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Abstract

For an inspector satellite characterizing a resident space object (RSO) in geosyn-

chronous orbit (GEO), time-optimal and fuel-optimal maneuvers are key to improv-

ing the capability and mission life of the inspector satellite. Thus, optimal guidance

methods are developed for a satellite operating nearby both non-maneuvering and ma-

neuvering RSOs, while subject to various inspection constraints. Three finite-thrust

control types are investigated, as opposed to approximating burns as impulsive, in

order increase the accuracy of the generated guidance, which is particularly important

for low-thrust systems.

The first control type investigated is a low-thrust, body-fixed engine subject to

maximum slew rates, e.g. an electric engine, where the control variables are the throt-

tle level and the three-dimensional direction of the thrust, and mass loss is accounted

for. With this control type, pseudospectral methods are used to formulate and solve

minimum-time and minimum-fuel multi-phase optimal control problems with respect

to a non-maneuvering RSO. The problem combines both a formation establishment

and reconfiguration maneuver into one problem, subject to a keep-out cone, where

time and fuel can be saved by knowing a priori the desired reconfiguration trajectory

and including it in the multi-phase optimal control problem.

The second control type investigated is a satellite with multiple on/off thrusters,

capable of thrusting in any direction with the appropriate combination of thrusters.

With this control type, analytic expressions are developed for a burn-burn, a burn-

coast-burn, and a coast-burn-coast-burn sequence, meaning that the relative states

can be propagated analytically through the sequence given the three-dimensional

direction and duration of each burn. These are then used within optimization solvers

iv



to reach desired trajectories about a non-maneuvering RSO, where both the natural

motion circumnavigation (NMC) and teardrop relative trajectories are thoroughly

studied. Due to the analytic propagation of the sequences and the low number of

optimization variables required, CPU times for metaheuristic solvers are fast. Thus,

particle swarm and genetic algorithms are used to quickly produce reliable initial

guesses for a nonlinear programming problem solver to further refine. The maneuvers

investigated can be subject to multiple constraints, to include: sunlight constraints,

field-of-view constraints, and active and passive collision avoidance constraints.

The third control type investigated is a constantly on, steerable thruster (e.g. an

electric engine), where the RSO uses this control type as well and optimally maneu-

vers away from the inspector satellite. The problem is formulated and solved as a

differential game — a zero-sum pursuit-evasion game — in order to find worst case

scenarios for the players. Multiple games are developed with respect to an elliptical

orbit, in case the maneuvering RSO has departed its circular orbit, to reduce error

incurred by any eccentricity. The following games are formulated and solved with

metaheuristic methods, where each game corresponds to an inspection goal of the

inspector satellite: a) intercept; b) rendezvous; c) obtain Sun vector; d) match en-

ergy; e) obtain Sun vector and match energy; and f) match energy and remain close

(during the ensuing orbit). Therefore, open-loop strategies can be obtained for these

games, where the pursuer wishes to minimize the time to obtain these goals, while

the evader wishes to prolong these conditions as long as possible.

Thus, various optimization techniques are used to determine the optimal con-

trol for multiple constrained proximity operations inspection maneuvers, where finite

thrust is accounted for in all control types considered.

v



Acknowledgements

I would first and foremost like to thank my advisor, Dr. Cobb, for his guidance

and support throughout my research journey. He always made time to meet with me,

thoroughly review my papers, and keep me on track. I’d like to also thank Dr. Fickus

for being on my committee, and Dr. Carr and Dr. Hess for their advice and assistance

and for being co-authors on several papers. I’d like to also thank Major Curtis, a

fellow PhD student, for letting me bounce ideas off of him and discuss topics together,

and also the other PhD students who made up our research group. I must also thank

my wife and son, for putting up with the long research hours, and understanding

the work required for a PhD. Lastly, I’d be amiss if I didn’t thank our loyal mini

Australian Shepherd for keeping watch while I worked.

Eric R. Prince

vi



May the Force be with you.

vii



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions, Tasks, and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Research Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Expected Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Document Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Relative Satellite Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Tschauner-Hempel Equations of Motion . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Hill-Clohessy-Wiltshire Equations of Motion . . . . . . . . . . . . . . . . . 20

2.3 Optimal Control and Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Pseudospectral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Metaheuristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.3 Indirect Methods Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Direct Method Applications Pertaining to Problem A . . . . . . . . . . . . . . . 38
2.5 Previous Work Pertaining to Problem B . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Metaheuristic Methods Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7 Differential Games and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

III. Problem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Equations of Motion and Control Definition . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Targeted NMCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



Page

3.4 Optimization Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.1 Phase One: Formation Establishment . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.2 Phase Two: Initial NMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.3 Phase Three: Formation Reconfiguration . . . . . . . . . . . . . . . . . . . . 72
3.4.4 Phase Four: Orthogonal NMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.5 Performance Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Simulation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.6 Problem A Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

IV. Problem B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Problem B-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.2 Equations of Motion and Control Definition . . . . . . . . . . . . . . . . . . 85
4.2.3 Analytic Propagation of a Constant Magnitude,

Constant Direction Burn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.4 Targeted Teardrop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.5 Optimization Problem Formulations . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.6 Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.7 PSO Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.8 Problem B-1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Problem B-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.2 Equations of Motion and Control Definition . . . . . . . . . . . . . . . . . 105
4.3.3 Analytic Propagation of a Burn-Coast-Burn

Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.4 Sunlight Constraints for NMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.5 Initial Guess Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.6 Optimization Problem Formulations . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.7 Simulation and Results with Sunlight Constraints . . . . . . . . . . . . 123
4.3.8 Initial Guess and NLP Performance with

Sunlight Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.3.9 Earth and Moon Field-of-View Constraints for

NMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.3.10 Simulations and Results with Multiple Lighting

Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.3.11 Problem B-2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.4 Problem B-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.4.2 Equations of Motion and Control Definition . . . . . . . . . . . . . . . . . 147
4.4.3 Analytic Propagation of a

Coast-Burn-Coast-Burn Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.4.4 Targeted Teardrop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

ix



Page

4.4.5 Lighting Constraints for Teardrop . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.4.6 Collision Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.4.7 Optimization Problem Formulations . . . . . . . . . . . . . . . . . . . . . . . 160
4.4.8 Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.4.9 Solution Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.4.10 Problem B-3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

V. Problem C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.2 Equations of Motion and Control Definition . . . . . . . . . . . . . . . . . . . . . . . 181
5.3 Differential Game Formulations using Indirect Heuristic

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.4 Game Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.4.1 Intercept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.4.2 Rendezvous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.4.3 Obtain Sun Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.4.4 Match Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.4.5 Obtain Sun Vector and Match Energy . . . . . . . . . . . . . . . . . . . . . . 193
5.4.6 Match Energy and Remain Close . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.5 Boundary Value Problem Formulations via Indirect
Heuristic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.6 Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.7 Solution Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.8 Problem C Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

VI. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.1.1 Problem A Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.1.2 Problem B Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.1.3 Problem C Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

x



List of Figures

Figure Page

1 Space-Based SSA Mission and Inspection Trajectory
Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Applicable Teardrop Parameters (taken from Lovell [1]) . . . . . . . . . . . . . . 27

3 LVLH or RSW Coord. Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Thrust Direction Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Exclusion Cone and NMC Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Problem A, Min Time Solution, Phase 1, 90% of NMC 1 . . . . . . . . . . . . . 76

7 Problem A, Min Time Solution, Phase 3, 90% of NMC 1 . . . . . . . . . . . . . 77

8 Problem A, Min Time Solution Trajectory, 90% of
NMC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9 Problem A, Min Time Solution Trajectory, 90% of

NMC 1, z
(1)
0 = −15 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

10 Problem A, Min Time Solution, Phase 1 Optimized
Alone, 90% of NMC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

11 Problem A, Min Time Solution, Phase 3 Optimized
Alone, 90% of NMC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

12 Problem A, Min Fuel Solution, Phase 1, 100% of NMC

1, t
(3)
f = 60 min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

13 Problem A, Min Fuel Solution, Phase 3, 100% of NMC

1, t
(3)
f = 60 min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

14 Problem A, Range of Optimal Solutions, 100% of NMC 1 . . . . . . . . . . . . 82

15 Teardrop Example with Allowable Injection Range for β . . . . . . . . . . . . . 90

16 Problem B-1, PSO Min Time Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

17 Problem B-1, PSO Min Fuel Solution, tf = 35 minutes . . . . . . . . . . . . . . . 97

18 Problem B-1, fmincon Min Time & Fuel Solutions -
Initial Guess with PSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xi



Figure Page

19 Problem B-1, GPOPS-II Min Time Solution - Initial
Guess with PSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

20 Problem B-1, GPOPS-II Min Time Trajectories, Inject
and Repeat Burns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

21 Problem B-1, GPOPS-II Min Fuel Solution, tf = 35
minutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

22 B-1, GPOPS-II Min Fuel Trajectories, tf = 35 minutes,
Inject, Repeat Burns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

23 PSO Performance, Analytic & Numerical Propagation
of Two Burns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

24 Problem B-2, PSO Solution, Hard Sunlight Constraint,
tf = 1.5 hrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

25 Problem B-2, Mid-Fidelity Solutions, Hard Sunlight
Constraint, tf = 1.5 hrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

26 Problem B-2, All Model Solutions, Hard Sunlight
Constraint, tf = 1.5 hrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

27 Problem B-2, All Solutions, Soft Sunlight Constraint,
2-D, tf = 1.5 hrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

28 Problem B-2, All Solutions, Soft Sunlight Constraint,
3-D, tf = 1.5 hrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

29 NLP Performance, interior-point, Grid Initial Guesses,
Hard Sun Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

30 NLP Performance, sqp, Grid Initial Guesses, Hard
Sunlight Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

31 NLP Performance, interior-point, Grid Initial Guesses,
Soft Sun Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

32 NLP Performance, sqp, Grid Initial Guesses, Soft
Sunlight Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

33 Problem B-2, CWT, IPOPT Solutions, Hard Sun
Constraint, tf = 1.5 hrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xii



Figure Page

34 Problem B-2, Moon Conflict, Hard Sunlight Constraint,
tf = 1.5 hrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

35 B-2, CWT, NLP Solutions, Hard Sun Constraint,
Field-of-View Constraints, tf = 1.5 hrs . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

36 Problem B-2, CWT, NLP Solutions, Soft Sunlight
Constraint, tf = 1.5 hrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

37 Problem B-2, Range of Optimal Solutions, Soft Sunlight
Constraint, Costs & Exit Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

38 Problem B-2, Range of Optimal Solutions, Soft Sunlight
Constraint, Costs & Exit Flags, Zoomed In. . . . . . . . . . . . . . . . . . . . . . . . 144

39 Coast-Burn-Coast-Burn Sequence Parameterization . . . . . . . . . . . . . . . . 148

40 Example Moon Conflict for Teardrop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

41 B-3, Tight Sunlight Constraint, Min Fuel Solution,
tf = 14 hrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

42 B-3, Relaxed Sunlight Constraint, Min Fuel Solution,
tf = 14 hrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

43 B-3, Moon Avoidance, Tight Sunlight Constraint, Min
Fuel, tf = 1 hr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

44 B-3, Moon Avoidance, Relaxed Sunlight Constraint,
Min Fuel, tf = 1 hr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

45 B-3, Active Collision Avoidance, Relaxed Sunlight, Min
Fuel, tf = 6 hr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

46 B-3, Active Collision Avoided, Relaxed Sunlight, Min
Fuel, tf = 6 hr, 3-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

47 B-3, Passive Collision Avoidance, Tight Sunlight, Min
Fuel, tf = 1 hr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

48 B-3, Range of Solutions, fmincon sqp, Tight Sunlight
Constraint, Min Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

49 B-3, Range of Solutions, fmincon sqp, Soft Sunlight
Constraint, Min Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

xiii



Figure Page

50 FreeFlyer Validation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

51 General Terminal Conditions for Obtaining the Sun
Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

52 Intercept Game: Costates and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

53 Intercept Game: States and Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

54 Rendezvous Game: Costates and Control . . . . . . . . . . . . . . . . . . . . . . . . . 202

55 Rendezvous Game: States and Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . 203

56 Obtain Sun Vector Game: Control and Trajectory . . . . . . . . . . . . . . . . . 203

57 Match Energy Game: Trajectories After Game
Concludes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

58 Obtain Sun Vector & Match Energy Game: 3-D
Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

59 Match Energy & Remain Close Game: 3-D Trajectories . . . . . . . . . . . . . 206

60 Intercept Game: Solution Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

61 Rendezvous Game: Solution Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

xiv



List of Tables

Table Page

1 Teardrop Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Problem A Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3 Problem A Simulation Results (in minutes) . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Problem B-1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Problem B-1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Example Cases for No Difference Between Actual and
Projected Sun Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Mid and High-Fidelity Models Comparison . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Problem B-2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9 Problem B-2 Simulation Results, No Derivative
Information Supplied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

10 NLP Performance, Grid Initial Guesses, Both Sunlight
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

11 NLP Performance, MATLAB PSO Initial Guesses, Both
Sunlight Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

12 NLP Performance, Modified MATLAB PSO Initial
Guesses, Both Sunlight Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

13 NLP Performance, MATLAB GA Initial Guesses, Both
Sunlight Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

14 Average CPU Times (seconds) for Metaheuristic Initial
Guess Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

15 Coast-Burn-Coast-Burn Sequence Variables . . . . . . . . . . . . . . . . . . . . . . . 148

16 Teardrop Cross-Track Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

17 Problem B-3 Simulation Parameters, Set A . . . . . . . . . . . . . . . . . . . . . . . . 166

18 Problem B-3 Simulation Parameters, Set B . . . . . . . . . . . . . . . . . . . . . . . . 169

xv



Table Page

19 Problem B-3 Simulation Parameters, Set C . . . . . . . . . . . . . . . . . . . . . . . . 171

20 Collision Avoidance Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

21 Problem B-3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

22 Problem C (Game Optimization Problem) Formulations . . . . . . . . . . . . 200

23 Problem C Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

24 Problem C Simulation Results (using Table 23
parameters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

xvi



List of Abbreviations

Abbreviation Page

GEO geosynchronous orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

SSA space situational awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

RSO resident space object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

GSSAP Geosynchronous Space Situational Awareness
Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

AFRL Air Force Research Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

ANGELS Automated Navigation and Guidance Experiment
for Local Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

NMC natural motion circumnavigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

NLP nonlinear programming problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

GA genetic algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

PSO particle swarm optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

LVLH Local-Vertical, Local-Horizontal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

NERMs general nonlinear equations of relative motion . . . . . . . . . . . . . . . . . 14

CNERMs circular-NERMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

TH Tschauner-Hempel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

YA Yamanaka and Ankersen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

STM state transition matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

HCW Hill-Clohessy-Wiltshire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

LROEs Lovell’s relative orbital elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

GCOs general circular orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

PCOs projected circular orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

TPBVP two-point boundary value problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xvii



Abbreviation Page

IHM Indirect Heuristic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

LPM Legendre Pseudospectral Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

GPM Gauss Pseudospectral Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

RPM Radau Pseudospectral Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

GPOPS-II General Purpose Optimal Control Software II . . . . . . . . . . . . . . . . . 32

SNOPT Sparse Nonlinear Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

IPOPT Interior Point Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

SOCS Sparse Optimal Control Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

NMTs natural motion trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

SDCNLP semi-direct collocation with nonlinear
programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

SDCP semi-direct control parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 60

MOGA multi-objective genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ECI Earth-Centered-Inertial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

UTC Universal Time Coordinated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

JD Julian Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

AUs astronomical units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xviii



OPTIMAL FINITE THRUST GUIDANCE METHODS FOR CONSTRAINED

SATELLITE PROXIMITY OPERATIONS INSPECTION MANEUVERS

I. Introduction

1.1 Motivation

The geosynchronous orbit (GEO) is prime real estate due to its orbital period

matching the Earth’s rotational period. Many nations including the United States

have critical assets in GEO and are interested in keeping these satellites safe and

functioning properly. Thus, GEO space situational awareness (SSA) has become

of utmost importance, and it is United States policy to develop SSA information

which can be used to detect, identify and attribute actions in space that are contrary

to responsible use and the long-term sustainability of the space environment [2].

