
HAL Id: inria-00121104
https://hal.inria.fr/inria-00121104v3

Submitted on 1 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Stochastic Pi Calculus for Concurrent Objects
Céline Kuttler, Cédric Lhoussaine, Joachim Niehren

To cite this version:
Céline Kuttler, Cédric Lhoussaine, Joachim Niehren. A Stochastic Pi Calculus for Concurrent Objects.
Second International Conference on Algebraic Biology, Jul 2007, Linz, Austria. pp.232-246. �inria-
00121104v3�

https://hal.inria.fr/inria-00121104v3
https://hal.archives-ouvertes.fr

A Stochastic Pi Calculus for Concurrent Objects

Céline Kuttler1, Cédric Lhoussaine2, and Joachim Niehren3

1 The Microsoft Research - University of Trento
Centre for Computational and Systems Biology, Italy

2 University of Lille 1, LIFL, Lille, France
3 INRIA Futurs, Lille, France, Mostrare project

Abstract. We present SpiCO, a new modeling and simulation language
for systems biology. SpiCO is based on the stochastic π-calculus. It
supports higher level modeling via multi-profile concurrent objects with
static inheritance. We present a semantics for SpiCO in terms of con-
tinuous time Markov chains, and show how to compile SpiCO back into
the biochemical stochastic π-calculus while preserving semantics.

1 Introduction

A central objective of systems biology is the investigation of the dynamics in liv-
ing cells, that arises from interactions between its molecular components. Mod-
eling and simulation increasingly complement knowledge acquisition through ex-
perimentation. Discrete event based approaches are advantageous with respect
to detailed cellular control by small numbers of molecular actors. Deterministic
approaches offer benefits when modeling large populations.

Regev and co-authors [22] proposed to apply the stochastic π-calculus as
a modeling language for systems biology, based on Priami’s [20] refinement of
the synchronous π-calculus [17] by a notion of time. Expression in the π-calculus
then abstract chemical solutions, in which molecules interact concurrently. As for
earlier stochastic process algebras [9], stochastic parameters impose exponential
distributions of waiting times on reaction. Thus π-calculus expressions give rise
to continuous time Markov chains (CTMCs). Their execution yields stochastic
simulation, based on Gillespie’s algorithm [7].

Both existing simulation engines for the (biochemical) stochastic π-calculus–
SPiM [19] and BioSpi [22] – have been applied in case studies of small to medium
size [11, 15, 16]. Alternative modeling languages as BioCham [4] or SBML [10]
directly specify systems of chemical reaction rules. This approach is simpler, yet
seems less expressive with respect to concurrent control, i.e. intricate conditions
for rule application.

From the modeling perspective in systems biology, the minimality of the
π-calculus is sometimes unfortunate. Concurrent control soon requires sophisti-
cated protocols [11], tricky to both design and understand. Such protocols are
at a low level and must be adapted upon model extension. This constitutes a
major obstacle to up-scaling models.

In this paper we present SpiCO, a new modeling language for systems bi-
ology extending on a stochastic π-calculus for concurrent objects. SpiCO was
indeed developed concomitantly with modeling case studies [12, 13]. The main
insight behind SpiCO is that concurrent objects (as in programming languages)
appropriately represent interacting molecules for systems biology. Object inter-
faces avoid communication protocols, while object inheritance renders models
more extensible. The technical contributions can be summarized as follows:

1. We present Core SpiCO, a novel stochastic π-calculus with input patterns,
that originate from the distributed programming language TyCO [18, 25]
for typed concurrent objects in the asynchronous π-calculus. SpiCO assigns
stochastic rates to pairs of channel and function names.

2. We define a stochastic semantics assigning CTMCs to SpiCO’s process ex-
pressions, carefully distinguising timed and instantaneous reactions. Techni-
cally, this is the most difficult part of the paper. Previous semantics for the
stochastic π-calculus do not define CTMCs at all [19, 22], or disregard imme-
diate reactions [20] essential for expressiveness and modeling. Experiments
with SPiM confirm a correct treatment in implementations nevertheless.

3. We identify multi-profile objects with expressions in Core SpiCO. Each pro-
file comes with its own interface, similarly as TyCO’s non-uniform objects
[23]. Beyond these, multi-profile objects allow choice with mixed input and
output on possibly different channels and synchronous communication.

4. We define a notion of inheritance for multi-profile objects that is compiled
into the core of SpiCO. We present a module system for SpiCO providing
syntax for definitions of objects with inheritance.

5. We discuss a programming technique to model mutual exclusion of molecular
events, as frequently encountered in cellular regulation. Its essence lies in
escaping inconsistent intermediate states by immediate reactions, that are
applied before timed ones. This solves tedious atomicity problems, without
introducing transactions [5].

6. We encode SpiCO back into the biochemical stochastic π-calculus, so that
we can run SpiCO programs in SPiM or BioSpi. The main challenge is to
encode input patterns, while preserving the stochastic semantics.

In previous work we proposed a first ad hoc abstraction of interacting molecules
as objects that switch between discrete states [6]. How to explicitely support ob-
jects with multiple profiles in a more conservative language with proper syntax
and semantics remained open.
Other languages for systems biology were recently proposed. Beta binders [21]
are inspired by the π-calculus, but enable interactions by type coincidence rather
than channel name equality. Others [3, 24] adress spatial aspects at membranes.

