond

[169]. Increasing the number of hydrogen radicals is therefore ideal for high quality diamond

growth such as that required for heat spreading in electronics, but the increase in radicals can

only be achieved by an increase in supplied power which increases the cost of the diamond.

Dopants can be incorporated into the diamond through the feed gases. Boron, the most

common intentional dopant in diamond, has been incorporated in concentrations over 1021 cm−3

by introducing trimethylborane [177]. As it is readily incorporated as a substitutional defect, and

it provides a relatively low acceptor level at 0.37 eV, boron is the most commonly used dopant

when creating electronic devices. Whilst this p-type doping is relatively easy, the n-type doping is

significantly more challenging. Nitrogen is a donor and is readily incorporated into the diamond

lattice. It is often incorporated into CVD diamond due to air leaks, and is found to increase

growth rates, but its donor level is 1.4 eV below the conduction band, making it ineffective [178].
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(a)

(b)

FIGURE 2.14. (a) The van der Drift growth process for polycrystalline diamond with
grain boundaries shown by dark blue lines. Although grain boundaries are shown
as thin lines this is a simplification. In reality grain boundaries can have a finite
thickness of disordered carbon with inclusions. The grains grow competitively from
the seeds resulting in fewer grain boundaries away from the growth face. (b) Data
from Anaya et al. showing both the in-plane and cross-plane temperature dependent
thermal conductivity of different portions of a 95 µm thick polycrystalline diamond
film [175]. Reprinted with permission from AIP Publishing.
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Phosphorous is a desirable dopant as it provides a 0.6 eV donor level which may be useful for

certain applications, and it can be incorporated in the lattice by using phosphane in the feed gas

[179]. Finally, silicon defect centres in diamond have interesting quantum properties, and are

often included unintentionally due to etching of quartz components in the reactors, but can be

controlled by including other solid sources into the chamber or through including silane in the

feed gas [180, 181]. To grow the highest thermal quality diamond possible it would be necessary

to limit the incorporation of all of these donors as they will provide scattering points for phonons.

However this is not feasible, primarily because the nitrogen is necessary to increase growth rates

and reduce costs.

2.4.3 Diamond integration with electronics

Because of diamond’s excellent thermal conductivity it has long been considered an ideal solution

for heat spreading in high power electronics. The first recorded use of diamond as a heat sink was

by Josenhans in 1968, who bonded diodes to a natural single crystal diamond [182]. The simplest

place to implement diamond is in the packaging, where single crystal, or polycrystalline diamond,

if size is important, can be sintered between the die and the package. This was performed

using 1 mm thick polycrystalline diamond with a thermal conductivity of 1200 W/m.K in a

GaAs system with a plastic package. The addition of diamond allowed a 20× increase in power

dissipation once challenges with surface roughness and coefficient of thermal expansion induced

stresses were overcome [183]. If polycrystalline diamond is implemented in this manner it has

the added advantage that the defect rich, low thermal conductivity interface layer can be polished

away, resulting in a higher average thermal conductivity [184]. However the effectiveness of

this approach is limited due to the diamond’s distance from the junction. As an approximation,

each epitaxial layer can be thought of as a thermal resistor in series with the others. The total

thermal resistance of the wafer stack is then the sum of all the resistances of the epitaxial

layers where the thermal resistance is the inverse of the thermal conductance. Adding a low

thermal resistance element such as diamond to the stack will therefore not reduce the overall

thermal resistance at all. However its benefit comes from in-plane heat spreading. As resistance

is inversely proportional to area, the thermal resistance is decreased when the in-plane heat

46



2.4. DIAMOND FOR HEAT SPREADING

spreading increases the effective area that the heat is spread over increases. By way of an analogy

to an electrical circuit, the in-plane heat spreading can be thought of as adding resistors in

parallel to all components which follow it. This impact is reduced when there are low thermal

conductivity components in the near junction area which will resist heat flow before it reaches

the diamond [185].

Because of this, diamond has been developed extensively as a substrate material for gallium

nitride [86]. One approach for diamond substrates is to grow the GaN onto single crystal or

polycrystalline diamond. Devices have been fabricated on GaN grown via MBE on (111) oriented

single crystal diamond. Whilst the material quality is high, the scale is limited by the diamond

size and the thermal benefit is limited by the low thermal conductivity strain relief layers

necessary to prevent the GaN cracking [186]. It has been found to be more effective to grow

the GaN on a sacrificial substrate and attach the diamond to the pre-grown GaN. A process

was developed for low temperature bonding of GaN to polycrystalline diamond and produced

thermal boundary resistances at the GaN-diamond interface as low as 34 m2K/GW although how

uniform this bond is over large areas, and how much further the interface could be improved is

not clear [187]. The bonding takes place at 150◦C which is much lower than the diamond growth

temperature. This means there is less stress in the GaN layers as the impact of the difference in

coefficient in thermal expansion is less exaggerated. Also, the devices can be fabricated whilst

the GaN is still on the sacrificial wafer allowing well developed techniques, processes, and

infrastructures to be used.

Because of the integration and scaling issues associated with the bonding of single crystal

material, it is more common to grow diamond on gallium nitride, although there are still several

challenges which must be overcome. As discussed in Section 2.4.2, diamond growth must be

performed at high temperature (≈ 800◦C) to ensure good quality diamond is produced. This

makes wafer bow and internal stresses a significant issue, since, as discussed earlier in this

Section, diamond is incredibly stiff and has a coefficient of thermal expansion mismatch with

GaN. When the diamond is deposited, it is at the high growth temperature, meaning the GaN

will have expanded. When the wafer is cooled following the diamond growth, the GaN will shrink

more than the diamond resulting in a bowed wafer. In spite of this, it is possible to grow diamond
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uniformly and produce 4 inch wafers [32]. The hydrogen rich environment necessary for high

quality diamond growth also poses problems as it can etch the GaN buffer, meaning it is necessary

to limit the exposure of the GaN [163]. If the GaN is exposed for too long the etching will cause

pits and voids at the interface which could inhibit the heat flow across the interface as air is

a poor thermal conductor. One way to protect the GaN is to adjust the diamond seed surface

chemistry to maximise the seeding density such that a continuous diamond film is formed almost

immediately upon growth starting [188]. However in this case the bonding between the substrate

buffer and the diamond is a van der Waals attraction. Whilst it is possible to transport heat

across a van der Waals bond, it is not as effective as heat spreading through covalent bonding.

There are also issues with adhesion, as the van der Waals bond are easily broken, and as

mentioned above, there is a large amount of stress at the interface because of the mismatch in

coefficient of thermal expansion. Together these can lead to delamination of the diamond substrate

and the GaN buffer. Therefore it is common to use a carbide forming interlayer such as silicon

nitride, with aluminium nitride being considered as an alternative. This layer will protect the

GaN from the hyrdogen radicals in the feed gas to prevent pit and void formation, and it will also

form strong covalent carbide bonds to the diamond which offer a better thermal conductance than

other amorphous materials [189]. Despite the positive impacts of a carbide forming interlayer,

its thickness must be limited, otherwise it can have an adverse effect on the effective thermal

boundary resistance between the diamond and the GaN [190]. For this method of diamond-GaN

integration an effective thermal boundary resistances (TBReff) is often considered to describe the

thermal resistance of the GaN-diamond interface. This TBReff incorporates the resistance caused

by phonon scattering at the interface between dissimilar materials, any low thermal conductivity

protective interface layers present, and the low thermal conductivity diamond seeding layer.

Literature reports for the TBReff when polycrystalline diamond is grown onto GaN are as low as

12 m2K/GW, with diamond thermal conductivities of approximately 1500 W/m.K [190]. When

devices have been fabricated on this material they have been found to have excellent thermal

resistances which out performs equivalent GaN-on-SiC structures by 40% [36]. However the

TBReff is proportional to the interface layer thickness meaning it is important to keep this layer

as thin as possible. The danger is then that it becomes too thin, and doesn’t provide effective
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protection to the GaN.

In an effort to get diamond even closer to the junction, nanocrystalline diamond has been

implemented as a passivation layer, and heavily boron-doped nanocrystalline diamond has been

implemented as a gate contact [39, 191]. When boron concentrations are approximately 1021 cm−3

the diamond becomes metallic-like since the mean distance between boron atoms is now less

than the Bohr radius of boron, allowing it to act as a rectifying gate contact [192]. However the

heavily boron doped diamond gate has minimal thermal benefit as the grain boundaries and

the dopants lower the thermal conductivity to a similar or lower level than that of the metals

used in gate contacts. However the nanocrystalline diamond passivation layers proved more

effective. When the diamond is located on the top of the device heat does not have to go through

the buffer before it can be spread in-plane. The diamond was deposited on a 10 nm silicon nitride

layer and was found to reduce peak temperatures by 20% [37]. There were unwanted impacts on

the electrical properties as the non-unifrom stress induced by the addition of diamond led to a

non-uniform 2DEG density [38]. The gate contact would also be damaged by the harsh diamond

growth environment meaning the diamond must be grown first. This requires either etching of

the diamond, which can damage the buffer, or a sacrificial gate which can help keep the gate area

clear from diamond via a lift off process [193].

2.5 Heat flow in device structures

Temperature increases in transistors occur due to Joule heating in the channel, where the charge

carriers interact with each other and the lattice, losing some of the energy which they have

gained from the applied electric field. The magnitude of the temperature rise is dependent on the

power density in the device PD which is given by the Joule-Lorenz law

PD =~j ·~E, (2.34)

where j is the current density and E is the electric field. In a transistor, it can be approximated

that the current density and electric field are one-dimensional, acting from the drain to the

source, meaning the total power dissipation is given by the product of the drain voltage and the

drain current. In an ungated transistor, the current density will be constant and the voltage will
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be dropped evenly over the channel, meaning the electric field is constant, and the power will

be dissipated evenly between the source and the drain. This is not the case however in a full

transistor structure. In a normally on device such as the GaN HEMTs and β−Ga2O3 MOSFETs

discussed in this work the gate is grounded relative to the source when the device is on and

hence is at a lower voltage than the drain. This results in a potential difference between the

channel and the gate metal. This means that whilst the current density j can be approximated

as constant throughout the channel, there is a local spike in the electric field E on the drain side

of the gate. The resulting power density PD is localised, due to the abrupt nature of the gate

edge, and large, due to the high voltage operation possible in GaN HEMTS. Simulation studies

have shown that this hotspot can be less than 0.5 µm wide in a GaN HEMT, and its magnitude is

signficantly larger than that of the rest of the channel although the maximum electric field is

highly dependent on device geometry [18].

This electric field peak is troubling from a device reliability point of view as it can cause

local avalanche breakdown or excite hot electrons, whose kinetic energy is sufficient to activate

high energy trap states or jump passivation layers to give leakage currents. However, of greatest

importance in this work is that the resulting high power density will cause device heating. One

solution for the management of this electric field hotspot is the use of field plates; metal overhangs

from the gate which are at the same voltage as the gate[194]. If these field plates extend towards

the drain, they will cause secondary spikes in the electric field which will reduce the peak electric

field at the gate edge, effectively smearing it over a larger area such that the power density is

lower [195]. In β−Ga2O3 MOSFETs and AlGaN HEMTs the channel is more resistive, resulting

in a less localised hotspot [126, 196]. In the case of β−Ga2O3, the carriers are supplied by doping

of the buffer which results in an increased channel resistance and lower mobility because of the

carriers scattering from donor ions. Similarly, the alloying atoms in an AlGaN HEMT will scatter

carriers in the 2DEG which reduces electron mobility, increasing resistance [196].

The heat generated in this hotspot will flow laterally away from the heat source, but the

primary heat flow will be vertical throughout the wafer epitaxy to the heat sink. First it must

pass through the buffer, which is the active material in the device. In the case of low thermal con-

ductivity semiconductors, this presents the first major challenge as they themselves will provide
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a significant thermal resistance [45, 197]. For GaN HEMTs the first major sources of thermal

resistance are any strain relief layers such as graded AlGaN layers or AlGaN superlattices, as

these can have thermal conductivities as low as 6 W/m.K [198]. The purpose of including diamond

in the wafer epitaxy is to increase the in-plane heat spreading, as in all successive layers the

heat will be flowing through a much larger area which reduces their relative thermal resistance.

The closer to the channel the diamond is incorporated, the more effective it can be, although the

major challenge with diamond substrates at the moment is to get the heat into the diamond in

an efficient manner.

This is because there is an inherent thermal resistance associated with heat flow across

an interface between two dissimilar materials. There are two common models to describe heat

transfer at interfaces, the acoustic mismatch model and the diffuse mismatch model. The acoustic

mismatch model assumes that the materials are continuums, there is no scattering at the

interface and the impedance at the interface is due to differences in phonon velocity and density

between the two materials [199]. Effectively, phonons will only cross the interface if there

is a corresponding, available, state in the second material. Conversely the diffuse mismatch

model assumes all phonons reaching the interface scatter, with the probability of transmission

determined by the difference in the phonon density of states [200]. Due to the assumptions made

in both models, the truth typically lies somewhere in the middle but the acoustic mismatch

model is often thought of as an upper bound, and the diffuse mismatch model as a lower bound.

The buffer-substrate interface of wafer epitaxy is often a multilayer system with an interface

layer included, in the case of diamond to protect the GaN and improve adhesion. This interface

layer is often amorphous meaning that, as discussed in Section 2.1.2, it will have a thermal

conductivity of approximately 1 W/m.K. As the mean free path of the heat carriers is smaller

than the thickness of the layer, the resistance of this multilayer system can be considered as the

sum of this material’s thermal resistance and the interface resistances [201]. Surface roughness,

often introduced when diamond is grown through seeding or hydrogen etching, also increases

thermal boundary resistances when the roughness is of a similar order as the phonon mean free

path [189, 202].
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3
EXPERIMENTAL METHODS

T
his chapter summarises the experimental techniques used in this work. The relevant

theoretical background will be explored, and this will be complimented by an expla-

nation of the experimental set up in the laboratory and the general measurement

procedure. The specifics of how each technique was applied will be given in the relevant results

chapter. The most commonly utilised technique was Raman spectroscopy. This was used to mea-

sure the temperature in the buffer layers of FETs (micro-Raman thermography), characterise the

thermal properties of diamond films (nanoparticle assisted Raman thermography), and measure

the lifetimes of phonon modes. Photoluminescence was employed to measure device temperatures

where micro-Raman thermography was not applicable. Transient thermoreflectance was used

to characterise the TBReff of GaN-on-diamond technology. Finite element analysis was also a

key compliment to the experimental techniques in this work. Experimental data were used to

calibrate the finite element models of device structures which were then used to determine values

which could not be measured experimentally.
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3.1 Raman spectroscopy and thermography

3.1.1 Raman scattering

Raman scattering is the inelastic scattering of light when it interacts with matter [203]. The

most probable form of scattering is elastic, or Rayleigh scattering, where the incoming photon

promotes an electron to an excited virtual energy level, and then after a short period of time the

electron relaxes back to its ground state. As it relaxes the electron radiates a scattered photon

whose frequency ωs is equal to the frequency of the incoming photon ωi. Alternatively, whilst

the electron is in its excited virtual state, the electron can lose energy through the creation of

a phonon. If an incoming photon with frequency ωi promotes the electron to an excited virtual

state, it can create a phonon of frequency ωp whilst excited, where ωp corresponds to one of the

normal modes of the lattice. When the electron relaxes back to its ground state it will emit a

photon of frequency

ωs =ωi −ωp. (3.1)

Here the scattered photon has lost energy with respect to the incoming photon, i.e it has been

inelastically scattered. Alternatively, the electron can annihilate a phonon of frequency ωp whilst

excited to increase its own energy. If the electron is excited with a photon of frequency ωi then

when the electron radiatively relaxes the resulting phonon will have a frequency of

ωs =ωi +ωp. (3.2)

This is still an example of inelastic scattering, although in this instance the scattered photon

has gained energy with respect to the incoming photon. A schematic diagram showing these

transitions is given in Figure 3.1. Whilst the overall effect is named Raman scattering, the

case where energy is lost is called the Stokes shift, whereas when it is gained it is called the

anti-Stokes shift [204]. From here on the discussion will focus on the Stokes shift variety of

Raman scattering as this is the most intense at room temperature, and hence the most useful

for the experimental procedures in this work. It is the most intense since, as phonon population

is governed by the Bose-Einstein statistics discussed in Section 2.1.1, the majority of phonons

are in their ground state, making creation more likely than annihilation. As the population is
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FIGURE 3.1. Diagram showing the quantum interpretation of the different forms of the
scattering when light interacts with a crystal. The horizontal black lines represent
electron virtual energy levels, and the green arrows represent photons with their
frequency labelled. The dashed lines represent vibrational energy level which
are accessed through electrons interacting with phonons, represented by the red
arrows.

temperature dependent it is possible to use the ratio of Stokes scattered light to anti-Stokes

scattered light to probe the temperature of a material, but this is not commonly used as it lacks

precision [205].

Up until this point, this has been a quantum mechanical discussion of Raman scattering

based on the creation and annihilation of quasiparticles. It is also possible to consider Raman

scattering from a macroscopic perspective. The Raman scattering is an interaction between

an electromagnetic wave and a crystal, meaning it is necessary for a vibration to induce a

polarisation change for the vibration to be Raman active. This induced polarisation ~P is related

to the incoming light which has electric field ~E and frequency ω through the relationship

~P(t)=R~Ee−iωt (3.3)

where R is the tensor of polarisability. As R is a tensor and ~E is a vector, the induced polarisation

is also a vector, making it a directional quantity. A vibration which induces a stronger polari-

sation will result in a more intense scattering. Hence, as the intensity of the scattered light is

proportional to the induced polarisation, if the elements of ~P are all zero there will be no light

emitted (dark mode) and if the vector is a mixture of zero and non-zero elements the light will
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only be scattered in the non-zero directions [206]. Raman scattering is generally stronger in more

covalently bonded materials as the electrons are more loosely bound and hence the polarisability

is higher [58]. The invention of the laser was a key enabler for many Raman scattering experi-

ments as it allows intense, monochromatic, polarised, and collimated stimulation which enhances

signal intensity and allows the study of directionally dependent Raman scattering [207].

In reciprocal space, light which is probing the crystal is represented by a wavevector rather

than a wavelength. The wavevector k of a wave in a medium is given by

k = 2π×n×ω (3.4)

where n is the refractive index of the medium and ω is the frequency of the light in wavenumbers.

The wavelength of the lasers used to stimulate the Raman emission in this work are 488 nm and

532 nm which equates to wavenumbers of approximately 105 cm−1 in GaN which is less than

one thousandth of the Brillouin zone width of approximately 7×109 cm−1 meaning the light can

only probe phonon modes at or very close to the Γ point, corresponding to k = 0. [207]. As was

shown in Section 2.1.1, at the Brillouin zone centre the acoustic phonons have no energy, but the

optical phonons do. Scattering by acoustic phonons is named Brillouin scattering, and appears

very weakly in first order Raman scattering and can instead be probed through second order

Raman scattering, where the light interacts with multiple phonons, although this effect is weak

and hence the majority of Raman spectrsocopy is focussed on the optical phonons [208].

The phonon dispersion of GaN is shown in Figure 3.2 (a) [209]. Group theory can be used to

produce the polarisability tensors R which, when normalised to volume become known as the

Raman tensors R′. The Raman tensor can then be used to predict the intensity of the Raman

scattered light IRS through the relationship

IRS ∝| ~esR′~e i |2 (3.5)

where ~e i and ~es are the polarisation of the incoming and scattered photons respectively. In

this work the Raman scattering measurements are performed exclusively in the backscattering

geometry, meaning the probe light is at normal incidence to the sample, and the light which is

scattered back along the same optical path is measured. If it is assumed that the sample is in the
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xy plane, and the light is parallel to the z direction the incident light will have polarisation

~e i = (cosθ ˆe ix,sinθ ˆe i y,0) (3.6)

and the scattered light must have a polarisation

~es = (−sinθ ˆesx,cosθ ˆesy,0). (3.7)

As discussed in Section 2.2, GaN and AlGaN, two of the primary materials studied in this work,

have wurtzite crystal structures. This means they have a total of 6 optical phonon modes labelled

A1, B1, E1, and E2, where the B1 and E2 modes both have high and low frequency variations. A

sketch of these Raman modes is shown in Figure 3.2 (b). The high and low frequency varieties of

the modes comes from the two atom basis, where if the higher mass atom is the one displaced

the frequency will be lower, and vice versa. The B1 modes are Raman inactive and so must be

measured using IR absorption spectroscopy.

If it is assumed that the sample is a GaN wafer which has been grown along the c-axis, this

will correspond to the z axis in the example above. The modes which are then measureable in the

back-scattering geometry are the A1(LO), EH
2 , and EL

2 , where the H and L superscripts refer to

the high and low frequency variety of the E2 mode, and LO denotes the longitudinal variety of

the A1 mode, meaning the oscillation is in the direction of the wave propogation. Both E2 modes

are unpolarised, wheres the A1(LO) mode is polarised, which can be seem in the Figure 3.2 (b), as

this is the only mode which oscillates along the c-axis [58]. The Raman tensors for these modes

are,

A1 =


a − −
− a −
− − b

 , EL
2 =


c − −
− −c −
− − −

 , EH
2 =


− c −
c − −
− − −

 , (3.8)

where a, b, and c are constants.