The United States Department of Defense defines SSA as the requisite current and

predictive knowledge of the space environment with one of its key objectives to ensure

space operations and spaceflight safety [3]. SSA techniques can be split into two major

categories: ground-based and space-based. One of the main advantages of space-based

SSA apart from being physically closer to the target(s) is that a space-based asset can

obtain global and wide-area coverage over denied areas where little or no data can be

obtained from ground and airborne sensors [3]. There are approximately 917∗ resident

space object (RSO)s in the GEO belt [4], and thus one inspector satellite in GEO may

have great capability to enhance the knowledge of multiple GEO targets in one mission

lifetime [5]. Air Force missions to increase space-based SSA capabilities include the

Geosynchronous Space Situational Awareness Program (GSSAP), which has satellites

∗as of 22 May 2018
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placed in the near-GEO regime supporting U.S. space surveillance operations and

allowing more accurate tracking and characterization of man made orbiting objects.

These satellites have the advantage of no Earth weather or atmospheric-distortion

interruption and have the capability to perform rendezvous and proximity operations

[6]. Another mission advancing SSA technology for the Air Force Research Laboratory

(AFRL) is the Automated Navigation and Guidance Experiment for Local Space

(ANGELS). This mission operates above GEO and is examining techniques to provide

a clearer picture of the GEO environment and performs safe, automated operations

around its upper stage launch vehicle, testing proximity operation algorithms [7].

The guidance and control for these and future satellites is of course desired to be as

optimal as possible, in order to improve the capabilities and extend the mission life

of the satellites.

This research thus focuses on producing optimal guidance for an inspector satellite

in GEO using various optimization techniques where the term guidance refers to the

trajectories the inspector satellite should follow and the control required to gener-

ate those trajectories. The target trajectories investigated include the injection into

and maintenance of relative motion proximity operations trajectories such as natu-

ral motion circumnavigation (NMC) and teardrop∗ trajectories. The control types

investigated are all of finite nature as opposed to impulsive, which is particularly

relevant for low-thrust engines in order to produce more accurate guidance. Various

inspection constraints are also taken into account, such as keep-out zones and lighting

constraints, to generate more applicable results. To solve these complex problems,

modern optimization techniques are investigated and applied, such as pseudospectral

methods and metaheuristic methods, which are applied to problems formulated both

directly and indirectly. Differential game techniques are also employed to account for

∗teardrop, or pogo, trajectories refer to those which drift relative to the RSO and form the shape
of a teardrop
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an RSO which may attempt to optimally delay the goal of the inspector satellite.

1.2 Research Questions, Tasks, and Scope

This section describes the overarching research hypothesis and associated research

questions. The specific tasks to be completed in order to answer the questions and

the research scope are also outlined.

1.2.1 Research Questions.

Hypothesis: By applying modern optimization techniques∗ to proximity operation

maneuvers of an inspector satellite operating in geosynchronous orbit, highly con-

strained and nonlinear problems can be formulated and solved, realizing time and/or

fuel savings and providing mission planners with multiple tools to obtain solutions.

Research questions addressing this hypothesis include:

1. Problem A: How can an optimal control problem be formulated and solved for

a satellite with one, finite-thrust, body-fixed engine and maximum slew rates

to start from an arbitrary state nearby and inject itself into an NMC about a

non-maneuvering target, and transfer to an orthogonal one in order to reach

viewing angles from all eight octants surrounding the target, while adhering to

additional inspection constraints?

2. Problem B: How can an optimal control problem be formulated and solved for

a satellite with multiple on/off thrusters and capable of reorienting its thrust

vector instantaneously, to start from an arbitrary state nearby and inject itself

into and maintain a relative teardrop trajectory (as well as into an NMC) about

a non-maneuvering target, while adhering to additional inspection constraints?

∗such as pseudospectral methods and metaheuristic methods
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3. Problem C: How can a differential game be formulated and solved for a satel-

lite and an uncooperative, maneuvering RSO, both with a constant, steerable

thruster, to find the zero-sum, optimal, open-loop strategies for the pursuer to

achieve its inspection goal as soon as possible from an arbitrary state nearby,

while the evader prolongs it as long as possible, for various types of inspection

goals?

4. Can metaheuristic optimization algorithms be applied reliably to produce better

initial guesses and/or complete, comparable solutions for the proximity oper-

ations guidance problems investigated in this research and provide planners

another tool to assist in obtaining optimal guidance?

For ease of reference throughout the document, question one is denoted as Problem

A, question two is denoted as Problem B, and question three is denoted as Problem

C. These problems are distinguished mainly by the control type used. Question four

does not represent a specific problem, but has been posed to emphasize the desire to

apply metaheuristic methods to help solve the other questions.

1.2.2 Research Tasks.

To answer the research questions pertaining to the hypothesis, the following tasks

will be performed:

1. Use pseudospectral methods to formulate and solve Problem A. Generate meth-

ods to find both minimum-time and minimum-fuel solutions subject to an ex-

clusion cone attached to the RSO.

2. Use various optimization techniques, to include metaheuristic optimization al-

gorithms, to formulate and solve Problem B for varying levels of fidelity. Gen-

erate methods to find both minimum-time and minimum-fuel solutions subject

4



to various inspection constraints, such as lighting and collision constraints.

3. Use metaheuristic optimization algorithms to solve indirect formulations of

Problem C, for various inspection goals.

1.2.3 Research Scope.

This research addresses the SSA mission of a single space-based inspector satellite

inspecting one RSO. Although there exist many ways to inspect a GEO RSO with a

space-based asset, this research only considers a few particular inspection missions.

Specifically, the first type of inspection mission considered is an initial inspection

of an RSO, where the inspector is injected into different NMCs and constrained to

avoid an exclusion cone emitting from the satellite pointing towards nadir to avoid

interfering with its operations. This type of mission would be one where minimal

information exists regarding the RSO with the goal of obtaining views from all eight

octants surrounding the target. This inspection mission is investigated in Problem

A. Another type of inspection mission investigated in this research is one where the

inspector is required to hover in a specified region with respect to the target in order

to collect information from one specific set of angles. It may also be allowed to drift

by the target, but required to spend a large percentage of its time near one set of

angles with respect to the target. This type of collection or inspection mission can

be accomplished with a relative teardrop trajectory and is thoroughly investigated in

Problem B. Problems A and B both take place with respect to a non-maneuvering

RSO. Problem C differs not only in the control type used, but also because the type

of inspection mission examined in Problem C is one where the RSO of interest is

expected to maneuver optimally to delay the objective of the inspector satellite. Al-

though other types of inspection missions exist (and become more specific depending

on exact mission requirements), this research considers the types of missions and rel-
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ative trajectories explained above and summarized in Figure 1, where the missions

and trajectories highlighted in green are the ones addressed in this research and the

research problems have been placed where they apply. Thus Problem A investigates

maneuvers into NMCs about a non-maneuvering RSO, Problem B investigates ma-

neuvers into teardrops and NMCs about a non-maneuvering RSO, and Problem C

investigates maneuvers into the same orbit as an optimally maneuvering RSO.

(a) Space-Based SSA Mission Types (b) Proximity Inspection Trajectories

Figure 1. Space-Based SSA Mission and Inspection Trajectory Types

The optimal control problems considered in this research are generally too com-

plex to be solved analytically and must be calculated numerically. Many numerical

methods exist to solve optimal control problems, such as direct and indirect methods,

as well as metaheuristic methods and hybrid combinations of these methods. Direct

methods typically involve the discretization, or parameterization, or approximation

of the control and/or states, and result in a static or parameter optimization problem.

The resulting optimization problems are typically nonlinear programming problems

(NLP)s, and may be solved with existing NLP solvers. Indirect methods apply calcu-
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lus of variations and result in equations which form a boundary value problem, which

is typically solved via a numerical method. Direct methods are used in Problems A

and B, and indirect methods are used in Problem C. Typically, due to its complexity,

an optimal control problem is discretized via some method (e.g. pseudospectral meth-

ods), which in turn generates an NLP. This technique is used in Problem A. However,

if an optimal control problem can formulated in such a way that it is naturally a static

optimization problem, then the resulting problem may be solved immediately with

an NLP solver, as opposed to using pseudospectral methods to first transcribe the

optimal control problem to an NLP beforehand. For such a problem, metaheuristic

methods such as a genetic algorithm (GA) or particle swarm optimization (PSO) may

be used to solve the static optimization problem and serve as an initial guess. This

approach is investigated in Problem B. With indirect methods, the resulting bound-

ary value problem may be solved with a optimization solver. This approach is used

for Problem C, where metaheuristic methods are used to solve the boundary value

problem. Other techniques exist to formulate and solve optimal control problems,

but the ones discussed in this paragraph are explored in this research. They will be

described further in Chapter II and it will be shown how they apply to each problem

in the following chapters.

This research addresses methods to generate optimal guidance, or optimal open-

loop control, which process is also known as path planning or trajectory generation.

Thus, the resulting algorithms could be used within a mission planning tool to gen-

erate optimal guidance given fuel and timing requirements for a specific mission.

Obviously, feedback controllers or closed-loop controllers will be necessary on orbit

to correct for model uncertainties, sensor noise, and perturbations. This research,

however, does not address such controllers and instead has the purpose of increas-

ing the fidelity of and providing new algorithms for the path planning of multiple

7



phase, highly constrained, and nonlinear problems. This research is thus composed

of algorithmic development and numerical simulations and does not address the im-

plementation of the resulting algorithms on hardware.

1.3 Assumptions and Limitations

One of the main reasons to use modern optimization tools is because they have

the potential to solve nonlinear, non-convex, and highly constrained optimization

problems and generally don’t require as many assumptions as other methods, thus

producing better results. For example, the research conducted here accounts for finite-

duration burns, as opposed to impulsive burns. Mass loss is also accounted for in most

cases, and not assumed constant. However, certain assumptions do apply when, for

example, linearized relative equations of motion are used as the dynamical model for

relative spacecraft motion. In these cases, the RSO, or chief satellite, may need to be

in a circular orbit (which applies for the GEO RSOs of interest), the motion of the

deputy or inspector with respect to the target must remain in the neighborhood of

the target, and the motion cannot be propagated too far forward in time. Otherwise,

the linearized equations of motion may no longer be valid.

Also, as discussed, the trajectories generated by these optimization techniques

are generally the open-loop, initial trajectories and will need to be accompanied by

closed-loop, feedback controllers to keep the satellite on the planned trajectory. Thus,

the results generated are as good as the model, which may be fairly detailed, and as

good as the perturbations and disturbances which are incorporated into the overall

model. The knowledge of where the spacecraft is and will be are also only as good as

its sensors, navigation system, and propagation algorithms, which directly tie into the

practicality of the optimal guidance generated. Of course, re-planning of the path will

be necessary at times. The faster the computation times are, and the higher the trust
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is in obtaining stable and convergent results, the more these modern optimization

algorithms may be used as part of real-time feedback, or inner-loop, controller.

It must also be understood that the optimization methods used may not result

in finding the global minimum. This is the case for non-convex problems, which

this research considers. Metaheuristic methods may help with this problem, as one of

their benefits is that, (depending on the problem and formulation), they can explore a

larger percentage of the search space and may be able to more easily avoid converging

to a local minimum. Also, the algorithms may not converge at all or may converge

to a clearly incorrect answer. Thus, the results generated by these algorithms may

need to be checked and verified by a human in-the-loop or by a reliable verification

algorithm.

1.4 Research Methodology

This research is composed of two main overarching fields, each composed of many

subfields: astrodynamics and optimal control or optimization. Obviously, these are

vast fields and only certain subfields will be examined. Regarding astrodynamics,

research has been conducted to determine the best models and parameters to use

for relative satellite motion and their implementation into optimization algorithms.

Using these models, equations are developed to describe the target trajectory in terms

of terminal constraints where possible. That is, terminal constraints are developed

which when met, result in the desired unforced trajectory with respect to the RSO.

These are developed for both NMC and teardrop trajectories and are a critical part

of the optimization problem formulation.

Regarding optimal control or optimization, modern optimization tools will be used

to solve the complex optimization problems which this research is designed to answer.

Specifically, the latest GAs and PSOs will be used to produce initial guesses for NLP
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solvers and solve boundary value problems, and pseudospectral methods will be used

to solve multiple phase optimal control problems. Chapters III–V will outline how

each of these optimization tools are applied to each problem.

The general research methodology for each Problems A, B, and C, is outlined

below.

1. Problem A: Slew-Rate-Limited Guidance

Pseudospectral methods will be used to account for the unique control type of

the inspector satellite, the multi-phase aspect of the problem, and the exclusion

cone. The NMC establishment and reconfiguration will be solved as separate

problems and then combined into one optimal control problem.

2. Problem B: On/Off Thruster Guidance

Due to the control type used, the problem will be formulated in a way that

it is naturally a parameter optimization problem, composed of relatively few

optimization variables. This will enable the use of metaheuristic methods to

produce initial guesses for an NLP solver to refine. The solution from this mid-

fidelity model may then be used as an initial guess for a pseudospectral method

if higher-fidelity solutions are desired.

3. Problem C: Constant, Steerable Thruster Differential Games

Differential game techniques, specifically the indirect heuristic method which

makes use of metaheuristic optimization algorithms, will be used to solve bound-

ary value problems resulting from applying the necessary conditions for a dif-

ferential game solution. Multiple game conditions will be examined, to include

maneuvering into a leader-follower formation with respect to an optimally evad-

ing RSO. For these games, it will be assumed that both the inspector satellite

and the RSO employ a thruster which is always on at the maximum acceleration
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magnitude, e.g. an electric engine, where the direction of the acceleration vector

may vary. Also, equations of motion will be used which allow the maneuvering

RSO to be in a non-circular orbit.

Chapters III, IV, and V will thus cover each problem and present how each optimal

control or optimization problem is formulated, and how the mentioned optimization

tools can be used to obtain a solution. Results obtained from different optimization

techniques will be compared and pros and cons will be assessed regarding each solution

technique. The lessons learned and the results will be presented, which will answer

the research questions and provide evidence to support the research hypothesis.

1.5 Expected Contributions

This research is expected to answer the research questions outlined in Section 1.2.1

by following the methodology to complete the research tasks. The expected contri-

butions will in general increase the capabilities of optimal guidance algorithms for

an inspector satellite operating near GEO, and show that time and/or fuel-optimal

guidance can be obtained for complex maneuvers by applying modern optimization

techniques to problems which account for more realistic control types and constraints.

Thus the expected contributions are optimization problem formulations and algo-

rithms which solve Problems A, B, and C, where the algorithms are reliable and

computationally fast. The specific contributions from each problem will be shown in

Chapter VI.

The efficacy of the results will be measured via several techniques. For multi-phase

problems, the multi-phase solution will be compared against the solution obtained

when the phases are optimized separately. The effectiveness of the results will also be

measured by comparing them against results obtained with added assumptions. For

example a finite-burn solution will be compared against an impulsive burn solution.
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Also, some methods will be verified by running multiple simulations, to provide em-

pirical evidence that an algorithm produces good results or that a solution has been

found. These techniques will be used throughout Chapters III–V to help validate the

contributions.

1.6 Document Preview

This document is divided into six chapters. This first chapter serves as an intro-

duction. Chapter II contains background information and a literature review detail-

ing recent work performed in the areas this research will focus on, with the purpose

of exposing limits in those specific fields which this research is intended to extend.

Chapters III–V discuss the methodology and results for Problems A, B, and C re-

spectively, and are composed of the following sections where they apply: problem

overview, problem environment, guidance technique, target trajectories, constraints,

initial guess methods, optimization problem formulations, simulations and results,

and validation and verification of the developed techniques. Chapter VI summarizes

the research and outlines the research contributions as well as potential future work.
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II. Background

2.1 Overview

This chapter is intended to provide the background and previous studies upon

which this work builds in order to answer the proposed research questions. Relative

satellite equations of motion, their solutions, and parameterizations are reviewed,

with special attention on previous work done to more easily describe and characterize

certain types of relative motion. The optimal control problem is formally introduced,

along with several techniques and tools used to solve them. Recent research is then

presented where these optimization tools have been used to solve problems related to

those addressed in this research, in order to show how this work builds upon previous

work and how this work extends these specific fields of research. Differential games

and pursuit-evasion optimization techniques are also introduced, as well as recent

applications of the theory to problems related to this research. The research gaps

which this research is intended to fill are then summarized.