Outline. The core of SpiCO is introduced in Section 2 and illustrated for
modeling molecular binding at overlapping sites in Section 3. SpiCO’s multi-
profile objects with inheritance are discussed in Section 4. CTMCs for chemical
reactions in Section 5 motivate the stochastic semantics of SpiCO in Section 6.
In Section 7, we show how to encode input patterns by a naming discipline. For
space considerations, the proofs are not included here but can be found in [14].

Processes P ::= P1 | P2 parallel composition
| new x:ρ. P channel creation
| C1 + . . . + Cn sum (n ≥ 0)
| A(x̃) application

Guarded processes C ::= x?f(ỹ).P pattern input
| x!f(ỹ).P tuple output

Definitions D ::= A(ỹ) , P

Table 1. Syntax of Core SpiCO

2 A Stochastic Pi-calculus with Input Patterns

The core of SpiCO (Core SpiCO) consists in a novel stochastic π-calculus with
input patterns, a linguistic feature introduced by Vasconcelos and Tokoro for
typed concurrent objects in the asynchronous π-calculus (TyCO) [18, 25]. Input
patterns are motivated by pattern matching in functional programming lan-
guages of the ML family. In TyCO, they are closely tied to communication:
objects only receive tuples if they provide a matching input pattern.

Core SpiCO’s vocabulary consists in an infinite set of channel names N =
{x, y, z, . . .}, a set of process names A, and a set of function names f ∈ F .
Process and function names have fixed arities. We write A/n or f/n for a symbol
of arity n ≥ 0. In order to account for stochastic rates, the vocabulary comprises
functions ρ : F →]0,∞] to define stochastic rates for every channel. If some
function ρ is assigned to x then ρ(f) is the rate of the pair (x, f).

Table 1 defines the syntax of Core SpiCO. We write x̃ for finite, possibly
empty sequences of channels x1, . . . , xn where n ≥ 0. When using tuples f(x̃) or
terms A(x̃) the number of arguments (the length of x̃) is assumed equal to the
respective arity of f or A. Process expressions are ranged over by P . The only
atomic expression (not decomposable into others) is the guarded choice of length
n = 0 that we write as 0. Expressions P1|P2 denote the parallel composition of
processes P1 and P2. A term new x:ρ. P introduces a new channel x scoping
over P ; the rate function ρ fixes stochastic rates ρ(f) for all pairs (x, f) where
f ∈ F . We can omit rate functions ρ in the declaration of a channel x if all
reactions on x are instantaneous, i.e. ρ(f) = ∞ for all f ∈ F . An expression
A(x̃) applies the definition of a parametric process A with actual parameters x̃.

A sum of guarded processes C1 + . . .+Cn offers a choice between n ≥ 0 com-
munication alternatives C1, . . . , Cn. A guarded input x?f(ỹ) describes a commu-
nication act, ready to receive over x a tuple constructed by f . The channels ỹ in
input guards serve as pattern variables; these bound variables are replaced by
the channels received as input. An output guarded process x!f(ỹ).P describes a
communication act willing to send tuple f(ỹ) over channel x and continue as P .

A definition of a parametric process has the form A(x̃) , P where A is a
process name with x̃ as formal parameters - that is, a sequence of bound chan-
nels. For modeling convenience, we permit free channel names in P besides the

(P1|P2)|P3 ≡ P1|(P2|P3) P1|P2 ≡ P2|P1

. . . + C1 + C2 + . . . ≡ . . . + C2 + C1 + . . . P |0 ≡ P
new x:ρ. (P1|P2) ≡ P1| new x:ρ. P2 if x /∈ fv(P1) P1 ≡ P2 if P1 ≡α P2

new x1:ρ1. new x2:ρ2. P ≡ new x2:ρ2. new x1:ρ1. P if x1 6= x2

Table 2. Axioms of the structural congruence

Communication, choice, and pattern matching:

x!f(ỹ).P1 + . . . | x?f(z̃).P2 + . . . → P1 | P2[z̃ 7→ ỹ] if z̃ free for ỹ in P2

Application of definitions:

A(x̃) → P [ỹ 7→ x̃] if A(ỹ) , P in ∆, and ỹ free for x̃ in P

Context and congruence closure:

P → P ′

new c:ρ. P → new c:ρ. P ′

P → P ′

P | Q → P ′ | Q

P ≡ P ′ P ′ → Q′ Q ≡ Q′

P → Q

Table 3. Reduction relation for a finite set of definitions ∆

parameters in x̃. The set of free channel names for processes P and guarded
processes C are denoted by fv(P) and fv(C) respectively. There are three scope
baring constructs: new binder new x:ρ. P , input patterns ?f(x̃).P , and defini-
tions A(x̃) , P .

We define an (non-stochastic) operational semantics for the π-calculus in
terms of a binary relation between expressions, the so called (one step) reduc-
tion. We will later refine it to a ternary relation adding stochastic labels. The
reduction relation is closed under the usual structural congruence (Table 2) be-
tween expressions.

