20,044 research outputs found

    Bounded Concurrent Timestamp Systems Using Vector Clocks

    Full text link
    Shared registers are basic objects used as communication mediums in asynchronous concurrent computation. A concurrent timestamp system is a higher typed communication object, and has been shown to be a powerful tool to solve many concurrency control problems. It has turned out to be possible to construct such higher typed objects from primitive lower typed ones. The next step is to find efficient constructions. We propose a very efficient wait-free construction of bounded concurrent timestamp systems from 1-writer multireader registers. This finalizes, corrects, and extends, a preliminary bounded multiwriter construction proposed by the second author in 1986. That work partially initiated the current interest in wait-free concurrent objects, and introduced a notion of discrete vector clocks in distributed algorithms.Comment: LaTeX source, 35 pages; To apper in: J. Assoc. Comp. Mac

    Deadlock-Free Typestate-Oriented Programming

    Get PDF
    Context. TypeState-Oriented Programming (TSOP) is a paradigm intended to help developers in the implementation and use of mutable objects whose public interface depends on their private state. Under this paradigm, well-typed programs are guaranteed to conform with the protocol of the objects they use. Inquiry. Previous works have investigated TSOP for both sequential and concurrent objects. However, an important difference between the two settings still remains. In a sequential setting, a well-typed program either progresses indefinitely or terminates eventually. In a concurrent setting, protocol conformance is no longer enough to avoid deadlocks, a situation in which the execution of the program halts because two or more objects are involved in mutual dependencies that prevent any further progress. Approach. In this work, we put forward a refinement of TSOP for concurrent objects guaranteeing that well-typed programs not only conform with the protocol of the objects they use, but are also deadlock free. The key ingredients of the type system are behavioral types, used to specify and enforce object protocols, and dependency relations, used to represent abstract descriptions of the dependencies between objects and detect circularities that might cause deadlocks. Knowledge. The proposed approach stands out for two features. First, the approach is fully compositional and therefore scalable: the objects of a large program can be type checked in isolation; deadlock freedom of an object composition solely depends on the types of the objects being composed; any modification/refactoring of an object that does not affect its public interface does not affect other objects either. Second, we provide the first deadlock analysis technique for join patterns, a high-level concurrency abstraction with which programmers can express complex synchronizations in a succinct and declarative form. Grounding. We detail the proposed typing discipline for a core programming language blending concurrent objects, asynchronous message passing and join patterns. We prove that the type system is sound and give non-trivial examples of programs that can be successfully analyzed. A Haskell implementation of the type system that demonstrates the feasibility of the approach is publicly available. Importance. The static analysis technique described in this work can be used to certify programs written in a core language for concurrent TSOP with proven correctness guarantees. This is an essential first step towards the integration and application of the technique in a real-world developer toolchain, making programming of such systems more productive and less frustrating

    A Type-Safe Model of Adaptive Object Groups

    Full text link
    Services are autonomous, self-describing, technology-neutral software units that can be described, published, discovered, and composed into software applications at runtime. Designing software services and composing services in order to form applications or composite services requires abstractions beyond those found in typical object-oriented programming languages. This paper explores service-oriented abstractions such as service adaptation, discovery, and querying in an object-oriented setting. We develop a formal model of adaptive object-oriented groups which offer services to their environment. These groups fit directly into the object-oriented paradigm in the sense that they can be dynamically created, they have an identity, and they can receive method calls. In contrast to objects, groups are not used for structuring code. A group exports its services through interfaces and relies on objects to implement these services. Objects may join or leave different groups. Groups may dynamically export new interfaces, they support service discovery, and they can be queried at runtime for the interfaces they support. We define an operational semantics and a static type system for this model of adaptive object groups, and show that well-typed programs do not cause method-not-understood errors at runtime.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    Permission-Based Separation Logic for Multithreaded Java Programs