2.2 Relative Satellite Motion

The equations describing the motion of an inspector satellite (or deputy) relative

to an RSO (or chief) have been derived under a variety of assumptions. Typically,

the equations are expressed in a non-inertial, rotating, coordinate frame fixed to the

RSO with the RSO at its center, where the x̂ axis points in the direction from the

center of the Earth to the RSO, the ẑ axis points in the same direction as the specific

angular momentum vector, and the ŷ axis completes the right-handed coordinate

system. This frame is commonly called the Local-Vertical, Local-Horizontal (LVLH)

frame. Using this coordinate system and assuming Keplerian, two-body motion, the
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general nonlinear equations of relative motion (NERMs) can be expressed as [8]:

ẍ− 2ḟ ẏ − f̈y − ḟ 2x+
µ (r + x)[

(r + x)2 + y2 + z2
] 3

2

− µ

r2
= ax (1)

ÿ + 2ḟ ẋ+ f̈x− ḟ 2y +
µy[

(r + x)2 + y2 + z2
] 3

2

= ay (2)

z̈ +
µz[

(r + x)2 + y2 + z2
] 3

2

= az, (3)

where f is the true anomaly of the RSO, µ = 398,600.5 km3/s2 is the Earth’s gravita-

tional parameter, r is the distance from the center of the Earth to the RSO, and ax,

ay, and az are the acceleration terms resulting from any non-Keplerian forces acting

on the inspector satellite. If the RSO is in a circular orbit or near circular, then the

equations reduce to the circular-NERMs (CNERMs):

ẍ− 2ωẏ − ω2x+
µ (a+ x)[

(a+ x)2 + y2 + z2
] 3

2

− µ

a2
= ax (4)

ÿ + 2ωẋ− ω2y +
µy[

(a+ x)2 + y2 + z2
] 3

2

= ay (5)

z̈ +
µz[

(a+ x)2 + y2 + z2
] 3

2

= az, (6)

where ḟ = ω is constant and is the mean motion of the RSO, and r = a, the semi-

major axis of the RSO’s orbit.

2.2.1 Tschauner-Hempel Equations of Motion.

If the distance between the deputy and chief is much smaller than the distance

between the center of the Earth and the chief, then the NERMs, Equations 1–3,
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reduce to [8]:

ẍ− 2ḟ ẏ − f̈y − ḟ 2x− 2µx

(
ḟ

h

) 3
2

= ax (7)

ÿ + 2ḟ ẋ+ f̈x− ḟ 2y + µy

(
ḟ

h

) 3
2

= ay (8)

z̈ + µz

(
ḟ

h

) 3
2

= az, (9)

where h is the constant specific angular momentum of the RSO. If the independent

variable is changed from time to the true anomaly, f , of the RSO and the variables

are transformed according to


x̃

ỹ

z̃

 = (1 + e cos f)


x

y

z

 , (10)

where e is the eccentricity of the RSO’s orbit, then a simplified set of equations can

be derived, known as the Tschauner-Hempel (TH) equations of motion [9]:

x̃′′ =
3

k
x̃+ 2ỹ′ (11)

ỹ′′ = −2x̃′ (12)

z̃′′ = −z̃′, (13)

where ax, ay, and az have been set equal to zero, d()
df

= ()′, and k = 1 + e cos f .

Equations 11–13 form a linear, ‘time’-varying (i.e. true anomaly-varying) set of

differential equations, since k is a function of the true anomaly of the RSO, and can
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be written as

X̃ ′ = A(f)X̃, (14)

where X̃ = [x̃, ỹ, z̃, x̃′, ỹ′, z̃′]. Yamanaka and Ankersen (YA) found a simple and

singularity-free solution to this set of differential equations, where the solution is

X̃(f) = Θ(f, f0)X̃(f0), (15)

where the state transition matrix (STM) is [10]

Θ(f, f0) =



s 2− 3esI 0 c 0 0

c
(
1 + 1

k

)
−3k2I 0 −s

(
1 + 1

k

)
1 0

0 0 cos f 0 0 sin f

s′ −3e
(
s′I + s

k2

)
0 c′ 0 0

−2s −3(1− 2esI) 0 e− 2c 0 0

0 0 − sin f 0 0 cos f


f=f

× 1

η2



−3sk+e2

k2
0 0 c− 2e −sk+1

k
0

3k − η2 0 0 es k2 0

0 0 η2 cos f 0 0 −η2 sin f

−3
(
e+ c

k

)
0 0 −s −

(
ck+1

k
+ e
)

0

−3esk+1
k2

η2 0 −2 + ec −esk+1
k

0

0 0 η2 sin f 0 0 η2 cos f


f=f0

,

(16)

where for clarity it has been emphasized that the first matrix in Equation 16 is eval-

uated at f and the second matrix is evaluated at f0, i.e., every f explicitly appearing
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and any functions of f should be f0 and functions of f0 respectively. The terms inside

Equation 16 are defined as follows:

k = 1 + e cos f (17)

s = k sin f (18)

c = k cos f (19)

I =
h

p2
(t− t0) (20)

η =
√

1− e2, (21)

where p is the semi-latus rectum of the RSO,

p = aη2. (22)

The TH equations of motion and the YA STM can be used to target trajectories

with impulsive ∆V s. Most of the relative motion trajectories of interest are bounded

in the relative frame and remain close to the origin of the relative frame, meaning

that the inspector satellite stays close to and has periodic motion with respect to the

RSO. In order to bound the relative motion, the energy of the inspector satellite must

match the energy of the RSO. This is called the energy matching condition and has

been shown for the TH equations of motion to be [11]:

(2 + 3e cos ff + e2)x̃f + e sin ff (1 + e cos ff )x̃
′
f + (1 + e cos ff )

2ỹ′f = 0, (23)

where the subscript ‘f ’ denotes the final value after a given maneuver. If these

conditions hold at the end of a maneuver and thus at the beginning of the ensuing

natural motion, then the motion of the inspector satellite will be bounded with respect

to the RSO. Given this condition, Sengupta parameterized the solution to the TH
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equations of motion in order to more clearly describe the geometry of the periodic

relative motion:

x̃ =
%1

p
sin(f + α0)(1 + e cos f) (24)

ỹ =
%1

p
cos(f + α0)(2 + e cos f) +

%2

p
(25)

z̃ =
%3

p
sin(f + β0), (26)

where the relative orbit parameters, %1, %2, %3, α0, and β0 are:

%1 =
a

η
(η2δe2 + e2δM2

0 )
1
2 (27)

%2 = p

(
δωœ + δΩ cos i+

1

η3
δM0

)
(28)

%3 = p(δi2 + δΩ2 sin2 i)
1
2 (29)

α0 = tan−1

(
−η
e

δe

δM0

)
(30)

β0 = tan−1

(
−δΩ sin i

δi

)
+ ωœ, (31)

where the differential orbital element vector δœ = [δa, δe, δi, δΩ, δωœ, δM0] contains

the orbital element differences (to the first order) with respect to the RSO of the semi-

major axis, eccentricity, inclination (i), right-ascension of the ascending node (Ω),

argument of perigee (ωœ), and initial mean anomaly (M0). Relating these differential
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orbital elements back to the TH states, Sengupta showed:

δa =
2a

η2
c3 (32)

δM0 =
η3

e
c2 (33)

δe = −η2c1 (34)

δi = sin(ωœ + ff )z̃f + cos(ωœ + ff )z̃
′
f (35)

δΩ =
−
[
cos(ωœ + ff )z̃f − sin(ωœ + ff )z̃

′
f

]
sin i

(36)

δωœ = c4 −
δM0

η3
− δΩ cos i, (37)

where,

c1 = − 3

η2
(e+ cos ff )x̃f −

1

η2
sin ff (1 + e cos ff )x̃

′
f

− 1

η2
(2 cos ff + e+ e cos2 ff )ỹ

′
f (38)

c2 = − 3

η2

sin ff (1 + e cos ff + e2)

1 + e cos ff
x̃f +

1

η2
(cos ff − 2e+ e cos2 ff )x̃

′
f

− 1

η2
sin ff (2 + e cos ff )ỹ

′
f (39)

c3 = (2 + 3e cos ff + e2)x̃f + e sin ff (1 + e cos ff )x̃
′
f + (1 + e cos ff )

2ỹ′f (40)

c4 = − 1

η2
(2 + e cos ff )

[
3e sin ff

1 + e cos ff
x̃f + (1− e cos ff )x̃

′
f + e sin ff ỹ

′
f

]
+ ỹf , (41)

where c3 has already been set equal to zero in Equation 23 by enforcing the energy

matching condition. The size of the unforced relative motion can thus be prescribed

by choosing %1 and %3, the bias can be set with %2, and the phase angles can be set

with α0 and β0.
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2.2.2 Hill-Clohessy-Wiltshire Equations of Motion.

If the distance between the deputy and chief is much smaller than the distance

between the center of the Earth and the chief, then the CNERMs, Equations 4–6,

can be reduced to the Hill-Clohessy-Wiltshire (HCW) equations of motion [12]:

ẍ− 2ωẏ − 3ω2x = ax (42)

ÿ + 2ωẋ = ay (43)

z̈ + ω2z = az. (44)

Note that for a circular orbit the ŷ direction points in the direction of the velocity

vector of the RSO, or the in-track direction, while x̂ still points in the radial direction

and ẑ still points in the cross-track direction. A detailed derivation of the solution

to the homogeneous HCW equations, i.e. with ax, ay, and az = 0, can be found in

sources such as Vallado [13] and is known to be:

x(t) =

(
4x0 +

2ẏ0

ω

)
−
(

3x0 +
2ẏ

ω

)
cos [ω(t− t0)] +

ẋ0

ω
sin [ω(t− t0)] (45)

y(t) = y0 −
2ẋ0

ω
− (6ωx0 + 3ẏ0) (t− t0) +

2ẋ0

ω
cos [ω(t− t0)]

+

(
6x0 +

4ẏ0

ω

)
sin [ω(t− t0)] (46)

z(t) = z0 cos [ω(t− t0)] +
ż0

ω
sin [ω(t− t0)] (47)

ẋ(t) = (3ωx0 + 2ẏ0) sin[ω(t− t0)] + ẋ0 cos[ω(t− t0)] (48)

ẏ(t) = − (6ωx0 + 3ẏ0)− 2ẋ0 sin[ω(t− t0)] + (6ωx0 + 4ẏ0) cos[ω(t− t0)] (49)

ż(t) = − ωz0 sin[ω(t− t0)] + ż0 cos[ω(t− t0)], (50)

20



where the subscript “0” indicates the initial value at time t0. The solution can also

be expressed with the HCW STM,

Θ(t, t0) =



4− 3 cos(ωt) 0 0 sin(ωt)
ω

−2(cos(ωt)−1)
ω

0

6 sin(ωt)− 6ωt 1 0 2(cos(ωt)−1)
ω

4 sin(ωt)−3ωt
ω

0

0 0 cos(ωt) 0 0 sin(ωt)
ω

3ω sin(ωt) 0 0 cos(ωt) 2 sin(ωt) 0

6ω cos(ωt)− 6ω 0 0 −2 sin(ωt) 4 cos(ωt)− 3 0

0 0 −ω sin(ωt) 0 0 cos(ωt)


,

(51)

where t0 is assumed to be zero.

A guidance method based on impulsive burns and typically called CW Targeting

uses the HCW STM, Θ, to determine the two impulsive burns to reach a prescribed

relative state. Given a maneuver time, denoted as tf , and the desired position and

velocity, pt and vt respectively, the magnitude and direction of two impulsive burns

can be determined. If the HCW STM is split up into four 3 × 3 matrices, Θ11, Θ12,

Θ21, and Θ22, the first impulsive burn is calculated by:

∆V1 = Θ−1
12 (tf , t0) (pt −Θ11(tf , t0)p0)− v−0 = v+

0 − v−0 , (52)

where

v+
0 = Θ−1

12 (tf , t0) (pt −Θ11(tf , t0)p0) , (53)

where the superscripts ‘−’ and ‘+’ represent the values before and after the instan-

taneous ∆V . The inverse of Θ12(tf , t0) should exist for all cases except for when the
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following equations equal zero,

8 cos(tfω) + 3tfω sin(tfω)− 8 = 0 (54)

sin(tfω) = 0. (55)

Thus, at and near every tfω = n2π (where n ∈ Z≥0), and at or near the other zeros

of the first equation (which only occur beyond 2π) will there be singularities. The

second impulsive burn is then calculated by:

∆V2 = vt −
(
Θ21(tf , t0)p0 + Θ22(tf , t0)v+

0

)
. (56)

Lovell and Tragesser re-parameterized the solution to the HCW equations in [14]

and refined their results in [15]. These parameters, which will be termed Lovell’s

relative orbital elements (LROEs), help to characterize the relative motion of the

deputy with respect to the chief and provide a clear representation of the geometry

of relative motion. Specifically, they applied the Harmonic Addition Theorem to

Equations 45–47 and used the atan2 function, producing equations with constant,

periodic, and drifting terms which they defined and denoted as the LROEs. These

LROEs can more easily describe the geometry of relative formations, and were derived
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to be [14]:

ae = 2

√(
ẋ

ω

)2

+

(
3x+ 2

ẏ

ω

)2

(57)

xd = 4x+ 2
ẏ

ω
(58)

yd = y − 2
ẋ

ω
(59)

β = atan2(ẋ, 3ωx+ 2ẏ) (60)

zmax =

√(
ż

ω

)2

+ z2 (61)

ψ = atan2(ωz, ż), (62)

where ae is the semi-major axis of the instantaneous ellipse in the orbital plane of the

RSO, xd and yd are the radial and in-track displacements of the instantaneous center

from the origin of the relative frame, respectively, β is the in-plane phasing angle,

zmax is the maximum cross-track distance, and ψ is the out-of-plane phasing angle.

The Cartesian states can then be defined in terms of the LROEs:

x =
−ae

2
cos β + xd (63)

ẋ =
ae
2
ω sin β (64)

y = ae sin β + yd (65)

ẏ = aeω cos β − 3

2
ωxd (66)

z = zmax sinψ (67)

ż = zmaxω cosψ, (68)

and the LROEs can then be described as functions of time (still in the absence of
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forced motion),

ae = ae0 (69)

xd = xd0 (70)

yd = yd0 −
3

2
ωxd0t = yd0 −

3

2
ωxdt (71)

β = β0 + ωt (72)

zmax = zmax0 (73)

ψ = ψ0 + ωt, (74)

where it can be seen that ae and xd are constants of the motion. Lovell and Tragesser

then introduced the parameter

γ = ψ − β, (75)

which is the constant phase difference between the periodic motion in the orbital plane

and the periodic motion in the out-of-plane direction. Introducing this parameter

makes it so that the only angle that varies with time is β:

x =
−ae

2
cos β + xd (76)

ẋ =
ae
2
ω sin β (77)

y = ae sin β + yd (78)

ẏ = aeω cos β − 3

2
ωxd (79)

z = zmax sin(γ + β) (80)

ż = zmaxω cos(γ + β). (81)

This formulation of the LROEs is very useful to clearly describe the size, location,
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and orientation of relative motion trajectories.

Sabol, et al. [16] investigated satellite formation designs using the HCW equations,

which designs are referenced frequently in the literature. These formation trajectories

are bounded, i.e. they do not drift in the relative frame under the linearized HCW

assumptions have the same semi-major axis as that of the chief. The constraint which

ensures this is easily seen from the HCW equations,

ẏf = −2xfω. (82)

This corresponds to the LROE xd set equal to zero and results in a projected 2 × 1

ellipse in the orbital plane, with the length in the along-track direction twice as long

as the width in the radial direction. Sabol et al. explain how six initial conditions or

constraints are needed to describe the desired relative motion, and with Equation 82

as the first constraint, the five constraints left to describe the desired motion include

the offset of the ellipse in the y direction, the size of the ellipse, the initial location

in orbital plane, the amplitude of oscillation in the cross-track direction, and the

initial location in the out-of-plane motion. They present conditions which produce

in-plane formations, in-track formations, circular formations (which in the literature

is commonly referred to as general circular orbits (GCOs)), and projected circular

orbits (PCOs).