Table 3 defines the reduction relation. The first axiom tells how to interpret
choices; it comprises channel communication and pattern matching. It applies
to two complementary matching alternatives in parallel choices, an output al-
ternative x!f(ỹ).P1 willing to send a term f(ỹ) and an input pattern x?f(z̃).P2

on the same channel x; this pattern matches in that it is built using the same
function symbol f . Reduction cancels all other alternatives, substitutes the pat-
tern’s variables z̃ by the received channels ỹ in the continuation P2 of the input,
and reduces the result in parallel with the continuation of the output P1.

Only matching tuples can be received over a channel. Other sending attempts
suspend until a suitable input pattern becomes available. This fact proves ex-
tremely useful for concurrent modeling. Upon reception, tuples are immediately
decomposed, in contrast to the π-calculus with data terms [1].

The application axiom unfolds one of the definitions of the parametric pro-
cesses in a given set ∆. An application A(ỹ) reduces in one step to definition
P in which the formal parameters ỹ were replaced by the actual parameters x̃.

(a) unbound state

Site(s,s’) Site(s’,s) interaction delay

free free s.bind() timed
bound free s’.block() immediate
bound blocked s.unbind() timed
free blocked s’.unblock() immediate
free free

(b) Sample execution

Fig. 1. Overlapping sites located at s and s’

Parametric definitions may be recursive, e.g. A may occur in P . Reduction can
be applied in arbitrary contexts, however not under choices or in definitions.

The syntax of the biochemical stochastic π-calculus is the same as ours except
for function names, and our more flexible assignment of stochastic rates. We can
express polyadic input and output by using dummy function names uniti for
all arities i ≥ 0 in following shortcuts for all sequences ỹ of channel names of
length i:

x?(ỹ).P =def x?(uniti(ỹ)).P and x!(ỹ).P =def x!(uniti(ỹ)).P

3 Molecular Binding at Overlapping Sites

We illustrate the modeling power of SpiCO by a frequent control mechanism
between molecular interactions, as binding of molecules: mutual exclusion [11,
12]. Consider overlapping sites allowing for a unique visitor at a time - i.e.
overlapping semaphores.

Figure 1(a) illustrates two such overlapping sites s and s’. Each can be either
free, bound, or blocked. Only a free site can become bound by a visitor - while
blocking the peer. We model sites as multi-profile object with three profiles
Site free, Site bound, and Site blocked. Figure 2 presents their definitions in the
π-calculus. Beside of its own identity me, a site is parametrized by the identity
of the other overlapping site. The defining sums specify interfaces for profiles, i.e.
which functions are offered or applied and on which channels. Profile Site free
for instance, offers functions bind and block by which it can become bound or
blocked, and can apply function unblock of the other site.

Multi-profile objects yield an elegant solution to express semaphores (sites
with at most one visitor). A visitor can only bind to free sites since no other
profile offers the bind function. This exploits the clever coupling between pattern
matching and synchronization by input patterns.

The most tedious aspect of overlapping sites is to keep states consistent.
Whenever a site gets bound, its overlapping peer must immediately become
blocked, i.e. without any elapse of simulated time. The actor Site bound(me,other)
enforces this by applying function block on its peer. The stochastic rate of this
function needs must thus be ∞. This technique works only if immediate tran-

module ’ o v e r l a p p i n g s i t e s ’
export S i t e with b ind /0 , unb ind /0
de f i ne

S i t e (me , o t h e r) , S i t e f r e e (me , o t h e r)

S i t e f r e e (me , o t h e r) ,

. me? b ind () . S i t e bound (me , o t h e r) // t imed
+ me? b l o ck () . S i t e b l o c k e d (me , o t h e r) // immediate
+ o th e r ! unb lock () . S i t e f r e e (me , o t h e r) // immediate

S i t e bound (me , o t h e r) ,

me? unbind () . S i t e f r e e (me , o t h e r) // t imed
+ othe r ! b l o ck () . S i t e bound (me , o t h e r) // immediate

S i t e b l o c k e d (me , o t h e r) ,

me? unb lock () . S i t e f r e e (me , o t h e r) // immediate

Fig. 2. Overlapping sites module

sitions have priority over time-consuming ones, and under the assumption that
function block is immediate. Highest priority of immediate transitions is guaran-
teed by the stochastic semantics to come (see rule (sum) in Table 4). This way,
we solve a tedious atomicity problems while avoiding heavier extensions of the
π-calculus by transactions [5].

One possible sequence of state changes is given in Figure 1(b). Initially, we
assume a parallel composition of two free sites and two free visitors. The first
parameter of Site free refers to its identity and the second to its peer’s:

Site free(s,s′) | Site free(s′,s) | Visitor free | Visitor free
−→ Site bound(s,s′) | Site free(s′,s) | Visitor free | Visitor at(s)
6−→ Site bound(s,s′) | Site bound(s′,s) | Visitor at(s) | Visitor at(s′)

The first reduction step is an application of function bind of s by the second
Visitor free defined in Figure 3, which consumes time. Now Site free(s’,s) has a
potential choice between a time consuming transition where function bind of s’
is applied by the first Visitor free, and an immediate transition applying function
block of s’ by Site bound(s,s’). Priority is given to immediate transitions, so only
the latter function can be applied.

∞
−→ Site bound(s,s′) | Site blocked(s′,s) | Visitor at(s) | Visitor free

Thereby, it becomes impossible to enter into an erroneous configuration in
which both Sites are bound.

