76,017 research outputs found

    Discrimination of milks with a multisensor system based on layer-by-layer films

    Get PDF
    Producción CientíficaA nanostructured electrochemical bi-sensor system for the analysis of milks has been developed using the layer-by-layer technique. The non-enzymatic sensor [CHI+IL/CuPcS]2, is a layered material containing a negative film of the anionic sulfonated copper phthalocyanine (CuPcS) acting as electrocatalytic material, and a cationic layer containing a mixture of an ionic liquid (IL) (1-butyl-3-methylimidazolium tetrafluoroborate) that enhances the conductivity, and chitosan (CHI), that facilitates the enzyme immobilization. The biosensor ([CHI+IL/CuPcS]2-GAO) results from the immobilization of galactose oxidase on the top of the LbL layers. FTIR, UV–vis, and AFM have confirmed the proposed structure and cyclic voltammetry has demonstrated the amplification caused by the combination of materials in the film. Sensors have been combined to form an electronic tongue for milk analysis. Principal component analysis has revealed the ability of the sensor system to discriminate between milk samples with different lactose content. Using a PLS-1 calibration models, correlations have been found between the voltammetric signals and chemical parameters measured by classical methods. PLS-1 models provide excellent correlations with lactose content. Additional information about other components, such as fats, proteins, and acidity, can also be obtained. The method developed is simple, and the short response time permits its use in assaying milk samples online.Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (project AGL2015-67482-R)Junta de Castilla y Leon - Fondo Europeo de Desarrollo Regional (project VA-011U16)Junta de Castilla y León (grant BOCYL-D-4112015-9

    Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces

    Get PDF
    Wearable human-machine interfaces (HMIs) are an important class of devices that enable human and machine interaction and teaming. Recent advances in electronics, materials, and mechanical designs have offered avenues toward wearable HMI devices. However, existing wearable HMI devices are uncomfortable to use and restrict the human body's motion, show slow response times, or are challenging to realize with multiple functions. Here, we report sol-gel-on-polymer-processed indium zinc oxide semiconductor nanomembrane-based ultrathin stretchable electronics with advantages of multifunctionality, simple manufacturing, imperceptible wearing, and robust interfacing. Multifunctional wearable HMI devices range from resistive random-access memory for data storage to field-effect transistors for interfacing and switching circuits, to various sensors for health and body motion sensing, and to microheaters for temperature delivery. The HMI devices can be not only seamlessly worn by humans but also implemented as prosthetic skin for robotics, which offer intelligent feedback, resulting in a closed-loop HMI system

    Flexible thin polymer waveguide Bragg grating sensor foils for strain sensing

    Get PDF
    This paper demonstrates that epoxy-based single mode polymer waveguides with Bragg gratings can be realized in very thin (down to 50 micron) polymer foils which are suitable for strain sensing when integrated inside glass fiber reinforced polymer composite materials. The single mode waveguides were fabricated using laser direct-write lithography and the gratings were realized using nanoimprint lithography. These steps were performed on a temporary rigid carrier substrate and afterwards the functional layers were released yielding the thin, flexible sensor foils which can be laser-cut to the required dimensions. The Bragg grating-based polymer waveguide sensor foils were characterized before and after embedding into the composite. As expected, there was a blue shift in the reflection spectrum because of residual strain due to the embedding process. However, the quality of the signal did not degrade after embedding, both for 50 and 100 micron thick sensor foils. Finally, the sensitivity to strain of the embedded sensors was determined using a tensile test and found to be about 1 pm / microstrain

    High-resolution remote thermography using luminescent low-dimensional tin-halide perovskites

    Full text link
    While metal-halide perovskites have recently revolutionized research in optoelectronics through a unique combination of performance and synthetic simplicity, their low-dimensional counterparts can further expand the field with hitherto unknown and practically useful optical functionalities. In this context, we present the strong temperature dependence of the photoluminescence (PL) lifetime of low-dimensional, perovskite-like tin-halides, and apply this property to thermal imaging with a high precision of 0.05 {\deg}C. The PL lifetimes are governed by the heat-assisted de-trapping of self-trapped excitons, and their values can be varied over several orders of magnitude by adjusting the temperature (up to 20 ns {\deg}C-1). Typically, this sensitive range spans up to one hundred centigrade, and it is both compound-specific and shown to be compositionally and structurally tunable from -100 to 110 {\deg} C going from [C(NH2)3]2SnBr4 to Cs4SnBr6 and (C4N2H14I)4SnI6. Finally, through the innovative implementation of cost-effective hardware for fluorescence lifetime imaging (FLI), based on time-of-flight (ToF) technology, these novel thermoluminophores have been used to record thermographic videos with high spatial and thermal resolution.Comment: 25 pages, 4 figure

    Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    Get PDF
    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.Comment: 23 pages, to be published in Journal of Instrumentatio

    Electrochemical sensors modified with combinations of sulfur containing phthalocyanines and capped gold nanoparticles: A study of the influence of the nature of the interaction between sensing materials

    Get PDF
    Producción CientíficaVoltametric sensors formed by the combination of a sulfur-substituted zinc phthalocyanine (ZnPcRS) and gold nanoparticles capped with tetraoctylammonium bromide (AuNPtOcBr) have been developed. The influence of the nature of the interaction between both components in the response towards catechol has been evaluated. Electrodes modified with a mixture of nanoparticles and phthalocyanine (AuNPtOcBr/ZnPcRS) show an increase in the intensity of the peak associated with the reduction of catechol. Electrodes modified with a covalent adduct-both component are linked through a thioether bond-(AuNPtOcBr-S-ZnPcR), show an increase in the intensity of the oxidation peak. Voltammograms registered at increasing scan rates show that charge transfer coefficients are different in both types of electrodes confirming that the kinetics of the electrochemical reaction is influenced by the nature of the interaction between both electrocatalytic materials. The limits of detection attained are 0.9 × 10−6 mol∙L−1 for the electrode modified with the mixture AuNPtOcBr/ZnPcRS and 1.3 × 10−7 mol∙L−1 for the electrode modified with the covalent adduct AuNPtOcBr-S-ZnPcR. These results indicate that the establishment of covalent bonds between nanoparticles and phthalocyanines can be a good strategy to obtain sensors with enhanced performance, improving the charge transfer rate and the detection limits of voltammetric sensors.Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (projects RTI2018-097990-B-I00 / CTQ2017-87102-R)Junta de Castilla y Leon - Fondo Europeo de Desarrollo Regional (project VA275P18

    Beads, boats and switches: making things happen with molecular photoswitches

    Get PDF
    In this paper we present recent results obtained with a stimulus-responsive materials based on the photo-switchable behaviour exhibited by spiro-cyclic derivatives. Our results suggest that these highly novel materials offer unique capabilities hitherto inaccessible using conventional materials. In particular, we will focus on photocontrolled guest binding and release, inherent signalling of status, photo-actuation and solvent driven motion of small structures as examples of the fascinating behaviour of these exceptional materials

    The relevance of point defects in studying silica-based materials from bulk to nanosystems

    Get PDF
    The macroscopic properties of silica can be modified by the presence of local microscopic modifications at the scale of the basic molecular units (point defects). Such defects can be generated during the production of glass, devices, or by the environments where the latter have to operate, impacting on the devices’ performance. For these reasons, the identification of defects, their generation processes, and the knowledge of their electrical and optical features are relevant for microelectronics and optoelectronics. The aim of this manuscript is to report some examples of how defects can be generated, how they can impact device performance, and how a defect species or a physical phenomenon that is a disadvantage in some fields can be used as an advantage in others
    • 

    corecore