Bounded relative motion is desirable due to the persistent proximity to the chief

without requiring fuel. However, there may be cases where certain types of drifting

relative motion may be desired due to mission requirements. One useful type of

unbounded relative trajectory investigated by Lovell and Tollefson [17] is the ‘pogo’

or ‘teardrop’ trajectory where the satellite is in a quasi-hovering pattern relative to the

reference satellite and forms the shape of a teardrop. Lovell and Tollefson developed

teardrop parameter equations as simple closed-form expressions of their developed
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LROEs to more easily describe these drifting relative trajectories. With the teardrop

trajectory existing in the orbital plane of the reference satellite, they show that the

geometry of a teardrop trajectory is uniquely determined by only two LROEs, ae and

xd. These two LROEs then define the teardrop geometric parameters as described

by Hope and Trask [18]. Thus, if the user wishes to define the teardrop trajectory in

terms of these geometric parameters, then a suitable pair (with one of them being Tp,

or the time in the teardrop) is chosen as the independent variables for the teardrop

design variables, and the rest of the parameters are determined. They show that for

a teardrop trajectory to exist, the following condition must apply,

ae >
3

2
|xd|, (83)

where if xd > 0 then the teardrop cusp is on top and the teardrop can be placed

above the chief where the opposite applies if xd < 0.

Lovell and Brown extended their analysis [1] and introduced additional geometric

properties to describe the teardrop trajectory. Thus, combining five of the parameters

introduced by Hope and Trask and the three additional ones introduced by Lovell and

Brown, the teardrop parameters (with applicable ones shown in Figure 2 taken from

[1]) are shown in Table 1.

Table 1. Teardrop Parameters

Variable Description

R distance from intersection point of teardrop to RSO
∆R teardrop height (from intersection point to closest approach)
W maximum teardrop width
Tp period of motion once around teardrop pattern

∆V magnitude of impulse required to repeat teardrop
D distance between closest approach to RSO and RSO
E distance from RSO to inspector satellite when in straight-line approach to teardrop
x̄ time-averaged distance from RSO to inspector satellite while in teardrop

They show that x̄ is a very useful design parameter, and the total ∆V required
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Figure 2. Applicable Teardrop Parameters (taken from Lovell [1])

to hover at x̄ is equal to the impulsive ∆V required to maintain a teardrop with the

same value of x̄, that is,

∆V∆t = 3ω2|x̄|∆t = ∆V∆t,cont. (84)

To show an example of how to design a teardrop trajectory, if mission planners

wish to choose for safety the parameter D and then Tp, then the two LROEs must

be constrained to be:

ae =
6DγT

3γT − 4 sin γT
(85)

xd = − 4D sin γT
3γT − 4 sin γT

, (86)
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where γT is a function of Tp

γT =
ωTp

2
. (87)

Then, the rest of the teardrop parameters are defined:

∆R =
3DγT

3γT − 4 sin γT
(1− cos γT ) (88)

R =
3DγT cos γT − 4D sin γT

3γT − 4 sin γT
(89)

W =
12D

3γT − 4 sin γT

(
sin γT

[
cos−1

(
sin γT
γT

)]
− γT sin

[
cos−1

(
sin γT
γT

)])
(90)

∆V =
6ωDγT sin γT
3γT − 4 sin γT

(91)

E = −
(

3γT + 4 sin γT
3γT − 4 sin γT

)
D (92)

x̄ = − D sin γT
3γT − 4 sin γT

. (93)

The equations for ae and xd and the dependent teardrop parameters, given each

pair of independent teardrop parameters (with Tp as one of them), can be found in

[17] and [1]. Thus the mission planner would choose their two independent teardrop

parameters of choice (with Tp as one of them) and the relative teardrop in the orbit

plane would be defined.

Lovell and Brown [1] also developed an approximate method so that Tp does not

have to be one of the two chosen design variables by making the assumption that Tp

is small compared to one orbital period, which makes the intermediate parameter γT

small as well. The truncated Taylor series for sine and cosine can then be used, and

variables such as D and E can be chosen as the two independent variables, where Tp

becomes of function of them.
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2.3 Optimal Control and Solution Methods

For a satellite conducting an inspection mission, it is desirable to accomplish

maneuvers in an optimal manner which usually corresponds to minimizing the time

or fuel to complete the maneuver(s). Thus, the controls of the satellite must be varied

such that a specific performance index is minimized, which leads to an optimal control

problem. Optimal control theory is a field of active research which has benefited from

many contributions over the past several decades. Following Betts’s [19], Conway’s

[20], and Rao’s [21] surveys, but adapting the notation to that used in this research,

the dynamics of an optimal control problem are typically written as a set of first-order

differential equations,

Ẋ = f (X(t), u(t), t) , (94)

where X is the state vector, u is the control vector, and t is the independent variable,

time. A set of boundary conditions can be described by

ψ (X(t0), t0, X(tf ), tf ) = 0, (95)

where ψ is the vector of boundary conditions which may have lower and/or upper

bounds. Algebraic path constraints may also be present,

Cl ≤ C (X(t), u(t), t) ≤ Cu, (96)
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where C is a vector containing the path constraints. There may also be simple bounds

on the values of the state and control variables:

Xl ≤ X(t) ≤ Xu (97)

ul ≤ u(t) ≤ uu. (98)

Betts also explains how depending on the chosen performance index, it may be nec-

essary to keep track of integral values,

∫ tf

t0

L (X(t), u(t), t) dt, (99)

where L is the scalar-valued integrand and is typically called the Lagrangian. Thus,

the optimal control problem is to determine the control, u(t), to minimize a chosen

cost, which in general has the form

J = φ (X(t0), t0, X(tf ), tf ) +

∫ tf

t0

L (X(t), u(t), t) dt, (100)

subject to the given terminal and path constraints, where φ represents a scalar func-

tion of initial and/or terminal states and time which are to be included in the cost

function. Equation 100 represents a general objective function is commonly referred

to as the Bolza form.

The referenced surveys [19, 20, 21] describe the optimal control problem and the

methodologies used to solve them. Few real-world problems can be solved analyti-

cally, in closed form, and thus these surveys focus mostly on numerical methods to

solve optimal control problems. Numerical methods can be split into two categories:

indirect and direct methods. Indirect methods are those which use the analytic nec-

essary conditions of optimality obtained by applying the calculus of variations to the
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optimal control problem described above and typically generate a two-point boundary

value problem (TPBVP) which includes the costates as unknowns. This TPVBP may

be difficult to solve due to the initial guess required for the non-intuitive costates and

their smaller radii of convergence. However, a new solution technique for the classical

indirect method will be employed in the research herein, called the Indirect Heuris-

tic Method (IHM), which attempts to solve the resulting TPBVP with a type of

metaheuristic optimization algorithm.

Direct methods, on the other hand, transcribe the optimal control problem into a

static, or parameter, optimization problem. This is done through the discretization,

or parameterization, or approximation of the control and/or states. When the states

and/or controls are discretized to points in time, the dynamics and any applicable

constraints must be satisfied at each point, creating equality and/or inequality con-

straints at each discretized point. There are many different types of transcription

methods, where one type called pseudospectral methods will be used in this research.

Once a transcription method has been applied, the resulting optimization problem

is typically an NLP, where an NLP solver is then used to attempt to satisfy the

Karush-Kuhn-Tucker conditions [22] in order to find a local minimum.

Metaheuristic methods can be thought of as a separate technique to solve an opti-

mal control problem compared to what indirect and direct methods typically signify,

or it can be thought of as a tool to solve indirect or direct formulations. That is, like

with IHM, a metaheuristic algorithm can be used to solve the resulting TPBVP by

using an indirect method and deriving the first-order necessary conditions by applying

the calculus of variations. Or, once the optimal control problem has been transcribed

and discretized, i.e. using a direct method, a metaheuristic optimization algorithm

can be used instead of an NLP solver to minimize the performance index. Or, per-

haps more commonly for metaheuristic methods, the control can be parameterized to
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a smaller set of parameters than the resulting time discretization, and the resulting

parameter optimization problem can be solved with a metaheuristic optimization al-

gorithm. This usage of metaheuristic optimization algorithms will also be applied to

inspection maneuver problems in this research to obtain either an initial guess for an

NLP solver or to solve the problem entirely.

2.3.1 Pseudospectral Methods.

One type of direct transcription method gaining more traction in the past decade

is the pseudospectral method, or the direct orthogonal collocation method. These

methods are advantageous in that their global nature leads to faster convergence

times with higher accuracy. Different types of pseudospectral methods exist depend-

ing on the exact collocation points used, which are typically the roots of various

Legendre polynomials. Pseudospectral methods include the Legendre Pseudospectral

Method (LPM) [23], the Gauss Pseudospectral Method (GPM) [24], and the Radau

Pseudospectral Method (RPM) [25, 26]. This research employs the RPM via the

General Purpose Optimal Control Software II (GPOPS-II) [27], a commercial opti-

mal control software package for MATLAB. The RPM is the most recent choice used

by the GPOPS-II developers, with developments of Radau-specific covector mapping

theorems proving that the resulting NLP optimality conditions are in fact equivalent

to the discretized form of the optimality conditions from the originally posed problem,

unlike with the LPM [28]. The RPM uses Radau points as the collocation points,

which include interior points based on specific Legendre polynomials and one of the

endpoints. According to Garg, this ends up being simpler to implement than the

GPM [28]. The resulting NLP from the transcription of the optimal control problem

to the Radau points is then solved in GPOPS-II with one of two NLP solvers, Sparse

Nonlinear Optimizer (SNOPT) [29] or Interior Point Optimizer (IPOPT) [30]. To
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provide a brief overview of how GPOPS-II sets up the problem, following Garg in

[28], consider N Radau points, (τ1, τ2,...,τN) where τ1 = −1 and τN < 1, and a new

point defined as τN+1 = 1. Note that the problem has been transformed from [t0, tf ]

to [−1, 1] via the affine transformation,

t =
tf − t0

2
τ +

tf + t0
2

. (101)

Then, the Lagrange polynomials of degree N are given by

Li(τ) =
N+1∏

j=1,j 6=i

τ − τj
τi − τj

, (i = 1, ..., N + 1), (102)

and the state is approximated by a polynomial of at most degree N using the Lagrange

polynomials:

X(τ) ≈ Y (τ) =
N+1∑
i=1

Y (τi)Li(τ), (103)

where from here on Y (τi) = Yi. An approximation to the derivative of the states is

given by differentiating Equation 103 with respect to τ and setting it equal to the

dynamics at the N Radau points:

Ẋ(τ) ≈ Ẏ (τ) =
N+1∑
i=1

YiL̇i(τk) =
tf − t0

2
f(Yk, Uk, τ ; t0, tf ), (k = 1, ..., N), (104)

where Uk = U(τk). The Radau pseudospectral differentiation matrix, D, is then

defined with entries as Dki = L̇i(τk) and the Yi are stacked into a matrix, Y LGR, and

thus the previous equation can be expressed as:

DkY
LGR =

tf − t0
2

f(Yk, Uk, τ ; t0, tf ), (k = 1, ..., N), (105)
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where Dk is the kth row of the differentiation matrix. Any path constraints are

enforced at the N Radau points,

tf − t0
2

C(Yk, Uk, τ ; t0, tf ) ≤ 0, (k = 1, ..., N), (106)

and the cost is approximated using Radau quadrature,

J = φ(Y (τ1), τ1, Y (τN+1), τN+1) +
tf − t0

2

N∑
k=1

wkL(Yk, Uk, τ ; t0, tf ), (107)

where wk is the quadrature weight associated with the kth Radau point. Thus, the

resulting NLP is to minimize Equation 107, subject to the inequality constraint(s)

in Equation 106, and the equality constraints (dynamics) contained in Equation 105

and any applicable initial or terminal constraints:

ψ(Y (τ1), τ1, Y (τN+1), τN+1) = 0. (108)

2.3.2 Metaheuristic Methods.

Metaheuristics or evolutionary algorithms may also be used to solve optimal con-

trol problems. These methods are not calculus, gradient-based optimization routines

but rather algorithms which attempt to mimic processes in nature to find an optimal

solution. They typically include some randomness and thus may be termed stochastic

methods as well. Popular evolutionary algorithms include the GA, PSO, ant colony

optimization, differential evolution, and simulated annealing. Versions of both the

PSO and the GA will be used in this research to produce initial guesses or standalone

solutions.

The PSO, created initially by Kennedy and Eberhart [31], mimics a flock of birds

searching for food. An optimal control problem can be transcribed to a parame-
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ter optimization problem and then solved via an evolutionary algorithm such as a

PSO. Following Pontani [32], in an unconstrained parameter optimization problem

the goal is to find the n unknown parameters contained in χ to minimize J where

each parameter within χ has to be assigned lower and upper bounds:

χl ≤ χ ≤ χu. (109)

A particle swarm has N particles where each particle contains a candidate solution

(a collection of candidate parameters), called the position vector which is denoted

in this research by χ(i) for the ith particle. The ‘velocity’ vector for each particle

w(i) changes the free variables (the parameters to be optimized) from generation to

generation to try and find the optimal values for each parameter. The velocities must

also be bounded corresponding to the parameter bounds, and special treatment must

be taken once a component of the position vector has reached a bound. The key

equation is the velocity update equation, which dictates how the position vector for

each particle changes from iteration to iteration:

w
(j+1)
k (i) = cIw

(j)
k (i) + cC [Z

(j)
k (i)− χ(j)

k (i)] + cS[Y
(j)
k − χ

(j)
k (i)], (110)

for k = 1, ..., n (the number of free variables), i = 1, ..., N (the number of particles),

and the superscript j = 1, ...to the number iterations required. Z
(j)
k (i) is the best

position ever visited by particle i for the parameter k up to the current iteration j,

and Y
(j)
k is the best position ever visited by the entire swarm for the parameter k up

to the current iteration j. The three coefficient terms in the velocity update equation,

Equation 110, from left to right are the inertia, cognitive, and social terms, (cI , cC ,

and cS respectively) which are chosen carefully and multiplied by random numbers

to introduce an aspect of randomness. The position vector is then updated through
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the position update equation:

χ(j+1) = χ(j) + w(j), (111)

and the iterations continue until a maximum number of iterations, or, the change

in the objective function is less than some tolerance over the past chosen amount of

iterations, or some other convergence criteria has been reached.

For the constrained parameter optimization problem, which is more typical of

optimal control problems which have been parameterized into a static optimization

problem, equality constraints are typically appended to the cost function (when using

a PSO):

J̃ = J +
m∑
r=1

Wr|hr(χ)|, (112)

where there are m equality constraints contained in h(χ) = 0, and the weights Wr

must be very carefully chosen. For inequality constraints, a simple way of handling

them is to set the cost to infinity if any of the inequality constraints are violated.

These are simple and general ways to deal with both equality and inequality con-

straints and are used in the research herein unless other techniques are required.

Following MATLAB’s GA documentation page∗, the GA works by first creating

a random initial population and then creates new populations at each step by doing

the following: 1) scoring each potential solution of the population by finding its cost

value; 2) scaling the cost values to convert them into a more usable range of values;

3) selecting parents based on the scaled values; 4) choosing lower-cost members as

elite children and passing them to the next generation; 5) producing the rest of the

children for the next generation by mutation of a single parent or crossover of a pair

∗https://www.mathworks.com/help/gads/how-the-genetic-algorithm-works.html, Accessed 15
April 2018
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of parents; and finally 6) replacing the previous population with the children to form

the next generation. The algorithm then stops when a certain convergence criteria is

reached. Thus, the GA mimics natural selection seen in nature in an attempt to find

the optimal solution.