4 Multi-profile Objects with Inheritance

The full SpiCO language features multi-profile objects with static inheritance.
In this section, we define these concepts formally and show how to compile them
to Core SpiCO.

SpiCO supports the paradigm of “molecules as concurrent objects” a refine-
ment of the paradigm “molecules as processes” by Regev and Shapiro. Object

module ’ v i s i t o r s f o r s i t e s s o r s ′ ’
pub l i c s s ′

export V i s i t o r
de f i ne

V i s i t o r () , V i s i t o r f r e e ()

V i s i t o r f r e e (), s ! b ind () . V i s i t o r a t (s)
+ s ′ ! b ind () . V i s i t o r a t (s ′)

V i s i t o r a t (s i t e) , s i t e ! unb ind () . V i s i t o r f r e e ()

Fig. 3. Visitors module for sites s and s’

module ’ r e p r e s s i b l e promoter ’
import S i t e from ’ o v e r l a p p i n g s i t e s ’

export

Promoter extends S i t e by i n i t i a t e /0
de f i ne

Promoter bound (me , o t h e r) extended by

me? i n i t i a t e () . P r omo t e r f r e e (me , o t h e r)

Fig. 4. Promoters inherit from overlapping sites

classes correspond to species of molecules. A class of a multi-profile object is a
set of definitions by sums, each of which defines a profile.

Obj p1(x̃1) , C1
1 + . . . + C1

n1

. . .

Obj pm(x̃m) , Cm
1 + . . . + Cm

nm

A major advantage of object-orientation for biological systems is model ex-
tensibility by object inheritance. Numerous examples are elaborated in [12]. A
simpler case is given in Figure 4. This is a promoter, a Dna region controlling
transcription initiation, which overlaps with an operator region. A promoter is
thus like an overlapping site, except that it can initiate transcription when bound
by a polymerase. This new functionality is added by inheritance. We next define
inheritance for multi-profile objects. We extend class Obj to Obj2 as follows:

Obj2 extends Obj

Obj2 p
1
(z̃1) extended by C1

k1+1 + . . . + C1

l1

. . .
Obj2 p

n
(z̃n) extended by Cn

kn+1 + . . . + Cn

ln

This specification with inheritance can be compile into definitions of Core SpiCO:

Obj2 p
1
(z̃1) , C1

1 + . . . + C1

l1
[Obj 7→ Obj2]

. . .

Obj2 p
n
(z̃n) , Cn

1 + . . . + Cn

ln
[Obj 7→ Obj2]

The substitution renames all recursive calls to profiles Obj p
i
into recursive calls

to Obj2 p
i
for 1 ≤ i ≤ n.

SpiCO provides a module system for grouping sets of definitions together so
that they can be extended by multiple inheritance. Modules import definitions
from others as usual. Such module dependencies can be resolved statically, as
long as they remain acyclic, which SpiCO assumes. The details of the module
systems are out of the scope of this paper.

5 Markov Chains for Chemical Reactions

The stochastic semantics of our π-calculus is guided by the analogy to continuous
time Markov chains (CTMCs) for chemical reactions.

We first recall CTMCs with countably infinite state spaces. We assume a
countable set S called the state space. A continuous time stochastic process with
states q ∈ S is a family {Xt | t ∈ R+} of random variables with values in S.
These define probabilities Pr(Xt ∈ S′) for all subsets S′ ⊆ S, i.e. the probability
that the process is in some state of S′ at time t.
A continuous time Markov chain (CTMC) is a continuous time stochastic process
(CTSP), with memoryless sojourn times for all states. More formally, a CTMC
over S is a CTSP {Xt | t ∈ R+} with states in S, that satisfies the Markov
property, i.e. for all q0, . . . , qn+1 ∈ S and all time points 0 ≤ t0 < . . . < tn+1:

Pr(Xtn+1
= qn+1 | Xtn

= qn, . . . ,Xt0 = q0) = Pr(Xtn+1
= qn+1 | Xtn

= qn)

The probabilistic behavior of a CTMC is determined by the distribution of
its initial states (at time 0) and its transition rates. The transition rate r from
state q to state q′ is a value that “scales how the (one step) transition probabil-

ity between q and q′ increases with time” [8]. We write q
r
−→ q′ in this case. For

simplicity, we consider CTMCs with a single initial state. These can be identified
with a Markovian transition system (S, (

r
−→)r∈R+ , q0) where q0 ∈ S is the initial

state and
r
−→ ⊆ S × S are transition relations for all r ∈ R+, such that for all

q, q′ ∈ S there exists at most one r ∈ R+ satisfying q
r
−→ q′.

The stochastic time evolution of a CTMC can be computed by Gillespie’s
first reaction method (1976) [7] if each state permits only a finite number of
transitions, as we assume in the sequel. At time 0 the process starts in state q0.
Suppose that the process has moved to state q at time point t and let q{

ri−→ qi}i

be all (finitely many) transitions starting in q. Draw delays ti > 0 for all i from
an exponential distribution with rate ri. Draw with equal probability some j,
with minimal tj . Move to state qj at time point t + tj .