    Get PDF
    This paper presents a program logic for reasoning about multithreaded Java-like programs with dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits. In order to distinguish between initial monitor entrancies and monitor reentrancies, auxiliary variables keep track of multisets of currently held monitors. Data abstraction and behavioral subtyping are facilitated through abstract predicates, which are also used to represent monitor invariants, preconditions for thread starting and postconditions for thread joining. Value-parametrized types allow to conveniently capture common strong global invariants, like static object ownership relations. The program logic is presented for a model language with Java-like classes and interfaces, the soundness of the program logic is proven, and a number of illustrative examples are presented

    A type system for components

    Get PDF
    In modern distributed systems, dynamic reconfiguration, i.e., changing at runtime the communication pattern of a program, is chal- lenging. Generally, it is difficult to guarantee that such modifications will not disrupt ongoing computations. In a previous paper, a solution to this problem was proposed by extending the object-oriented language ABS with a component model allowing the programmer to: i) perform up- dates on objects by means of communication ports and their rebinding; and ii) precisely specify when such updates can safely occur in an object by means of critical sections. However, improper rebind operations could still occur and lead to runtime errors. The present paper introduces a type system for this component model that extends the ABS type system with the notion of ports and a precise analysis that statically enforces that no object will attempt illegal rebinding

    Actors that Unify Threads and Events

    Get PDF
    There is an impedance mismatch between message-passing concurrency and virtual machines, such as the JVM. VMs usually map their threads to heavyweight OS processes. Without a lightweight process abstraction, users are often forced to write parts of concurrent applications in an event-driven style which obscures control flow, and increases the burden on the programmer. In this paper we show how thread-based and event-based programming can be unified under a single actor abstraction. Using advanced abstraction mechanisms of the Scala programming language, we implemented our approach on unmodified JVMs. Our programming model integrates well with the threading model of the underlying VM

    PDDL2.1: An extension of PDDL for expressing temporal planning domains

    Get PDF
    In recent years research in the planning community has moved increasingly towards application of planners to realistic problems involving both time and many types of resources. For example, interest in planning demonstrated by the space research community has inspired work in observation scheduling, planetary rover ex ploration and spacecraft control domains. Other temporal and resource-intensive domains including logistics planning, plant control and manufacturing have also helped to focus the community on the modelling and reasoning issues that must be confronted to make planning technology meet the challenges of application. The International Planning Competitions have acted as an important motivating force behind the progress that has been made in planning since 1998. The third competition (held in 2002) set the planning community the challenge of handling time and numeric resources. This necessitated the development of a modelling language capable of expressing temporal and numeric properties of planning domains. In this paper we describe the language, PDDL2.1, that was used in the competition. We describe the syntax of the language, its formal semantics and the validation of concurrent plans. We observe that PDDL2.1 has considerable modelling power --- exceeding the capabilities of current planning technology --- and presents a number of important challenges to the research community

    Core-TyCO, The Language Definition, Version 0.1

    Get PDF
    This is the second report on TyCO, a (still) experimental strongly and implicitly typed concurrent object oriented programming language based on a predicative polymorphic calculus of objects, featuring asynchronous messages, objects, and process declarations, together with a predicative polymorphic type syste

    Adequacy of compositional translations for observational semantics

    Get PDF
    We investigate methods and tools for analysing translations between programming languages with respect to observational semantics. The behaviour of programs is observed in terms of may- and must-convergence in arbitrary contexts, and adequacy of translations, i.e., the reflection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extension

    Next generation software environments : principles, problems, and research directions

    Get PDF
    The past decade has seen a burgeoning of research and development in software environments. Conferences have been devoted to the topic of practical environments, journal papers produced, and commercial systems sold. Given all the activity, one might expect a great deal of consensus on issues, approaches, and techniques. This is not the case, however. Indeed, the term "environment" is still used in a variety of conflicting ways. Nevertheless substantial progress has been made and we are at least nearing consensus on many critical issues.The purpose of this paper is to characterize environments, describe several important principles that have emerged in the last decade or so, note current open problems, and describe some approaches to these problems, with particular emphasis on the activities of one large-scale research program, the Arcadia project. Consideration is also given to two related topics: empirical evaluation and technology transition. That is, how can environments and their constituents be evaluated, and how can new developments be moved effectively into the production sector
    corecore