2.3.3 Indirect Methods Setup.

Optimal control problems may possibly be solved by applying the calculus of

variations, obtaining the first-order necessary conditions, and solving the resulting

boundary value problem. One method which will be applied in the research herein

is the IHM, coined by Pontani [33]. This method starts like all other indirect meth-

ods, by obtaining the first-order necessary conditions. Following [21], it is useful to

introduce the augmented Hamiltonian, H:

H(X,λ, µ, u, t) = L+ λTf − µTC, (113)

where λ is the vector of adjoint variables, or costates, conjugate to the dynamics, f ,

and µ is the vector of Lagrange multipliers associated with the path constraints, C.

The function of terminal conditions, Φ is also constructed,

Φ = φ+ νTψ, (114)

where the terminal constraint vector, ψ, is multiplied by their Lagrange multipliers

vector, ν.

Continuing with the notation and general optimal control problem presented in

Section 2.3, for a single phase optimal control problem with no static parameters, Rao

provides the first-order optimality conditions (with notation adapted to that used in
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this research) [21]:

Ẋ =

[
∂H
∂λ

]T
, λ̇ = −

[
∂H
∂X

]T
(115)

u∗ = arg min
u∈U
H (116)

ψ(X(t0), t0, X(tf ), tf ) = 0 (117)

λ(t0) = − ∂φ

∂X(t0)
+ νT

∂ψ

∂X(t0)
, λ(tf ) =

∂φ

∂X(tf )
− νT ∂ψ

∂X(tf )
(118)

H(t0) =
∂φ

∂t0
− νT ∂ψ

∂t0
, H(tf ) = − ∂φ

∂tf
+ νT

∂ψ

∂tf
(119)

µj(t) = 0, when Cj(x, u, t) < 0, j = 1, ..., c (120)

µj(t) ≤ 0, when Cj(x, u, t) = 0, j = 1, ..., c, (121)

where U is the feasible control set and c is the number of path constraints. Equation

115 contains the state and costate equations, Equation 116 is known as Pontrya-

gin’s Minimum Principle, Equations 117–118 are the state and costate boundary

conditions, Equation 119 is the transversality condition, and Equations 120–121 are

the complementary slackness conditions. This results in a TPBVP which is typi-

cally solved numerically through methods such as the shooting method, the multiple-

shooting method, and collocation methods [21]. However, given certain characteristics

regarding the resulting system, the IHM may apply, which will be discussed in detail

in Section 2.6.

2.4 Direct Method Applications Pertaining to Problem A

Now that the basic definition of an optimal control problem and several solution

methodologies have been introduced, this section focuses on how direct optimization

techniques (especially pseudospectral methods) have been applied to finding the op-

timal control for relative motion maneuver problems related to Problem A. Thus,
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previous work is reviewed where pseudospectral methods are used to account for

complex control types, multi-phase maneuvers, and keep-out zones, since Problem A

includes all those aspects. After the related work has been reviewed, it will be shown

how solving Problem A will extend the field of research.

To begin, a similar problem was studied by Ranieri where he used a direct method

via the Sparse Optimal Control Software (SOCS) [34] to find the minimum fuel to

perform a fly-by to inspect the nadir-facing side of a target, but stay outside of a cone

pointing towards nadir and avoid collision. However, an NMC was not established

and only impulsive control was used [35]. Huntington, et al. showcased the capabili-

ties of the GPM and used it to find the minimum fuel to form a tetrahedral formation

for four satellites from a parking orbit, where both one and two allowable maneuvers

per spacecraft were examined. They used finite-burn phases along with coast phases,

and ensured formation establishment by setting specific terminal constraints, to in-

clude: 1) the mesocenter position and velocity of the formation must coincide with

the desired reference orbit apogee position and velocity; 2) the average formation

side length must lie in a certain range; 3) the tetrahedron shape must adhere to a

lower bound on something called the Geometric Factor; and 4) the periodicity of the

formation must ensure all four satellites have the same semi-major axis at the final

time [36]. They also studied tetrahedral formation reconfiguration, where the fuel

was minimized and the effects of J2 were incorporated, and it was ensured that the

formation stayed in shape for a certain region of interest [37].

Yunhua Wu, et al. coupled translational and rotational dynamics and used the

GPM to find the minimum-fuel solution for separate formation establishment and re-

configuration problems. The spacecraft had one, body-fixed thruster with continuous

low thrust and reaction wheels, and path constraints formed a rotational keep-out

zone ensuring a star tracker camera avoided pointing at the Sun. However, the ter-
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minal conditions for each problem forced the satellite to enter an NMC at a certain

location or range, and were not free [38].

Baolin Wu, et al. used the LPM to find the minimum-fuel solution using low-

thrust control for formation reconfiguration, where the desired new formation was

larger compared to the initial, and the point at which the satellites entered the larger

formation was free to be optimized. Path constraints included collision avoidance,

and in addition to terminal constraints, there were several constraints afterwards

during unforced motion to ensure the formation geometry was met [39]. They also

used the LPM to find the minimum energy to establish a formation where continuous

low-thrust control authority was used along all three translational axes. Collision

avoidance was implemented with path constraints and the final formation was es-

tablished by setting a terminal distance constraint and then minimizing the distance

between that terminal position and the position one unforced period later [40].

Ma, et al. also used the LPM to solve a minimum-time problem to reconfigure a

formation in deep space with continuous low thrust while avoiding collision, however

mass was assumed constant and terminal constraints defined a specific location to

enter the reconfigured formation [41]. Lee and Hwang used GPOPS to find the opti-

mal switching times between a high, pseudo-impulsive thruster and a low continuous

thruster which resulted in the minimum fuel required to reconfigure a PCO formation

to a larger one. The thrusters each had their own authority along all three axes, and

the sequence of high vs. low-thrust phases was defined a priori [42]. Inampudi and

Schaub used the LPM to find the optimal control to reconfigure a two-craft Coulomb

formation in circular orbits, using both Coulomb force and electric microthrusters

when necessary. The problem was solved four different times by minimizing time,

acceleration of the separation distance, fuel, and electrical power [43].

Huang, et al. used the GPM to find the optimal trajectories for separate for-
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mation establishment and reconfiguration problems, and also a rendezvous problem,

where the control was the spacecraft charge and the energy used to interact with

the Earth’s magnetic field was minimized. In the formation establishment and re-

configuration problems, they included a collision avoidance path constraint, and also

terminal constraints which defined the desired NMC of the initial and reconfigured

formation trajectories. The tilt angle of the NMC orbits with respect to the orbit

plane was chosen a priori, but the point at which they entered those NMCs was free

[44, 45].

Zengwen, et al. used the GPM via GPOPS to find the minimum-time solution

to reconfigure a two-spacecraft formation using electromagnetic actuation. The two

satellites started out in the same orbit and reconfigured to a fixed position with

velocities only constrained to produce an NMC [46]. And finally, Li recently used the

RPM to find the minimum-fuel solution to reconfigure a spacecraft formation using

finite burns, where the maneuver was divided up into burn and coast phases [47].

Given the previous work related to Problem A, this research intends to build upon

it by introducing a new problem formulation and solution for an inspector satellite

to perform an initial inspection of a target satellite with the goal of visiting all eights

octants surrounding the target. Specifically, this research presents a formation and

reconfiguration problem linked together into one multi-phase optimization problem,

meaning for example that the optimal formation establishment solution may change

if it sufficiently improves the reconfiguration solution. Like Ranieri, this problem

introduces a keep-out cone as an inspection constraint, but introduces a way to use

the keep-out cone in the first phase to define two possible NMCs which the satellite

may enter to inspect the nadir-facing side of the target. Like Huang, the terminal

constraints at one point in time only (as opposed to checking an unforced period

and/or two later) allow the inspector to enter the NMCs at whichever point is optimal,
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but this research will also allow the optimizer to determine which of the two initial

NMCs is optimal instead of selecting which one a priori. The control used will be

one, body-fixed, low-thrust engine with maximum slew rates, which like Wu, couples

rotational constraints to the translational trajectory, but different in that two angles

will be introduced as additional states controlled by their respective angle rates. The

thrust magnitude can also be throttled in this research, which allows the optimizer to

determine when to thrust vs. coast, instead of defining the burn and coast sequences

a priori. Solutions, as will be seen, typically result in constant-magnitude, finite-burn

solutions. This work will also take advantage of recent mesh refinement schemes in

GPOPS-II which generate a more accurate solution. Thus, the research methodology

in Chapter III (for Problem A) will combine several elements existing in previous

work into one problem, as well as introduce new aspects as already discussed. The

minimum-time solution will be found first, and then the problem will be solved for

increasing fixed final times while minimizing fuel to provide mission planners with

optimal time vs. fuel options, i.e. the Pareto front of optimal solutions with varying

fixed final times.

2.5 Previous Work Pertaining to Problem B

This section presents recent research related to Problem B, focusing primarily on

guidance methods for hovering or teardrop trajectories. Thus, it reviews previous

work where on/off thruster guidance has been investigated, then examines optimiza-

tion techniques which have been developed for teardrop-like hovering with respect

to a target satellite, and quickly discusses previous work pertaining to lighting and

collision constraints. Then, this section summarizes how the algorithms developed

for Problem B will extend the current field of research.

Typically, when finite, on/off thrusters are used in an optimal control problem,
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numerical methods are used to propagate the spacecraft trajectory through a ma-

neuver sequence given the burn starting times, durations, and directions. However,

some work was done by Bevilacqua and Lovell where they developed a semi-analytic

guidance technique for on/off thrusters by using the HCW equations of motion in con-

junction with the LROEs. Specifically, they developed analytic expressions for the

LROEs as functions of the on/off control variables, i.e. the number, starting times,

durations, and magnitudes of the firings along each axis of the spacecraft [48]. If

enough simplifying assumptions are made, then a reduced set of these control vari-

ables can be solved for analytically, given the desired LROEs; but in general, these

equations would have to be used in conjunction with an optimization tool to find

the control variables to reach a desired state or trajectory. The equations developed

by Bevilacqua and Lovell might be able to be used successfully within an optimizer;

however, they are quite complex and include many instances of the atan2 function.

Thus, the expressions are not ideal for use in gradient-based optimizers. Also, even

though the number of control variables can be reduced, it was desirable to develop

similar expressions for the HCW states as functions of the fewest number of control

variables as possible. This is desired in order for the expressions to be suitable to use

within an optimizer, especially within metaheuristic optimizers. Therefore, new ex-

pressions will be developed for Problem B to analytically propagate the HCW states,

given the control variables of interest.

Regarding optimization techniques which have been developed for relative hover-

ing or teardrop problems, Irvin, Cobb, and Lovell investigated strategies for a deputy

satellite to hover within a fixed volume near a chief satellite in a circular orbit using

the HCW equations. They found the optimal control using impulsive thrusts with the

goal of minimizing fuel per the total time-of-flight desired to stay within a given vol-

ume, referred to as a lobe. They compared the fuel required to continuously thrust
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and hover vs. discrete-thrust solutions which stay within the defined volume and

found that for certain cases the discrete-thrust solution requires less fuel. Thrust-

ing was assumed to occur on the lobe boundary in the orbital plane and their cost

function was

J =

∑k
i=1 ∆Vi + ∆Vf∑k
i=1 Ti,i+1 + Tf

, (122)

where k is the number of legs (or trajectories between burns), T is the time of flight

for each trajectory, and the subscript f represents a possible exit burn. They first op-

timized in the orbital plane and then used ∆V in the out-of-plane direction to ensure

the satellite does not exit the prescribed lobe height. Several cases were examined

to include: defined entry with open exit, and open entry with repeating hover where

each was analyzed with different types of constraint volumes. One important conclu-

sion they made is that the teardrop trajectory tends to be the lowest cost solution

when a repeating hover condition is desired [49, 50].

Williams and Lightsey also investigated optimal impulsive maneuvers in order to

remain in close proximity to a target in a circular reference orbit using the HCW equa-

tions. They focused on minimizing fuel and maximizing the time-of-flight between

maneuver locations, and also considered out-of-plane trajectories. They developed

a keep-in zone, also called a lobe, and only allowed maneuvers to take place on a

pre-defined maneuver surface. The performance index was:

J =
∆V 2

T
, (123)

where ∆V is the fuel needed for the maneuver and T is the total time of flight. They

solved single-leg and multiple-leg cases by using a line search algorithm and found

the minimum cost subject to a maximum time of flight constraint which would keep
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the satellite in the keep-in region [51].

Zhang, et al. [52] examined relative hovering for eccentric orbits, where they de-

termined fuel-optimal positions for stationary hovering. Deaconu, et al. also investi-

gated eccentric hovering and presented a new method for generating optimal impulsive

maneuvers for spacecraft proximity operations where they accounted for linear con-

tinuous constraints on the trajectory. They parameterized the trajectory and used

that parameterization to create a finite convex description of admissible trajectories

and then solved the optimal control problem via semidefinite programming. They

used Yamanaka and Ankersen’s [10] formulation of the relative equations of motion

which allow eccentricity and looked at scenarios where relative motion periodicity is

required and then isn’t required for various proximity operation missions. For hover-

ing missions, they considered reaching a natural, periodic ‘hover’ trajectory and also

cases where a keep-in region constrains the trajectories and thus non-periodic hover-

ing within that region would apply. From an initial state, they found the minimum

∆V required to reach a state which results in the desired periodic or non-periodic

motion, constrained to a region and also constrained by a maximum amplitude for

each impulsive firing [53].

The works presented above dealt primarily with hovering within a defined volume

or area with respect to the target and only considered impulsive burns. In contrast,

the research herein will use finite-duration burns, which becomes necessary to consider

for low-thrust propulsion systems and will specifically focus on a satellite with on/off

thrusters. This research will also use the parameters developed by Lovell to define

the teardrop geometry, and thus the size of the keep-in region in the orbital plane

will be specified, as well as the position of the teardrop region along the in-track

direction. The desired bounds of the teardrop motion in the out-of-plane direction

may be specified as well. Thus, various optimization methods will be used where
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finite, on/off thrusters are accounted for to optimally inject an inspector satellite into

and maintain desired teardrop trajectories. The same type of control will also be used

to maneuver into NMCs, and various inspection constraints will be enforced for each

problem. Like Problem A, multiple minimum-time and minimum-fuel problems will

be solved, in order to provide mission planners a Pareto front of possible maneuvers.

The inspection constraints that may be enforced in Problem B include lighting and

collision avoidance constraints. Regarding lighting constraints, the maneuver may be

constrained to enter a teardrop trajectory (or NMC) such that the Sun is illuminating

the RSO with respect to the inspector satellite, and where the Moon and the Earth

may not appear in the field of view of the inspector satellite. Previous work where such

lighting constraints have been incorporated into an optimization problem is limited.

One approach was taken by Franquiz, et al., where path constraints were formulated

to keep bright objects outside the field of view during observability maneuvers [54].

The research formulation herein differs in several ways, one of which is that the

lighting constraints will be incorporated into the terminal constraints, not as path

constraints, such that the teardrop (or NMC) motion after the maneuver generates

the desired lighting.

Regarding collision avoidance constraints for Problem B, the maneuver may be

constrained to be both actively and passively safe, where passively safe means that the

inspector satellite would not enter a defined keep-out zone if one of the burns failed

to take place. There have been many efforts in the literature to avoid collisions in the

relative motion problem. A good review of these methods is contained in the paper

by Frey, et al. [55], where they developed an obstacle avoidance approach based on a

graph search applied to a virtual net of periodic natural motion trajectories (NMTs).

The approach guarantees safe transitions from one NMT to another, and could be

used as a warm-start to an optimizer. In Frey’s review of obstacle avoidance efforts,
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they cited many previous methods investigated, such as Ranieri’s method [35] of using

SOCS to ensure path constraints are satisfied at each numerically integrated point,

which is similar to the way other direct collocation software like GPOPS-II would im-

plement collision avoidance constraints. Other techniques cited by Frey include using

artificial potential functions and converting a non-convex optimal control problem

into a convex optimal control problem.

The main focus of the research herein is not collision avoidance, but it will be

incorporated into Problem B by developing inequality constraints at discrete points

in time using the semi-analytic guidance method which will be developed for on/off

thrusters. Also, the collision avoidance constraints will be imposed from any arbitrary

state to an NMC or teardrop trajectory, and not from one NMT to another. Using the

techniques developed herein, the resulting maneuvers will be safe, including passively

safe.