Gillespie’s direct method equivalently determines the stochastic behavior of
a CTMC [7]. In state q at time t it first computes the delay until the next
transition (called sojourn time), by drawing a number from the exponential dis-
tribution with rate ↓ s =def

∑
q

ri−→qi

ri. Second, the state qj to go to is drawn

with probability Pr(q −→ qj) =def rj/
∑

q
r′

−→q′

r′ if q
rj

−→ qj and 0 otherwise.

We next illustrate CTMCs for systems of chemical reaction rules. We start
from a set of chemical species X,Y,Z and a set of chemical reaction rules of the

following form, where r ∈ R+, reserving the symbol + for choice:

X | Y
r
−→ Z1 | . . . | Zk

Chemical solutions P are multisets of species, where each occurrence in the
multiset represents a molecule of the species. Chemical rules as above apply as
follows to a chemical solution P . Each pair of molecules of species X and Y
can interact at rate r, yielding one molecule of each of the species Z1, . . . , Zk.
The solution obtained is P − {| X,Y |} ∪ {| Z1, . . . , Zk |}. According to the
Chemical Law of Mass Action, the speed of a chemical reaction in a solution
is proportional to the number of possible interactions of its reactants in the
solution. It is distributed exponentially, and defines a CTMC with chemical
solutions as states and the following transitions:

P
n·r
−−→

{
P − {| X,Y |}
∪{| Z1, . . . , Zk |}

where n =

♯(X ∈ P) × ♯(Y ∈ P) if X 6= Y(
♯(X ∈ P)

2

)
else

The expression

(
m
2

)
= 1

2 m (m − 1) counts the number of two-element subsets

in sets of cardinality m.

6 Stochastic Semantics of Core SpiCO

We define the stochastic semantics of Core SpiCO by associating a π-calculus
process with a CTMC. The states of this Markov chain are the (countably infi-
nite) set of congruence classes of π-calculus processes with respect to structural
congruence. This differs from [20] where two congruent processes are associated
with two different states. Since congruent processes are behaviorally equivalent
we believe that their associated stochastic states should not be distinguished
neither. Moreover, in [20], the author proposes a labeled semantics where labels
are so-called proof terms, i.e. (possibly long) strings used to localize interacting
sub-terms. Those labels are necessary to properly calculate interaction rates. We
instead propose a reduction semantics, a style for defining semantics known to be
more intuitive and elegant. Still, we temporarily use labels but in a much simpler
form: a label is an integer or a tuple of four integers. Finally, and contrary to [20],
our semantics takes into account immediate transitions of which we emphasized
the importance in the biological example in section 3. Such transitions require
specific consideration: we show how they can be removed in order to obtain an
equivalent Markovian transition system. The theorem 1 states the correctness of
this transformation.

6.1 Transition relations

We first consider the fragment of the π-calculus without proper summation,
parametric processes, infinite rates, and new-binders. The remaining processes
are parallel compositions C1 | . . . | Cn. The structural congruence turns them

Labeled reduction steps

(com)

Cj1
i1

= x?f(z̃).new x̃1:ρ1. Q1 Cj2
i2

= x!f(ỹ).new x̃2:ρ2. Q2

Πn
i=1

Pmi

j=1 Cj
i

̺(x)(f)
−−−−−−→
i1,j1,i2,j2

new x̃1:ρ1. new x̃2:ρ2.

(Q1[z̃ 7→ ỹ] | Q2 | Πn
i=1,i6=i1,i2

Pmi

j=1 Cj
i)

where Q1, Q2 have no top-level new-binders and
1 ≤ i1 6= i2 ≤ n, 1 ≤ j1 ≤ mi1 , 1 ≤ j2 ≤ mi2

(app)
Pi1 = A(ỹ) A(x̃) , new fz:ρ. Q in ∆

Πn
i=1Pi

∞
−→
i1

new fz:ρ. (Q[x̃ 7→ ỹ] | Πn
i=1,i6=i1

Pi)

where Q has no top-level new-binders and 1 ≤ i1 ≤ n

(new)
P

s
−→
w

Q ̺(x) = ρ

new x:ρ. P
s
−→
w

new x:ρ. Q
where s ∈ R

+ ∪ {∞}, w ∈ N ∪ N
4

Time consuming transitions (r, r′ ∈ R
+, w ∈ N

4)

(sum)

P ≡ P ′ r =
P

P ′
r′

−→
w

Q′≡Q

r′ 6= 0 ¬∃R∃w′ ∈ N ∪ N
4. P ′ ∞

−→
w′

R

P
r
−→ Q

Immediate transitions

(count)
P ≡ P ′

n = ♯{w ∈ N ∪ N
4 | P ′ ∞

−→
w

Q′ ≡ Q} 6= 0

m = ♯{w ∈ N ∪ N
4 | P ′ ∞

−→
w

Q′′}

P
∞(n/m)
−−−−−→ Q

Table 4. Timed transitions of Core SpiCO with respect to a set ∆ of definitions in
prenex normal form, and a global assignment ̺ of channels to rate functions.

into multisets of guarded processes, i.e. into chemical solutions whose species are
guarded processes.

