31 research outputs found

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Design of traffic shaper / scheduler for packet switches and DiffServ networks : algorithms and architectures

    Get PDF
    The convergence of communications, information, commerce and computing are creating a significant demand and opportunity for multimedia and multi-class communication services. In such environments, controlling the network behavior and guaranteeing the user\u27s quality of service is required. A flexible hierarchical sorting architecture which can function either as a traffic shaper or a scheduler according to the requirement of the traffic load is presented to meet the requirement. The core structure can be implemented as a hierarchical traffic shaper which can support a large number of connections with a wide variety of rates and burstiness without the loss of the granularity in cells\u27 conforming departure time. The hierarchical traffic shaper can implement the exact sorting scheme with a substantial reduced memory size by using two stages of timing queues, and with substantial reduction in complexity, without introducing any sorting inaccuracy. By setting a suitable threshold to the length of the departure queue and using a lookahead algorithm, the core structure can be converted to a hierarchical rateadaptive scheduler. Based on the traffic load, it can work as an exact sorting traffic shaper or a Generic Cell Rate Algorithm (GCRA) scheduler. Such a rate-adaptive scheduler can reduce the Cell Transfer Delay and the Maximum Memory Occupancy greatly while keeping the fairness in the bandwidth assignment which is the inherent characteristic of GCRA. By introducing a best-effort queue to accommodate besteffort traffic, the hierarchical sorting architecture can be changed to a near workconserving scheduler. It assigns remaining bandwidth to the best-effort traffic so that it improves the utilization, of the outlink while it guarantees the quality of service requirements of those services which require quality of service guarantees. The inherent flexibility of the hierarchical sorting architecture combined with intelligent algorithms determines its multiple functions. Its implementation not only can manage buffer and bandwidth resources effectively, but also does not require no more than off-the-shelf hardware technology. The correlation of the extra shaping delay and the rate of the connections is revealed, and an improved fair traffic shaping algorithm, Departure Event Driven plus Completing Service Time Resorting algorithm, is presented. The proposed algorithm introduces a resorting process into Departure Event Driven Traffic Shaping Algorithm to resolve the contention of multiple cells which are all eligible for transmission in the traffic shaper. By using the resorting process based on each connection\u27s rate, better fairness and flexibility in the bandwidth assignment for connections with wide range of rates can be given. A Dual Level Leaky Bucket Traffic Shaper(DLLBTS) architecture is proposed to be implemented at the edge nodes of Differentiated Services Networks in order to facilitate the quality of service management process. The proposed architecture can guarantee not only the class-based Service Level Agreement, but also the fair resource sharing among flows belonging to the same class. A simplified DLLBTS architecture is also given, which can achieve the goals of DLLBTS while maintain a very low implementation complexity so that it can be implemented with the current VLSI technology. In summary, the shaping and scheduling algorithms in the high speed packet switches and DiffServ networks are studied, and the intelligent implementation schemes are proposed for them

    Teletraffic analysis of ATM systems : symposium gehouden aan de Technische Universiteit Eindhoven op 15 februari 1993

    Get PDF

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF

    A MODEL FOR PREVENTIVE CONGESTION CONTROL MECHANISM IN ATM NETWORKS

    Get PDF
    Maximizing bandwidth utilization and providing performance guarantees, in the context of multimedia networking, are two incompatible goals. Heterogeneity of the multimedia sources calls for effective traffic control schemes to satisfy their diverse Quality of Service (Qos) requirement. These include admission control at connection set up, traffic control at the source end and efficient scheduling schemes at the switches. The emphasis in this paper is on traffic control at both connection set up and source end. A model for the Connection Admission Control (CAC) is proposed using probabilistic technique. Mathematical formulas are derived Cell Loss Probability (CLP), violation probability (PV) and cell throughput (TC). The performances at two UPC models (fluid flow and approximation) are investigated using the leaky bucket (LB) algorithm. The CLP, PV, and TC performed for different traffic sources which are characterized by their mean bit rate, peak bit rate and average number of bits generated during the burst. The results of the simulation show that the model for the Connection Admission Control (CAC) performs satisfactorily well for different traffic sources. Also, both models for the leaky bucket are almost coincident in policing the peak rate and mean rate of the source. Hence, policing effect is improved considerably using the proposed model

    From burstiness characterisation to traffic control strategy : a unified approach to integrated broadbank networks

    Full text link
    The major challenge in the design of an integrated network is the integration and support of a wide variety of applications. To provide the requested performance guarantees, a traffic control strategy has to allocate network resources according to the characteristics of input traffic. Specifically, the definition of traffic characterisation is significant in network conception. In this thesis, a traffic stream is characterised based on a virtual queue principle. This approach provides the necessary link between network resources allocation and traffic control. It is difficult to guarantee performance without prior knowledge of the worst behaviour in statistical multiplexing. Accordingly, we investigate the worst case scenarios in a statistical multiplexer. We evaluate the upper bounds on the probabilities of buffer overflow in a multiplexer, and data loss of an input stream. It is found that in networks without traffic control, simply controlling the utilisation of a multiplexer does not improve the ability to guarantee performance. Instead, the availability of buffer capacity and the degree of correlation among the input traffic dominate the effect on the performance of loss. The leaky bucket mechanism has been proposed to prevent ATM networks from performance degradation due to congestion. We study the leaky bucket mechanism as a regulation element that protects an input stream. We evaluate the optimal parameter settings and analyse the worst case performance. To investigate its effectiveness, we analyse the delay performance of a leaky bucket regulated multiplexer. Numerical results show that the leaky bucket mechanism can provide well-behaved traffic with guaranteed delay bound in the presence of misbehaving traffic. Using the leaky bucket mechanism, a general strategy based on burstiness characterisation, called the LB-Dynamic policy, is developed for packet scheduling. This traffic control strategy is closely related to the allocation of both bandwidth and buffer in each switching node. In addition, the LB-Dynamic policy monitors the allocated network resources and guarantees the network performance of each established connection, irrespective of the traffic intensity and arrival patterns of incoming packets. Simulation studies demonstrate that the LB-Dynamic policy is able to provide the requested service quality for heterogeneous traffic in integrated broadband networks

    Quality of service over ATM networks

    Get PDF
    PhDAbstract not availabl

    The Design and modeling of input and output modules for an ATM network switch

    Get PDF
    The purpose of this thesis is to design, model, and simulate both an input and an output module for an ATM network switch. These devices are used to interface an ATM switch with the physical protocol that is transporting data along the actual transmission medium. The I/O modules have been designed specifically to interface with the Synchronous Optical Network (SONET) protocol. This thesis studies the ATM protocol and examines the issues involved with designing an ATM I/O module chipset. A model of the design was then implemented in both C++ and \TTDL. These models were simulated in order to verify functionality and document performance. The intent of this work is to provide the background and models necessary to aid in the further study and development of entire ATM switch architectures. The input and output modules .ire onlv two functional pieces of a complete ATM switch. The software models that have been implemented by this thesis can be integrated with the other necessary functional blocks to form a complete model of a working ATM switch. These functional blocks can then be rearranged and altered to assist in the study of how different switch architectures can effect overall network performance and efficiency. The input and output modules have been designed to be as flexible as possible in order to easily adapt to future modifications
    corecore