2.6 Metaheuristic Methods Applications

According to Conway [20], metaheuristic methods have two main advantages over

other methods such as classical approaches using indirect and direct methods: 1)

they are relatively simpler to code and implement; and 2) they may be more likely to

converge to the global minimum. This section focuses on metaheuristic optimization

techniques, with special attention dedicated to the particle swarm technique, which

have been applied to space trajectory optimization problems in order to provide

background for research question number 4. Thus, this section covers applications in

general but pays special attention to previous work related to the problems addressed

in this research, and shows how metaheuristic methods can be used to solve direct

and indirect problem formulations.

Pontani and Conway [32] showed that a PSO could be successfully applied to
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various space trajectory optimization problems, to include determining periodic orbits

in the restricted three-body problem, a two-impulse transfer between two circular

orbits, finite-thrust orbit transfers, and a finite-thrust Earth-to-Mars problem. For

the Earth-to-Mars transfer, they applied the necessary conditions for optimality via

the calculus of variations and expressed the control as a function of the costates. The

cost function for the PSO then simply became a measure of the constraint violations

to be minimized. This approach is termed the IHM and will be discussed in detail

later in this section. For constrained optimization problems, they penalized constraint

violations by utilizing Equation 112, stated again here for convenience:

J̃ = J +
m∑
r=1

Wr|hr(χ)|. (124)

When handling inequality constraints, if a particle violates an inequality constraint,

that particle’s velocity is set to zero such that the inertial term in the velocity update

equation has no effect and the next velocity update is only affected by the cognitive

and social terms.

For problems formulated via a direct method, they parameterized the optimal

control problems by representing the time-dependent control in terms of parameters.

For the finite-thrust orbit transfer between two circular orbits, they represented the

thrust angle as a third-degree polynomial as a function of time during two thrust arcs

separated by a coast arc, where the two thrust arcs were parameterized as:

δ = ζ0 + ζ1t+ ζ2t
2 + ζ3t

3, 0 ≤ t ≤ t1 (125)

δ = ϑ0 + ϑ1(t− t2) + ϑ2(t− t2)2 + ϑ3(t− t2)3, t2 ≤ t ≤ tf (126)

where δ is the thrust angle in the orbital plane for each burn and the coefficients

[ζ0, ζ1, ζ2, ζ3, ϑ0, ϑ1, ϑ2, ϑ3] must be found by the PSO in order to minimize fuel re-
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quired by the two maneuvers [32].

Pontani, et al. also showed how a PSO could be used to find multiple-burn ren-

dezvous trajectories [56]. They applied a PSO to both impulsive and finite-thrust

control problems where for the finite-thrust case the control was assumed to be a

linear combination of B-splines where the PSO determines the optimal spline degree

and coefficients to minimize fuel and constraint violations.

PSOs have been used to solve other types of space trajectory optimization prob-

lems, such as responsive theater maneuvers where a global PSO was used by Showalter

and Black to solve single-,double-, and triple-pass responsive theater maneuvers with

impulsive control [57]. Showalter and Black then used a PSO solution to a similar

problem as a seed for an NLP solver when using continuous-thrust control [58]. They

also developed optimal cooperative en-route inspections during geostationary trans-

fer maneuvers using hybrid optimal control where the outer-loop metaheuristic solver

optimized categorical variables [59].

Regarding relative motion problems, Huang, Zhuang, et al. solved an energy-

optimal spacecraft formation reconfiguration problem in deep space using continuous

low thrust where mass was assumed constant. They transcribed the optimal control

problem to an NLP by applying the LPM and then used particle swarm optimization

to solve the NLP. The initial and final states were specified, and they developed a way

such that all particles swarm through the hyperplane defined by the set of feasible

solutions. They solved the problem with an NLP solver first without considering

collision avoidance, and then used the PSO to find the best trajectory which satisfies

collision constraints [60]. They refined their strategy in [61] where they used one

swarm to represent one satellite and through communication with other swarms avoid

collision during the formation reconfiguration. The control and trajectories for each

satellite were optimized separately in order to quickly solve the problem and to be
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able to use the algorithm in real time. The algorithm examined Labatto points closest

to collision and tested points around them to ensure a collision would not occur. They

termed this approach the co-evolutionary particle swarm optimization, and is one way

to try to handle path constraints when using metaheuristic methods.

Pontani and Conway also applied their techniques to finite-thrust rendezvous tra-

jectories in the relative frame for minimum-time proximity operations and presented

solutions for five distinct problems: 1) rendezvous from NMC to target; 2) rendezvous

from same circular orbit to target; 3) transfer from same circular orbit to NMC; 4)

transfer from one NMC to another NMC; and 5) three-dimensional rendezvous from

NMC to target (where the rest of the cases were planar). They used Hamiltonian

methods (later termed IHM) to transform the optimal control problems into parame-

ter optimization problems to be solved by a PSO. Equality and inequality constraints

were handled in a similar way as before and mass loss was accounted for. To show

how the IHM method works and to clearly outline the problem properties allowing

the IHM method to be applied, this particular work is reviewed in detail. For these

problems, the maneuvering spacecraft is assumed to use a constant, low thrust dur-

ing the entire time of flight, and thus the problem is to find the thrust direction

which results in the minimum-time solution, where φ is the out-of-plane angle and

α is the in-plane angle constrained to [−π/2, π/2] and [−π, π] respectively. The cost

to be minimized is simply J = tf with boundary conditions (problem dependent)

of the form ψ(X0, Xf , tf ) = 0. Thus the Hamiltonian, H, and function of terminal

conditions, Φ, are:

H = λTf (127)

Φ = tf + νTψ. (128)

The necessary conditions can then be derived where Pontryagin’s Minimum Principle
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leads to expressions for the optimal control as functions of the costates. The costate

equations are

λ̇ = −
[
∂H
∂X

]T
= −ATλ, (129)

where A for this problem is the constant state (or plant) matrix for the unforced

HCW equations. The costate boundary conditions are

λ0 = −
[
∂Φ

∂X0

]T
, λf =

[
∂Φ

∂Xf

]T
, (130)

and the Hamiltonian at the final time must adhere to

Hf +
∂Φ

∂tf
= 0 =⇒ Hf + 1 = 0. (131)

However, one property that enables the IHM to work is the ignorability of the

transversality condition, Equation 131. In order for the transversality condition to

be ignorable, the costate boundary equations must be homogeneous in λ. This, in

conjunction with the homogeneity in λ of the costate equations, implies that if an

optimization algorithm can find an initial value of λ such that λ(t0) = kλλ
∗(t0) where

kλ > 0, then the same proportionality exists between λ and the optimal λ∗ at any

time. The control, as stated previously, is a function of the costates but in addition

depends only on the relative magnitudes of the costates and is thus equal to the

optimal control. Thus, for these problems, satisfying all of the necessary conditions

except Equation 131 results in the optimal control, but not the optimal adjoints,

which are all scaled by kλ. The PSO optimization parameters are thus

χ = [λ10 , λ20 , λ30 , λ40 , λ50 , λ60 , tf ], (132)
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where the initial adjoints can be sought in the interval [−1, 1] due to this special

property applying to these problems. Then, for all particles, the state and costate

equations are integrated forward and the optimal control is calculated as a function

of the adjoints over time. The boundary condition violations are then evaluated

to determine the fitness of each particle. Pontani and Conway successfully applied

this algorithm to solve the multiple rendezvous and NMC transfer problems and also

showed how the solutions obtained can be used as an initial guess for local numerical

solvers [62].

Pontani and Conway then developed a minimum-fuel, finite-thrust, relative motion

algorithm where they developed a switching function which determines the optimal

sequence and durations of thrust and coast arcs. Applying the necessary conditions

to the problem again transformed the optimal control problem into a parameter op-

timization problem which is then solved by a PSO, which they officially called the

IHM. The control variables optimized were again the thrust direction angles φ and

α in three dimensions and also the thrust magnitude via the optimization of the un-

known initial values of the adjoint variables. The specific method developed becomes

simpler to solve when the initial and final states are defined and special boundary

conditions apply (the initial and final x positions and y velocities are equal) but the

method is applicable to more general cases as well. They solved five different cases to

include: 1) rendezvous from the same circular orbit to the target; 2) same as problem

one but with a shorter allowed time; 3) transfer from the same circular orbit to an

NMC; 4) a special four-thrust-arc rendezvous problem; and 5) a three dimensional

arbitrary rendezvous (where the other four cases were planar) [33]. To clearly de-

scribe how the IHM can be applied to minimum-fuel problems, this problem is now

described in more detail. The thrust magnitude T (t) is a time varying thrust and is

constrained to [0, Tmax]. A seventh state is then defined as X7 = m/m0 where m is
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the time-varying mass and m0 is the initial mass of the spacecraft. If the variable ñ

is defined as ñ(t) = T (t)/m0 then the seventh state equation can be written as

Ẋ7 = −ñ/c, (133)

where c is the constant effective exhaust velocity. Then, the complete state vector is

the combination of the original six HCW states and the seventh: X̃ = [X,X7]. The

cost function for these minimum-fuel problems is

J =

∫ tf

ti

kñ(t)dt =

∫ tf

ti

Ldt, (134)

where k is an arbitrary positive constant. It is again convenient to define the Hamil-

tonian, H, and the function of terminal conditions, Φ,

H = L+ λf + λ7

(
− ñ
c

)
(135)

Φ = νTψ. (136)

From Pontryagin’s Minimum Principle, the optimal thrust direction angles are again

functions of the the time-varying costates and again only rely on their relative magni-

tudes. These expressions are then used to develop an expression for ñ∗ (the optimal ñ),

where the term typically called the switching function can be extracted to determine

the optimal thrust and coast arcs, where during each thrust arc the maximum thrust

is used. Given the initial costates, they can be propagated forward by the costate

equations, and thus the PSO just needs to find the initial values of the costates. Their

values are in general nonintuitive, but a range needs to be set in order to use a PSO.

Pontani reasserts his claim here that the search range for the initial adjoints can be

set to [−1, 1] due to 1) the fact that k is arbitrary; 2) the fact that the costate equa-
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tions for λ are homogeneous; and 3) the fact that the optimal control angles resulting

from Pontryagin’s Minimum Principle are functions of the adjoint variables where

these angles remain unchanged if the adjoints are scaled by a positive constant. Also

for these minimum-fuel problems, the optimal thrust sequence depends on a relative

magnitude of the terms which compose the switching function and thus allowing k to

be determined and not set allows the arbitrary range for λ. Thus k is introduced as an

additional parameter for the PSO to optimize with the range of 0.001 ≤ k ≤ 10. By

taking advantage of the analytical nature of λ, and re-writing the switching function

for this problem as

S =
1

x7

[(
kx7 −

λ7

c
x7

)
−
√
λ2

4 + λ2
5 + λ2

6

]
, (137)

the coast-to-thrust switching times can be searched for in the time intervals that

satisfy

λ4λ̇4 + λ5λ̇5 + λ6λ̇6 > 0. (138)

Then, the set of free variables to be optimized by the PSO are

χ = [λ10 , λ20 , λ30 , λ40 , λ50 , λ60 , λ70 , k], (139)

where the PSO takes the following steps for each particle: 1) use Equation 138 to find

numerically the time intervals in which coast-to-thrust switching times can occur; 2)

express the control via their functions of costates; 3) along thrust arcs, propagate the

adjoints analytically and the state equations numerically; 4) along coast arcs, ana-

lytically propagate both the adjoints and states; and 5) evaluate boundary condition

violations (for both the states and costates) to determine each particle’s fitness.

54



Pontani also wrote a study on symmetry properties of optimal relative orbit tra-

jectories which apply under unique conditions. Both minimum-time and minimum-

fuel path generation problems may satisfy these unique requirements for a symmetry

property to apply. If it applies, then given an already determined optimal path, a

symmetric optimal path is also defined, providing mission planners another trajectory

option with the same cost [63].

The application of metaheuristic methods to space trajectory optimization prob-

lems presented in this section can be divided into two groups: those applied to solve

direct problem formulations and those applied to solve indirect problem formulations.

Regarding direct formulations, one research goal will be to find the best way to pa-

rameterize the control for on/off thrusters in Problem B to either obtain a good initial

guess for an NLP solver or GPOPS-II or to solve the problem entirely, in order to

provide mission planners with an alternate tool for solving these problems. The IHM

method will also be applied to formulate and solve Problem C, for which the back-

ground is discussed in the next section. Thus, the research herein should showcase

the ability of these metaheurisitc optimization algorithms to solve the new problems

addressed in this research.

2.7 Differential Games and Applications

Differential games were formally introduced by Isaacs [64] and treats two-sided

optimization of two uncooperative or competing players as opposed to the one-sided

optimization or optimal control problems examined up to this point. As explained

by Bryson and Ho [65], the general setup of a differential game may be described by

starting with the dynamic system of the two players:

Ẋ = f(X, u, v, t), X(t0) = X0, (140)
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where u is the control of the minimizing player (the pursuer) and v is the control of

the maximizing player (the evader), with the terminal constraints

ψ(X(tf ), tf ) = 0, (141)

and the performance index

J = φ(X(tf ), tf ) +

∫ tf

t0

L(X, u, v, t)dt, (142)

where the problem is to find u∗ and v∗ such that

J(u∗, v) ≤ J(u∗, v∗) ≤ J(u, v∗). (143)

This is a zero-sum differential game, meaning that there is one cost function which

the pursuer wishes to minimize and the evader wishes to maximize. For a two-person,

zero-sum, differential game, following Bryson and Ho, it is desired to find the game-

theoretic saddle point solution by applying the first-order necessary conditions. The

necessary conditions can be described by first forming the Hamiltonian,

H = λTf + L, (144)

where again λ is the vector of costates, f is the vector containing the system dynamics,

and L is the Lagrangian. The function Φ is also formulated,

Φ = φ+ νTψ, (145)

where ν is the vector of Lagrange multipliers associated with the terminal constraints,

and φ is the function of terminal values in the cost function. Given H and Φ, the
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necessary conditions for stationarity are

λ̇ = −
[
∂H
∂X

]T
(146)

λf =

[
∂Φ

∂Xf

]T
, (147)

with

∂H
∂u

= 0,
∂H
∂v

= 0, (148)

or, if the control is bounded,

H∗ = max
v

min
u
H. (149)

The transversality condition may also apply,

Hf +
∂Φ

∂tf
= 0. (150)

Using the applicable set of necessary conditions, Horie and Conway [66] solved an

optimal fighter pursuit-evasion game via two-sided optimization with a method they

developed called the semi-direct collocation with nonlinear programming (SDCNLP).

With this method, the optimal control for one player is found numerically where a GA

is used an an initial guess [67] for the NLP solver and the optimal control for the other

is found based on the analytic necessary conditions of the two-sided optimization

problem. In this method, the adjoint variables for one player are included in the

direct collocation NLP solver, and then the control variables for that player are found

by using the solved costates in the equation resulting from applying Pontryagin’s

Minimum Principle. Thus, the direct collocation NLP to be solved is the system
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described by both players’ dynamics, their initial conditions, the original and modified

boundary conditions taking into account the terminal costate conditions of one of

the players, the control path constraints for both players, the costate dynamics of

one player, and Pontryagin’s Minimum Principle for one player, with the goal of

maximizing (or minimizing depending on which player is chosen for the costates) the

cost function which in their problem was of the Mayer form:

J = φ(Xp(tf ), Xe(tf ), tf ). (151)

Pontani and Conway [68] then took the SDCNLP method and developed an al-

gorithm for the numerical solution of the three-dimensional orbital pursuit-evasion

game where interception concludes the game once the instantaneous positions coin-

cide. The objective of the pursuer is to minimize the interception time where the

evader’s objective is to maximize it. A low, constant thrust-to-mass ratio is assumed

for both spacecraft and each begins maneuvering simultaneously possessing complete

and instantaneous information about the state of the opposing player. The necessary

conditions for existence of a saddle-point solution of a zero-sum differential game

begin with introducing the Hamiltonian, which is separable,

H = λTp fp + λTe fe, (152)

and the terminal function Φ, where the lengthy necessary conditions resulting in a

TPVBP are reported in [68]. Pontani and Conway then used the SDCNLP method

which as discussed transforms the two-sided optimization problem into a single-

objective optimal control problem and transcribed it to an NLP with an initial guess

provided by a GA like Horie and Conway.