Suppose we know the rate functions ̺(x) for all channels x. The π-calculus
with input patterns then defines the following chemical reaction rule:

x?f(z̃).Q1 | x!f(ỹ).Q2
̺(x)(f)
−−−−−→ Q1[z̃ 7→ ỹ] | Q2

This defines a CTMC. For example, assume n molecules of a first species x!f().P1

and m of another different one x!f().P2, which all want to react with a single
molecule of a third kind x?f().P . The Markovian transitions are:

nY

i=1

x!f().P1 |
mY

i=1

x!f().P2 | x?f().P

8
<
:

n×̺(x)(f)
−−−−−−−→

Qn−1
i=1 x!f().P1 |

Qm
i=1 x!f().P2 | P

m×̺(x)(f)
−−−−−−−→

Qn
i=1 x!f().P1 |

Qm−1
i=1 x!f().P2 | P

We first discuss time consuming transitions P
r
−→ P ′ where r ∈ R+. These

capture everything, except parametric process unfolding and invocation of func-
tions of rate ∞.

We first define labeled reduction steps P
s
−→
w

Q where P and Q are in prenex

normal form, that is a parallel composition of sums where restrictions have been
pushed ahead and in which bound variables are renamed apart. The rate function
̺(x) is then read off from the quantifier prefix in rule (new).

Definition 1. P is in prenex normal form (pnf for short) iff P = new x̃:ρ. (P1 |
. . . | Pm) where each Pi either is an application A(ỹ), or a sum C1 + . . . + Cn

where each Cj is in pnf, or a guarded process x?f(ỹ).Q or x!f(ỹ).Q where Q is

in pnf. Moreover, a definition A(ỹ) , P is in pnf iff P is in pnf.

What remains from pnfs after removing top-level new-binders are multisets
of sums and applications. All applications must have been reduced before time
consuming transitions can apply, so we have a multiset of sums. Each sum is like
a molecule, except that each of its choices offers its own interactions.

In x?f().0 + x?f().0 | x!f().0 there are two possible interactions with rate
r = ̺(x)(f) leading to the same state. We can think of x?f().0 + x?f().0 as a
protein with two identical domains, complementary to one domain of some other
protein represented by x!f().0. The overall rate of the interaction thus doubles:

x?f() .0 + x?f().0 | x!f() .0
r

−−−−→
1.1.2.1

0

and x?f().0 + x?f() .0 | x!f() .0
r

−−−−→
1.2.2.1

0

sums up to x?f().0 + x?f().0 | x!f().0
2r
−→ 0

Rule (com) defines labeled reductions P
r

−−−−−−→
i1,j1,i2,j2

Q that distinguish com-

munication actions with identical reactants and results, while using different
occurrences of choice alternatives in sums. Those occurrences are identified by
labels in N4 that specify the numbers of the reacting sums (i1, i2) and the react-

ing choices (j1, j2). Rule (sum) defines transitions P
r
−→ Q by summing up all

rates of all different interactions leading from P to Q. These reduction rules are
defined with care, so that corresponding interactions in structurally congruent
processes are not counted twice.

We next turn to immediate transitions P
∞(p)
−−−→ Q, where p ∈ [0, 1] is a prob-

ability. Rule (sum) ensures that time consuming transitions apply only after all
immediate have been reduced. In this case, all calls A(ỹ) on top level must have
been reduced before. Note that this order is important for a proper count of
the possible interactions. Indeed, if an application hides an interaction on some
pattern, the application unfolding changes the rate of the action involving this
pattern. Immediate transitions can be licensed by communication (com), or by
applications of parametric process definitions (app). Their labels are in N ∪ N4.
Note that the labeled reduction is independent of the choice of the pnf.

We merge labeled immediate transitions with rule (count). Although being
immediate we want to associate probabilities, which characterize the number

(elim1)
P

∞
−→
w

Q n = ♯{w′ ∈ N ∪ N
4 | P

∞
−→
w′

Q′}

P
∞(1/n)
−−−−−→

w
Q

w ∈ N ∪ N
4

(elim2)
P

r
−→
w

Q Q
∞(p1)
−−−−→

w1

. . .
∞(pn)
−−−−→

wn

Qn 6
∞
−→

P
rp1...pn
=⇒

ww1...wn

Qn

r ∈ R
+

(elimsum)
P ≡ P ′ r =

P
P ′

r′
=⇒

w1...wn
Q′≡Q

r′

P
r

=⇒ Q

Table 5. Elimination of immediate transitions and merging timed transitions

of immediate interactions leading to a common state with respect to the total
number of enabled immediate interactions. For instance, let ̺(x)(f) = ∞, in
x?f().P +x?f().P | x?f().Q | x!f().0, for some P 6≡ Q, the associated probabil-
ities reflect that 2 out of 3 interactions lead to P , and 1 out of 3 to Q:

x?f().P + x?f().P | x?f().Q | x!f().0
∞(2/3)
−−−−−→ P

x?f().P + x?f().P | x?f().Q | x!f().0
∞(1/3)
−−−−−→ Q

6.2 CTMCs with immediate reactions

In the presence of immediate transitions, the reduction relation
r
−→ does not define

a Markovian transition system (in which all rates are finite). To capture the
stochastic dynamics of processes, we instead define the sojourn time parameters
(i.e. the parameter of an exponentially distributed probability which determine
the sojourn time in a given state) and the probabilities of state changes for all
P,Q as follows4:

↓ P =

{
∞ if P

∞(p)
−−−→ Q,∑

P
r
−→Q

r otherwise.
Pr(P −→ Q) =

r/
∑

P
r′

−→Q′

r′ if P
r
−→ Q

p if P
∞(p)
−−−→ Q

0 otherwise
We are now giving an interpretation of the reduction semantics with imme-

diate transitions in terms of CTMCs for processes that can not exhibit infinite
sequences of immediate transitions. The Markovian transition system deriving
statements P

r
=⇒ Q is defined in Table 5. The idea is quite similar to that of

[2]: the transitions are obtained by integrating immediate transitions into time
consuming transitions. An example for this transformation is as follows:

P

r1−→ Q1 6
∞
−→

r2−→ Q2

{
∞(p)
−−−→ Q21 6

∞
−→

∞(1−p)
−−−−−→ Q22 6

∞
−→

becomes P

r1=⇒ Q1
r2p
=⇒ Q21

r2(1−p)
=⇒ Q22

4 we assume if X is exponentially distributed with parameter ∞ then Pr(X = 0) = 1.

In general, a sequence of reductions P
r
−→ P1

∞(p1)
−−−−→ . . . Pn

∞(pn)
−−−−→ Q 6

∞
−→

reduces to P
rp1...pn
=⇒ Q. However, we must beware of merging initially distinct

states. Indeed, in the previous example, if Q22 ≡ Q1 then the CTMC should have

transitions P
r1+r2(1−p)

=⇒ Q1 and P
r2p
=⇒ Q21. In order to infer these transitions

correctly, the elimination procedure defines labeled transitions
r

=⇒
w

with labels

w ∈ (N ∪ N4)⋆ representing paths in the labeled derivation trees of
r
−→.

For any P such that P 6
∞
−→, (P/≡, (

r
=⇒)r∈R+ , P/≡) is a Markovian transition

system5 with sojourn time parameters and transition probabilities:

⇓ P =
∑

P
r

=⇒Q

r and Pr(P ⇒ Q) =

{
r/

∑
P

r′

=⇒Q′

r′ if P
r

=⇒ Q

0 otherwise

In order to show that this defines a Markovian model for the reduction se-
mantics with immediate transitions, we show that their dynamics coincide, that
is: the sojourn time parameters and the transition probabilities with respect to
r
−→ are identical to those of

r
=⇒. However, transition probabilities can be com-

pared only for processes performing timed transitions. We thus define a suitable
transition probability Pr(P ։ Q) for P 6

∞
−→ and Q 6

∞
−→, that is the probability

to reach Q from P by a sequence of transitions made of one timed transition
and possibly several intermediate immediate transitions. Formally, Pr(P ։ Q)
is the sum of the probabilities of all such sequences:

Pr(P ։ Q) =
∑

P
r
−→Q1

∞(p1)
−−−−→...Qn

∞(pn)
−−−−→Q6

∞

−→

(
Pr(P −→ Q1) ×

∏n
i=1 pi

)

Theorem 1. If P 6
∞
−→ and if no infinite sequence of immediate transitions is

reachable from P , then

– (Timed correctness) ↓ P = ⇓ P ,
– (Probabilistic correctness) Pr(P ։ Q) = Pr(P ⇒ Q).

7 Encoding Input Patterns

We now encode SpiCO back into the stochastic π-calculus. The latter can be
identified as the special case with a unique function name per arity (we assume
arities bounded by some max): F ′ = {uniti | 0 ≤ i ≤ max}. In what follows,
we write unit instead of uniti.

We assume a total ordering < on a finite set of function names F . This means
that F has a unique representation F = {f1, . . . , fn} with f1 < . . . < fn. Our
encoding uses channel names from the set N × F . We denote elements (x, f)
of this set by xf . For each channel x we define a sequence of n channels xF as
follows: xF =def xf1

, . . . , xfn
. Channels in the target language are associated a

5 For P
∞
−→ it suffices to start with a process Q = x!f().0 | x?f().P such that ̺(x)(f) =

1 in order to obtain a set of initial processes together with an initial probability
distribution of those processes rather than a single initial process.

Jnew x:ρ. P K =def new xf1 :ρ(f1). · · · .new xfn :ρ(fn). JP K
JP1 | P2K =def JP1K | JP2K JA(ỹ)K =def A(ỹF)

JC1 + · · · + CnK =def JC1K + · · · + JCnK JA(x̃) , P K =def A(x̃F) , JP K
Jx?f(ỹ).P K =def xf?(ỹF).JP K Jx!f(ỹ).P K =def xf !(ỹF).JP K

Table 6. Encoding of input patterns

rate (that may be infinite) by means of the encoding of ̺ defined as J̺K(xf) =
̺(x)(f). We write x̃, ỹ for the concatenation of two sequences x̃ and ỹ. If x̃ =
x1, . . . , xn then we let x̃F =def x1F , . . . , xnF . The encoding is given in Table 6.

The following theorem states the correctness of our encoding. It allows us
to run simulations of models expressed in SpiCO, via an implementation of the
original stochastic π-calculus, as implemented in the SPiM system [19].