3.1.2 Raman thermography

In this work Raman thermography is used to measure temperature in operating transistors. Two

variations of the technique will be used, micro-Raman thermography is used on AlGaN HEMTs

to measure the temperature of the device buffer, and nanoparticle assisted Raman thermography,
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(a)
(b)

FIGURE 3.2. (a) The phonon dispersion curve and density of states for high symmetry
directions in GaN adapted from [209]. Also labelled along the Γ direction are the
phonon modes. Reprinted with permission from Elsevier. (b) Schematic representa-
tions of the unit cell vibrations corresponding to each phonon mode. The nitrogen
atoms are shown in black whereas the gallium is in white. This image is adapted
from Harima [58]. Reprinted with permission from AIP Publishing.

which uses anatase nanoparticles as thermometers to measure the surface temperature of

β−Ga2O3 MOSFETs and GaN-on-Diamond HEMTs, as well as to characterise the thermal

conductivity of diamond films.

The A1(LO) and EH
2 Raman modes are most commonly used for temperature measurements

due to their relative intensity and temperature dependence [210]. It was shown in Section 2.1.1

how the vibrations of a crystal lattice can be found by a simple ‘ball and spring’ approximation,

and it is the resonant modes of these vibrations that are probed in Raman spectroscopy. As the

system is similar to a simple harmonic oscillator, the normal frequencies ω of the vibrations obey

ω∝
√

C
m

, (3.9)

where C is the spring constant and m is the average mass of the oscillators. In the case of a

real crystal, C represents the bonding, and if the bond length is increased the crystal ‘spring

constant’ will decrease and so will the normal frequency. When a crystal undergoes a temperature

change, the anharmonicity of the inter-atomic potential results in a change in the lattice constant,

typically decreasing the ‘spring constant’ and hence the Raman frequency. As both strain and
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temperature can change the lattice constant and hence the ‘spring constant’, Raman spectroscopy

is an effective technique for probing both [211, 212]. However in the case of micro-Raman

thermography of GaN or AlGaN based devices it is necessary to decouple the strain induced

Raman shift from the temperature induced Raman shift to ensure temperature measurements

are accurate [213]. When the device is operated, the strain will increase through two mechanisms.

First, the temperature increase in the device will cause the buffer layers to expand, and if they are

on a non-native substrate the rates of expansion of the two materials will be different, resulting

in a thermomechanical strain. Secondly, there will be an added component to the strain due to

the piezoelectric effect. Biasing the device will create an electric field in the GaN buffer, which

will then induce an electromechanical strain because of the inverse piezoelectric effect [214].

The temperature induced change in the phonon frequency ∆ω follows the Cui equation

∆ω=ω0 − A(eB~cω
/

kbT −1) (3.10)

where ω0 is the Raman frequency at 0 K, h and kb are Plancks and Boltzmann constant respec-

tively, c is the speed of light and A and B are empirical fitting parameters [215]. In the high

temperature case, this approximates as a linear function

∆ω= −Akb∆T
Bhcω0

. (3.11)

Because of the static component of the strain, the parameters ω0, A, and B will vary depending

on how the sample was prepared. Therefore it is necessary to calibrate each different type of

sample by measuring the Raman modes over a range of temperatures. The inverse piezoelectric

effect-induced electromechanical strain can be accounted for by measuring the induced shift in the

Raman frequency whilst the device is pinched OFF, since in this case there is still a high electric

field but no current is flowing so there should be no temperature increase. A relationship between

drain voltage and Raman frequency can then be found and used to calibrate the temperature

measurements. Bagnall and Wang reported that this effect could be as large as 0.4 cm−1 for drain

biases of 50 V and above, meaning that if this effect is not accounted for it can result in inaccurate

temperature measurments. The thermomechanical strain is more difficult to account for. It is

necessary to measure at least two phonon modes for a range of device operating conditions. Then,

as each mode will have an individual response to each of the temperature and thermomechanical
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strains it is possible to decouple the two through simultaneous equations. If this approach is not

taken, it can result in errors of approximately ±5◦C when temperature rises are of the order of

200◦. Whether the thermomechanical strain causes and increase or decrease in the calculated

temperature depends on whether the GaN layer is in compressive or tensile strain.

3.1.3 Renishaw Invia spectrometer

All Raman scattering based measurements in this work were performed using a Renishaw Invia

spectrometer, a schematic of which is shown in Figure 3.3. The sample itself is placed on a

steel stage which is below the microscope objective. This stage is large enough to support probe

micro-positioners which attach magnetically to the stage, allowing the device under test to be

operated during the measurement whilst preventing the micro-positioners from drifting. The

micro-positioners themselves allow micron scale, 3-axis translation of the probe, which is typically

a tungsten needle probe. The microscope has a lamp attached to illuminate the sample, and a

camera interfaced with a computer to allow the sample to be viewed. When the device is under

test, the light from the lamp is blocked such that only the laser light is incident on the sample,

reducing noise.

Two separate laser sources were used; a frequency doubled Nd:YAG laser emitting at 532

nm and the 488 nm line of an Argon ion laser. These enter the spectrometer behind Mirror A in

Figure 3.3. The Mirrors A and B are both used to direct the beam path and ensure the correct

optical alignment for the proceeding components. The beam expander is adjustable, allowing

the beam waist of the laser to be varied, which will change the focal plane of the laser once it

goes through the focussing objective. In the preparation of the system it is vital to ensure that

the focal planes of the imaging camera and the laser are the same. As the sample cannot be

viewed during the measurement, the sample must be brought into focus using the white light.

Then, when the measurement begins, the laser is also focussed on the sample if the two focal

planes have been adjusted so that they are coincidental. The Raman scattered light follows back

along the same optical path as the laser until it reaches the filters. These are notch filters which

attenuate the laser light, allowing the scattered light, which is of a much lower intensity, to pass.

As it is a notch filter, rather than a low pass or high pass filter, both the Stokes and anti-Stokes
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FIGURE 3.3. Schematic diagram showing the key components of the Renishaw Invia
spectrometer used for micro-Raman thermography, nanoparticle assisted Raman
thermography, and phonon lifetime measurements. The laser light enters the
spectrometer behind Mirror A, and the measurement is made at the CCD. The
green line shows the incident light, and the red line shows the reflected light.
Black components are reflecting, dark blue components are filters, and light blue
components are lenses. Needle probes are used to operate the devices.
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shifts are measurable.

Next the scattered light is focussed onto the slit whose width can be adjusted to improve the

lateral resolution of the measurement. Light which is from the centre of the laser spot will be

collimated after it has passed the filters and hence will be focussed effectively by the lens. The

light away from the centre of the spot will be divergent so it will not be focussed to a sharp point

at the slit. The divergence of the light is proportional to its distance from the laser spot on the

sample, and narrowing the slit width reduces the amount of divergent light which can pass. This

improves the spatial resolution of the measurement but it also reduces the signal strength, so

the optimal slit width should be determined based on the experiment.

Once it is past the slit, the light is collimated by the second lens and reflected off the prism onto

the reflective diffraction grating. The grating is used to disperse the light so that the wavelengths

can be distinguished later. The grating has a ridged or ‘lined’ surface with a separation d between

the lines. Constructive interference will occur at an angle θ which satisfies the relationship

λ= d sinθ (3.12)

where λ is the wavelength of the scattered light. For each wavelength which is incident on the

grating, there will be a different corresponding θ, meaning the different wavelengths become

spatially separated. If a grating has a higher density of lines, leading to a lower value of d,

the dispersion of the wavelength is increased. This increases the spectral resolution of the

measurement but also decreases the spectral measurement window. The diffraction grating can

be replaced in the spectrometer with a high line per millimetre value desirable for analysis of

individual peaks, and a lower line per millimetre value preferred for the measurement of multiple

peaks simultaneously.

The dispersed light is then focussed at the final lens on to the charge coupled device (CCD).

The CCD is an array of pixels, where each pixel is a capacitor. The measurement begins when the

shutter is opened. When a photon is incident on a pixel, the photoelectric effect is used to free an

electron which then adds charge to a capacitor. Once the measurement is complete the shutter

closes, and the charge on each pixel is measured. The CCD is cooled by a Peltier device to −70◦C

to limit the thermally activated carriers intrinsic to the CCD, which improves the signal-to-noise

62



3.1. RAMAN SPECTROSCOPY AND THERMOGRAPHY

ratio of the experiment. The longer the shutters are open (the integration time), the more photons

are incident on the CCD, increasing the signal. However there is a limit to the amount of charge

which can be stored on the capacitor, and if the number of photons is too great, the detector will be

saturated and no further photons can be recorded. If this threshold is reached without the signal

being sufficiently clear, an alternative is to repeat the measurement at a lower integration time

and aggregate the data. Alternatively the signal-to-noise ratio can be improved by increasing

the slit width to allow more scattered light through, or reducing the stray light which is incident

on the CCD to reduce the noise level. The wavelength which corresponds to each pixel must be

calibrated before the measurement. This is done using a reference silicon sample which has a

known Raman spectral line at 520.3 cm−1. As silicon is available with an exceedingly high crystal

quality the repeatability of the measurement is high, making it ideal for calibration. Care must

be taken to ensure the laser does not heat the sample as this will cause the spectral line to shift.

All Raman thermography measurements in this work are performed using scanning confocal

set ups. This means each measurement is of a single point in the device and the resolution of each

measurement is determined by the point spread function. When the focus is diffraction limited

the lateral resolution r lat is given by

r lat =
0.51λi

NA
(3.13)

where λi is the wavelength of the laser and NA is the numerical aperture of the focussing objective

[216]. For all Raman scattering measurements in this work a 50× focussing objective is used

which has an NA of 0.6, giving a spot size of approximately 0.4 µm for the excitation sources used

in this work. As GaN is transparent to most common laser wavelengths it is necessary to consider

the axial sampling depth. However as this tends to be a few microns, which is significantly larger

than the GaN buffers looked at in this work, it can be assumed that the measured Raman modes

are an average over the entire depth of the buffer [213]. The measurement depth will lead to

significant contributions to the spectra from the substrate. To get the peak temperature of the

device, these measurements are then compared with finite element models of the system. To

minimise the extrapolation necessary, it is typical to measure the Raman shift as close as possible

to the gate edge, although the temperature gradient can reach close to 100 K/µm in the device,

making a significant extrapolation necessary when calculating the peak temperature in a device
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from the Raman thermography measured temperature [213].

3.1.4 Nanoparticle assisted Raman thermography

Nanoparticle assisted Raman thermography is used as both an alternative and a complimentary

technique to micro-Raman thermography. The nanoparticles can be used as a nano-thermometer

when the material whose temperature to be tested is not Raman active and they can provide sur-

face temperatures as oppose to bulk measurements. The process for temperature measurements

with nanoparticle assisted Raman thermography is much the same as the process described in

3.1.3.

The measurement is performed using the same experimental set up as described in Section

3.1.3, but instead of measuring the GaN buffer, nanoparticles are deposited on the device surface

to act as nano-thermometers. Nanoparticle assisted Raman thermography has been performed

using silicon nanowires, diamond nanoparticles, and titanium dioxide nanoparticles in the

anatase allotrope, the latter of which will be used in this work [33, 175, 217]. Anatase has a

ditetragonal pryamidal structure which gives it 6 Raman active modes, the most intense of

which is the low frequency EG mode which occurs at approximately 144 cm−1 [218]. This peak

also shows a strong temperature dependence with approximately 8 cm−1 change between 200

K and 600 K [219]. A strong temperature dependence is important for Raman measurements

as it reduces the percentage error which is propagated from the Raman shift calculation. When

using nanoparticles, the room temperature phonon frequency can vary as the particles all have

different amounts of inherent strain, but the temperature dependence remains consistent and

can be fit by a quadratic function.

For deposition, the nanoparticles are suspended in an organic solvent such as methanol and

drop cast onto the sample. Dilution is used to achieve the optimal density of approximately

5 g/l of nanoparticles and the sample is heated to increase the rate of solvent evaporation when

the solution is deposited which helps the uniformity of the coverage and prevents ‘coffee ring’

effects. The nanoparticles are typically less than a micron in diameter, allowing good spatial

resolution. The size of the nanoparticles means there is negligible heat transfer from them to

the surroundings, making them an accurate probe for the surface temperature [220]. Avoiding
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agglomeration of the nanoparticles is important, as thick layers may have a temperature gradient

which results in the measured temperature being lower than the surface temperature. The small

size of the nanoparticles means that they are easily heated by the optical stimulus, and therefore

lower laser powers must be used. However, it is desirable to use the highest laser power possible

to enhance the signal, as the nanoparticles small size means the amount of light incident on

them is low. It is therefore necessary to find the highest laser power which does not cause the

temperature of the nanoparticle to increase. For this, the nanoparticle is measured first at a high

laser power, which is then decreased in subsequent measurements. When there is no change in

the Raman shift between successive measurements, the point of no laser heating, and hence the

maximum laser power which can be used, is found. The slit width can also be widened to increase

the Raman signal. In the case of micro-Raman thermography the slit width must be used to

control the spatial resolution of the measurement, but that is not the case with nanoparticle

assisted Raman thermography as the spatial resolution is determined by the particle size.

The fact that the nanoparticles act as a thermometer for the sample surface is a key advantage

of this technique when compared to micro-Raman thermography, as the surface temperature,

particularly if the nanoparticles are on the gate, is closer to the device channel temperature,

making extrapolation to the peak temperature easier [221]. It is of particular use for devices

where the active layers are on a native substrate, as in this case the micro-Raman thermography

measurement will be an average over several microns depth. The nanoparticles do not have

an inverse piezoelectric stress to contribute to the Raman shift. The downside of nanoparticle

assisted Raman thermography is the lack of control over the nanoparticle deposition. This means

it is not possible to produce a fine map of the device access region. The nanoparticles are also

non-trivial to remove, although as they do not impact device performance this is only a minor

issue.

3.2 Photoluminescence

Photoluminescence is the emission of light due to optical stimulus. When a photon is incident

on a semiconductor, it can interact with the electrons present in that material. If the photon is
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absorbed the electron will gain energy E equivalent to

E = hf (3.14)

where h is Planck’s constant, and f is the frequency of the incoming photon. Depending on the

frequency of the light, this energy can be sufficient to excite the electron to higher energy levels,

such as any defect states that are present or the conduction band. The electron will then relax

back to its ground state. If it interacts elastically it can fall directly from the conduction band

to the valence band, and emit a photon in the process whose energy is equal to the bandgap.

Alternatively it can decay via defect levels in which case the photon released will have energy

equivalent to the energy difference between the defect level and the valence band, or it can decay

non-radiatively though interactions with phonons. Because of these properties, photoluminescence

is a widely used technique for characterisation of semiconductor crystals [222, 223].

Photoluminescence can also be used for temperature measurements since, as described in

Section 3.1, the lattice parameter is temperature dependent. When the lattice expands, the

increased lattice parameter results in a reduced bandgap as there is less overlap between the

electronic orbitals of the neighbouring atoms [224, 225]. The temperature dependence of the

bandgap energy EG is given by the modified Varshni equation

EG = E0 − αT2

T +T0
+ 1

2
kbT, (3.15)

where E0 is the bandgap at 0 K, and α and T0 are fitting parameters which can be found from

calibration with a thermal stage [226]. The first two terms of the right hand side are the original

Varshni equation which is an empirical fit to the experimental data. The final term on the right

hand side is then an addition to account for the kinetic energy of the electrons whilst they are in

the conduction band before they relax back to the valence band.

As the bandgap is being probed, the laser used to excite the photoluminescence must have

an energy greater than the bandgap. For probing GaN devices this means the laser wavelength

must be less than 364 nm to excite carriers from the valence band to the conduction band. When

performing temperature measuments, photoluminescence has the advantage of producing a

stronger signal than micro-Raman thermography since it is a first order process, Raman scattering

requires the interaction of the incoming photon with the electrons and with a phonon, whereas
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with photoluminescence it only needs to interact with the electron. Photoluminescence also probes

the surface temperature rather than averaging through the buffer depth, giving it an advantage as

the measured temperature is closer to the peak temperature in the device. However as electrons

are excited into the conduction band the measurement impacts the operation of the device,

increasing the current and heating the device beyond its standard operating temperature. This

means the device must be tested with different laser powers and the temperature measurements

extrapolated to the case of no laser power [227].

A 325 nm HeCd UV laser is used as the excitation source. As a result, the measurements were

performed on a system that was similar to that described in Figure 3.3, but with UV compatible

components. The laser spot is not visible to the eye or the camera systems available, so an

alignment routine, separate to that described in Section 3.1.3, is necessary. To ensure that the

focal plane of the UV laser is the same as the focal plane of the camera, the laser was directed

onto a smooth reflecting surface such as a metal contact pad. The beam path was then adjusted

to avoid any absorbing or dispersive optical elements such as the filters and the grating. The

remaining image on the UV-enhanced CCD is therefore a direct reflection of the laser. The beam

expander could then be adjusted to change the focal plane of the laser resulting in a change in

the laser spot seen at the CCD, allowing it to be optimised to the smallest possible spot. The spot

size can then be determined by a knife edge measurement, where the laser spot is scanned over a

sharp edge of a metal structure on a GaN wafer and the photoluminescence intensity recorded.

When the laser spot is entirely on the contact the intensity will be effectively zero, and there

will be a maximum intensity when the laser spot is solely incident on GaN, with a transition in

between. The width of this transition region gives the spot size of the laser. The smallest possible

step size of the motorised stage in this setup is 1 µm, so the alignment was considered successful

when the intensity of the photoluminescence went from zero to maximum in one step, meaning

the spot size is less than 1 µm. The minimum spot size and hence the lateral resolution will again

be limited by Equation 3.13.

For the photoluminescence measurements a 40× reflecting focussing objective is used which

has a NA of 0.5, resulting in a theoretical minimum spot size of 0.33 µm. The photoluminescence

spectra is then measured in the device channel, looking for emission of energy equal to the
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material bandgap. As the photoluminescence peak is asymmetric, a reliable fitting routine is

difficult to implement and so the peak value is found through observation, with a precision of

less than 0.003 eV. This result can then be input into Equation 3.15 to find the temperature. The

most typical way to determine the random error associated with the measurement is to repeat

the measurement several times and find the standard error on the mean. As is the case with the

Raman thermography, a measurement can be performed to ascertain the chip temperature for a

given power density. This can then be subtracted from the temperature measured in the channel

to give a more complete picture of the temperature rise in the device. The penetration of a 325

nm laser in GaN is of the order of tens of nanometres, meaning the measurement is effectively a

probe of a surface spot of diameter 1 µm.

3.3 Transient thermoreflectance

Transient ThermoReflectance (TTR) exploits the temperature dependence of the dielectric con-

stant and therefore the refractive index of a material to use the reflectance as a temperature

probe. The relationship between the refractive index and the permittivity of a medium will first

be shown. This will be followed by a derivation of the temperature dependence of the permittivity.

Finally the relationship between the reflectance of a surface and the refractive index will be

shown, completing the picture of how the temperature dependence of the reflectance can be

utilised. The refractive index, n, is a dimensionless quantity which describes the relative speed

of light in a material, v, compared to in a vacuum, c, determined by

n = c
v

. (3.16)

The speed of light in a material can be derived from Maxwell’s equations if it is assumed that

there is no free charge present

∇×~E =−µ∂
~H
∂t

, (3.17)

∇× ~H = ε∂
~E
∂t

, (3.18)

∇·~E = 0, (3.19)

∇· ~H = 0, (3.20)
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where ~H is the magnetic field, ~E is the electric field, ε is its permittivity, µ is its permeability and,

t is time [228]. By taking the curl of Equations 3.17 and 3.18 it can be found that

∇×∇×~E =−µ∂(∇× ~H)
∂t

, (3.21)

and

∇×∇× ~H = ε∂(∇×~E)
∂t

. (3.22)

By applying the ‘curl of the curl’ identity, which states that the curl of the curl of a vector field is

equivalent to the gradient of the divergence of the vector field minus the Laplacian of the vector

field, on the left hand side of these equations and substituting Equations 3.17 and 3.18 into the

right hand side these become

∇(∇·~E)−∇2~E =−µε∂
2~E
∂t2 (3.23)

and

∇(∇· ~H)−∇2~H =−εµ∂
2~H
∂t2 . (3.24)

By implementing Equations 3.19 and 3.20 on the left hand side of these equations they reduce to

∇2~E =µε∂
2~E
∂t2 (3.25)

and

∇2~H =µε∂
2~H
∂t2 (3.26)

which can be recognised as the Wave Equation with velocity

v = 1p
µε

. (3.27)

Therefore the velocity of light in a medium is dependent on the permittivity of that medium.

As a result, the refractive index must also be dependent on the permittivity, following from the

relationship shown in Equation 3.16.

It is the temperature dependence of the permittivity which provides the basis of the TTR

measurement. The permittivity is a measure of how a material responds to an applied electric

field and as such the refractive index is closely linked to the band structure and the bandgap Eg

via the Moss formula which approximates

n4 ×Eg = ξ (3.28)
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where ξ is a constant [229]. It was discussed in Section 3.2 how the bandgap is temperature

dependent. This can now be viewed by study of the relative permittivity εr which is the ratio of a

medium’s permittivity and the permittivity of free space, also known as the dielectric constant.

Approximating a static dielectric constant, the Lorentz-Lorenz Law states that

εr(T)−1
εr(T)+2

= ηρ(T) (3.29)

where η is a constant and ρ is the density of the medium, then taking the derivative of this with

respect to temperature gives [230]

dεr

dT
= 1

3
(εr −1)(εr +2)

1
ρ

dρ
dT

. (3.30)

The end term in this equation is a change in density with respect to temperature, as would occur

when the lattice thermally expands. Hence if the change in refractive index can be measured,

this will give a measure of the change in temperature.

