13 research outputs found

    Channel modeling for underwater acoustic network simulation

    Get PDF

    Underwater Acoustic Localization with Applications to Multiuser Communications

    Get PDF
    Multiuser underwater acoustic communications (UACs) have gained attention because of a number of applications. To assess the performance of multiuser UACs and reduce the cost of experiments, simulations of the signal transmission are used. However, the existing underwater signal transmission simulators suffer from complexity and signal length limitation when investigating multiuser UACs. Therefore, it is useful to develop a signal transmission simulator for UACs. To improve the performance and bandwidth efficiency of multi-user systems, arrays can be used at the transmitter with transmit beamforming, which require the channel state information (CSI) available at the receiver to be sent as a feedback message to the transmitter. A long feedback message in UAC is a waste of the throughput and sometimes impractical. Therefore, it is important to develop an advanced transmit beamforming method for the multiple transmit sensor array systems. In this thesis, an underwater channel simulator based on acoustic field computation is proposed. We pre-compute and store the acoustic field in the investigation area, thus speeding up the computation whilst maintaining the performance. Based on this, an underwater receiver localization method is then proposed. In the localization, the CSIs at specific points in the investigation area are pre-computed and compared with the CSI measured at the receiver, thus the position of the receiver is estimated as the point with the best match. It offers a more practical solution to the underwater localization problem. A receiver trajectory estimation technique combining the proposed localization and smoothing approach is also proposed to reduce the cost of infrastructure, and it can be applied in a two-dimensional plane and a three-dimensional space. An advanced beamforming technique is introduced in the transmitter design based on the proposed localization technique. It offers accurate detection performance and the length of the feedback message is reduced significantly

    Acoustic based tactical control of underwater vehicles

    Get PDF
    Advances in command and control of Autonomous Underwater Vehicles (AUVs) using acoustic communications are crucial to future Fleet objectives, particularly in Very Shallow Water Mine Countermeasures (VSW MCM). Understanding of the capability to redirect missions, provide relatively high rate downloads of mission information, and perform cooperative tracking for multi-vehicle systems is limited to some bounding data based on fixed node experiments. The main objectives of this dissertation were to investigate and demonstrate the capabilities of tactical acoustic control of a dynamic, operational underwater vehicle in the Very Shallow Water (VSW) and Shallow Water ocean environment. This necessarily required studies on the limitations of Acoustic Control and relatively High Data Rate Transfer when using commercial acoustic modems in underwater vehicles and investigation of their acoustic transmission characteristics. Comprehensive empirical evidence through field validation with the ARIES vehicle indicated that reduced ranges were required for successful acoustic communications in a realistic shallow water environment. A simulation was developed to demonstrate a solution for dealing with reduced range and conducting multi-vehicle behaviors for cooperative tracking and acoustic data transfer.http://archive.org/details/acousticbasedtac109459858Commander, United States NavyApproved for public release; distribution is unlimited

    Development of an acoustic communication link for micro underwater vehicles

    Get PDF
    PhD ThesisIn recent years there has been an increasing trend towards the use of Micro Remotely Operated Vehicles (μROVs), such as the Videoray and Seabotix LBV products, for a range of subsea applications, including environmental monitoring, harbour security, military surveillance and offshore inspection. A major operational limitation is the umbilical cable, which is traditionally used to supply power and communications to the vehicle. This tether has often been found to significantly restrict the agility of the vehicle or in extreme cases, result in entanglement with subsea structures. This thesis addresses the challenges associated with developing a reliable full-duplex wireless communications link aimed at tetherless operation of a μROV. Previous research has demonstrated the ability to support highly compressed video transmissions over several kilometres through shallow water channels with large range-depth ratios. However, the physical constraints of these platforms paired with the system cost requirements pose significant additional challenges. Firstly, the physical size/weight of transducers for the LF (8-16kHz) and MF (16-32kHz) bands would significantly affect the dynamics of the vehicle measuring less than 0.5m long. Therefore, this thesis explores the challenges associated with moving the operating frequency up to around 50kHz centre, along with the opportunities for increased data rate and tracking due to higher bandwidth. The typical operating radius of μROVs is less than 200m, in water < 100m deep, which gives rise to multipath channels characterised by long timespread and relatively sparse arrivals. Hence, the system must be optimised for performance in these conditions. The hardware costs of large multi-element receiver arrays are prohibitive when compared to the cost of the μROV platform. Additionally, the physical size of such arrays complicates deployment from small surface vessels. Although some recent developments in iterative equalisation and decoding structures have enhanced the performance of single element receivers, they are not found to be adequate in such channels. This work explores the optimum cost/performance trade-off in a combination of a micro beamforming array using a Bit Interleaved Coded Modulation with Iterative Decoding (BICM-ID) receiver structure. The highly dynamic nature of μROVs, with rapid acceleration/deceleration and complex thruster/wake effects, are also a significant challenge to reliable continuous communications. The thesis also explores how these effects can best be mitigated via advanced Doppler correction techniques, and adaptive coding and modulation via a simultaneous frequency multiplexed down link. In order to fully explore continuous adaptation of the transmitted signals, a real-time full-duplex communication system was constructed in hardware, utilising low cost components and a highly optimised PC based receiver structure. Rigorous testing, both in laboratory conditions and through extensive field trials, have enabled the author to explore the performance of the communication link on a vehicle carrying out typical operations and presenting a wide range of channel, noise, Doppler and transmission latency conditions. This has led to a comprehensive set of design recommendations for a reliable and cost effective link capable of continuous throughputs of >30 kbits/s