Shen, et al. [69, 70] studied the pursuit-evasion orbital game where the pursuer
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minimizes the time to interception while the evader attempts to maximize it for col-

lision avoidance. They first had the pursuer rotate its orbit to the same plane as that

of the evader and then solved the game via a MATLAB-based optimization environ-

ment called TOMLAB to obtain the optimal open-loop trajectories representing the

saddle-point equilibrium solution.

Shen, et al. [71, 72] also used a pursuit-evasion game approach to deal with imper-

fect measurements and information with uncertainties for a satellite to track a GEO

satellite where the entropy was to be minimized by the pursuer and maximized by

the evader. The satellites both used continuous low-thrust with the control being the

direction of thrust, and the worst case maneuvering strategies were obtained from

the Nash equilibrium of the pursuit-evasion game by using fictitious play to solve the

game problem. The cost function was the entropy,

J =
1

2
ln((2π exp)6 det(P )), (153)

where P is the error covariance matrix. The game was solved sequentially, where

at each time step each player observes the actions of the other and responds with

the best strategy. They furthered their work by using a similar approach where the

controls of the pursuer were sensor resources which they used to minimize entropy

while the evader attempted to maximize it by performing maneuvers where the same

fictitious play concept was used to solve the problem [73].

Differential game solution techniques applied in the linearized relative frame for

satellite motion include the work of Stupik, Pontani, and Conway [74, 75] where the

objective of the pursuer is to minimize the time to capture and the objective of the

evader is to maximize it. The control is the two angles of the constant low-thrust in

three-dimensional space and mass loss is accounted for. The solution is then obtained

by applying the analytic necessary and sufficient conditions for optimality and solving
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the resulting system with a PSO where only three of the initial twelve costates are

needed as the PSO optimization variables to determine the solution. This technique

is basically the IHM applied to a pursuit-evasion game instead of to a one-sided

optimization problem. Thus, the same conditions required to use the IHM must

apply in order to use this solution technique.

Sun, et al. [76] calculated the numerical solution of a pursuit-evasion game of two

spacecraft in low Earth orbit using the HCW equations via two methods they intro-

duce: the semi-direct control parameterization (SDCP) method and a hybrid method

which combines the SDCP method with the multiple shooting method. Instead of

using the collocation method like the SDCNLP method, they used a control param-

eterization method which results in an approximate, smaller dimensional problem.

Their methods involve solving two optimal control problems instead of one like in

the SDCNLP method and they claim that it’s equivalent to the original differential

game unlike the SDCNLP method. The two optimal control problems can be solved

via NLP solvers where a multi-objective genetic algorithm (MOGA) is used to find

a good initial guess. For the hybrid method, they used the solution from the SDCP

method as the initial guess for the multiple shooting method and increased the accu-

racy of the solution. In their examples they assumed a constant mass, however, and

the cost was the separation distance between the two spacecraft at a given terminal

time instead of the final time itself with capture terminal constraints.

Selvakumar and Bakolas [77] recently solved the pursuit-evasion game in Hill’s

frame, where the pursuer satellite aims to minimize time to capture while the evader

attempts to prolong it. Both spacecraft had control constraints and the problem was

solved by transforming the free final time problem into a fixed final time problem

with a terminal cost by first transforming the relative motion equations into Levi-

Civita coordinates [78], where the equations of motion become decoupled harmonic
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oscillators, and then employing the Gutman, Esh, and Gefen state transformation

[79]. A semi-analytical solution was presented for the time of capture and a closed-

form expression was developed for the optimal control inputs. However, the problem

was limited to the orbital plane and mass was assumed constant.

The research herein intends to build upon differential game solution techniques

presented in this section to solve Problem C. Specifically, the research herein will

expand upon the IHM and will use the Tschauner-Hempel equations of motion in

order to account for any eccentricity in a potentially maneuvering RSO close to GEO,

thus reducing the error which would accrue with the HCW equation of motion. Also,

constant, steerable thrust will be used, which may be especially applicable for electric

engines in such a game. It is desired to use the IHM due to the relative simplicity

of the method and the fewer assumptions required compared to some of the other

techniques. Thus, IHM will be used to formulate and solve multiple types of games

(not just the intercept game), where each type corresponds to a different inspection

goal of the pursuer.

2.8 Summary

This chapter was intended to provide sufficient background material to answer

the research questions and expose the limits of previous work which this research is

meant to extend. Different types of relative satellite dynamics models were intro-

duced, along with their geometric parameterizations, and teardrop parameters were

introduced, which will all be used to formulate and solve optimal control and differen-

tial game problems. A brief overview of optimal control and solution methodologies

were provided, and previous work related to Problems A and B were presented. Re-

garding Problem A, a gap exists with respect to the combination of multiple aspects of

previous efforts into one problem, accounting for a single, finite-thrust, slew rate lim-
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ited engine and a keep-out cone, as well as the optimization of a combined formation

establishment and reconfiguration problem. Regarding Problem B, a gap exists with

respect to using a semi-analytic guidance method for on/off thrusters with various

optimization algorithms to find the optimal finite burns to inject into and maintain

teardrop trajectories (as well as NMCs), subject to lighting and collision constraints.

Metaheuristic techniques used in recent research to solve similar problems were

also introduced, where a different type of control parameterization will be developed

for Problem B in order to quickly use metaheuristic algorithms to generate initial

guesses or complete solutions for Problem B. Also, the IHM was introduced, which will

be used in Problem C to solve pursuit-evasion games, where more accurate equations

of motions will be used and multiple game conditions will be solved.

Thus, this work will extend the previous work presented in this section by formu-

lating and solving new problems, developing more efficient and reliable algorithms,

accounting for more realistic control and constraints, and providing mission planners

with options for solution tools and problem formulations based on mission require-

ments.
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III. Problem A

3.1 Overview

Problem A is a type of initial inspection of a non-maneuvering target satellite with

the goal of visiting all eight octants surrounding the target. Specifically, this problem

is a formation establishment and reconfiguration problem linked together into one

multi-phase optimization problem, meaning for example that the optimal formation

establishment solution may change if it sufficiently improves the reconfiguration solu-

tion. For Problem A, the inspector satellite has one, body-fixed engine with variable

thrust and maximum slew rates. In addition to these unique control constraints, a

keep-out cone is attached to the RSO, pointing towards nadir, which the inspector

satellite may not enter. Given the mission, control type, and path constraint, the

goal is to formulate and solve an optimal control problem to find minimum-time and

minimum-fuel solutions from an arbitrary state nearby. The keep-out cone ends up

defining two possible NMCs which the satellite may enter to stay outside of but come

as close as possible to inspect the nadir-facing side of the target. Terminal constraints

should allow the inspector to enter the NMCs at whichever point is optimal, and al-

low the optimizer to determine which of the two initial NMCs is optimal instead of

defining which one to enter a priori. Two angles representing the thrust direction

are introduced as additional states in order to limit slew rates to reasonable levels

which needs consideration when using a low-thrust, body-fixed engine. Throttle is an

additional control which allows the optimizer to determine when to thrust vs. coast,

instead of defining the thrust-coast sequence(s) a priori. Due to the complexity of

the problem, pseudospectral methods are used to obtain solutions. The goal is to

first calculate the minimum-time solution and then solve increasing fixed final time

problems while minimizing fuel to provide mission planners with optimal time vs.
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fuel options. The research in this chapter has been published in [80].

The inspection mission is split into four phases. The goal of the first phase is to

inject the satellite into an NMC about the target while avoiding the exclusion cone

but coming as close as possible in order to inspect the nadir-facing side of the target.

Instead of defining a specific NMC and injection point, this problem formulation will

allow the inspector to inject itself at any point along one of two NMCs. The second

phase is simply the resulting natural motion of the terminal conditions from phase one

for a specified amount of minimum dwell time. The third phase starts at the terminal

conditions of phase two, with the goal of transferring to an orthogonal NMC, i.e.

a reconfiguration. The fourth phase is simply the resulting natural motion of the

terminal conditions from phase three, resulting in the inspector having viewed the

target from all eight octants surrounding the target provided by the two orthogonal

NMCs. Since the motion in the two NMCs requires no control and the times in each

NMC are specified by the user, the only phases explicitly included in the multi-phase

optimization problem are phases one and three, which will be called such, even though

phase three is in fact phase two of the optimization problem.

3.2 Equations of Motion and Control Definition

The equations used for Problem A are the HCW Equations, Equations 42–44,

expressed in the LVLH frame (also called the RSW frame), as shown in Figure 3.

The acceleration terms are added to the right hand side of the equations, resulting in

ẍ− 2ωẏ − 3ω2x = ax (154)

ÿ + 2ωẋ = ay (155)

z̈ + ω2z = az, (156)
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where the three acceleration terms result from thrust forces acting on the inspector

satellite in each of the three directions.

Figure 3. LVLH or RSW Coord. Frame Figure 4. Thrust Direction Variables

The control type used in Problem A is continuous low-thrust control, where the

thrust can be pointed in one direction only, e.g. one electric engine fixed to the satellite

body frame. The rate at which the satellite and thus the thrust vector can slew is

limited, which needs to be addressed for a body-fixed, low-thrust engine and helps

provide realistic results. Thus, two additional states are added to define the direction

of the thrust vector in 3-D space, α and φ, which can be seen in Figure 4, where α

is the in-plane angle and φ is the out-of-plane angle. The acceleration magnitude is

allowed to vary, since this allows the optimizer to determine thrust and coast arcs,

instead of the user picking a possibly suboptimal sequence a priori. As will be seen

later, solutions are typically constant-magnitude, finite burn and coast sequences,

thus allowing the acceleration magnitude to throttle may be used to determine finite-

thrust and coast sequences for on/off thrusters. Finally, time-varying mass loss is

accounted for. Given the defined control, the acceleration terms for Problem A can
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be described by,

ax(t) = T (t)a(t) cosφ(t) cosα(t) (157)

ay(t) = T (t)a(t) cosφ(t) sinα(t) (158)

az(t) = T (t)a(t) sinφ(t), (159)

where T (t) ∈ [0, 1] is the throttle value, a(t) is the maximum available acceleration

magnitude which increases with mass loss, and α and φ are controlled by α̇ and φ̇

respectively, where α̇, φ̇ ∈ [−δ, δ] and δ is the maximum allowable slew rate. Note

that the slew rate limit for α̇ is technically a non-inertial rate, since the RSW frame is

rotating at about ω = 7.3X10−5 rad/s at GEO. This minimal value is negligible com-

pared to a reasonable maximum slew rate value of, for example, 0.5 deg/s. However,

this would need to be taken into account for low-Earth orbits. In summary, there

are eight states, X = [x, y, z, ẋ, ẏ, ż, α, φ], and three controls, u = [T, α̇, φ̇]. Mass

loss is accounted for by using the following model for the acceleration magnitude at

any point in time where the thrust, mass flow rate, and effective exhaust velocity are

assumed constant,

a(t) =
a0

1− ta0
c

, (160)

where a0 is the initial acceleration due to the constant thrust and initial mass, c is

the constant effective exhaust velocity, and t is the elapsed time the thruster has been

on since t0.

3.3 Targeted NMCs

The RSO is assumed to be pointing instruments or communication devices towards

nadir, and thus an exclusion cone is projected from the RSO towards nadir, oriented
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along the−x̂ axis, and stationary in the LVLH frame, which the inspector cannot enter

so as to not interfere with the satellite’s operations. This exclusion cone thus imposes

constraints on the trajectory the satellite can take during proximity operations, and

also defines the angle at which the NMC needs to be tilted with respect to the xy

plane to keep out of the exclusion cone, but stay as close as possible to during the

initial NMC. This exclusion cone also constrains the trajectory the satellite can take

when transferring to the second NMC after sufficient information has been collected

in the initial NMC. Figure 5 shows the options for the first NMC and the second,

orthogonal NMC which is chosen based on the first NMC.
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Figure 5. Exclusion Cone and NMC Options

The natural, unforced trajectory of the inspector with respect to the target de-

pends on the initial unforced conditions of the inspector in the relative frame upon

completion of the maneuver. The resulting trajectories generally drift over time in

the LVLH frame, distancing themselves from the target. However, the one condition
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which ensures a zero-drift relative trajectory is Equation 82, which generates a 2× 1

ellipse in the orbital plane of the RSO. Given this condition, what remains to be

defined is the offset of the ellipse in the y direction, the size of the NMC in the xy

plane, the tilt with respect to the xy plane or the maximum out-of-plane amplifica-

tion, and the phase relationship between the in-plane and out-of-plane motion. Using

the LROEs, the zero-drift condition makes xd = 0 and yd = yd0 . To make the RSO

be at the center of the NMC, yd must be set to zero by the constraint:

yω = 2ẋ. (161)

By choosing a value for ae, a terminal constraint can be set on the states to obtain

the desired size of the ellipse:

a2
e

4
=

(
ẋ

ω

)2

+

(
3x+ 2

ẏ

ω

)2

. (162)

Then, using the LROEs with the constant phase difference, γ = ψ − β, between the

periodic motion in the orbit plane and the periodic motion in the z direction, the six

relative states can be described in terms of the LROEs as the following, stated again

here for ease of reference:

x = −ae
2

cos β + xd (163)

y = ae sin β + yd (164)

z = zmax sin(γ + β) (165)

ẋ =
ae
2
ω sin β (166)

ẏ = aeω cos β − 3

2
ωxd (167)

ż = zmaxω cos(γ + β). (168)
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For this problem, due to the exclusion cone, γ should be ±90o in order for the cross-

track motion to reach its maximum (or minimum value) when it reaches the minimum

radial distance from the RSO, and be outside of but as near as possible to the exclusion

cone. It follows that

z = zmax(± cos β), (169)

and with xd = 0,

cos β = −2x

ae
, (170)

and thus

z = zmax

(
±
(
−2x

ae

))
= ∓zmax

2x

ae
. (171)

For the optimizer to be able to converge on either of the two initial NMCs shown

in Figure 5, Equation 171 is then squared. Making this a terminal constraint allows

the optimizer to converge to either of the two ellipses. To ensure it’s also moving in

the correct direction at the terminal time, its first derivative also becomes a terminal

constraint. In summary, the following two equations become terminal constraints:

z2 = z2
max

4x2

a2
e

(172)

2zż = z2
max

8xẋ

a2
e

. (173)

Thus, using the constraints presented in this section, the user simply defines ae

and zmax, where the latter comes from the given exclusion cone half-cone angle, θ.

Given these parameters, the desired NMCs around the exclusion cone are defined.
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3.4 Optimization Problem Formulation

This section describes the optimization problem formulation, organized by phases.

For each phase, the equations of motion and control variables are summarized, and

any applicable state or control bounds are presented. Applicable and non-trivial

constraints on the initial and terminal conditions, the path, and linkage constraints

to the next phase are also presented. Finally, the multi-phase performance index is

discussed.