As is implied by the name, TTR uses the reflectivity of material to measure the temperature

change. The Fresnel equations give the amplitude for the reflected light, r, at an interface between

two materials with refractive indices n1 and n2,

rs = cosθ−
√

n2(T)−sin2θ

cosθ+
√

n2(T)−sin2θ
, (3.31)

rp = −n2(T)cosθ−
√

n2(T)−sin2θ

n2(T)cosθ+
√

n2(T)−sin2θ
, (3.32)

where the subscripts represent the polarisation of the light, n is the ratio of n2 to n1 and θ is the

angle of incidence. In the TTR measurements performed in this work the laser light is at normal

incidence to the sample surface and the sample is always in air, which has a refractive index of

one, reducing Equations 3.31 and 3.32 to

r = n2(T)−1
n2(T)+1

, (3.33)

where the amplitude of the reflected light is now independent of the incoming polarisation [228].

This, coupled with the temperature dependence of the refractive index allows the use of reflected

intensity to measure temperature.
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Jellison and Burke found that the change in refractive index is linear with respect to temper-

ature following the relationship

n(λ,T)= n0(λ)+a(λ)T, (3.34)

where n0 is the refractive index at 0 K and a is the thermo-optic coefficent [231]. The thermo-

optic coefficient is the derivative of refractive index with respect to temperature ∂n
∂T , and dictates

the magnitude of the reflection change for a given temperature change. In the case of GaN,

which is measured in this work, this thermo-optic coefficient is approximately 1×10−4 K−1 at the

wavelength used in this experiment, 532 nm [232]. This is larger than the thermo-optic coefficients

of AlN (0.4×10−4), ZnSe (0.8×10−4), and diamond (0.16×10−4) at similar wavelengths [232–234].

This makes GaN a suitable semiconductor for TTR, as a larger thermo-optic coefficient results

in a larger signal-to-noise ratio. The thermo-optic coefficent also increases as the band-edge is

approached making shorter probe wavelengths preferable. A possible alternative to improve

the signal-to-noise ratio is to coat the sample surface in a metal such as gold, which has a

thermo-optic coefficient of −3×10−4 at 532 nm [106]. Whilst this may increase the signal seen in

experiment, it is not a preferred solution as the deposition of gold damages the GaN and prevents

the fabrication of devices on the samples after they have been measured. The extra gold layer

also reduces the fitting sensitivity of the system since it introduces an extra parameter to the

material system which must be fit, namely the thermal boundary resistance between the gold

and the GaN.

A schematic diagram of the experimental set-up used in this work is shown in Figure 3.4.

The experiment used a continuous wave frequency doubled Nd:YAG laser at 532 nm to monitor

the reflectance. The sample is heated using a pulsed, frequency tripled Nd:YAG laser at 355 nm

which has a pulse width of 9 ns and a repetition rate of 30 kHz. The two lasers were combined

at a dichroic filter which transmitted the green laser but reflected the UV laser. This filter was

adjusted such that the two beams were concentric. Before this dichroic filter, the UV laser passes

through a beam expander, making its beam waist significantly larger than that of the green laser.

The two lasers then enter the microscope and pass through a 15× focussing objective lens before

reaching the sample. Due to the difference in beam waist, the lasers have different focal planes.

This distance between the sample and the lens is adjusted such that the green laser is at its focal

71



CHAPTER 3. EXPERIMENTAL METHODS

FIGURE 3.4. Schematic diagram of the TTR experimental setup used in this work. The
355 nm pulsed laser is used to heat the sample. It has a 9 ns pulse width and 30
kHz repetition rate. It is expanded such that its spot size is much larger than that
of the 532 nm continuous wave (CW) laser which is used to monitor the reflection
from the sample surface. This reflection is used to determine the temperature at
the sample surface.

point with a spot size of approximately 2 µm, which results in a corresponding UV spot size of 70

µm. The reflected light then follows back along the same beam path. The UV and green light is

this time separated at the dichroic filter, and a beam splitter is used to direct the reflected light

through a final filter, to a detector.

The data are averaged over 60 000 laser shots. They are then fit using an analytical model

which replicates the heating pulse of the laser and calculates the surface temperature based

on how the heat flows through the wafer stack. The model was developed by a colleague Dr

Anaya. The alignment is such that the probe laser is at the centre of the pump laser spot,

meaning it is also possible to apply axial symmetry to the calculations. Also, since the pump

laser spot is significantly larger than the probe laser spot, a transmission line model can be
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applied which uses current and voltage as analogies for heat flux and temperature [189, 235].

A heat source is defined on the sample surface, and the heat flow is allowed to evolve following

Fourier’s law through each layer in the system, which are represented by thermal resistors and

capacitors. Where well defined literature values were available, the material’s parameters in the

model were fixed. As it is a transient solution, each material must have a heat capacity, density,

thermal conductivity, and thickness defined. The model cannot take into account inhomogeneity in

material properties. In the case of a GaN-on-Diamond wafer, the GaN thermal conductivity could

be defined as 160 W/m.K, and the diamond thermal conductivity as 1500 W/m.K, to represent

polycrystalline diamond. The heat capacity and density of these materials are well defined,

leaving only the interface layer parameters to be input. The density and heat capacity can be

approximated as that of silicon nitride, but as this layer is so thin, the model is not sensitive

to these parameters. The only remaining free parameter is then the thermal conductivity of

the interface layer. As discussed in Section 2.5, the TBReff is an amalgamation of the thermal

resistances of the diamond nucleation layer, the dielectric layer, and the material interfaces.

The interface thermal conductivity in the model takes all of these into account, so it is the

inverse of the effective thermal boundary resistivity. The validity of the model was confirmed by

a comparison to a finite element simulation of the experiment developed in ANSYS which yielded

the same results.

3.4 Finite element analysis

Throughout this work, finite element analysis is a vital tool to complement the experimental work

performed. The finite element method was developed as a method of numerically solving complex

problems over a geometry. It works by discretising a body into finite sized elements connected

at nodes to form a mesh. The relevant equations are solved at the nodes to find the variable of

interest and the results are interpolated in the elements. As the solution is calculated at discrete

points in space, the spatial derivatives are equal to zero, simplifying the partial differential

equations of the system. The interpolation is then an approximation of the dependent variable at

all points between the nodes. A linear interpolation is computationally less intensive but is less
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(a) (b)

FIGURE 3.5. (a) A 1D example of the principles behind a finite element simulation.
The blue line represents the true solution of the function f(x). The red line is
the approximate solution found from an interpolation of the solution at discrete
intervals. It can be seen that the finite element approximation is more accurate
when the gradient is smaller. (b) An example mesh of a simple transistor. The gate
is in the top right corner, and the mesh is more dense here as this is where the
temperature gradient is highest.

accurate than a quadratic interpolation.

This makes the mesh design particularly important. A mesh with smaller node-to-node

separations is desirable as this reduces the amount of interpolation necessary, and a mesh with

the nodes spaced too far apart will result in inaccurate simulations. However a denser mesh has

a counteracting effect, as the number of times the differential equations must be solved expands,

increasing the computation time. Therefore a balance must be struck on the spacing of the nodes,

with the optimal mesh being the one which gives an accurate result in the fastest time. To achieve

this, the density of the mesh can be varied in different areas of the simulation.

As seen in Figure 3.5 (a), the interpolation is more accurate when the gradient of the function

is lower. Taking the example of self-heating in a simple transistor structure shown in Figure 3.5

(b), the mesh around the gate should be much more dense as this is where the temperatures

are highest and there is a large temperature gradient. Conversely, in the sample holder the

temperatures are close to ambient and the temperature gradients are low. This allows a more

coarse mesh to be used, which can greatly reduce the number of nodes as the volume of the

74



3.4. FINITE ELEMENT ANALYSIS

sample holder is much larger than that of the gate. To confirm that the mesh is at its optimal

configuration, an iterative process can be used where the temperature is calculated for a series of

meshes, each more fine than the last. As the mesh gets finer, the temperature is calculated at

more points, meaning the solution tends towards the case where the the temperature is calculated

at all points, which would be the true solution of the system. Therefore increasing the mesh

density gives temperature values which are convergent towards this true value. It will be an

asymptotic approach towards the true value, meaning the solution from two meshes will never

be exactly the same, but the mesh was deemed sufficiently fine once a significant change in

mesh density resulted in temperature discrepancies of less than 0.1◦C. As a final step to improve

accuracy, nodes can be inserted at the element edge midpoint.

The element shapes can either be cuboids or tetrahedrons. Tetrahedrons are the most com-

monly used as they are simplex, meaning they can be used to fill any 3 dimensional shape, which

is not true of cuboids. However tetrahedrons are not efficient at filling spaces which have a high

aspect ratio, meaning one dimension of the body is either much smaller or much larger than

the others. For this reasoning, cuboids are typically used to build the mesh in and around the

gate, whereas tetrahedrons may be used to mesh the sample holder. There were two computers

available for computing the finite element simulations; the first had 16 GB of RAM with a quad

core Intel I7 processor and the second had 32 GB of RAM and the same quad core Intel I7

processor. The higher RAM PC could compute simulations whose meshes had upto approximately

3 million elements. This was sufficient for all the simulations performed in this work.

The software used for this work is ANSYS academic release [236]. This allows both steady

state and transient analysis of heat flow in systems, and the following is a discussion of the

physics used to solve these problems. The first law of thermodynamics states that energy must

be conserved. In the case of a 3D body where mass is conserved and the heat is generated in a

portion of that body, the first law of thermodynamics can be expressed as

ρc
(∂T
∂t

+~v∇T
)+∇·~q = U̇ , (3.35)

where ρ is the density of the material, c is its specific heat capacity, T is the temperature,~v is

the heat velocity vector, ~q is the heat flux vector, and U̇ is the rate of heat generation per unit
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volume. ANSYS solves this by using Fourier’s law which states

~q =−κi j∇T (3.36)

where κ is the thermal conductivity and is in matrix form since it can be anisotropic. Combining

these two equations then gives

ρc
(∂T
∂t

+~v ·∇T
)=∇· (κi j∇T)+U̇ (3.37)

which is solved numerically in ANSYS, meaning each material requires an input thermal conduc-

tivity, density, and heat capacity. This is a transient equation, but when the system is in a steady

state the terms on the left hand side become zero and it essentially reduces back to Fourier’s

law. In this case, only the thermal conductivity matrix κi j and the heat source U̇ is needed to be

input.

Once the design and the mesh are completed, the thermal energy can be input into either

surfaces or volumes. The boundary conditions and initial conditions are essential for the solution

of the partial differential equations to be solved. Typically the initial conditions are given by

setting the entire geometry at the ambient temperature. The boundary conditions must be

selected for all exterior surfaces. There are two types of boundary conditions which can be input.

The first is a Dirichlet boundary condition where the dependent variable T is constant at the

boundary b, for example

T(b)=α, (3.38)

where α is a constant. In the context of this work a Dirichlet boundary condition is used to set

a constant temperature on a surface. The second type of boundary condition is the Neumann

boundary condition where the derivative of the dependent variable at a boundary is constant,

given by

Ṫ(b)=β, (3.39)

where β is a constant. For heat flow, if β= 0, this is a perfectly insulating surface as the heat

flux across the surface is zero. Most surfaces have Neumann boundary conditions, where the

heat flux across the interface is set to zero, which is often used to approximate surfaces which

are in contact with air. Whilst it is possible to make the heat flux through the surface non-zero
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to approximate a convective air flow, this effect is deemed minimal and is often ignored. The

Neumann boundary conditions are also used to define symmetry planes, as a perfectly insulating

interface is mathematically equivalent to having the mirror image of the structure on the other

side of the interface. The Dirichlet boundary condition is used with the temperature kept at

ambient to define the heat sink. The finite element simulations in this work typically have

a transistor structure at the top of a wafer epitaxy, which is placed on a larger metal block

which represents the sample holder. The sample holder is allowed to heat up, but the Neumann

boundary condition is placed on its reverse.
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4
OPTIMISATION OF GAN-ON-DIAMOND MATERIALS AND DEVICES

T
his chapter reports on research performed with the goal of understanding and enhanc-

ing the thermal properties of GaN-on-diamond wafers used for high power density

applications. This chapter specifically considers wafers where polycrystalline diamond

has been grown onto GaN, with an amorphous silicon nitride layer at the interface. This variation

of GaN-on-diamond material has been shown to give the lowest device thermal resistances,

and is the only preparation technique which allows the fabrication of 4-inch wafers. In these

GaN-on-diamond systems, the TBReff between the GaN buffer and the diamond substrate can

account for half of the overall wafer thermal resistance [237]. As a result, improving the TBReff is

key to unlocking the full potential of GaN-on-diamond devices.

There are three major contributions to the TBReff of a GaN-on-diamond wafer where polycrys-

talline diamond is grown onto GaN. First there is the fundamental phonon scattering between

dissimilar materials at the interface. This is an inherent property of the material system and

cannot be changed, however the thermal resistance caused by such interface phonon scattering

is small relative to that of the two other components of the TBReff, the interface layer, and the

diamond nucleation layer. As the interface layer is amorphous, there is no long range thermal

transport, whereas in the diamond nucleation layer the high density of grain boundaries limits

the phonon mean free path. This chapter will consider the TBReff as a whole, as well as its
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individual components. First, the TBReff of four-inch GaN-on-diamond wafers is studied using

TTR, to map the inhomogeneity of the TBReff across the wafer. This is followed by a study of the

spatial resolution of the TTR technique. The impact of the diamond nucleation layer on the TBReff

is then considered by studying the thermal conductivity of suspended diamond membranes,

which are determined by a nanoparticle assisted Raman thermography study. Finally, HEMTs

fabricated on two separate GaN-on-diamond wafers are studied using photoluminescence and

nanoparticle assisted Raman thermography. The wafers differ in their buffer layer thickness and

interface layer thickness, with one sample being thinner than the other. Both the thermal and

the electrical characteristics of the wafers are found. The impact of buffer thickness on wafer

thermal resistance is then explored further through the use of finite element simulations.

4.1 GaN-on-diamond wafer mapping

4.1.1 Method

The TBReff of GaN-on-Diamond wafers and dies supplied by Element 6 were determined using

TTR. TTR provides a non-contact, non-destructive measurement of the TBReff of GaN-on-diamond

material, and has previously been used to show that the TBReff is proportional to the interface

layer thickness, and that diamond grown through PE MW CVD gave an improved TBReff when

compared to HF CVD grown diamond [190]. An automated wafer mapping routine which allowed

the efficient measurement of the TBReff over 4 inch wafers was developed for this project. This

process uses an XYZ mapping stage with a 0.1 µm step size and a maximum travel of 60 mm.

The mapping routine can scan over this entire square area, at any desired grid size.

The wafer fabrication process developed by Francis et al. is described in Figure 4.1 [32]. It

starts with a GaN-on-Si wafer which then has a handle wafer attached to the GaN surface.

The original silicon wafer is removed along with the strain relief layers, and the interface layer

(typically a dielectric such as SiNx) is deposited on the now exposed GaN surface. This interface

layer is seeded with diamond particles and the diamond is grown to approximately 100 µm thick.

The handle wafer is then removed to leave the final GaN-on-Diamond wafer.

Due to wafer bow, the samples are not perfectly flat and as a result the focus of the TTR
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FIGURE 4.1. Process flow developed by Francis et al. for the growth of polycrystalline
diamond on GaN [32]. Using this process homogeneous four inch wafers have been
fabricated.

measurement must be adjusted for each measurement point. This is performed by imaging the

probe laser spot intensity across a range of sample depths and counting the number of pixels

which are saturated. Using a large step size, the number of saturated pixels will increase as the

focus is approached, and the point of maximum saturated pixels can be used to approximate

a coarse focus. Once this is found, a more refined search can find the true focus. By using a

smaller step size, a local minima in the number of saturated pixels will be found as the laser spot

converges.

Once the true focus is found, the mapping routine then takes the reflectance measurement,

averaging over the desired number of laser shots. The routine then removes the baseline and

background signal, and normalises to the peak reflectance so that the data format is compatible

with the fitting software. The mapping routine then moves onto the next point, completing the
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grid in a serpentine manner. Once the mapping was completed the temperature decay could be fit

using the process discussed in Section 3.3.

In total, 14 samples were studied for this work, of which 6 were full 4 inch wafers and the

remaining 8 were dies cut from wafers. A comparison of the homogeneity across the wafers will be

made. The interface layers vary between 15 nm and 35 nm thick and the GaN buffer thicknesses

vary from 358 nm to 960 nm. A comparison is also made between the use of large (100 nm) and

small (30 nm) seeds as discussed in Reference [238].

4.1.1.1 Spatial resolution of transient thermoreflectance

Whilst mapping full wafers is important for understanding the consistency of industrial growth

processes, mapping of smaller areas can aid the understanding of micron scale variations at the

interface. The spatial resolution of the TTR measurement will determine the smallest feature

size which can be distinguished. For instance, if the spatial resolution is similar in size to the

defects which may occur at the interface, then measurements made near such defects may be

biased towards larger TBReff values. Conversely, if the spatial resolution is larger than any

interface defects present, the measured TBReff will be an average of the defective areas and

the non-defective areas. The finest map possible is defined by the step size of the stage, but

the resolution of the measurement is determined by the thermal transport in the wafer. The

experiment uses a pump laser with a diameter of 70 µm and a probe laser with a diameter of 2

µm. A sample with voids at the interface was studied, with a SEM cross section of example voids

shown in Figure 4.2. During the measurement process, the laser was scanned over a void of size

≈ 2 µm with a step size of 5 µm and the TBReff at each point calculated .

A two dimensional finite element model of the experiment was created. The model is axially

symmetric about the centre of the Gaussian heating pulse which was used to replicate the pump

laser in the experiment. Different void heights were considered, each located at the interface

in the centre of the laser heat pulse. The temperature was then measured adjacent to the void;

measuring directly on the void is not possible as reflections from the void interfere with the

reflections from the surface, resulting in a spurious signal [239]. The GaN was 1 µm thick and

the void had a radius of 1 µm. The sample TBReff was 39 m2K/GW and the diamond’s assumed
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(a)
(b)

FIGURE 4.2. (a) SEM cross section taken from a sample with no voids. The interface
dielectric layer shows some roughness. (b) Examples of interface voids. The voids
can vary in size and be visible from the GaN surface. Samples were prepared using
FIB and imaged by a collaborator Dr Liu. The images are adapated from Reference
[238].

thermal conductivity was 1500 W/m.K.

4.1.2 Results

An example of the collected TTR data and the corresponding simulations are shown in Figure

4.3. The measurement and fitting procedure are described in more detail in Section 3.3. The

immediate increase in the temperature is caused by the pump laser. When the pump laser is

switched off the temperature starts to decrease as heat flows from the surface, through the

sample, to the heat sink which is attached to the bottom of the sample. The rate at which the

temperature decays is determined by the thermal properties of the materials in the wafer. The

TBReff primarily impacts the heat flow between 50 ns and 250 ns after the pump laser is switched

off. Figure 4.3 shows simulated temperature decay curves with the TBReff varied by ±10% and

all other parameters kept constant.

A summary of the TBReff for all samples measured is shown in Figure 4.4, plotted against

both interface layer thickness and buffer thickness. There is no strong correlation between the

interface layer thickness and the TBReff, which disagrees with work reported in the literature

where it is suggested that a thinner interface layer would give a lower TBReff. As the interface

layer is amorphous and has a low thermal conductivity of ≈ 1 W/m.K, it is considered a thermal
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FIGURE 4.3. An example TTR measurement taken from a GaN-on-diamond wafer.
This particular location was found to have a TBReff of 33 m2K/GW. Also shown is
simulated curves with the TBReff varied by 10%, showing how this impacts the
temperature decay.

resistor and thus reducing its thickness should lower the thermal resistance at the interface.

As this trend is not distinguishable in the measurements, the data implies that other factors in

the fabrication process, such as the seeding or the diamond growth, can also impact the TBReff

and hence must be optimised for thermally efficient GaN-on-diamond devices. The individual

contributions to the TBReff cannot be distinguished by the TTR measurements, and as growth

conditions are not known, it can only be speculated as to why there is no correlation. An increase

in the amount of power supplied to a plasma during MW PE CVD growth can increase the number

of hydrogen radicals which then etch the interface layer, and the resulting rough surfaces can lead

to an increased TBReff. Alternatively, using lower power costs less, but promotes renucleation on

the diamond grains which inhibits phonon transport and thermal conduction, again causing an

increase in the TBReff. The diamond growth rate is often inversely proportional to the quality of

the diamond, suggesting that an industrial process would need to strike a balance between device

performance and the economy of production. Whilst changing growth conditions will change the

thermal conductivity of the diamond, the TTR measurement is not sensitive enough to pick up

these variations. The seeding method can also impact the thermal properties of the interface, and
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(a) (b)

FIGURE 4.4. A summary of the TBReff measured for each sample of GaN-on-Diamond
material. The results are plotted against interface layer thickness (a) and buffer
thickness (b). The errors are estimated at 5% of the TBReff value calculated due to
the sensitivity of the fitting process.

TABLE 4.1. A summary of the results of the wafer mapping performed on GaN-on-
Diamond samples. The TBReff values shown are the mean of the measured values,
and the errors are the standard deviation of the the value across the wafer.

Wafer Buffer thickness (nm) Interface layer thickness (nm) TBReff (m2K/GW)
A 774 35 26 ± 2.3
B 874 15 23 ± 2.3
C 797 15 14 ± 0.8
D 725 35 35 ± 2.9

this will be discussed further.