Theorem 2. The encoding defines a stochastic bisimulation: for all processes
P,Q and finite sets of definitions ∆, and all rates s ∈ R+ ∪ {∞(p) | p ∈]0, 1]} it

holds that P
s
→ Q relative to ∆ if and only if JP K

s
→ JQK relative to J∆K.

The statement P
s
→ Q relative to ∆ means that there exists some function

̺ : N → F → (R+ ∪ {∞}) such that P
s
→ Q relative to ∆ and ̺. The values

̺(x) will be the rate ρ assigned to x in the declaration new x:ρ. It holds for all
ρ and x that ̺(x) = ρ iff J̺K(xf) = ρ(f) for all f ∈ F .

The statement JP K
s
→ JQK relative to J∆K means that there exists some

function ̺′ : {xf | f ∈ F , x ∈ N } → (R+ ∪ {∞}) such that JP K
s
→ JQK relative

to J∆K and ̺′. The situation differs in that there exists only a single function
unit for all arities. We are a little sloppy in identifying a constant function with
its constant value, i.e. ̺′(xf) = ̺′(xf)(unit).

8 Conclusion and Future Work

We presented SpiCO, a novel higher-level modeling language for systems biology.
SpiCO provides multi-profile objects with static inheritance. It supports the
paradigm of modeling “molecules as concurrent objects”. The core of SpiCO

is a novel stochastic π-calculus with input patterns. We presented its stochastic
semantics in terms of CTMCs and showed how to compile it into the biochemical
stochastic π-calculus, so that the semantics is preserved. In future work, we plan
to finalize SpiCO’s language specification and to provide an implementation.

References

1. M. Baldamus, J. Parrow, and B. Victor. A fully abstract encoding of the π-calculus
with data terms. In ICALP. LNCS 3580:1202–1213. 2005.

2. M. Bernardo, L. Donatiello, and R. Gorrieri. MPA: A stochastic process algebra.
Technical Report UBLCS-94-10, University Bologna, 1994.

3. L. Cardelli. Brane calculi: interactions of biological membranes. In CMSB 2004,
3082 of LNBI, 257–278, 2005.

4. N. Chabrier-Rivier, F. Fages, and S. Soliman. The biochemical abstract machine
BioCham. In CMSB 2004, volume 3082 of LNBI, 172–191, 2005.

5. F. Ciocchetta and C. Priami. Biological transactions for quantitative models. In
MeCBIC. ENTCS. 2006. to appear.

6. D. Duchier and C. Kuttler. Biomolecular agents as multi-behavioural concurrent
objects. In Proc. MTCoord, vol 150 of ENTCS, 31–49, 2005.

7. D. T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J Comp Phys, 22:403–434, 1976.

8. H. Hermanns. Interactive Markov Chains: The Quest for Quantified Quality, LNCS

2428. Springer, 2002.
9. J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis,

University of Edinburgh, 1995. Cambridge University Press, 1996.
10. M. Hucka et. al. The systems biology markup language (SBML). Bioinformatics,

19:524–531, 2003.
11. C. Kuttler and J. Niehren. Gene regulation in the pi calculus: Simulating cooper-

ativity at the lambda switch. In Trans Comp Syst Bio, LNBI 4230:24–55. 2006.
12. C. Kuttler. Bacterial transcription and translation in the pi calculus. Trans Comp

Syst Biol VI, LNBI 4220:113–149, 2006.
13. C. Kuttler. Modeling Bacterial Gene Expression in a Stochastic Pi Calculus with

Concurrent Objects. PhD thesis, University Lille 1, 2006.
14. C. Kuttler, C. Lhoussaine, and J. Niehren. A stochastic pi-calculus for concurrent

objects. INRIA technical report 6076, 2006.
15. M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, J. Heath, and E. Gaffney.

Simulation and verification for computational modelling of signalling pathways.
Winter Simulation Conference, 2006. To appear.

16. P. Lecca, C. Priami, P. Quaglia, B. Rossi, C. Laudanna, and G. Constantin. A
stochastic process algebra approach to simulation of autoreactive lymphocyte re-
cruitment. SCS Simulation, 80(6):273–288, June 2004.

17. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (I and II).
Information and Computation, 100:1–77, 1992.

18. H. Paulino, P. Marques, L. Lopes, V. T. Vasconcelos, and F. Silva. A multi-
threaded asynchronous language. In PaCT, LNCS 2763:316–323. 2003.

19. A. Phillips and L. Cardelli. A correct abstract machine for the stochastic pi-
calculus. Proc. Workshop on Concurrent Models in Molecular Biology, 2004.

20. C. Priami. Stochastic π-calculus. Computer Journal, 6:578–589, 1995.
21. C. Priami and P. Quaglia. Beta binders for biological interactions. In Proc. of

CMSB 2004, volume 3082 of LNBI, 20–33, 2005.
22. C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of a stochastic

name-passing calculus to representation and simulation of molecular processes.
Information Processing Letters, 80:25–31, 2001.

23. A. Ravara and V. T. Vasconcelos. Typing non-uniform concurrent objects. In
CONCUR, LNCS 1877:474–488. 2000.

24. A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. BioAmbients:
An abstraction for biological compartments. TCS, 325(1):141–167, 2004.

25. V. T. Vasconcelos and M. Tokoro. A typing system for a calculus of objects. In
ISOTAS, LNCS 472:460–474. 1993.