    Microfluidics for Biosensing

    Get PDF
    There are 12 papers published with 8 research articles, 3 review articles and 1 perspective. The topics cover: Biomedical microfluidics Lab-on-a-chip Miniaturized systems for chemistry and life science (MicroTAS) Biosensor development and characteristics Imaging and other detection technologies Imaging and signal processing Point-of-care testing microdevices Food and water quality testing and control We hope this collection could promote the development of microfluidics and point-of-care testing (POCT) devices for biosensing

    UWA-NAV – Energy Efficient Error Control Scheme for Underwater Acoustic Sensor Network

    No full text

    The characteristics of the Waiwhetu artesian aquifer beneath Wellington Harbour including the spatial distribution and causes of submarine spring discharge

    No full text
    This thesis is a study of the sub-harbour Waiwhetu Artesian Aquifer, and in particular the nature and characteristics of artesian leakage from submarine springs. This aquifer is a sheet of gravel and other coarse sediments which continues from the Lower Hutt Valley and extends beneath Wellington Harbour where it varies in thickness from approximately 70m against the Wellington Fault scarp to just over 20m thick against the eastern harbour margin. The water it contains is a valuable resource supplying approximately one third of Wellington's municipal water consumption. At present, there are plans to utilise this artesian water source to a greater extent in the future, to support a greater burden of the region's water requirements. However concerns over possible salt-water intrusion and contamination of the aquifer led to an interest in developing a better understanding of the characteristics of this artesian system, particularly beneath the harbour floor. Harbour floor depressions were selected as likely sources of artesian water leakage based on the presumption that they had been formed by the action of leaking artesian water from beneath. Eleven depression 'zones' were investigated by recording the salinity of the water within the depressions using a portable conductivity/temperature meter. SCUBA diver's observations and bathymetric mapping revealed that depressions ranged in width from 53m to 369m (at the harbour floor) and 12m to 69m (at the depression base), with depths ranging from 13.3m to 31.3m below sea level. Only a few depressions were found to be actively discharging significant amounts of artesian water. SCUBA diver investigations found this leakage to be typically concentrated at a number of small and discrete spring 'vents' located on the base of the active depression. Typical salinities recorded ranged from 28 - 33 ppt within a few centimetres of the discharge vents. Deployment of an S4 current meter in two depressions showed that spring vent discharges vary with the pattern of abstraction from the pumping stations in the Lower Hutt Valley and as a consequence of the tidal cycle. High tides generate a greater load on the underlying aquifer, which in turn compresses the aquifer structure to a greater extent than at low tides, thus 'squeezing' out more water. Almost all of the recorded leakage was found to occur from a cluster of submarine springs within one of the depression zones, roughly 1100 metres from the Hutt River mouth. One other notable area of leakage was found close to Seaview Wharf. No significant leakage was observed or recorded from the two deep depressions south of Somes Island, which had previously been considered to be the major outlet of artesian leakage in the harbour. Lower than normal salinity values were also recorded in the harbour entrance. In this region the aquiclude is hypothesised to peter out, allowing artesian water to escape from the aquifer through a large area of the seabed in the form of widespread leakage as opposed to the concentrated, or discrete, form associated with spring vent discharge. Seismic profiles were used to map the extent of the sub-harbour Waiwhetu Artesian Aquifer and its upper confining aquiclude, the Petone Marine Beds. This work showed that the aquifer gravels extend across the entire harbour area. However, the water-bearing capacity of these deposits was found to be inconsistent. Preferential pathways, present as paleochannels (relic river channels), can be mapped within the aquifer. They concentrate the flow of groundwater through the aquifer and as such supply the submarine spring regions with much higher rates of water flow than the inter-paleochannel areas. The harbour floor depressions are thought to have formed as a consequence of the deformation of aquifer and aquiclude deposits during intense shaking associated with earthquakes leading to the removal of portions of the confining aquiclude. This typically occurs from a combination of raised piezometric pressures as a result of consolidation of the aquifer material during shaking, and from failure of the aquiclude by liquefaction. This rupture of the aquiclude results in the release of large volumes of artesian water through the aquiclude and to the sea. As this flow of water moves upward through the aquiclude, it erodes and transports away the fine sediment that forms this member. The features left behind are the characteristic harbour floor depressions we associate with submarine spring discharge. The abstraction of water from the Waiwhetu Artesian Aquifer (for the Wellington municipal water supply) lowers the piezometric pressure within the aquifer close to the abstraction zone. As such, the relocation of the abstraction focus (during 1980) to three kilometres inland from Petone Foreshore has greatly improved the 'health' of the subharbour aquifer and has similarly reduced the threat of salt-water intrusion. Data gathered during this study implies that while the two deep depressions south of Somes Island are unlikely to be a threat with regard to salt-water intrusion, the cluster of depressions off the Hutt River mouth could be a site of salt-water entry if piezometric pressures in the aquifer beneath them dropped low enough. Spring discharge velocities collected over one spring vent indicate that the presently set minimum piezometric Petone Foreshore level (below which abstraction must cease) needs to be revised
    corecore