Unlike interface layer thickness, the lack of correlation between buffer thickness and TBReff

is to be expected. The GaN-on-Si growth process is more comprehensively understood than the

diamond growth process. This makes the GaN-on-Si growth process more repeatable and means

the surfaces are of a high quality. Therefore the GaN side of the interface will be consistent in all

the samples, irrespective of the GaN thickness. The measurements align with this expectation
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(a) (b)

FIGURE 4.5. Two examples of wafer maps with (a) corresponding to wafer A and (b)
corresponding to wafer C in Table 4.1. The points at which no value is recorded are
where destructive interference caused a loss of signal.

and imply that the GaN buffer thickness can be varied to find the optimal structure for thermal

performance without negatively impacting the TBReff.

TBReff maps were made for four wafers, with two examples shown in Figure 4.5, and a

summary shown in Table 4.1. The error on each measurement point is approximated at 5% due to

the sensitivity of the fitting routine, and the average standard deviation across the wafers was 2.1

m2K/GW, which is approximately 10%. There does not appear to be a trend in this inhomogeneity,

suggesting the variation is caused by random fluctuations. Possible causes for this variation could

be defects present on the interface layer which form due to contaminants or an imperfect growth

surface, or an inhomogeneous seeding density which can lead to pinhole formation in areas where

seeds are sparse. As can be seen in the wafer maps in Figure 4.5, at certain points the TBReff

could not be calculated. This was due to interference effects, where reflections off the GaN surface

and the interface layer are out of phase, which causes destructive interference and results in a

spurious signal, as shown in Figure 4.6. Subtle changes in GaN thickness and interface layer

thickness could result in this condition being met. This issue was solved at a later date by the

use of an above bandgap probe laser.
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(a)
(b)

FIGURE 4.6. (a) Schematic diagram showing the TTR measurement of a GaN-on-
diamond wafer when a below bandgap probe laser is used. The pump laser is
not shown for clarity. When reflections from the interface layer are out of phase
with reflections from the GaN surface, the signals can destructively interfere. (b)
Difference in TTR curves when measured on defect and on a defect free location.
The inset is an optical micrograph of voids as seen from the sample surface.

Wafer B in Table 4.1 was seeded using seeds of mean size 30 nm and was compared to a

similar sample, measured by a colleague Dr Sun, whose seeds had a mean size of 100 nm [238]. It

was found that the TBReff of the sample with larger seeds was approximately 40 m2K/GW, almost

twice as high as that for Wafer B. The use of larger seeds was expected to improve the TBReff

as larger seeds should produce a diamond nucleation layer with a higher thermal conductivity,

due to a greater ratio of diamond bonded carbon to graphitic carbon. However it was found by

Liu et al. that the larger seeds led to a highly defective interface with voids and cracks forming

since, as was found by Williams et al., larger seeds result in lower seeding densities [170, 238].

As these voids, shown in Figure 4.2, constitute a small proportion of the interface it is unlikely

that they are the cause of the high TBReff measured. Instead it is likely that they are a symptom

of a poor quality, weakly bonded, highly stressed interface which is the cause of the high thermal

resistance.
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(a)
(b)

FIGURE 4.7. (a) Schematic of the experiment used to determine the spatial resolution
of the TTR setup. The TBReff is measured for varying d. (b) Measured TBReff as a
function of central measurement location distance from the void (d in (a)), which
has a diameter 2 µm. The red lined box indicates the locations where the void is in
the pump laser beam diameter.

4.1.2.1 Spatial resolution of transient thermoreflectance

Part (a) of Figure 4.7 is a schematic diagram of the experiment used to test the lateral spatial

resolution of the TTR experiment, with the results shown in Figure 4.7 (b). The void, which is

chosen to be similar to those shown in Figure 4.2, is approximately 2 µm in diameter, but its depth

is unknown as focussed ion beam cross sectioning would destroy the sample. The measurement

starts with the void outside of the diameter of the probe beam, where it would not be directly

heated but it may impede lateral heat spreading. Because of the Gaussian heat profile of the

laser, the intensity at the GaN surface will be lower at the edges of the beam diameter, and

there is no noticeable change in the measured TBReff as the void enters this region. Whilst the

impact of the void on the TBReff may be expected to increase as it enters the central, most intense

region of the pump beam, there is no change in the TBReff measured. This suggests that the

measurement averages over an area similar to the pump beam diameter. A pump laser spot size

of diameter 70 µm as defined by the standard e−2 definition will have 86.5% of the intensity

focused in ≈ 220 µm2 area. If the void has a 2 µm diameter it will only account for 3% of the
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(a)

(b)
(c)

FIGURE 4.8. (a) Two dimensional simulation of the GaN-on-diamond system with a
void of height h = 0.8 µm and radius 1 µm at the interface. The mesh used to
calculate the temperature is shown. (b) Calculated heat profile in the sample at
the time of maximum temperature. c) Temperature decay curve for several void
heights h, which is labelled in (a). The radius is constant at 1 µm.

area heated. Hence it should not be surprising that the impact of the relatively small void is not

recognisable within the precision of the measurement. This suggests that the presence of the

voids is not responsible for the high TBReff measured in the large seeded sample as these are

not resolved in the measurement. Instead these voids are a symptom of a poor quality interface

which is likely to have a high TBReff. It also means that any high TBReff results seen from wafer

mapping must be due to longer range defects.

The finite element model, shown in Figure 4.8 (a), agrees with this conclusion. In Figure

4.8 (b) the heat profile is shown at the point of peak temperature. There is a large temperature

gradient above the void which is likely due to the fact that heat in this region can only flow in the

plane of the wafer. However, as is shown in Figure 4.8 (c), there is no significant change to the

TTR curves for all defect heights. The curves are independent of the defect height at all times

which again suggests that the measurement is an average over a much larger area than just the

probe laser spot. Any temperature gradient caused by the defect must return to the standard

case of no defect on time scales faster than could be measured. If it is desirable to measure the

TBReff impact of a specific defect of this size it would be necessary to use a faster heating pulse
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and measurement equipment, and to use a reduced pump laser spot size such that the void takes

up a larger proportion of the heated area.

4.2 Diamond film thermal conductivity

4.2.1 Method

The diamond nucleation layer contains many grain boundaries and inclusions which reduce it’s

thermal conductivity, meaning it contributes to the TBReff in GaN-on-diamond wafers. In this

section, the thermal conductivity of suspended diamond films is studied to aid understanding of

how growth conditions can be optimised to give a higher quality diamond nucleation layer. The

suspended diamond films were supplied as part of a Defense Advanced Research Agency (DARPA)

round robin program, and a schematic of the diagrams is shown in Figure 4.9. Assuming the

radiative heat transfer to the surroundings is negligible, the heat will flow through the diamond

film, to the bulk silicon. The diamond was grown and processed by the Naval Research Laboratory.

The test structures were fabricated before the silicon was selectively etched to leave the diamond

films. Electrical power is supplied through the gold heater which runs through the centre of the

film. There are six contact pads connected to this heater, two at either end and two towards the

centre. The current can be supplied through two of the end contacts, with the voltage measured

on the other two; this allows accurate determination of the power dissipated across the heater as

it avoids the resistance contribution from components which are in series with the power supply.

The fifth and sixth contact are included to allow a measurement of the power dissipated through

the central portion of the heater.

Anatase nanoparticles were dropcast onto the sample to act as nano-thermometers as de-

scribed in Section 3.1.4. The films are designed such that the heat flow at the centre of the heater,

between the fifth and sixth contact tracks, is perpendicular to the heater track as seen in Figure

4.9 (d). Nanoparticles in this area are measured for the thermal conductivity calculations as

only knowledge of the perpendicular distance from the heater is required to map the heat flow.

Four different varieties of film were measured, with dimensions of 250×500 µm, 450×1000 µm,

700×2100 µm, and 330×1900 µm. The gold heater is 5 µm thick, and the space between the
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(a)
(b)

(c)
(d)

FIGURE 4.9. (a) Schematic diagram of the films measured in this work. Contacts
labelled I are used to supply the power to the heater and contacts labelled V can be
used to measure the voltage. The two central contacts also define the area where
the heat flow is linear and perpendicular to the heater. (b) Cross-section of a film
showing the Raman measurement of nanoparticles. (c-d) Simulated temperature
profile in an example film. The central white arrow in (d) shows the linear heat flow
direction. These models have the thermal conductivity of the diamond adjusted
such that the temperature profile matches the nanoparticle measurement.
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central contact pads varies but is approximately one fifth of the total width.

For each film, the Raman shift of the nanoparticles is measured at a range of electrical powers

that result in temperature rises of up to 400◦C. Nanoparticles at the centre of the heater are used

for determining the maximum temperature increase and hence the diamond thermal conductivity.

Nanoparticles are also measured both along the heater and perpendicular to the heater to ensure

the power is being dissipated as expected. Error bars are judged by taking repeat measurements

of the Raman shifts and propagating this through to the temperature calculation. The results are

then compared to finite element simulations of the films in which the thermal conductivity is

varied to match the results. The error in the thermal conductivity is established by lines of worst

fit.

In total, 21 films from 15 samples from 4 wafers were analysed as part of the DARPA project.

The samples were 20 by 20 mm and the wafers were 3" in diameter. A summary of the wafers

growth conditions are shown in Table 4.2. The number of films studied allows for a check of

homogeneity across samples and wafers.

4.2.2 Results

As each of the DARPA supplied samples contained multiple films, it was possible to explore the

spatial variation in the thermal conductivity for each sample. For diamond films on the same

sample, and hence located within 20 mm of each other, the maximum difference in thermal

conductivity was 13% and the average difference was 6%. The mean thermal conductivity of

all measured films for each wafer can be seen in Table 4.2, where the quoted error value is the

standard error from all measurements on that wafer. This variation is approximately 3% of the

measured value and could partially explain the variation in the TBReff wafer maps discussed

earlier. However it is worth noting that the sample supplier is different so growth conditions

may vary. Sample δ has the largest thermal conductivity. This is expected as this sample was 3

µm thick whereas the others were just 1 µm thick. As discussed in Section 2.4.2, the diamond

columnar growth structure means that as films grow thicker, grains overgrow each other, resulting

in fewer grain boundaries and higher thermal conductivities. It was found by Anaya et al. in

Reference [174] that an increase from 1 µm to 3 µm thick should see an increase of at least 2×
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TABLE 4.2. A summary of the growth conditions and thermal conductivity data mea-
sured on the diamond films. The seed size for wafers β and δ are unknown. The
thermal conductivity values are the mean of all films measured on that wafer and
the errors are the standard deviation of those measurements.

Wafer α β γ δ

Thickness (µm) 1.05 1.01 1.06 3.02
Growth Power (W) 2200 1400 2300 800

Seed size (nm) 4 - 40 -
Thermal conductivity (W/m.K) 75 ± 2 75 ± 3 106 ± 2 112 ± 4

in the thermal conductivity, but this was not the case in the samples studied here. Sample δ

was grown with 800 W microwave powers whilst the next lowest was 1400 W. Lower microwave

powers are ideal for industrial scaling as they are less energy intensive, but they have been

shown to produce lower quality diamond by facilitating renucleation. This will impact thermal

performance by the introduction of more grain boundaries and graphitic bonded carbon [169].

The impact of seed size can be seen in the comparison between wafers α and γ. In this

instance the larger seeds are a similar size to the smaller seeds discussed in Section 4.1.2 and

in Reference [238]. As expected, the larger seeds give a larger thermal conductivity as there

are fewer grain boundaries, suggesting that larger seeds should improve the wafer thermal

performance. However this contradicts the earlier work which shows that if the seeds are too

large, this can lead to a lower TBReff value as well as to the formation of cracks and defects at

the interface. This suggests there is an optimal seed size to provide the best possible TBReff, a

balance between the size of the grains and the seeding density. Both of the seed sizes studied in

this experiment give an equivalent standard deviation which suggests that seeds do not impact

the homogeneity of the films.

4.3 GaN-on-diamond devices

Two samples from GaN-on-diamond wafers supplied by Element 6 and processed at the University

of Sheffield are studied in this section. The wafers were fabricated using the process discussed

in Section 4.1.1 and in Reference [32]. The samples differ in their GaN buffer thickness and
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interface layer thickness. The wider sample (Sample W) has a buffer thickness of 700 nm and

an interface layer thickness of 36 nm, whereas the narrower sample (Sample N) has a buffer

thickness of 354 nm and an interface layer thickness of 17 nm, chosen to test the importance of

the diamond substrate being as close as possible to the device channel. Finite element simulation

studies have previously shown than the optimal buffer thickness is a function of the thermal

boundary resistance, although this has not been tested experimentally [240, 241].

4.3.1 Method

The devices studied are 2×50 µm gated HEMTs with an LGD of 7 µm, an LGS of 1 µm, and an LG

of 1.5 µm. The gate has a 1 µm field plate attached which extends to the drain side. Despite there

being two fingers to each device, for the thermal measurements only one finger was operated due

to space limitations in the optical set up.

As micro-Raman thermography is most commonly used for measuring device temperatures,

this was the first technique used to measure the samples. However, the thin buffers led to a

weak Raman signal, and the diamond provided a large luminescence background, making the

signal to noise ratio too poor to provide reliable measurements. Because of this, a combination

of nanoparticle assisted Raman thermography and photoluminescence was used in conjunction

with finite element simulations.

Before the thermal measurements were taken, the electrical characteristics of the devices

were found through IV measurements. The devices were tested by a colleague, Mr Manikant, at

drain voltages between 0 V and 40 V, and gate voltages between 1 V and -4 V, which is sufficient

to pinch off the devices. The tests were performed under DC operation and both stressed and

unstressed pulsed operation using a pulse width of 200 ns and a frequency of 1 kHz. There where

two separate stress conditions, the first had quiescent biases of VDS = 0 V and VGS =−6 V and

the second had quiescent biases of VDS = 40 V and VGS =−6 V. The measurements were analysed

to find the ON-resistance and trapping characteristics of the devices, as well as to provide an

insight into their thermal performance by calculating the thermal droop in the current under

high voltage operation.

The photoluminescence measurements were performed using a 40× focussing objective and
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(a) (b)

FIGURE 4.10. Cross-section at the centre of each device, as modelled in the finite
element simulations. (a) shows the thicker Sample W, which has the 700 nm thick
buffer and 36 nm thick interface layer and (b) shows the thinner Sample N which
has a 354 nm thick buffer and a 17 nm thick interface layer. The red line underneath
the field plate shows the heat deposition area, and the white line in the gate-drain
access region shows the measurement location, over which the temperature is
averaged to provide a comparison to the experimental photoluminescence results.
Also shown is an example of the heat flow in each of the structures. The thinner
sample has a lower thermal resistance and less in-plane heat spreading.

an XYZ translation stage with a minimum step size of 1 µm. The laser spot size, and hence the

lateral resolution of the measurement was approximately 1 µm. The devices were tested at 5 V

increments in the drain voltage, up to a maximum VDS of 30 V, which corresponds to a power

density of approximately 12 W/mm. Due to the presence of the gate field plate, the measurement

was taken 2 µm from the gate edge. As discussed in Section 3.2, the above bandgap laser used

to probe the photoluminescence excites carriers and increases the temperature. Batten et al.

calibrated for this effect by measuring at multiple laser powers and extrapolating to the case of no

laser power [227]. They found that at 4 µW of laser power, the laser induced temperature change

was less than 5 K. On this basis measurements at 4 µW and 40 µW, with a linear extrapolation

to no laser power were performed. For each measurement condition, 3 repeats are made to

estimate the random errors, and integration times of approximately 5 minutes are required. As

with micro-Raman thermography, a reference measurement is performed approximately 300 µm

away from the device to give the thermal resistance between the wafer and the sample holder.

Throughout the measurement process, the environment temperature is kept constant at 22◦C.

The device dimensions were input into a finite element model, shown in Figure 4.10 along with

representative examples of the heat flow in the system. The diamond substrate is 95 µm thick,
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and is split into 5 different layers which allows the model to take into account the improvement

in diamond quality that occurs as growth continues. The thermal conductivities were taken from

Reference [173] and are temperature dependent and anisotropic, representing the diamonds

columnar growth structure. The layers expand away from the growth surface; the first layer is 1

µm thick, the second 4 µm, the third 10 µm, the fourth 20 µm and the fifth and final diamond

layer is 40 µm thick. The temperature on the backside of the diamond was set to replicate the

thermal resistance between sample and the sample holder. The diamond was connected on the

top side to the GaN through a 100 nm thick interface layer whose thermal conductivity was

adjusted to set the TBReff for the system. The GaN was then atop this layer with buffer thickness

adjusted between the two samples and the thermal conductivity set to 160 W/m.K and a T−1.4

temperature dependence as laid out in Section 2.2. The space between the gate, source, and drain

was filled by a passivation layer of thermal conductivity 1 W/m.K as is typical of the amorphous

materials used such as silicon nitride.

The heat was deposited both parallel and adjacent to the gate edge on the drain side in

a 0.75 µm wide area on the GaN surface, underneath the field plate. The temperature was

then averaged over a 1 µm area at the GaN surface, centred 1 µm from the field plate edge

on the drain side. The average temperature in this measurement position was matched to the

photoluminescence measurement by varying the TBReff of the model. Once this was completed

for each power dissipation, a mean TBReff was input into the model and the model was then used

to predict the wafer thermal resistance.

The nanoparticle assisted Raman thermography used anatase nanoparticles drop cast onto

the surface as described in Section 3.1.4. One nanoparticle which had landed on the gate for each

sample had their Raman frequencies measured with the drain voltage varied up to 30 V. The

random error was found by repeating the measurements 5 times, finding the standard error on

the mean and propagating this error through to the final temperature calculation. As the exact

gate structure is not known it is not possible to perform a direct comparison to the finite element

simulations, but the results can still be used to add context.
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FIGURE 4.11. IV characteristics from the thicker sample with 700 nm thick buffer and
36 nm thick interface layer (W) and the thinner sample with the 354 nm thick
buffer and 17 nm thick interface layer (N). Measurements were performed in both
DC and pulsed IV mode with a pulse width of 200 ns and duty cycle of 0.02%. The
pulsed IV measurements were performed unstressed (VG = 0 V, VD = 0 V), under
gate lag stress (VG = −6 V, VD = 0 V), and under both gate and drain lag stress
(VG =−6 V, VD = 40 V).

4.3.2 Results

IV characteristics of devices on both GaN-on-diamond wafers are shown in Figure ??. A discussion

of the IV characteristics of a depletion mode device is given in Section 2.2.4. The thermal effects

most commonly manifest in these measurements as an increase in ON resistance. They can be

seen by comparing the DC operation, where the temperature in the device reaches a steady state,

with the unstressed pulsed operation, where the heat has less time to build up. This heat build

up is quantified by calculating the difference between the maximum and minimum current in the

device whilst it is in the saturation regime, for both the DC and pulsed operation. For Sample W

and Sample N the difference was 8% and 4% respectively suggesting that Sample W has a larger

thermal resistance.

The threshold voltage of the devices is the minimum applied gate voltage which draws a

source to drain current and is found by plotting a straight line through the linear region of a IDS

vs VGS curve and finding its x-axis intercept. For Sample N the applied gate lag stress caused a

97



CHAPTER 4. OPTIMISATION OF GAN-ON-DIAMOND MATERIALS AND DEVICES

(a) (b)

FIGURE 4.12. A summary of the photoluminescence (PL), nanoparticle assisted Raman
thermography (NP Raman), and simulated results in the PL measurement location
and at the peak. (a) shows the results for the wider Sample W (700 nm buffer and
36 nm interface layer) and (b) shows the results for the narrower Sample N (354
nm buffer and 17 nm interface layer). The TBReff of the model is adjusted to get
the best possible match between the simulated and measured photoluminescence
results. The measured nanoparticles are located on the gate, so their temperature
should be similar to the peak temperature.

small positive shift in the threshold voltage of 180 mV, which suggests that negative charges are

being trapped below the gate. The ohmic ON-resistance is found by calculating the gradient of

the IV curve in the linear regime and is an important parameter to consider as it plays a key

role in the overall efficiency of a device. This is unaffected by stress in Sample N, but there is a

significant impact when drain lag stress is applied to Sample W. The ON-resistance increased

by 44% which is attributed to trapping in the device. It is possible that ‘virtual gate’ trapping

occurs in the sample surface; a phenomenon where the applied stress causes carriers to occupy

surface trap states which act as a second gate and depletes carrier concentrations in the 2DEG

[242]. It is also possible that the trapping occurs in the device buffer, and as the trapping is not

seen in Sample N, the region where the trapping occurs may have been removed. A comparison

of the two samples shows there is no significant negative impact from the thinning of the buffer

as there is no change in current collapse and no signs of bulk trapping, despite the fact that the

diamond nucleation is much closer to the channel.

The results from the thermal measurements along with simulated predictions can be seen in
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TABLE 4.3. A summary of the properties found from the photoluminescence measure-
ments and finite element simulations. The narrower Sample N has a substantially
lower TBReff, but its overall thermal resistance is similar to the thicker Sample W.

Sample TBReff (m2K/GW) Thermal Resistance (K/(W/mm))
W 20 ± 3 10.0 ± 0.5
N 12.6 ± 0.4 9 ± 1

Figure 4.12. The measured gate temperature from nanoparticle assisted Raman thermography is

expected to be larger than the photoluminescence measured temperature, but not as high as the

peak simulated temperature, which is consistent with the findings. The results show the tempera-

ture increase due to the thermal resistance of the wafer with the impact of the thermal resistance

between the wafer and the sample holder, found from the reference measurement, removed.

The TBReff, found by fitting the simulation to the experimental data, and thermal resistances,

found by a linear fit of the peak temperatures from the simulation, are summarised in Table

4.3. This TBReff was used to calculate the simulated temperatures for the photoluminescence

measurement and the peak channel temperature seen in Figure 4.12.

