2 research outputs found

    Error Analysis in Multi-Agent Control Systems

    Get PDF
    Any cooperative control scheme relies on some measurements which are often assumed to be exact to simplify the analysis. However, it is known that in practice all measured quantities are subject to error, which can deteriorate the overall performance of the network significantly. This work proposes a new measurement error analysis in the control of multi-agent systems. In particular, the connectivity preservation of multi-agent systems with state-dependent error in distance measurements is considered. It is assumed that upper bounds on the measurement error and its rate of change are available. A general class of distributed control strategies is then proposed for the distance-dependent connectivity preservation of the agents in the network. It is shown that if two neighboring agents are initially located in the connectivity range, they are guaranteed to remain connected at all times. Furthermore, the formation control problem for a team of single-integrator agents subject to distance measurement error is investigated using navigation functions. Collision, obstacle and boundary avoidance are important features of the proposed strategy. Conditions on the magnitude of the measurement error and its rate of change are derived under which a new error-dependent formation can be achieved anywhere in the space. The effectiveness of the proposed control strategies in consensus and containment problems is demonstrated by simulation

    Optimal control problems solved via swarm intelligence

    Get PDF
    Questa tesi descrive come risolvere problemi di controllo ottimo tramite swarm in telligence. Grande enfasi viene posta circa la formulazione del problema di controllo ottimo, in particolare riguardo a punti fondamentali come l’identificazione delle incognite, la trascrizione numerica e la scelta del risolutore per la programmazione non lineare. L’algoritmo Particle Swarm Optimization viene preso in considerazione e la maggior parte dei problemi proposti sono risolti utilizzando una formulazione differential flatness. Quando viene usato l’approccio di dinamica inversa, il problema di ottimo relativo ai parametri di trascrizione è risolto assumendo che le traiettorie da identificare siano approssimate con curve B-splines. La tecnica Inverse-dynamics Particle Swarm Optimization, che viene impiegata nella maggior parte delle applicazioni numeriche di questa tesi, è una combinazione del Particle Swarm e della formulazione differential flatness. La tesi investiga anche altre opportunità di risolvere problemi di controllo ottimo tramite swarm intelligence, per esempio usando un approccio di dinamica diretta e imponendo a priori le condizioni necessarie di ottimalitá alla legge di controllo. Per tutti i problemi proposti, i risultati sono analizzati e confrontati con altri lavori in letteratura. Questa tesi mostra quindi the algoritmi metaeuristici possono essere usati per risolvere problemi di controllo ottimo, ma soluzioni ottime o quasi-ottime possono essere ottenute al variare della formulazione del problema.This thesis deals with solving optimal control problems via swarm intelligence. Great emphasis is given to the formulation of the optimal control problem regarding fundamental issues such as unknowns identification, numerical transcription and choice of the nonlinear programming solver. The Particle Swarm Optimization is taken into account, and most of the proposed problems are solved using a differential flatness formulation. When the inverse-dynamics approach is used, the transcribed parameter optimization problem is solved assuming that the unknown trajectories are approximated with B-spline curves. The Inverse-dynamics Particle Swarm Optimization technique, which is employed in the majority of the numerical applications in this work, is a combination of Particle Swarm and differential flatness formulation. This thesis also investigates other opportunities to solve optimal control problems with swarm intelligence, for instance using a direct dynamics approach and imposing a-priori the necessary optimality conditions to the control policy. For all the proposed problems, results are analyzed and compared with other works in the literature. This thesis shows that metaheuristic algorithms can be used to solve optimal control problems, but near-optimal or optimal solutions can be attained depending on the problem formulation
    corecore