It can be noted that the thinner Sample N has the lowest thermal resistance, although the

error boundaries of the measurements overlap. The TBReff of Sample N is lower, which agrees

with the results displayed in Figure 4.4, that a low TBReff can still be achieved when a thin buffer

is implemented. This lower TBReff results in a similar thermal resistance, suggesting that if

the samples had the same TBReff, then a thicker buffer would give a lower thermal resistance.

This corresponds with the simulations performed in the literature which suggest that a TBReff

of approximately 5 m2K/GW is necessary for a lower overall thermal resistance in the thinner

buffer [241].

The finite element simulations of the devices with a 354 nm buffer and a 700 nm are used

to extract the the peak temperature increase for a range of TBReff, shown in Figure 4.13 (a). At

10 W/mm, similar to the power used in this experiment, it suggests that a TBReff as low as 5

m2K/GW would be required to get a lower overall thermal resistance, again similar to results

published elsewhere [241]. However, as power dissipation increases this cross over point shifts to

a higher TBReff, suggesting that thinner buffers will be optimal as power density increases.
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(a)
(b)

FIGURE 4.13. (a) Peak simulated temperature as the TBReff is varied. This is performed
for the two buffer thickness used in this experiment and at the power dissipations
displayed. The TBReff at which the thinner buffer provides a lower overall thermal
resistance increases with temperature. (b) In-plane spreading at the GaN surface
in the centre of the device from source to drain at a power dissipation of 5 W/mm.
Despite similar thermal resistances, the source-drain temperatures are lower

The finite element simulations can also be used to study the in-plane heat spreading of the

system. The results displayed in Figure 4.12 show that the two devices have similar thermal

resistances and hence peak temperatures. The temperature measured by photoluminescence

is lower in the narrower sample, suggesting that there is less in-plane heat spreading. This is

confirmed in Figure 4.13 (b). This graph shows the temperature at the surface of the GaN, in the

centre of the device, from the source to the drain. The peak temperatures at the gate edge are

similar because of the similar thermal resistances, but there is a more pronounced difference

in the gate-drain access region. The electrical characteristics of a device is impacted by the

temperature throughout the channel, meaning that a narrower temperature profile will have

less of a negative impact than a broader one with the same peak temperature. This is a possible

explanation for the difference in thermal droop seen in Figure ??.
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4.4 Summary

The work in this chapter studied the thermal properties of GaN-on-diamond systems for high

power density HEMT applications. It focusses on the use of polycrystalline diamond as a heat

spreading substrate. A variety of wafers and dies have their TBReff measured using TTR. An

analysis of buffer and interface layer thicknesses show that there is no clear correlation between

these parameters and the TBReff in these samples. Although it was previously shown that TBReff

is proportional to interface layer thickness, this work suggests optimisation of the growth and

seeding conditions is of key importance. TTR was also used to compare samples of two different

seed sizes, 30 nm and 100 nm. It was found that larger seeds gave a larger TBReff, as although

they may lead to larger grains in the diamond, the lower seeding density led to cracks and voids

forming at the interface.

The impact of one of these voids was studied and was linked to the spatial resolution of the

TTR technique. The measurements showed that the distance between the measurement location

and a 2 µm void had no impact on the measured TBReff, suggesting that the measurement

averages over an area much larger than the defect size. This was confirmed by the use of

finite element simulations that showed, irrespective of defect height, the TTR curve remained

indistinguishable within the measurement capabilities.

Nanoparticle assisted Raman thermography was then used to measure the thermal conduc-

tivity of thin diamond films. These were found to have standard deviations of approximately 3%

across wafers. It was found that using 40 nm seeds provided an increased thermal conductivity

over 4 nm seeds. When correlated with the earlier TTR study this suggests that there is an

optimal seed size which would provide a higher thermal conductivity diamond nucleation layer,

as well as a higher quality interface. Again it was found that growth conditions can play a key

part in the material quality, with conditions which promote renucleation causing lower thermal

conductivities.

Devices fabricated on GaN-on-diamond material were then studied. The variable of note

between the two samples was the thickness of the buffer and interface layers. The work presented

in this chapter suggests that low TBReff material can be produced with thinner layers and this
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was the case with these devices. However, it was necessary for the narrower sample to have a

lower TBReff than the wider sample for the wafers to have similar thermal resistances. This

is because, as was shown with simulation, thinner buffer layers have a negative impact on

thermal resistance above a certain TBReff, which is proportional to the power dissipation. This

suggests that as TBReff values improve and power densities increase, thinner buffers will become

beneficial. They were also shown to have the added benefit of reduced in-plane heat spreading

which resulted in lower temperatures in the gate-drain access region, which could reduce thermal

increases in resistance, improving device efficiency.
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5
THERMAL TRANSPORT IN SUPERLATTICE CASTELLATED FETS

The SuperLattice Castellated Field Effect Transistor (SLCFET) is a novel RF switch designed by

Howell et al. at Northrop Grumman Mission Systems [243]. The design was developed to improve

on current FET and MEMS based RF switch technologies. The most commonly used figure of

merit for RF switches is the cutoff frequency fCO, which is the frequency that corresponds to a

matched OFF and ON impedance, and above which insertion losses become too large. The cutoff

frequency can be derived as

fCO = (2π×COFF ×RON )−1 (5.1)

where COFF is the OFF capacitance and RON is the ON resistance [243]. Hence switch perfor-

mance can be enhanced by minimising either or both of the COFF and RON . With respect to

this figure of merit, RF MEMS surpass their solid state transistor counterparts due to the low

COFF achievable [244, 245]. However in terms of reliability, it is solid state components that are

superior, and this is what makes SLCFETs so advantageous; they combine MEMS performance

with solid state reliability.

To achieve improved performance, it is not possible to simply optimise the dimensions of a

standard HEMT since to a first approximation

COFF ∝ 1
d

, (5.2)
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and

RON ∝ d, (5.3)

where d is the gate width. This means that any change to the device layout that may reduce RON

will cause an increase in COFF and vice versa. However, as the OFF capacitance is dominated by

fringing fields, there is freedom to exploit how the channel is designed. Multiple channels, and

hence 2DEGs, can be stacked on top of each other to make a quasi-three-dimensional electron gas

without adversely impacting the COFF . This was first performed in GaAs by Sheng et al. in 1985,

with a schematic diagram shown in Figure 5.1 (b), although the devices fabricated could not be

pinched off as the 2DEGs higher in the superlattice screen the lower ones from the applied gate

field resulting in an unfeasibly high threshold voltage (VTH) [246]. The authors noted however

that as more channels are incorporated into the device, the mobility, µe, and carrier concentration,

n, increase. Hence, as the conductivity, σ, is given by

σ= nµee (5.4)

where e is the electron charge, the ON resistance decreases as more channels are added.

The SLCFET looks to exploit this principle [243]. It employs a GaN/AlGaN superlattice

with either 6 or 10 2DEGs formed on an AlGaN buffer and a SiC substrate. As is typical in

GaN-on-SiC structures, there is an AlN interface layer between the buffer and substrate. To

get around the issue of the extremely high VTH , a three-dimensional gate which rises and falls

periodically and wraps around the sides of the channel is utilised, as shown in Figure 5.1 (c). This

allows the applied electric field from the gate to impinge on the 2DEGs from the side and from

above, reducing the VTH to a manageable level. Measurements taken by Northrop Grumman

and reported in References [243, 247] show that RON drops from 1.1 Ω.mm in a single channel

device to 0.38 Ω.mm in a 6 channel device and 0.28 Ω.mm in a 10 channel device, a change of

65% and 75% respectively. As COFF changed by less than 10%, the cutoff frequency of SLCFETs

increased from 0.7 THz to 2.0 THz in 6 channel devices and 2.8 THz in 10 channel devices. As

seen in Figure 5.2 (a) this value is twice as high as previously reported cutoff frequencies in solid

state devices. The castellated gate kept VTH <−8 V.
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(a) Traditional HEMT (b) Superlattice HEMT (c) SLCFET

FIGURE 5.1. A comparison between how a channel is pinched off in a traditional HEMT
(a), a superlattice HEMT (b), and a SLCFET (c). The diagrams show the gate in
each device structure, looking from source to drain. The red arrows represent the
electric field lines which occur when a bias is applied to the gate, and the black
lines represent the 2DEGs. For simplicity the insulator isolating the 2DEGs from
the gate is not shown. In the traditional HEMT a single 2DEG forms below the
AlGaN barrier and is pinched off by the gate. In the superlattice HEMT multiple
2DEGs form in the superlattice, but the lower 2DEGs cannot be pinched off as the
the upper ones screen the electric field from the gate. The SLCFET counters this
problem with its 3D gate allowing the lower 2DEGs to be pinched off from the side.

(a) (b)

FIGURE 5.2. (a) A comparison of the cutoff frequency of various FET based RF switches
showing the enhancement achieved by the the SLCFET design. Image originally
published in Reference [247]. (b) A DC IV curve for a 6 channel HEMT originally
published in Reference [243]. The device can be seen to pinch off at VGS = −8 V.
Reprinted with permission from the IEEE.
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A schematic diagram of a SLCFET, along with a SEM image, is shown in Figure 5.3. The

devices measured in this work are 6 channel, 2×67.5 µm SLCFETs with a gate width of 250 nm.

The dimensions of the castellations are varied across different sample sets, but the repeating

castellation unit is less than 160 nm long, meaning the devices consist of approximately 1000

castellations. The device layers are grown via MOCVD. The castellated gate is created in the

superlattice using an electron beam lithography-written mask and a dry etch. A gate dielectric is

then added to the top and side walls of the castellations. The gold gate contact is then deposited

on top of this structure. The devices are symmetrical, meaning that LGD = LSG = 1 µm.

When the device is operated as a switch, the power dissipated in the devices is relatively

low. However the SLCFET could also be used as an RF amplifier, in which case the power

dissipation will be greatly increased. From a thermal perspective, the SLCFET is unique due

to the nanometre scale features in the gate causing the dissipated power to be focussed into

sections along the gate. This means it is important to understand how the heat flows around

these castellations, and whether or not they cause an increase in channel temperatures that may

in turn cause reduced efficiency or accelerated breakdown. In this chapter the temperature of

these SLCFETs is studied using micro-Raman thermography. The results are used to develop

a finite element model of the device, which is then compared to gate resistance thermometry

(GRT) measurements taken by a colleague, Dr Dalcanale. The finite element model is then used

to explore how heat flows in the system and to test possible design changes which will improve

device thermal performance.

5.1 Method

A finite element simulation of the system was developed to aid understanding of the heat flow

and to allow extrapolation from the temperature measurements to the channel temperatures, TC.

The first step was to develop a model of a single castellation. This castellation was then repeated

several times to get a more realistic representation of a device. However the small feature sizes

require many small mesh elements, making it computationally too intensive to create an entire

device through this method. Instead, a simplified model which featured a continuous gate on top
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(a)
(b)

(c) (d)

FIGURE 5.3. (a) A schematic diagram of a SLCFET showing the castellations. (b) A
zoomed view of the castellations along the white dashed line in (a). The red line
represents the gate dielectric. (c) A separate slice view along the black dashed line
in (a). (d) A SEM micrograph of a SLCFET gate, originally published in References
[243, 247].
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of a continuous superlattice was also created and adjoined to the castellations to approximate the

whole device. The castellated and simplified areas of the model are shown in Figure 5.4 (a). One

quarter of the device was simulated with insulating boundary conditions along the symmetry

planes to replicate an entire device.

The castellations were simulated at the centre of a gate finger with the number of castellations

varied to find the fewest for which the temperature at the centre of the device converged, making

sure the impact of the simplified area is minimised. This was determined to be 20 castellations.

The heat was deposited in the superlattice between the source and drain. To mimic the fact that

power dissipation is higher under the gate, the heat generation was separated into 2 regions with

different levels of power dissipation, demonstrated in the inset of Figure 5.4 (b). A 3D T-CAD

electrical simulation generated by Dr Dalcanale using Silvaco ATLAS software was used to find

the electric field profile in a 6 channel SLCFET from source to drain. Due to the high number of

assumptions and the lack of a calibration measurement, only the ratio between the electric field

under the gate (E1) and the electric field in the access region (E2) could be determined. As power

density PD is given by

PD = j ·E (5.5)

where E is the electric field and j is the current density, the ratio of electric fields under the gate

and in the access region could be used to determine the relative power dissipated in these areas,

as it can be assumed that the current density is constant.

The thermal conductivities of the SiC substrate (320 W/m.K), superlattice (11 W/m.K) and

gold contacts 300 (W/m.K) were taken from literature [90, 248]. However the thermal conductivity

of AlGaN is less well defined. Simulations of AlxGa1−xN thermal conductivity were performed by

Liu and Balandin for aluminium concentrations 0 < x < 1 in steps of 0.1, with the results shown

in Figure 5.5 (a). In the intermediatary region where 0.2 < x < 0.8, the thermal conductivity is

relatively constant, if low at approximately 30 W/m.K. However, at both extremes of aluminium

concentration there is a sharp change in the thermal conductivity, with x = 0.1 giving a room

temperature thermal conductivity of approximately 40 W/m.K, which is a quarter of the GaN

thermal conductivity. As there are no measurements with smaller increments in the aluminium

concentration a thermal conductivity value cannot be assigned to the AlGaN layer in the finite
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(a)
(b)

FIGURE 5.4. (a) The centre of the simulated device showing both the castellated and
the simplified area. In the castellated area, the superlattice is etched periodically
and the gate fills the voids and hence the power density is higher. In the simplified
region the superlattice is continuous and the gate sits atop it. (b) The ratio of
electric field in the castellations (E1) and in the access region (E2), as found by the
T-CAD electrical simulation. Inset is the location where the different electric fields,
and hence power dissipations, are applied in the model.

element simulation, meaning this and the thermal boundary resistance between the AlGaN

buffer and the SiC substrate must be determined experimentally. This was done by assigning a

variable buffer thermal conductivity and thermal boundary resistance in the finite element model,

and adjusting these variables until the finite element calculated temperature fit the micro-Raman

thermography measurements. However, because the thermal conductivity and thermal boundary

resistance cannot be decoupled, a mean thermal conductivity must be found for both layers. A later

work by Liu and Balandin studied the temperature dependence of the thermal conductivity and

the results are shown in Figure 5.5 (b) [45]. Based on these measurements, the AlGaN thermal

conductivity in the finite element simulations was approximated as temperature independent at

room temperature and above. This is likely because the alloying provides the dominant source

of phonon scattering which is temperature independent, so the impact of umklapp scattering,

which is temperature dependent, is less pronounced.

The micro-Raman thermography measurements performed in this work followed the proce-
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(a)
(b)

FIGURE 5.5. (a) Measurements and simulated predictions of the thermal conductivity of
AlxGa1−xN at varying x. Image adapted from Liu and Balandin [249]. (b) Tempera-
ture dependence of the thermal conductivity of AlGaN films. Aluminium alloying
greatly reduces the temperature dependence as alloy scattering, rather than umk-
lapp scattering, is now the dominant form of phonon scattering. Image adapted
from Liu and Balandin [45]. Reprinted with permission from AIP Publishing.

dure described in Section 3.1. The 488 nm laser line of an argon ion source was used with a 50×
objective that has a numerical aperture of 0.6 making the spatial resolution ≈ 0.4µm. This was

focussed on the device surface in the centre of the gate-drain access region as shown in Figure 5.6.

The temperature dependence of the AlGaN Eh
2 peak is used for the temperature determinations

with the empirical constants in Equation 3.10, A = 19.1 cm−1, B = 1.2, and C = 568.5 cm−1. These

values were taken from a calibration performed by Dr Pomeroy, which was then used in the mea-

surement of the thermal performance of GaN-on-SiC HEMTs [213]. A measurement of the sample

temperature approximately 300 µm from the device is taken at maximum power dissipation.

This is used to estimate the thermal resistance between the sample and its holder RSH which

can then be incorporated into the model. The temperature caused by this thermal resistance is

then subtracted from the simulated temperatures in the device, allowing a determination of the

thermal resistance of just the sample, RTh.

As can be seen in Figure 5.6 (b), the A1(LO) peak appears significantly broadened in these

samples. This means it cannot be used for temperature, stress or electric field measurements
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as the precision is reduced such that the frequency shift cannot be properly distinguished. The

reason for this change in peak shape is phonon-plasmon coupling. As discussed in Section 3.1, the

Al(LO) mode is polarised; it is an oscillation along the c-axis that creates a dipole. As it creates a

dipole it has an associated electric field which can interact with plasmons, where plasmons are

quasiparticles which represent quantised free carrier oscillation. In a typical, undoped, crystal

there will not be enough free carriers for the phonon mode to couple to, coupling is however seen

when free carriers are introduced, such as when GaN is doped with 1.5×1017 cm−3 of silicon [250].

When there is sufficient coupling the A1(LO) mode broadens and red shifts, and two Longitudinal

Phonon-Plasmon (LPP) coupled modes appear in the spectra [251]. This effect is not typically

seen in GaN HEMTs with a single AlGaN/GaN heterostructure, and as the SLCFETs studied in

this work are nominally undoped, the implication is that the superlattice channel results in more

free carriers. As the strength of the phonon-plasmon interaction is dependent on the free carrier

concentration, it is possible to use the red shift in the A1(LO) peak to predict the carrier density

in the superlattice channel, if it is assumed that there are negligible free carriers in the buffer

[252].

GRT is a complementary technique which uses the temperature dependence of the electrical

resistance of metals to measure the temperature of the gate [253]. The technique uses a specially

designed device structure shown in Figure 5.7 (a). In addition to the source, drain, and gate

contacts there are four additional contacts; two at each end of the gate finger. These are used

to force a current of less than 10 µA and measure the voltage. Similar to the diamond thin film

thermal conductivity measurements made in Section 4.2, by having contact pads specifically

available for measuring the voltage, the resistance of other components in series with the current

supply are not measured and only the gate metal is tested. The temperature dependence of the

resistance was calibrated using a temperature controlled stage. The measurements and initial

temperature calculations were performed by a colleague so will just be reported here.

The temperatures measured with this technique cannot be used to directly determine the

thermal resistance of a device. It can be seen in Figure 5.7 (a) that the gate extends beyond

the active area, meaning the measured gate temperature TGM will be significantly lower than

the peak gate temperature TGP , which in turn will be lower than the channel temperature TC
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(a)

(b)

FIGURE 5.6. (a) A schematic diagram of the area measured in micro-Raman thermogra-
phy looking along the gate finger. (b) An example of Raman spectra collected at
two separate drain biases.

because of the dielectric layer separating the channel from the gate. Hence it is necessary to

use the finite element simulations to move from TGM to a thermal resistance calculation, as

demonstrated in Figure 5.7. However there are challenges associated with this. The complex

gate structure means that it is not possible to model an entire gate finger with castellations.

Therefore the simplified model with no castellations and a continuous gate was used as an

approximation to find a relationship between TGM and TGP . Figure 5.7 (b) shows the effective

GRT measurement result, which averages the temperature along the entirety of the gate to give

a constant temperature both in and out of the active area.

Due to the sample layout, it was not possible to measure the sample-holder interface thermal

resistance RSH , and it could not be assumed to be the same as in the case of the micro-Raman

thermography experiments as the experimental set up and sample geometry were different. The

finite element model could be used to produce temperature distributions along the gate, as shown

in Figure 5.7 (b). The RSH was varied and optimised in the finite element simulation until the

integrated area under the gate profile divided by the gate length, is equal to TGM and the model
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(a)

(b)

FIGURE 5.7. (a) A schematic of the GRT test structures which contains four extra
contact pads. The pads labelled I are used to force the current, whereas the pads
labelled V are used to measure the voltage, and hence resistance. The purple lines
indicate where the resistance is measured. (b) Simulated temperature profile of
the gate in blue. The purple line shows the averaged temperature as would be
measured by GRT. In this case the integrated areas of the curve are the same,
suggesting the simulation matches the experiment.

can be said to match the experiment. The simulated gate temperature profile was found to be

independent of RSH and so the relationship between peak gate temperature and GRT measured

temperature was found as

∆TGP = 1.11∆TGM −0.11∆TGE (5.6)

where ∆TGE is the temperature at the end of the gate finger, and all the temperatures are relative

to the chip temperature. Once this is applied, TGP is known. It is then possible to vary RSH in

the castellated model to make this match the experimental TGP and then predict TC, and hence

RTh.

5.2 Results

The position of the A1(LO) peak in the Raman spectra is found to be 745±2 cm−1, with the

error bars found as the standard error on the mean of a sample of 16 spectra. By fitting a linear

curve to the data displayed in Reference [109] this could be converted to a carrier density of
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(a)

FIGURE 5.8. Data from Huang et al., showing the correlation between the A1(LO) peak
position and the carrier concentration in GaN. A linear fit is performed, and the
resulting equation used to predict the carrier concentration in SLCFETs.

1.2±0.2×1019 cm−3. It is worth noting that this is an extrapolation, as the data reported in

Reference [252] and displayed in Figure 5.8 is for A1(LO) peak positions between 735 cm−1 and

739 cm−1. The determined carrier density can be achieved through silicon doping, where values

as high as 1021 cm−3 have been reported by Arakawa et al. [254]. However when carrier densities

over 1019cm−3 are induced by doping, the authors found that the mobility is severely decreased to

lower than 200 cm2V−1s−1 because of scattering from the donor ions [254]. As discussed in Section

2.2.4, the 2DEG is not induced by dopants, and its confinement means it is spatially separated

from lattice defects, meaning the mobility stays high in SLCFETs. This corresponds with what

was reported by Sheng et al. who found mobility enhancements in superlattices, showing that

they are an attractive route for low resistance, high carrier concentration GaN [246].

The micro-Raman thermography measured temperatures, the simulated average temperature
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in the measurement location, and the simulated peak channel temperature ∆TC are displayed

in Figure 5.9 (a). As with all temperatures displayed in this section they are a temperature

increase with respect to the chip temperature, such that RSH can be disregarded. In the case of

the Raman measurements this was measured and subtracted from the temperatures shown. The

mean thermal conductivity of the AlGaN buffer and the interface layer (κB+I ) which gave the best

match to the micro-Raman thermography measurement was found to be 46.3 W/m.K. Assuming

that the buffer and interface layer act as two thermal resistors in series, the thermal resistance

of the two layers is simply the sum of the two layers. Noting that the thermal resistance R is

given by

R = d
κ

(5.7)

where d is the material thickness and κ is the thermal conductivity, it follows that

dB+I

κB+I
= dB

κB
+ dI

κI
(5.8)

where the subscripts B and I refer to the properties of the buffer and interface respectively. The

last term in this relationship is the thermal boundary resistance (TBR) between the buffer and the

substrate. There are an infinite number of buffer thermal conductivities and thermal boundary

resistances which satisfy this relationship with a range shown in Figure 5.9 (b), but based on what

can be reasonably expected, a range of possible AlGaN buffer thermal conductivities and TBR’s

can be suggested. Manoi et al. reported that the TBR of a GaN-on-SiC system could be between

5-60 m2K/GW, so this cannot be used to narrow down the potential values [255]. However, in

spite of the lack of relevant data points, based on the AlGaN thermal conductivities reported

by Liu and Balandin and shown in Figure 5.5 it can be predicted that the thermal conductivity

of the AlGaN buffer in these SLCFETs is in the range of 60-85 W/m.K. These boundaries are

marked on Figure 5.9 (b), and are found to correspond to a TBR of ≈ 16±4 m2K/GW.

It can be seen in Figure 5.9 (a) that the simulated peak temperature is not linear with respect

to power density. This is caused by the temperature dependence of the thermal conductivity of

some materials. However the effect is weak as, in the finite element model, the temperature

dependence of the superlattice, AlGaN buffer, TBR, and metal contact thermal conductivities are

all approximated as constant. The GRT measured temperature ∆TGM , the peak gate temperature
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(a) (b)

FIGURE 5.9. (a) Results of micro-Raman thermography measurements along with
simulated temperatures in the micro-Raman measurement position and the peak
simulated temperatures. (b) The blue line represents the buffer thermal conductivi-
ties and TBR’s which could match the simulated results. The red lines indicate the
area of most likely values, based on the AlGaN thermal conductivity predictions
made in Reference [45].

∆TGP found from applying Equation 5.6 and the simulated channel temperatures ∆TC are shown

in Figure 5.10 (a). The buffer and interface mean thermal conductivity of 46.3 W/m.K found from

the Raman measurement was used in the simulation, but as it was not possible to measure RSH

this was adjusted in the model until the simulated ∆TGP matched the experimentally determined

values. The chip temperature was then subtracted from all measured and simulated temperatures

to give the result shown. The same non-linearity in ∆TC with respect to power density can be

seen here. The calculated ∆TC from both Raman and GRT are shown in Figure 5.10 (b). Typically,

a linear fit is performed to determine the thermal resistance RTh and this yielded a result of 19.1

± 0.7 K/(W/mm). However when trying to predict temperatures experienced at certain power

densities a 2nd order polynomial fit proves more accurate. Both the linear and polynomial fits

are forced through the origin as there should be no temperature rise when the device is not being

operated.
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(a) (b)

FIGURE 5.10. (a) Measured and simulated gate temperatures along with predicted
peak temperatures. (b) Predicted peak temperatures at the power densities studied
in the GRT and Raman measurements. A linear fit is performed to find RTh and a
quadratic fit is also performed with parameters shown.

5.3 Discussion

The measured thermal resistance for the device of 19.1 ± 0.7 K/(W/mm) is higher than thermal

resistances of GaN-on-SiC wafers with 2×100 µm gate finger device structures measured over

the same power dissipation range, which have had thermal resistances reported in the literature

as low as 14 K/(W/mm) for a TBR of 17 m2K/GW [36]. However it is not possible to say that

the SLCFET gate design is culpable for the higher thermal resistance as the areal power

density is higher in the SLCFET and the SLCFET utilises an AlGaN buffer. The mean thermal

conductivity of the buffer and interface was 46.3 W/m.K which, when a typical TBR of 16 m2K/GW

is considered, corresponds to a buffer thermal conductivity of 72 W/m.K; this is less than half the

thermal conductivity of GaN. The thermal resistance of AlGaN-on-SiC devices was measured by

Kabouche et al. and found to be 17.5 m2K/GW, although these devices used a buffer with an 8%

aluminium content suggesting the thermal resistance of the buffer will be higher, and the TBR

was not measured or estimated [256].

All of the simulations used to provide the thermal resistance calculations rely on optimised

parameters, including the buffer and interface thermal conductivity in the case of micro-Raman
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thermography and the sample-holder thermal resistance RSH in the case of the GRT measure-

ments. The simplest way to achieve a free-parameterless simulation would be to use micro-Raman

thermography to calibrate the buffer and interface thermal conductivities, and use an adjusted

form of the GRT measurement where RSH can be measured simultaneously. This was attempted

through integrating the GRT measurement set up with the micro-Raman thermography, but

was not successful as the optical equipment is secured in place, and there is insufficient space to

introduce the 7 probe micropositioners required to bias the device and measure the resistance

of the gate. Instead an attempt was made to wire bond the device to a package which could

be interfaced easily with the power supply and source-measurement unit, however the contact

pads were too small for the wire-bonding equipment available, so this also failed. To measure

RSH in the future, a device design with larger contact pads would allow wire-bonding and hence

integration with the optical equipment. Alternatively, if a resistor structure was fabricated near

the GRT structure, the temperature dependence of the resistor could be calibrated and be used to

measure the chip temperature.

To judge the impact of the buffer thermal conductivity on thermal resistance it was varied

in the finite element simulation with the TBR kept at 16 m2K/GW. It was found that utilising

a GaN buffer could reduce ∆TC by 25◦C at 5.7 W/mm power dissipation, lowering the thermal

resistance to 16.7 K/(W/mm) from 21 K/(W/mm). However the aluminium alloying adds electrical

benefits to the device. As discussed in Chapter 1, wider bandgaps are desireable as they allow

higher temperature operation, and can allow higher voltage operation as the breakdown field is

proportional to the bandgap to the power of 2.5. Alloying GaN with aluminium is an effective

means of increasing the bandgap and hence the breakdown voltage, whilst maintaining many of

the benefits of a GaN HEMT, so for device applications this may continue to be a requirement.

An alternative for improving the RTh is replacing the SiC substrate with a diamond substrate,

which was shown in Section 4.3 to produce low thermal resistance devices. In devices with

GaN buffers, replacing a SiC substrate with a diamond substrate has been shown to reduce

the thermal resistance from 14 K/(W/mm) to 10 K/(W/mm) [36]. However the impact is lower in

the SLCFETs studied here due to the large thermal resistance of the AlGaN buffer which sits

between the channel and substrate; the thermal resistance was reduced to just 17.5 K/(W/mm)
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when a diamond substrate with a constant thermal conductivity of 1500 W/m.K was used in place

of the SiC. This approximation of a diamond substrate was used instead of the more detailed

layer structure described in Section 4.3 due to constraints on the computational performance

available.

A summary of how changes to the device impact the heat profile in the device is shown in

Figure 5.11 (a), which shows the temperature in each layer of the epitaxy at 5.7 W/mm of power

dissipation. In this Figure, a steep temperature gradient represents a layer with a large thermal

resistivity. As per Equation 5.7, it is this gradient combined with the thickness of the layer that

defines its thermal resistance. When comparing the standard SLCFET configuration with that

of a SLCFET with a GaN buffer, it can be seen that the temperature at the buffer-substrate

interface is the same. However the gradient in the GaN buffer is lower, which is why this

configuration has a lower peak temperature. Similarly, the temperature gradient in the diamond

substrate is significantly lower than that of the SiC substrates, meaning the temperature at the

interface of an AlGaN-Diamond system is lower than in an AlGaN-SiC or GaN-SiC system. This

results in the temperatures of the layers above the substrate effectively being translated down,

without changing the temperature gradient in the AlGaN buffer, and so the reduction in the peak

temperature is limited. The temperature at the bottom of the substrate will be lower which eases

the heat extraction burden on the packaging. The switch to a GaN buffer results in lower peak

temperatures, although the temperature at the back of the substrate is the same as when an

AlGaN buffer is used, meaning it does not give this added benefit.

It could be expected that the castellations would localise the power density and result in

higher peak temperatures and accelerated device degradation. However as discussed above, the

thermal resistance of the devices is similar to reported literature values for devices with 2D

gates, and any differences can likely be explained by the different wafer epitaxies. To understand

this, the finite element model was used to analyse the heat flux through the device. For the case

of maximum power dissipation (5.7 W/mm) the heat flux in a castellation is shown in Figure

5.11 (b). For the heat to be extracted from the wafer it must spread vertically through the buffer

and substrate to the heat sink. The gold gate contact plays an important role in the initial

heat spreading, pulling the heat laterally before it spreads vertically through the buffer. This is
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(a)

(b)

FIGURE 5.11. (a) Finite element simulations of the temperature profile through the
epilayers of a SLCFET at the centre of the device. A comparison is made between
the standard device structure, a device with a GaN buffer instead of an AlGaN
buffer, and a device with a diamond substrate instead of a SiC substrate. (b) Heat
flux in a single castellation (looking from source to drain) found through finite
element simulations. It can be seen that the heat flux is significantly higher though
the base of the gate than through the base of the channel.

evidenced in Figure 5.11 (b), and it is found that there is twice as much heat flow through the

gate-buffer interface as there is through the channel-buffer interface. The importance of the gate

is highlighted when the gold is replaced with a superlattice. In this case, with the 5.7 W/mm of

power dissipation located in the previously described regions, RTh increases to 23.5 K/(W/mm), a

12% increase. The impact of the gate metal on heat spreading is further shown in Figure 5.12.

This image shows the temperature distribution at VD = 1 V, PD = 1.3 W/mm. From Figure 5.4

(b) it can be seen that the power density is 1.5× higher under the gate than in the access region

at this drain voltage. In spite of this higher power density, Figure 5.12 shows that the peak

temperatures actually occur in the access regions rather than under the gate. This highlights the

fact that the gate aids heat flow, acting as a low resistance heat pipe into the buffer.

The thermal resistance of a SLCFET can be improved by maximising this heat-piping effect

provided by the gold gate. Currently the lateral heat flow is inhibited by the presence of the gate
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FIGURE 5.12. Finite element simulation of the temperature profile between the source
and drain in a SLCFET. At VD = 1 V the electric field is 1.5× higher under the
gate than in the channel. However the point of highest temperature occurs in the
access region, as the high thermal conductivity gold gate aids heat spreading in its
vicinity.

dielectric. This amorphous material gives an effective thermal boundary resistance (TBReff-GD)

of 15 m2K/GW. As a result, the temperature in the channel is 21◦C hotter than the gate at 5.7

W/mm of power dissipation. If the thickness is reduced to one third, and hence the TBReff-GD

is reduced to 5 m2K/GW, then the channel is only 10◦C hotter than the gate, and the thermal

resistance of the SLCFET is reduced to 17.2 K/(W/mm). This reduced RTh occurs as more heat

can flow through the gold gate contact with 3 times as much heat flowing through the base of the

gate as through the base of the channel, increased from 2 times as much heat flow when the gate

dielectric is thicker.

5.4 Summary

Superlattice castellated field effect transistors are a promising technology for broadband, low

loss, high reliability RF switches. The superlattice channel reduces the ON resistance whilst not
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impacting the OFF capacitance, resulting in an improved cutoff frequency as cutoff frequency is

proportional to on resistance. The 3D castellated gate is necessary to lower the threshold voltage

but is also found to impact the heat flow in the device.

Micro-Raman thermography measurements were used to determine the temperature in

the device buffer, which was then used to calibrate the buffer and interface layer thermal

conductivities in a finite element simulation of the device. The gate temperature was measured

using gate resistance thermometry. The finite element model was then used to extrapolate from

these measurements and predict the channel temperatures. From these channel temperatures

the device thermal resistance was found to be 19.1 K/(W/mm) for power dissipations up to 5.7

W/mm. This is higher than the thermal resistances found for GaN-on-SiC but the majority of

this difference can be attributed to the AlGaN buffer, which has a lower thermal conductivity

than a GaN buffer [36]. The measured thermal resistance is closer to that of GaN HEMTs which

have an AlGaN back barrier, implying the SLCFET gate design has a low impact on the thermal

resistance.

The reasons behind this were investigated using the thermal finite element model. It was

found that heat flows primarily through the high thermal conductivity gate contact which acts

as a heat pipe into the buffer. Without this high thermal conductivity material, the thermal

resistance was found to increase by 12%. Methods for improving the thermal performance of

the devices were investigated. The heat piping effect can be increased by thinning of the gate

dielectric. The largest improvement came from replacing the AlGaN buffer with a GaN buffer,

which reduced the thermal resistance at 5.7 W/mm to 16.7 K/(W/mm). Replacing the SiC substrate

with a diamond substrate was found to have a similar impact, although it was not as large as

seen in GaN devices due to the thermal resistance of the AlGaN buffer.
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6
ULTRA-WIDE BANDGAP MATERIALS FOR HIGH PERFORMANCE

DEVICES

T
he work presented in this chapter was undertaken to further our understanding of

materials which may form the future of high performance electronics, in particular

β−Ga2O3 and AlGaN. Relative to GaN, research into these materials is immature,

meaning device structures are yet to be optimised and some fundamental properties are yet to be

explored. The effect of a materials bandgap on the electrical properties of devices was discussed

in detail in Chapter 2. A wider bandgap gives less thermal noise and allows higher voltage

operation, which improves efficiency and allows smaller device architectures. The importance

of having a wide bandgap is highlighted when figures of merits are considered. Some common

examples are the Lateral Baliga Figure Of Merit (LBFOM) which was derived for power devices

LBFOM∝µE2
b, (6.1)

the Johnson’s Figure Of Merit (JFOM) which was derived for RF devices

JFOM=
(

Ebvs

2π

)2
, (6.2)

and the Combined Figure Of Merit (CFOM) which attempts to provide a generic view of a

material’s electronic properties

CFOM= κεµvsE2
b. (6.3)
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In these figures of merit κ is the thermal conductivity, ε is the dielectric constant, µ is the carrier

mobility, vs is the carrier saturation velocity, and Eb is the breakdown field [257, 258]. The

breakdown field is a dominant term in each of these figures of merits, and

EB ∝ (EG)2.5 (6.4)

where EG is the bandgap, stressing the benefit of a wider bandgap [15].

The most mature UWBG materials being studied include, diamond, AlGaN, and β−Ga2O3.

Diamond has a significantly higher thermal conductivtiy than GaN and SiC, but the opposite

is true for AlGaN and β−Ga2O3. The thermal conductivity of AlGaN was discussed in Chapter

5, where it was found that low alloying of aluminium in a GaN buffer possibly reduced its

thermal conductivity by half. Liu and Balandin showed that, for between 10% and 90% alloying

concentration, the thermal conductivity was approximately 25 W/m.K at room temperature, which

is 16% and 10% of the thermal conductivity of unalloyed GaN and AlN respectively [249]. This

severe decrease is due to phonon scattering at the alloying atoms. The thermal conductivity was

also found to have minimal temperature dependence as umklapp scattering is not the dominant

scattering mechanism [45]. β−Ga2O3 has an inherently low thermal conductivity due to a large

probability of umklapp scattering which was shown through Equation 2.26 to be due to the low

phonon velocity and Debye temperature in β−Ga2O3 [46]. There are conflicting reports of the

thermal conductivity in the literature, with variation in measured and calculated values, but

the consensus places the maximum thermal conductivity along the [010] direction between 22

and 27 W/m.K, whilst the minimum appears to be along the [100] direction between 11 and 16

W/m.K [46, 197]. There is a T−x temperature dependence with x between 1.1 and 1.4 [197].

These low thermal conductivities make device design in β−Ga2O3 and AlGaN particularly

challenging. Whilst an UWBG may allow higher electric fields to be sustained, this will lead

to higher power densities and hence temperatures if the heat cannot be efficiently extracted.

This chapter first studies how phonons decay in β−Ga2O3 crystals by analysing the tempera-

ture dependence of the phonon lifetimes. Temperature measurements performed on β−Ga2O3

MOSFETs are then discussed, which highlight the need for effective thermal management. Fi-

nite element simulations are then used to explore possible solutions to the thermal challenges
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presented by these UWBG materials.

6.1 Phonon lifetimes and decay mechanisms in β−Ga2O3

Study of the decay mechanisms of phonons in semiconductor crystals is important for the

understanding of how ‘hot electrons’ relax in devices. Hot electrons is a name given to those

electrons with sufficiently high kinetic energy to overcome potential barriers in devices. They

are particularly prevelant in RF devices due to the fast switching speeds and can degrade device

performance through trapping in defect states not typically reachable for standard electrons or

by increasing leakage through dielectric layers [100]. Most commonly, hot electrons relax through

interactions with phonons. For the electrons to thermalise with their surroundings they must

emit phonons at rate Ge. Then for the system to be in equilibrium, the rate of change of the

phonon population is

dnp

dt
=Ge −

np −np−0

τp
= 0 (6.5)

where np is the phonon population np−0 is the equilibrium phonon population, and τp is the

phonon lifetime [259]. Hence the hot electron relaxation rate is dependent on the phonon relax-

ation rate, making this parameter important for optimising device design. If the relaxation time

is longer, the electron relaxtion rate Ge will be lower, which will increase hot electron related

degradation effects.

Because of the role phonon lifetimes play in hot carrier relaxation they have been measured

and predicted in a wide range of semiconductors. The first recorded measurements of phonon

lifetimes were performed by analysing the linewidth of Raman modes in silicon and germanium

with results of 15 ps and 13 ps respectively [260]. A similar technique found much shorter

lifetimes in GaAs with values between 0.6 and 1.3 ps, although a separate experiment which used

a laser to excite the phonon modes and measured the lifetime through changes in the reflectivity

found the lifetime to be approximately 2 ps [261, 262]. Tsen et al. performed time resolved Raman

measurements on GaN samples. They used a short laser pulse to excite electron-hole pairs which

would decay with the aid of a phonon. A 2 fs laser pulse was then used to measure the intensity

of the Raman signal, the decay of which could be used to determine the phonon lifetime. By
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performing this at a range of temperatures the decay mechanism of the phonon modes were also

found [263]. These techniques have been used to find lifetimes in AlN, InN, InAs, InP, GaP, and

ZnSe among others [264–268].

In this section Raman spectroscopy linewidth measurements are used to determine the

phonon lifetimes in two β−Ga2O3 crystals supplied by the Air Force Research Laboratory; one

[100] orientated crystal and one [201] orientated crystal. The temperature dependence of these

lifetimes is then analysed to ascertain the probable decay mechanisms, correlating these with

phonon density of states for other compound semiconductors published in the literature.

6.1.1 Method

The phonon lifetimes were found via the Raman spectroscopy linewidth method similar to that

used in References [260, 264, 265]. The Raman modes in the system represent the excited states

of phonons, and as such they follow the uncertainty principle

∆E∆t ≥ ~
2

(6.6)

where E is the energy of the excited state and t is its lifetime [269]. As energy is related to

frequency f via

E = hf (6.7)

it follows that the frequency of a Raman mode cannot be known precisely. This uncertainty is

represented in the width of Raman spectral lines which do not represent δ-functions as may be

expected if the energy were measured precisely. As is suggested in Equation 6.6 the magnitude

of this energy uncertainty, and hence the linewidth, is inversely proportional to the lifetime

of the state, meaning it can be used as a measure of lifetime. This natural broadening can be

represented by a Lorentzian line profile.

However it is not solely the energy uncertainty that causes the spectral lines to have a finite

linewidth. It is possible for broadening to occur in the sample due to imperfections in the crystal.

The resonant frequencies of the phonon modes is reliant on the atomic masses and the bonding.

If the bond length changes because of local strain, or the defects change the atomic mass, this

will cause subtle variations in the resonant modes which will result in a broadening of the
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(a) (b)

FIGURE 6.1. (a) Gaussian fit of the spectrometer-induced broadening of a monochro-
matic light source which had a full width at half maximum value of ΓG = 1.61.
(b) Psuedo-Voigt fit of the A3

G Raman mode in β−Ga2O3. The pseudo-Voigt fit
has its (ΓG) fixed to the width caused by the spectrometer broadening, allowing
determination of the Lorentzian width (ΓL) which is used to determine the phonon
lifetime.

linewidth. The lifetime measurements, like all Raman spectroscopy measurements in this thesis,

were performed using a Renishaw Invia spectrometer described in Section 3.1.3. The spectral

resolution of a spectrometer is primarily determined by the diffraction grating which disperses

the light, the detector pixel size, and the light entrance slit width.

For this experiment a 532 nm frequency doubled Nd:YAG laser was used as the excitation

source. A 50× focussing lens with a NA of 0.6 was used. The slit width was set to 10 µm, and a

diffraction grating with a line density of 300 lines per mm was used. With these parameters, five

measurements of a monochromatic source were taken, with a mean full width at half maximum

of 1.62 ± 0.02. With this known, a pseudo-Voigt fit of the β−Ga2O3 Raman spectral peaks can

be performed. A Voigt profile is a convolution of Lorentzian and Gaussian profiles, and as such

is often used to fit spectral lines. In this work the pseudo-Voigt profile is used which is a linear

combination of the Lorentzian and Gaussian profiles rather than a true convolution, making it

simpler to compute. It takes the form

y= y0 A×
[
µ

{
2ΓL

π(4(x− xc)2 +Γ2
L

}
+ (1−µ)

{p
4ln2p
πΓG

exp
(−4ln2
Γ2

G
(x− xc)2

)}]
, (6.8)
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where the first term in curly brackets is the Lorentzian part of the profile and the second term in

curly brackets is the Gaussian part of the profile. Here Y0 is the baseline factor, A is an amplitude

factor, µ is a shape factor which designates how ‘Lorentzian’ or ‘Gaussian’ a peak is, xc is the

peak centre in wavenumbers, and ΓL and ΓG are the widths of Gaussian and Lorentzian peaks

respectively. By fixing the ΓG to the value for spectrometer broadening, a value for ΓL can be

found in the Raman spectra. An example of a pseudo-Voigt fit is shown in Figure 6.1 (b). The

relationship between this linewidth and the phonon lifetime τp is

ΓL

~
= τ−1

p (6.9)

which is a rearrangement of Equation 6.6 and where ~ is 5.3×1012cm−1s [265].

To understand how the phonon modes decay it is necessary to measure the lifetime at a range

of temperatures. The sample is varied using a temperature controlled stage with a liquid nitrogen

pump attached which allowed measurements to be performed between 88 K and 573 K in 25 K

intervals. The stage has a quartz window which isolates the sample chamber from the ambient

atmosphere but still allows optical access for the laser. It has been shown that the most common

path for a phonon at the Γ point to decay is into 2 phonons (3-phonon process) with the same

energy but opposite wavevectors, following the relationship

ω0

2
=ω1 =ω2, k1 =−k2, (6.10)

where ω0, is the frequency of the original phonon, ω1,ω2 are the frequencies of the phonons it

decays into, and k1,k2 are the wavevectors of these phonons [270]. However in materials which

have a phonon bandgap such as InN and GaN this is not always possible and as such assymmetric

decays and a decay into 3 phonons (4-phonon process) are also observed [265, 271, 272]. The

phonon dispersion curves and the corresponding density of states for β−Ga2O3 are shown in

Figure 6.2. It can be seen that there is only a small gap at approximately 580 cm−1, suggesting a

symmetric decay will be the most prevalent.

As can be seen in Figure 6.3 (a), the phonon linewidth is temperature dependent, due to the

fact that the phonon population is temperature dependent. Hart et al. used pertubation theory to

show that for a symmetrical 3 phonon process the temperature dependence of the lifetime can be
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FIGURE 6.2. Phonon dispersion curves for β−Ga2O3 along high symmetry directions.
Also shown is the Density Of States (DOS) which shows there is no large phonon
bandgap. The DOS can be used to predict which phonon decay paths may be more
or less likely. The phonon modes which have their decay paths determined are
labelled as dots at the Γ point, and the phonon frequency which corresponds to a
3-phonon symmeterical decay is labelled as a dashed line. Image adapted from Liu
et al [273]. Reprinted with permission from AIP Publishing.

fit by [274]

τp(T)=
(
ΓQ +2n(T,ω0/2)

)−1
(6.11)

where ΓQ is the line broadening due to impurities and defects, and n(T,ω) is the Bose-Einstein

function

n(T,ω)= (
exp(~ω/kbT)−1

)−1. (6.12)

This was shown to fit well at low temperatures but it underestimated the scattering rate at

higher temperatures. Therefore it was extended by Balkanski et al. to include a second decay

path to 3 phonons of the same frequency

τp(T)=
(
ΓQ + A[1+2n(T,ω0/2)]+B[1+3n(T,ω0/3)+3n2(T,ω0/3)]

)−1
(6.13)
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(a)
(b)

FIGURE 6.3. (a) The temperature dependence of the phonon linewidth is shown with
the A6

G mode in the (100) crystal at 573 K and 98 K. (b) Raman spectra for the
{201} and {100} crystals at room temperature. It can be seen that certain peaks,
for example at 660 cm−1, are visible in one sample but not the other.

where A weights the probability of a 3 phonon process, and B weights the probability of a 4

phonon process [265, 275].

6.1.2 Results and Discussion

An example of the Raman spectra for the (100) and (201) crystals is shown in Figure 6.3 (b). Due

to the Raman selection rules discussed in Section 3.1, Raman modes will scatter with different

intensities depending on the crystal orientation with respect to the incident light. This makes

measurements using two samples ideal, as it allows for a comparison of the mode lifetimes

which are common to both samples, and also for a wider range of modes to be measured. Whilst

the lifetimes of the modes should be similar in both samples, differences may occur due to

differences in the crystal quality and carrier density which has been shown to decrease lifetimes

in longitudinal modes in GaN [272]. Although both samples were nominally undoped, the carrier

concentration was 5.5×1017cm−3 in the (100) sample and 3×1017cm−3 in the (201) sample.

The measured phonon linewidths for the (100) and (201) samples are shown in Figures 6.4

(a) and (b) respectively. As demonstrated in Figure 6.3 (a) the intensity of the Raman mode peak

decreases as temperature increases meaning that not all of the peaks seen in Figure 6.3 (b) could
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(a) (b)

FIGURE 6.4. The measured phonon linewidths for the (100) (a) and (201) (b) samples.
Each data point is the mean of 5 repeat measurements. The error bars are the
standard error on the mean calculated from these repeats.

be measured over the whole temperature range. In both samples the A3
G mode has very little

temperature dependence. The broadest linewidth at all temperatures belongs to the A7
G/B4

G mode,

which implies this has the shortest lifetime. There is a discontinuity in the relationship between

the A9
G mode linewidth with respect to temperature in the (201) sample, which is likely to be a

measurement artefact. As a result, the A9
G mode could not have its decay path determined.

The lifetimes and corresponding fits of the A5
G and A6

G modes in the (201) sample are shown

in Figure 6.5. Both show short lifetimes with room temperature values of approximately 1 ps and

1.5 ps for the A5
G and A6

G modes respectively. Whilst the A5
G mode can be fit by a 3 phonon process

(i.e B = 0 in Equation 6.13), this is not the case for the A6
G mode which requires a 4 phonon

process. The reason for this is not immediately clear, as looking at phonon density of states in

Figure 6.2 shows there is no gap which would limit a 3 phonon process. The 3 phonon scattering

factor A is 0.212±0.006 THz whereas the 4 phonon scattering scattering factor B is 0.017±0.002

THz, suggesting the 3 phonon process dominates. The crystal scattering factor ΓQ was found to

be 0.19±0.01 THz for the A5
G mode, but was negligible in the A6

G mode. As the measurement

was taken in the same location, the crystal properties should not differ. This could imply that

the A5
G mode interacts more readily with its environment, although it is possible that fitting a 4
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(a) A5
G (b) A6

G

FIGURE 6.5. The phonon lifetimes as a function of temperature and the relevant fit,
described by Equation 6.13. The A5

G mode can be fit by a 3 phonon process, however
this is not the case for the A6

G mode which requires a 4 phonon process.

phonon process results in the fit becoming insensitive to the crystal scattering factor. Because

of the lack of temperature dependence, the decay mechanism of the A3
G mode could not be fit in

either sample.

The phonon lifetimes for the (100) oriented sample can be seen in Figure 6.6. In this sample

the A5
G, A7

G/B4
G, and A9

G modes could be measured and fitted with a decay process. Of these the

A5
G and A7

G/B4
G could be fit by 3 phonon processes, whereas the A9

G mode requires a combination

of 3 and 4 phonon processes. For the A9
G mode, the 3 phonon process dominates again with A

in Equation 6.13 being 0.61±0.02 THz and B being 0.063±0.008 THz. This mode also shows

the weakest temperature dependence with its 573 K lifetime being 33% of its 88 K lifetime.

In contrast, for the A5
G and A7

G/B4
G modes the phonon lifetime at 573 K is 19% of the phonon

lifetime at 88 K. The defect broadening ΓQ is too small to be fitted for the A9
G mode but in the

A5
G and A7

G/B4
G modes it is 0.03±0.01 THz and 0.15±0.02 THz respectively. The large error (33%

in the A5
G mode) suggests there is a lack of sensitivity to crystal scattering factor.

The room temperature lifetimes in these modes are similar to that for the (201) oriented

sample with values ranging between 0.5 ps and 2 ps. The A5
G mode is the only one which

could be fit in both samples, decaying through 3 phonon processes in both samples. The room
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FIGURE 6.6. Phonon lifetimes versus temperature for the A5
G,A7

G/B4
G,andA9

G modes in
the (100) oriented sample. The A8

G mode is the only one that requires a combination
of 3 and 4 phonon processes to be fit. This mode has a much lower temperature
dependence than the others.

temperature lifetime is 0.9 ps in the (100) oriented sample and 1.1 ps in the (201) oriented

sample, suggesting it is consistent on both samples. These lifetimes are similar to those reported

for other semiconductors in the literature, of which the shortest is for AlN at 0.1 ps and the longest

is for Si at 15 ps. [261, 263–266]. Grann et al. suggest that the phonon lifetime is dependent on

the elastic constants and the bond length in a material, as shorter bond lengths result in more

mobile phonons which will result in greater scattering [266]. The bond length is 1.86 Å for AlN

and 2.35 Å for Si. For β−Ga2O3 the bond lengths are between 1.83 and 2.07 Å, which correlates

with the phonon lifetimes being closer to AlN than Si [110, 276, 277].
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(a)

(b)

FIGURE 6.7. (a) Schematic diagram of a cross-section of a β−Ga2O3 MOSFET produced
by Higashiwaki et al. [125]. (b) The IV characteristics of a device with WG 200 µm
and LG 4 µm. Under DC testing the devices failed above VD = 40 V. The pulsed
operation used quiescent biases VG = 0 V, VD = 0 V.

6.2 Thermal Resistance of β−Ga2O3 MOSFETs

Devices were supplied by Higashiwaki et al. at the National institute of Information and Commu-

nication Technology (NICT) in Tokyo, Japan [129]. The MOSFETs, a schematic of which is shown

in Figure 6.7 (a), are fabricated on Fe-doped semi-insulating (010) substrates grown using the

Edge-defined Film-fed Growth (EFG) technique discussed in Section 2.3.2. The epitaxial device

layers are grown via MBE. These are an unintentionally doped 0.9 µm thick buffer, and a 0.3 µm

n-type channel doped by Si ion implantation which gives carrier concentrations of approximately

1019 cm−3 and sheet resistances as low as 1.5 mΩ.cm. Heavily doped regions underneath the

drain and source contacts are formed to reduce the contact resistance [278]. A 20 nm Al2O3 gate

dielectric is deposited by atomic layer deposition. The whole device is then passivated with SiO2.

The device tested had an LG of 4 µm, a WG of 200 µm, an LGD of 25 µm, and an LGS of 8

µm. The gate connected field plate is 2 µm long on the source side and 2.5 µm long on the drain

side. The devices were first tested electrically by a colleague, Mr Manikant, with pulsed and

DC IV curves as shown in Figure 6.7 (b). The reduced current density in DC operation could be
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due to increased ON-resistance caused by Joule heating in the device. The difference between

the DC and pulsed operation is substantial if compared with the results displayed in Section

4.3, for example, suggesting the devices have a large thermal resistance RTh. This is expected

because of the low thermal conductivity of β−Ga2O3, but must be authenticated by temperature

measurements.

6.2.1 Method

The ultra-wide bandgap of β−Ga2O3 makes it transparent to most available laser sources

meaning micro-Raman thermography would provide a depth average temperature measurement

and as the device is on a native substrate the measurement would penetrate approximately 6 µm

into the sample. The low thermal conductivity means there will be a large temperature gradient

in the device buffer which, coupled with this broad measurement location, would result in a

highly imprecise measurement.

Instead, nanoparticle assisted Raman thermography is used to measure the surface tempera-

ture of the device as described in Section 3.1.4. Again the particles were dispersed in methanol

and dropcast onto the sample. In total, five nanoparticles were measured. The locations are

shown in Figure 6.8 (a); one on the gate at the edge of the device active area, one on the gate at

the centre of the device active area, and three at the centre of the device active area, spaced in

the gate-drain access region. The nanoparticle at the centre of the device allows determination

of the peak device temperature, and hence the device thermal resistance. Because of the low

thermal conductivity of β−Ga2O3 a large thermal gradient along the gate is expected and the

nanoparticle at the gate periphery allows for this gradient to be calculated. The measurements

in the gate-drain access region allow a comparison to the thermal simulations of the device

structure, and provide an understanding of the in plane heat-spreading in the device. This will

impact the mean channel temperature which in turn impacts ON-resistance and device efficiency.

The peak temperature is measured at drain voltages up to 50 V in 10 V steps, resulting in power

dissipation up to 1.87 W/mm. The heat spreading is measured at drain voltages of 30 V and 50 V.

A reference nanoparticle approximately 350 µm from the device centre was measured to provide

the chip temperature.
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(a) (b)

FIGURE 6.8. (a) Vertical view of the device measured, with approximate nanoparticle
locations located. (b) Schematic diagram of the finite element model developed by a
colleague, adapted from Pomeroy et al. [279].

The results are compared to a finite element simulation of the device structure which was

developed by a colleague, Dr Pomeroy [279]. The model recreates one half of the device structure

with an insulating boundary condition at the centre of the device replicating the other half of the

device, as shown in Figure 6.8. The β−Ga2O3 has an anisotropic, temperature dependent thermal

conductivity of 23.4× (300/T)1.27 W/m.K along the [010] orientation, 10.7× (300/T)1.21 W/m.K along

the [100] orientation, and 13.7× (300/T)1.12 W/m.K along the [001] orientation [46]. The heat was

deposited underneath the gate, rather than at the gate edge as is the case with GaN HEMTs.

This is because, as discussed in Section 2.5, the channel resistance is higher in these devices

since there is no 2DEG which results in lower channel mobility, a higher channel resistance, and

a less localised electric field. The sample was mounted on a heat sink and the thermal resistance

between the heat sink and the sample was adjusted such that the temperature 350 µm from the

device matched the measurement on the reference nanoparticle.
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(a)

(b)

FIGURE 6.9. (a) Temperature increase with respect to the chip temperature measured
at the central nanoparticle on the gate edge. A linear fit forced through the origin
is used to determine the thermal resistance at 88±3 K/(W/mm) over this power
dissipation range. (b) Comparison between the measurement in the gate-drain
access region and the simulation. Image adapted from Pomeroy et al. [279].

6.2.2 Results and Discussion

The thermal resistance over this power dissipation range is determined from the data shown in

Figure 6.9 (a). The temperature shown is the tempertature measured on the central nanoparticle

minus the temperature measured on the reference nanoparticle, such that only the impact of

the β−Ga2O3 wafer is considered. As the nanoparticle is located on the gate, the measured

temperature should be similar to the peak channel temperature. Based on this assumption,

the thermal resistance is determined by finding the gradient of a linear fit to the data, forced

through the origin. Over the power range studied it is found that the thermal resistance is 88±3

K/(W/mm), almost 10 times larger than the state-of-the-art GaN-on-Diamond devices measured

in Section 4.3, and 4.6 times higher than the SLCFETs measured in Section 5.2 which utilised an

AlGaN buffer.

At the maximum power dissipation of 1.87 W/mm, the temperature of the nanoparticle on

the gate, 50 µm from the centre of the active area, is 20 K lower than the temperature of the

central nanoparticle. This large temperature gradient is in contrast to the simulations performed

in Section 5.2 where the temperature is close to constant along the gate outside of the final 5 µm.
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The gate length in these β−Ga2O3 devices is almost four times longer, which likely accounts for

some of the effect seen, however the low in-plane thermal conductivity is also likely to be a cause.

Figure 6.9 (b) shows that the temperature at the drain edge is 59% of the temperature at the

gate edge. In contrast, the GaN-on-Diamond devices studied in Section 4.3 have a temperature at

the drain edge which is less than 10% of the temperature at the gate edge. The ON-resistance is

impacted by the temperature at all points in the channel, and so temperatures which remain high

between the source and drain will have a greater negative impact than if the high temperature

was just localised at the gate edge. This suggests that β−Ga2O3 devices will have greater thermal

inefficiencies than GaN HEMTs even if the device is de-rated such that the the peak temperature

is similar.

6.3 Modelling of ultrawide bandgap devices

6.3.1 Method

The large thermal resistances reported in Section 6.2 highlight the importance of thermal

management techniques if devices fabricated in low thermal conductivity UWBG materials are

to be operated at their maximum capacity. In this section finite element simulations are used

to test possible device designs. The device will not be specifically a β−Ga2O3 or AlGaN device,

instead a generic buffer material with a thermal conductivity of 30 W/m.K is used. A single device

configuration will be used, shown in Figure 6.10. The device has an LG of 1 µm, a WG = 100

µm, an LGD = 10 µm and an LGS = 2 µm. The heat is deposited in a 1.5 µm area below the gate

extending towards the drain, because, as described in Section 2.5, the lower mobility in UWBG

devices leads to a more resistive channel and a less localised electric field. The TBReff between

the buffer and the substrate is constant at 20 m2K/GW in all cases examined.

The use of diamond in three passive cooling designs is investigated. First is polycrystalline

diamond used as a substrate, the second is nanocrystalline diamond used as a passivation layer,

and the third is single crystal diamond used as a flip-chip mount. The polycrystalline diamond

substrate arrangement will be similar to the material studied in Section 4.3 with the UWBG

buffer mounted on the diamond substrate. The diamond substrate will be made up of five layers
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(a)

(b)

FIGURE 6.10. (a) Schematic diagram of the finite element model produced for the
testing of near-junction thermal management in UWBG device systems. The heat
is deposited in the red area below the gate. The temperature at the back of the heat
sink is kept constant at room temperature. There is a constant thermal resistance
between the heat sink and wafer representing 25 µm of solder. (b) Schematic
diagram of the flip-chip mounted UWBG device. The temperature at the top is
fixed at room temperature.

to represent how the crystal structure evolves from the growth face due to CVD polycrystalline

diamond’s columnar growth structure, and this growth structure was discussed in more detail in

Section 2.4.3. The first layer is 1 µm thick, the second is 4 µm thick, the third 10 µm,thick, the

fourth 20 µm thick, and the last 40 µm thick. Due to the columnar growth structure, the through-

plane thermal conductivity of diamond is higher than the in-plane thermal conductivity and

this is accounted for in the model, as is the temperature dependence of the thermal conductivity,

with the data taken from References [173, 174]. The UWBG material-on-diamond system will be

compared to GaN-on-diamond and UWBG material-on-SiC systems. The importance of buffer

thickness, investigated for GaN-on-diamond systems in Section 4.3, will also be investigated

here.

Devices are typically passivated with an amorphous material such as silicon nitride which will

139



CHAPTER 6. ULTRA-WIDE BANDGAP MATERIALS FOR HIGH PERFORMANCE DEVICES

have a low thermal conductivity of approximately 1 W/m.K and hence the passivation layers have

a negligible impact on the heat spreading. It was shown in Section 5.2 that having a high thermal

conductivity material adjacent to the channel can help reduce peak temperatures in devices, and

diamond passivation layers have been shown to reduce peak temperatures in GaN HEMTs by

20% at 10 W/mm [280]. However it was found that stress caused by the diamond growth impacted

the 2DEG. As discussed in Section 2.2.4, GaN is a piezoelectric material and the 2DEG forms at

heterostructures because of stress caused by an AlGaN/GaN interface. The combination of the

elevated diamond growth temperature, the difference in coefficent of thermal expansion between

the diamond and the buffer, and the high stiffness of diamond results in additional, inhomogenous

stress being imparted on the channel. This can degrade the device electrical performance as

the heterostructure is optimised to give the maximum carrier concentation and mobility. Any

additional stress will be an issue in AlGaN HEMTs which rely on a similar heterostructure to

form a 2DEG, but should not be a problem in the case of the β−Ga2O3 MOSFETs, where the

carriers are introduced by doping the buffer. The thickness of the passivation layer will be kept

constant at 1 µm, but its thermal conductivity will be varied between 20 and 200 W/m.K to assess

the impact of diamond quality on heat spreading. Since the nanocrystalline diamond is grown on

the device, low temperatures must be used to protect the device which leads to renucleation and

graphitic carbon formation, lowering the thermal conductivity [174]. It is also worth noting that

as nanocrystalline diamond is not commonly used for passivation layers it is not known whether

it is effective at preventing surface traps and surface conduction through the graphitic carbon

at grain boundaries. In this instance it is assumed that there is no thermal barrier between

the diamond and the buffer, although this would not be the case if a dielectric interface layer is

required to suppress parasitic electrical effects.

Flip chip mounting of GaN HEMTs was performed by Das et al. who found that as long as

the device flip chip mount is bonded directly to the source and drain contacts, this configuration

can allow the devices to be operated at higher powers [281]. There are two major advantages of

flip-chip mounting when compared to the other configurations discussed above. The first is that,

as it is a packaging solution, changes to existing device production techniques are not required.

This means that devices can continue to be developed for the desired electrical characteristics and
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costs, with the thermal management coming later. Secondly, the diamond used is not restricted

in its growth conditions as it is fabricated away from the rest of the device. Hence it is possible

to use single crystal diamond or high quality polycrystalline diamond which has had its growth

face polished away, both of which will have thermal conductivities close to or above 2000 W/m.K.

A schematic image of how the flip-chip mounted UWBG device is designed is shown in Figure

6.10 (b). The substrate has been removed and the temperature at the top of the flip-chip mount

is set to room temperature, meaning heat will flow from the device through the contacts to the

diamond. The diamond itself has a constant thermal conductivity of 2000 W/m.K, representing

single crystal material.

6.3.2 Results and Discussion

Figure 6.11 shows the peak temperatures in the simulated device for four separate designs:

GaN-on-SiC; GaN-on-Diamond; UWBG material-on-SiC; and UWBG material-on-Diamond. For

these simulations the TBReff is kept constant at 20 m2K/GW. The UWBG buffers have a signifi-

cantly higher thermal resistance than the GaN equivalent for both non-native substrates. The

improvement from SiC to diamond is less pronounced in the UWBG devices with an 8% lower

peak temperature at 20 W/mm compared to 20% for the GaN devices. This is because the low

thermal conductivity buffer acts as a bottle neck to heat flow and limits the impact that the

substrate can have. However, irrespective of buffer material, the temperature in the substrate

is lower when it is made of diamond, as opposed to SiC. This makes heat extraction from the

substrate easier, which makes designing effective packaging easier.

If the buffer is the main cause of thermal resistance, one solution would be to remove as much

buffer material as possible. This is not possible with a SiC substrate as its lower bandgap of 3.2

eV would reduce the breakdown voltage of the device. However as diamond has a bandgap of 5.5

eV this is not an issue for diamond substrates and, as shown in Section 4.3, moving the substrate

within 350 nm of the channel does not inhibit the electrical performance of the device.

Figure 6.12 (a) shows how the peak temperature increases steeply as the buffer thickness

increases and then tends towards a maximum temperature which would represent the limit

where the UWBG device is on a native substrate. Figure 6.12 (b) shows how the depth profile
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(a) (b)

FIGURE 6.11. (a) Peak temperatures in devices with a 1 µm thick buffer and a TBReff
of 20 m2K/GW. (b) The temperature distribution through the centre of the device
at 20 W/mm power dissipation. This highlights each layers contribution to the
temperature increase.

of the temperature varies with buffer thickness. It can be seen that the temperature increase

over the buffer increases with thickness. However, there is a countering effect as well, where the

temperature increase at the interface is inversely proportional to the buffer thickness. This is

because, as the interface moves closer to the channel, the heat flux across it is larger, and hence

any thermal resistance is amplified. Therefore, for thinner buffers to be an effective means of

thermal management in UWBG systems the TBReff must be optimised so as not to restrict heat

flow.

Figure 6.13 (a) shows the peak temperature in a device on a diamond substrate when the

thermal conductivity of the passivation layer is varied from 1 W/m.K, through to 200 W/m.K,

representing amorphous silicon nitride and nanocrystalline diamond. The peak temperature fol-

lows an exponential-like decay with respect to increasing thermal conductivity in the passivation

layer. This means that introducing even poor quality diamond can drastically reduce the peak

temperatures seen; a 32% reduction occurs for a 40 W/m.K thermal conductivity compared to 1

W/m.K. However this exponential-like behaviour also means that there are diminishing returns

as the quality of the diamond is improved. Increasing the nanocrystalline diamond from 100

W/m.K to 200 W/m.K lowers the peak temperature by 19% which, whilst significant, is lower
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(a) (b)

FIGURE 6.12. (a) Peak temperature in the simulated device at a range of buffer thick-
nesses and a power dissipation of 20 W/mm. There is a a large temperature increase
as the buffer thickness is increased due the low thermal conductivity of UWBG
materials. It tends to a limit where the whole wafer is made of UWBG material. (b)
The temperature profile through the depth of the device at its centre. When the
buffer is thinned the temperature increase over the interface increases, despite the
constant TBReff.

than the adjustment from 1 W/m.K to 40 W/m.K. The total decrease in peak temperature when

the thermal conductivity is increased from 1 W/m.K to 200 W/m.K is 58%. This is much larger

than the 8% achieved by the introduction of a diamond substrate which is likely to be due to the

fact that for the passivation layers to aid thermal management, the heat does not have to spread

through the low thermal conductivity buffer first.

Finally the flip-chip design is considered. The contacts are 100 µm long and as the gate width

is 100 µm, the contact area of each contact pad is 1000 µm2. At 20 W/mm the peak temperature in

a flip chip device is 744◦C, which is 26◦ higher than a device with a 10 µm buffer and a diamond

substrate shown in Figure 6.12. The thermal resistance is higher in the flip-chip scenario as

the amount of UWBG material the heat must flow through is larger. This results in the higher

temperature and limits the influence of the single crystal plate. However this can be partially

mitigated by the use of diamond passivation layers in combination with the flip-chip mount

although a 200 W/m.K passivation layer leads to a peak temperature of 245◦C, which is still

higher than temperatures calculated in Figure 6.13.
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FIGURE 6.13. Peak temperatures in a simulated device where the thermal conductivity
of the passivation layers has been adjusted to represent different qualities of
nanocrystalline diamond. The peak temperature drops as the thermal conductivity
initially increases, but the impact is lessened as it continues to increase.

6.4 Conclusions

As UWBG materials look to satisfy ever increasing demands for higher power, higher frequency

operation devices, this section studied the thermal challenges associated with low thermal

conductivity materials such as AlGaN and β−Ga2O3, and how optimal device designs may differ

in these materials when compared to the current high performance electronic materials.

The lifetime of phonons in β−Ga2O3 crystals was studied by Raman spectroscopy, utilising

the inversely proportional relationship between the linewidth of the Raman mode and the

phonon lifetime. The phonon lifetime limits how quickly hot carriers can relax, and as such

play an important role in device reliability. Four Raman modes (A5
G, A6

G, A7
G/B4

G, and A8
G) were

studied, with the longest room temperature lifetime of 1.8 ps belonging to the A6
G mode and the

shortest room temperature of 0.5 ps belonging to the A7
G/B4

G mode. By studying the temperature

dependence of the lifetimes it is possible to assess the decay mechanism of the phonons. It was

found that the A5
G and A7

G/B4
G modes decay through a 3 phonon process to 2 symmetric phonons,

whereas the A6
G, and A8

G modes decay through a combination of this 3 phonon process and a 4
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phonon process to 3 phonons of equal frequency. The lifetimes calculated are similar to those

reported for other compound semiconductors and follow the trend suggested by Grann et al. that

lifetime is proportional to bond length [266].

The thermal resistance of devices fabricated from β−Ga2O3 was found through nanoparticle

assisted Raman thermography measurements. IV characteristics had shown substantially higher

currents when the device was operated in pulsed operation compared to DC operation, suggesting

that Joule heating could be causing increases in resistance. This was confirmed by the Raman

measurements which found the thermal resistance to be 88 K/(W/mm). The measurements also

showed a large temperature gradient along the gate and low temperature gradients in the gate

drain access regions which can prove detrimental to device performance through increasing

ON-resistance. This implies the β−Ga2O3 devices will need near-junction thermal management

designs to allow them to operate at maximum performance.

Possible designs for near junction thermal management were considered through finite

element simulations. The simulation used a generic low thermal conductivity buffer and a typical

device design to test the use of diamond as a substrate, as a passivation layer, and as a flip-chip

mount. It was found that diamond substrates are not as effective as in GaN systems as the low

thermal conductivity buffer provides a bottle neck to heat flow before it reaches the substrate.

However diamond passivation layers appeared to be more effective, spreading the initial hot spot

over a larger area to reduce the peak temperature. The flip-chip mount proved less successful

than both alternatives as the heat must travel further through the buffer until it reaches the

primary heat spreading element.
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SUMMARY

O
ptimising the heat flow in high performance wide and ultra-wide band gap electronic

devices is necessary to ensure reliability and to increase the device performance. The

activation of failure modes in devices is more probable at higher temperatures, and

efficiency is reduced when elevated temperatures cause ON-resistance increases and current

collapse. As a result, wide and ultra-wide bandgap devices are often operated below their peak

performance to increase their lifetime. This work studied the latest device structures to find the

designs which give the optimum heat flow, such that wide and ultra-wide bandgap devices can be

utilised more effectively in applications such as LIDAR, power switching, and wide bandwidth

communications.

In semiconductors, phonons are the primary form of heat transport and the thermal conduc-

tivity is proportional to the phonon mean free path. As a result, at room temperature and above,

the thermal conductivity is limited either by umklapp scattering or by crystal defects such as

dopants, dislocations, and grain boundaries, if the density is high enough. Whilst the umklapp

scattering rate is an inherent material property, it is possible to improve the thermal conductivity

of a material by improving its quality, such that there are fewer crystal defects.

Gallium nitride is a wide bandgap (3.4 eV) material which is already being used for high

performance RF and power applications. The AlGaN/GaN heterostructure used in high electron
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mobility transistors results in a two dimensional electron gas formation. This two dimensional

electron gas has higher mobilities and carrier concentrations than is achievable in the bulk, and

is key to GaN being used for RF applications as it allows high frequency operation. However, the

performance of GaN high electron mobility transistors is limited by the self-heating that arises

from high voltage operation.

GaN is typically grown onto non-native substrates as the growth of bulk GaN is costly. These

substrates influence the device thermal resistance, with silicon being less expensive, but lower

in thermal conductivity than SiC and diamond. Diamond is the ideal choice for a substrate

as it has a 5.5 eV bandgap and the highest known bulk conductivity at over 3000 W/m.K in

single crystal, isotopically pure material. Issues with cost of production and integration with

semiconductors means that single crystal diamond is rarely used in heat spreading. Instead it

is much more common to use polycrystalline diamond, where the grain boundaries and defects

present mean that the thermal conductivity is significantly reduced to around 1500 W/m.K. In

spite of this, polycrystalline diamond is still currently the best substrate for GaN devices. For

GaN-on-diamond devices to become common place it is necessary to study their integration such

that they can be utilised effectively. A major obstacle is the GaN-on-diamond interface, which can

cause thermal bottlenecks that reduce the heat-spreading impact of the diamond. This interface

consists of an amorphous interface layer and the diamond nucleation layer. The amorphous layer

is necessary to protect the GaN from the diamond growth environment and aid adhesion, whilst

the diamond nucleation layer is a necessary part of the diamond growth process. However both

have low thermal conductivities which inhibit heat flow.

GaN-on-diamond wafers were studied by transient thermoreflectance, which is a non-destructive,

non-contact technique. A pulsed UV laser is used to heat the sample for 9 ns, and the resulting

temperature increase and decay induce a change in the reflectance of the sample surface. This

reflectance change is monitored using a continuous wave 532 nm laser. The rate of temperature

decay is dependent on the material properties of the wafer being studied, and as such it can be

used to determine the effective thermal boundary resistance between the GaN and the diamond.

It was used to show that the Element Six growth process of attaching a GaN wafer to a handle

wafer, growing the diamond, and then removing the handle wafer, is capable of producing material
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with a low thermal boundary resistance (≈ 14 W/m.K ), which is homogeneous over a four inch

wafer.

To further the understanding of the effective thermal boundary resistance, it was attempted to

isolate the impact of the diamond nucleation layer thermal conductivity. For this, thin suspended

diamond films were prepared with heaters at their centre. The temperature of the heater was

measured at various power dissipations using nanoparticle assisted Raman thermography. By

depositing nanoparticles on the sample surface, they can be used as nano-thermometers which are

not impacted by the thermo-mechanical stress of the films below them, meaning the measurement

is quicker, and more precise. The thermal conductivity of the diamond film was then determined

by plotting the heater temperature against the power dissipation. The films studied in this

work varied in seed size and growth power. Larger seeds were found to give a higher thermal

conductivity, as would be expected as larger seeds should give a lower density of grain boundaries.

However, the transient thermoreflectance study found that larger seeds gave worse effective

thermal boundary resistances, as larger seeds resulted in pinhole formation and cracks at the

GaN-diamond interface, suggesting there is an optimal seed size which gives a balance between

thermal conductivity and interface quality.

Two device sets fabricated in GaN-on-diamond were studied using photoluminescence and

nanoparticle assisted Raman thermography. The purpose of the study was to determine the

electrical and thermal benefit of reducing the thickness of the GaN buffer and the interface

layer. The thinner sample had a buffer thickness of 354 nm and an interface layer thickness

of 17 nm, whilst the thicker sample had a buffer thickness of 700 nm and an interface layer

thickness of 35 nm. Photoluminescence can be used to measure temperature as the bandgap is

temperature dependent. It was applied as an alternative to micro-Raman thermography as the

diamond substrate gave a large luminescence background which obscured the Raman signal from

the buffer, which was weak because of the thin layers used. Photoluminescence does not have this

problem as the probe laser is absorbed at the sample surface. It does however, have the added

difficulty that it induces an additional current in the sample which can increase the heating.

Finite element simulations were used to determine the effective thermal boundary resistance

of the thinner sample as 12.6 ± 0.4 m2K/W and of the thicker sample as 20 ± 3 m2K/W. The

149



CHAPTER 7. SUMMARY

wafers had similar thermal resistances of 9 ± 1 K/(W/mm) for the thinner sample and 10.0 ±
0.5 K/(W/mm) for the thicker sample. Finite element simulations were also used to show that

the optimal buffer thickness is a function of the effective thermal boundary resistance between

the GaN and the diamond, and that as effective thermal boundary resistance decreases, thinner

buffers become preferable. The data showed that the thinner sample had half the temperature

induced current drop when compared to the thicker sample. This was because there is less in-

plane heat spreading in the thinner sample, which results in a lower mean channel temperature,

despite the fact that the peak temperature is similar. Therefore the thin buffer is preferable

if the effective thermal boundary resistance is low enough to prevent the total device thermal

resistance being too large.

Beyond GaN, research has begun to focus on materials which may allow higher voltage

operation; so called ultra-wide bandgap materials. One of these is AlGaN, where aluminium

alloying of GaN is used to enhance the bandgap and critical field such that the device can operate

at higher voltages. Alternatively, β−Ga2O3 is a very interesting competitor since it has a bandgap

of 4.9 eV and can be fabricated from cost-effective melt-growth techniques. In this work, the

thermal properties of both AlGaN and β−Ga2O3 devices have been studied. This is of particular

importance in ultra-wide bandgap devices, as the higher voltage operation results in an even

higher power density than in GaN devices. The thermal management problem is compounded

by the fact that both AlGaN and β−Ga2O3 have significantly lower thermal conductivities

than the other semiconductors discussed in this work. The thermal conductivity of AlGaN is

dependent on the aluminium alloying concentration, but at concentrations greater than 10%, the

thermal conductivity is approximately 30 W/m.K. This is larger than the thermal conductivity of

β−Ga2O3, which is anisotropic but has a maximum of 27 W/m.K.

The superlattice castellated FET is a novel design of GaN based RF switch which has a 3D

gate and an AlGaN buffer. Temperature measurements were performed using a combination

of micro-Raman thermography and gate resistance thermometry. The channel of the devices is

an AlGaN/GaN superlattice which results in a stack of two dimensional electron gases. This

reduces the device ON resistance, but also increases the threshold voltage. Therefore the channel

is etched periodically to form crenellations, and a three-dimensional gate is used which pinches
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of the channel from the sides as well as from above. As a consequence, the heat is localised inside

the channel crenellations, but this was not found to inhibit the heat flow as the total device

thermal resistance was found to be 19.1 ± 0.7 K/(W/mm), which is similar to GaN-on-SiC devices.

Finite element simulations showed that the gate acts like a heat pipe, aiding heat flow into the

buffer. Without the high thermal conductivity gate metal, the device thermal resistance would

increase to 23.5 K/(W/mm). Potential improvements to the device structure were explored using

the finite element simulations, with the most impact coming from enhancing the heat piping

effect by reducing the thickness of the gate dielectric, resulting in a predicted device thermal

resistance of 17.2 K/(W/mm).

As devices in β−Ga2O3 are relatively novel, the fundamental material properties are relatively

unexplored. The room temperature phonon lifetimes were found to be approximately 2 ps, which

is similar to that of other compound semiconductors. The temperature dependence of the phonon

lifetime was used to show that, most commonly, the modes decayed through a symmetrical

Klemens process.

β−Ga2O3 devices were studied using nanoparticle assisted Raman thermography. This

showed that the thermal resistance of the devices was 88 ± 3 K/(W/mm). This high thermal

resistance is caused by the low thermal conductivity of the β−Ga2O3, and manifested itself by

causing failure in devices operated at DC drain voltages of 40 V. This is a challenge shared by

devices fabricated in both β−Ga2O3 and AlGaN, as both can have thermal conductivities of less

than 30 W/m.K. Finite element simulations were used to assess how thermal performance may

be enhanced in these structures in the future, with a focus on the utilisation of diamond. It was

found that using diamond as a substrate, a very effective technique for heat spreading in GaN,

would be less useful in the case of low thermal conductivity ultra-wide bandgap devices. This is

due to the buffer acting as a thermal bottleneck. Thinning the buffer was effective in reducing the

peak device temperature, but this requires a low thermal boundary resistance between the buffer

and the substrate. The most effective heat spreading came from the use of diamond passivation

layers, with even poor quality diamond having a significant impact on heat spreading. Altogether,

devices fabricated from these ultra-wide bandgap devices will likely require a combination of a

thin buffer, a low thermal boundary resistance, a diamond substrate and a diamond passivation

151



CHAPTER 7. SUMMARY

layer if there are to be utilised effectively.

7.1 Future Work

The most effective design of GaN-on-diamond wafer will ultimately be determined by the best

achievable thermal boundary resistance between the GaN and the diamond. As demonstrated in

this work, if the effective thermal boundary resistance becomes sufficiently low (≈ 5 m2K/GW),

ultra-thin buffer devices will offer the best performance from both a thermal and electrical

perspective. Therefore a significant focus should be on improving the effective thermal boundary

resistance in GaN-on-diamond systems.

Whilst the fundamental phonon scattering between dissimilar materials cannot be altered,

the interface layer and the diamond nucleation layer can be optimised to give the most efficient

heat transport. With respect to the diamond nucleation layer, a more detailed study of the optimal

seed size should be carried out. A variety of GaN-on-diamond samples with seed sizes varying

from 10 nm to 500 nm should be fabricated with membranes created. This would allow for the

measurement of the thermal conductivity of the diamond film and the measurement of the

effective thermal boundary resistance on the same sample, allowing a correlation to be found. The

results could then be correlated with transmission electron micrographs of the microstructure.

For the interface layer, amorphous silicon nitride is currently the most commonly used

material. It is essential for the interface layer to contain a carbide forming element, such as

silicon, to provide good adhesion and thermal transport. However, the thermal transport across

an amorphous material is limited by the lack of long range order. Therefore, crystalline materials

should be explored for the interface layer. A suitable option to be explored would be AlGaN or

AlN, as the lattice mismatch can be low and aluminium carbide forms readily. Sample sets with

varying thickness and aluminium concentration could be fabricated. Then the effective thermal

boundary resistance and the mechanical adhesion of the interface could be measured to find the

optimal conditions.

For GaN-on-diamond devices to become widespread industrially, fabrication costs would

ideally be lower. A key part of this will be the ability to grow GaN-on-diamond wafers larger
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than four inches in diameter. The challenge is ensuring the diamond growth is homogeneous

across the wafer. The shape of the plasma in microwave plasma enhanced chemical vapour

deposition is dependent on the reactor design, and if it is not consistent over the wafer area, it

will result in areas of slower, or, lower quality, diamond growth. Therefore it will be important to

use the autonomous transient thermoreflectance experimental setup to map the effective thermal

boundary across the wafer.

This work showed that the gate design does not significantly inhibit the heat flow in super-

lattice castellated FETs. Now that the thermal characterisation has been established, the next

step in their development is to test some of the suggested improvements. The two adjustments

which gave the best predicted improvement, the switch to a GaN buffer and the thinning of the

gate dielectric, will both impact the electrical performance of the devices. A detailed electrical

characterisation of the devices should be carried out in addition to a thermal characterisation to

ensure that they perform satisfactorily. If the suggested adjustments prove detrimental, replacing

the SiC substrate with a diamond substrate should provide a thermal benefit without impacting

the electrical performance of the device.

The field of ultra-wide bandgap devices is less mature than that of wide bandgap devices. Many

of the lessons learnt about the integration of diamond with wide bandgap semiconductors can be

applied to ultra-wide bandgap devices. However, this work showed that the challenges faced in

AlGaN and β−Ga2O3 devices will differ in some ways due to the low thermal conductivity of these

materials. Therefore devices should be explored with diamond passivation layers implemented.

In the case of GaN, this gave moderate improvements in thermal resistance but was detrimental

to the two dimensional electron gas because of stress imparted on the GaN by the passivation

layers. This is likely to be the case in AlGaN high electron mobility transistors since they also use

a two dimensional electron gas. However as the carrier concentration in β−Ga2O3 MOSFETs is

not dependent on strain, diamond passivation layers should prove more successful. This could be

validated experimentally using nanoparticle assisted Raman thermography.

All of the experiment and simulations in this work have been performed with the devices in

a steady state. For the ultra-wide bandgap materials which could be used in power switching,

it is necessary to consider the thermal time constant of a device; a measure of the time taken
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for a device to return to ambient temperature after it has been heated. This can be predicted

using finite element analysis and measured experimentally using time resolved micro-Raman

thermography. This is possible in devices which are on a non-native substrate, but for the

β−Ga2O3 devices studied in this work it would be necessary to use nanoparticle assisted Raman

thermography. Time-resolved nanoparticle assisted Raman thermography has not been performed

previously and is likely to be a challenging endeavour as the measurements must have a short

acquisition time (≈ 10 ns) and the nanoparticles give weak Raman signals because of their small

size. However the data gathered would provide information on the possible operating conditions

of the devices.
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