3.4.1 Phase One: Formation Establishment.

As discussed, this problem is split into four different phases of motion, with phase

one and three tied together into one multi-phase optimization problem. The first

phase starts with the inspector nearby in the LVLH frame, i.e., its arbitrary starting

location is close enough to the target for the HCW equations to apply. The goal

of the first phase is to inject the inspector into one of the two NMCs which touch

the top or bottom of the exclusion cone, while minimizing the multi-phase problem

performance index. The equations of motion for phase one (and phase three) can be

condensed to the following:

ẍ(t)− 2ωẏ(t)− 3ω2x(t) = T (t)a(t) cosφ(t) cosα(t) (174)

ÿ(t) + 2ωẋ(t) = T (t)a(t) cosφ(t) sinα(t) (175)

z̈(t) + ω2z(t) = T (t)a(t) sinφ(t), (176)

where the control variables are T , α̇, and φ̇ as previously discussed. There are no

bounds on the states (aside from those limiting the search space of the NLP solver)

which should be active. Bounds on the angle rates limit the rate at which the satellite
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can slew, and are the same for phases one and three:

−δ ≤ α̇, φ̇ ≤ δ. (177)

The throttling percentage is limited for both phases one and three as well:

0 ≤ T ≤ 1. (178)

The initial conditions on the states are fixed to arbitrary values, whereas the terminal

conditions on the states are free but constrained to inject the inspector satellite into

either of the two NMCs just touching the top or bottom of the exclusion cone. Thus,

phase one terminal constraints are Equations 82, 161, 162, 172, and 173 shown again

here for convenience, and where the superscripts in parenthesis denote the phase for

that specific variable:

ẏ
(1)
f = −2ωx

(1)
f (179)

y
(1)
f ω = 2ẋ

(1)
f (180)

a2
e

4
=

(
ẋ

(1)
f

ω

)2

+

(
3x

(1)
f + 2

ẏ
(1)
f

ω

)2

(181)

z
2(1)
f = z2(1)

max

4x
2(1)
f

a2
e

(182)

2z
(1)
f ż

(1)
f = z2(1)

max

8x
(1)
f ẋ

(1)
f

a2
e

. (183)

There are no path constraints (than otherwise noted state and control bounds), and

linkage constraints ensure that the final conditions in phase one are the initial con-

ditions in phase three propagated backwards analytically by the minimum time the

inspector satellite must spend in the initial NMC, tT . Using the HCW STM, Equation
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51, but propagating backwards by tT , the linkage constraints are



xf

yf

zf

ẋf

ẏf

żf



(1)

= Θ(−tT , 0)



x0

y0

z0

ẋ0

ẏ0

ż0



(3)

(184)

t
(1)
f = t

(3)
0 , (185)

where the times between phases one and three can be linked directly since those are

the two phases being optimized.

3.4.2 Phase Two: Initial NMC.

Phase two is the natural, unforced motion due to the terminal conditions from

phase one. The motion is a 2x1, zero-drift NMC which just touches either the top

or bottom of the exclusion cone. The dynamics are simply the left hand side of

Equations 174–176 set equal to zero and are propagated forward analytically for the

desired minimum dwell time in the first NMC, tT . Thus, this phase is implicitly

contained in the overall problem via linkage constraints but not an explicit phase of

the optimization problem.

3.4.3 Phase Three: Formation Reconfiguration.

Phase three is the transfer from the initial NMC to the orthogonal NMC with the

goal of obtaining spherical coverage of the target. Due to the nature of the control, if

it’s optimal to remain in the initial NMC, i.e., have T = 0 for a period of time, then

it may do so. Phase three then uses the same dynamics and control as in Equations
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174–176 to transfer to an orthogonal ellipse. State and control bounds are the same

as in phase one, and the initial conditions are the final conditions from phase two.

The terminal constraints must force the inspector to maneuver into an orthogonal

ellipse, which is defined based off of the ellipse the optimizer converged on in phase

one. Thus, the algorithm compares x
(1)
f and z

(1)
f to determine whether they are in or

out of phase, and defines the orthogonal ellipse to be the opposite, where p3 is defined

to be −1 or 1 respectively. Thus, squaring Equation 171 is no longer needed, and

the new maximum cross-track amplification for phase three, z
(3)
max, is determined by

a pseudo half-cone angle, θ̃ = 90o− θ. Thus, the terminal constraints for phase three

are

ẏ
(3)
f = −2ωx

(3)
f (186)

y
(3)
f ω = 2ẋ

(3)
f (187)

a2
e

4
=

(
ẋ

(3)
f

ω

)2

+

(
3x

(3)
f + 2

ẏ
(3)
f

ω

)2

(188)

z
(3)
f = p3z

(3)
max

(
−2x

(3)
f

ae

)
. (189)

Path constraints for phase three ensure the inspector does not enter the exclusion

cone,

[
x(t)(3), y(t)(3), z(t)(3)

]
[−1, 0, 0]T

||[x(t)(3), y(t)(3), z(t)(3)]||2
=

−x(t)(3)√
x2(t)(3) + y2(t)(3) + z2(t)(3)

≤ cos θ, (190)

where the cone is aligned with the −x̂ axis pointing towards nadir. Phase three is

the last phase included in the optimization problem, and its final time is either free

or fixed, depending on the performance index for the multiple phase optimization

problem.
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3.4.4 Phase Four: Orthogonal NMC.

Phase four is the natural, unforced motion due to the terminal conditions from

phase three. The resulting NMC is orthogonal to the initial one, resulting in spherical

coverage of the target. It is not included as part of the multiple phase optimization

problem and is analytically propagated forward from the terminal conditions of phase

three.

3.4.5 Performance Indices.

The optimization problem is first solved by minimizing the overall final time, i.e.,

the performance index is

J = t
(3)
f , (191)

where t
(3)
f is the total time it takes phases one and three combined, not just phase

three. In order to help reduce control chatter and produce more acceptable results,

α̇2 and φ̇2 are also minimized during both phases and multiplied by a relatively small

weight, W , so that their effect on the minimum-time solution is negligible:

J = t
(3)
f +W

∫ t
(3)
f

t
(1)
0

(
α̇2(1) + φ̇2(1) + α̇2(3) + φ̇2(3)

)
dt. (192)

Using this as a baseline for mission design, the problem is then solved by minimizing

the fuel for multiple fixed final time problems, where t
(3)
f is fixed and chosen to be

values increasing from the minimum-time solution. For these problems,

J =

∫ t
(3)
f

t
(1)
0

[(
T (1) + T (3)

)
+W

(
α̇2(1) + φ̇2(1) + α̇2(3) + φ̇2(3)

)]
dt. (193)
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3.5 Simulation and Results

Simulations were run with the parameters shown in Table 2, where α
(1)
0 and φ

(1)
0

were chosen to be initially thrusting the inspector towards the target.

Table 2. Problem A Simulation Parameters

Spacecraft Properties Initial Position Initial Velocity Initial Angles NMC Parameters

a0 = 0.05 N/kg x
(1)
0 = −30 km ẋ

(1)
0 = 0 m/s α

(1)
0 = 63.43o ae = 10 km

c = 3.33 km/s y
(1)
0 = −60 km ẏ

(1)
0 = 0 m/s φ

(1)
0 = −12.60o θ = 20o

δ = 0.5 deg/s z
(1)
0 = 15 km ż

(1)
0 = 0 m/s

The first solution presented is the minimum-time solution as seen in Figures 6,

7, and 8 where the circles represent the collocation points. For this particular run,

the minimum required time for the first NMC is tT = 0.9P , where P is the period

of the reference orbit. The minimum-time solution for the parameters in Table 2 is

36.78 minutes where phase one takes 36.41 minutes and enters the initial NMC such

that after tT has passed the inspector satellite’s position is just shy of the crossing

between the two NMCs, where phase three then only takes 0.38 minutes to transfer

the satellite into the orthogonal NMC. The total fuel used, measured by the total

integral of T (t), can be simply thought of as the total time the thruster is on, ton. For

this minimum-time solution, ton = 34.91 minutes, which is less than the minimum

time of the maneuver since it’s optimal for the thruster to turn off for a moment, as

seen in Figure 6 (b) and (c), while the satellite turns itself around to start slowing it

down. The short transfer from the initial NMC to the orthogonal one is practically

a constant direction and constant magnitude burn, where α
(3)
0 and φ

(3)
0 are free to be

optimized, i.e. it is assumed the satellite can orient itself to those rotational angles

during the initial NMC to prepare for the burn. This tends to be a common optimal

solution for different initial conditions and multiple minimum-time problems. That

is, the first phase solutions change so that at the end of tT , the phase three burns are
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Figure 6. Problem A, Min Time Solution, Phase 1, 90% of NMC 1

very similar to that seen in this case. This is the result of combining the formation

establishment and reconfiguration maneuvers into one optimization algorithm, and

ends up saving time and fuel.

To show an example of how the inspector satellite may enter either of the two

possible initial NMCs as shown in Figure 5, the exact same combined optimization

problem is run as described by Table 2 and shown in Figure 8 but with z
(1)
0 = −15

km instead of 15 km. Figure 9 shows how with this difference in initial conditions,

the maneuver trajectory converges to the initial NMC which touches the bottom of

the cone instead of the top of the cone, and the orthogonal NMC is subsequently
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Figure 7. Problem A, Min Time Solution, Phase 3, 90% of NMC 1

changed.

To show how it does save time and fuel by combining the maneuvers into one

optimization problem, the problem has also been solved where the two maneuvers

are optimized separately. The minimum-time solution for phase one is 36.28 minutes

as seen in Figure 10, which is less than the 36.41 minutes phase one solution for the

combined optimization problem. However, the phase three minimum-time solution

is 7.56 minutes as seen in Figure 11, which is much greater than the 0.38 minutes it

takes phase three in the combined optimization problem. This leads to a total time

to complete phases one and three of 43.84 minutes, approximately 19% more than the
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combined optimization problem time of 36.78 minutes. The separated optimization

problems also use a total of 7% more fuel than the combined problem, with ton = 37.33

minutes as compared to 34.91 minutes. These time and fuel savings are especially

important for minimum-time solutions, which savings can increase greatly if at the

end of tT for the separate problems the inspector is far from the crossing of the two

NMCs.

With the minimum-time solution as the baseline, the simulation was run multiple

times for varying fixed final times, increasing the fixed final times from the minimum-

time solution. The simulation was performed with tT = P . Figures 12 and 13 show

the minimum-fuel solution for the case where t
(3)
f is fixed to 60 minutes. Phase one

takes 59.62 minutes and phase two takes 0.38 minutes, and the combined formation

establishment and reconfiguration maneuvers only require ton = 13.09 minutes. A

summary of the simulation results presented in this section are shown in Table 3.

For these simulations, IPOPT was used as the NLP solver, the default (or tighter)

GPOPS-II tolerances were used, and no special treatment regarding the settings were

required to obtain the solutions.

Figure 14 shows multiple minimum-fuel solutions, which shows that if the mission

planner can provide more total time for phase one and phase three maneuvers to be

completed, then fuel can be saved. Figure 14 also shows how minimizing the angular

rate control chatter with a small weight as part of the cost function has negligible

impact on the main goal of the optimization, which is to minimize fuel, since the cost

and integral curves are practically indistinguishable.
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Figure 10. Problem A, Min Time Solution, Phase 1 Optimized Alone, 90% of NMC 1
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Figure 12. Problem A, Min Fuel Solution, Phase 1, 100% of NMC 1, t
(3)
f = 60 min

t (min)
59.6 59.7 59.8 59.9 60

x
,y
,z
,ẋ

,ẏ
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Table 3. Problem A Simulation Results (in minutes)

Min time Min time Min time Min throttle
90% Initial NMC 90% Initial NMC 90% Initial NMC 100% Initial NMC

not combined z
(1)
0 = −15 km t

(3)
f = 60 min

t
(1)
f 36.41 36.28 36.41 59.62

t
(3)
f − t

(1)
f 0.38 7.56 0.38 0.38

t
(3)
f 36.78 43.84 36.79 60.00∫ t

(1)
f

t
(1)
0

T (t)dt 34.54 35.01 34.42 12.71∫ t
(3)
f

t
(3)
0

T (t)dt 0.38 2.32 0.38 0.38∫ t
(3)
f

t
(1)
0

T (t)dt 34.91 37.33 34.79 13.09

J 36.78 43.84 36.79 13.09
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Figure 14. Problem A, Range of Optimal Solutions, 100% of NMC 1

3.6 Problem A Conclusion

The presented method to formulate and solve Problem A via pseudospectral meth-

ods provides a novel multi-phase approach to generate time-optimal and fuel-optimal

maneuvers for a satellite with a unique control type to perform an initial inspection of

an RSO with an exclusion cone in GEO. Regarding the unique control type, a continu-

ous, low-thrust, body-fixed engine with slew rate limits and a maximum acceleration

magnitude which increases with mass loss can be successfully incorporated into a

complex, multi-phase optimal control problem. By introducing two angles as addi-
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tional states, controlled by their respective and bounded angle rates, the translational

trajectory can be successfully coupled to and constrained by rotational constraints.

Also, instead of defining (possibly sub-optimally) thrust and coast sequences a priori,

throttle can be used as a control variable to determine the sequence. Regarding the

cost function, if a second, weighted term is introduced into the cost function for both

the minimum-time and minimum-fuel problems, unwanted control chatter (especially

during coast arcs) can be successfully minimized without affecting the actual goal

of the cost function. Also, if the user knows the minimum amount of time desired

to dwell in the initial NMC, then the optimization of the combined formation es-

tablishment and reconfiguration can save potentially significant time and/or fuel as

compared to optimizing the formation establishment and reconfiguration maneuvers

separately. Regarding the constraints, it is possible to formulate them such that

the inspector satellite can converge to one of two initial NMCs formed about an ex-

clusion cone, and is free to enter the the trajectory at any point along the NMC,

which further decreases the performance index. Finally, the general architecture of

the developed algorithm allows for the production of a family of solutions, where

the Pareto front for a specific maneuver can be constructed to give mission planners

choices based on time and fuel requirements. Thus, this algorithm produces optimal

multi-phase mission planning, autonomously determining variables and incorporating

realistic constraints which may have been difficult for mission planners to account for

optimally beforehand.
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IV. Problem B

4.1 Overview

Problem B differs from Problem A in several ways. First, the inspector satellite is

assumed to have on/off, finite thrusters and be capable of reorienting its thrust vector

instantaneously. This means that the satellite most likely has multiple thrusters on

multiple faces, where each thruster can either be on or off and has no throttling

capability. It is assumed that for each burn, these thrusters combine in the most

efficient manner to produce a known acceleration magnitude, where the direction of

the acceleration vector is held constant in the relative frame for each burn. Problem

B investigates how to use these constant magnitude, constant direction burns in

sequences with coast phases to target certain relative trajectories. Another way in

which Problem B differs from Problem A is that the trajectories targeted include

teardrop trajectories, which are unbounded in the relative frame. Also, Problem

B maneuvers are subject to various inspection constraints, including lighting and

collision constraints.

This chapter is split up into three sections, denoted B-1, B-2, and B-3. Each sec-

tion varies with respect to the type of control sequence used, the trajectory targeted,

and the constraints imposed. Problem B-1 uses a burn-burn and a burn-coast-burn se-

quence and addresses optimal maneuvers into a teardrop trajectory. Problem B-2 also

uses a burn-coast-burn sequence but targets NMCs subject to lighting constraints.

Problem B-3 then investigates a coast-burn-coast-burn sequence, and addresses opti-

mal maneuvers into a teardrop again, but now subject to the same constraints from

Problem B-2 as well as to passive and active collision avoidance constraints. The

research for B-1 has been published in [81] and [82], the research for B-2 has been

published in [83] and [84], and the research for B-3 has been published in [85].
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4.2 Problem B-1

4.2.1 Overview.

Depending on mission requirements, one type of inspection mission may require

the inspector satellite to hover at a fixed point with respect to the RSO, either below

or above the satellite in the radial direction. This type of hovering would require

continuous thrusting, unless the fixed point is expanded to a keep-in volume in which

a relative teardrop pattern is allowed to exist. With a relative teardrop trajectory,

the inspector satellite can be injected into a trajectory which naturally forms the

prescribed teardrop with respect to the RSO, and a small burn can be made to

repeat the teardrop motion. This allows the satellite to perform mission operations

during the natural motion portion of the teardrop, and can be called a quasi-hover.

These types of trajectories may be desirable based on mission requirements. Thus,

the goal of Problem B-1 is to generate optimal guidance for an inspector satellite

to maneuver into and maintain a prescribed relative teardrop trajectory in three

dimensions, in order to successfully inspect and characterize an RSO. The problem

is solved using a burn-burn sequence for the minimum-time formulation and a burn-

coast-burn sequence for the minimum-fuel formulation. These problems are solved

by parameterizing the control, such that the optimal control problem is adequately

represented by a static, or parameter, optimization problem. The initial guess is

generated by using MATLAB’s PSO, which is then used as the initial guess for both

a mid and high-fidelity solution, where the mid-fidelity solution is calculated using

MATLAB’s fmincon and the high-fidelity solution is calculated using GPOPS-II.

4.2.2 Equations of Motion and Control Definition.

Problem B-1 uses the HCW equations of motion where for each burn the accelera-

tion terms are constants, defined by a constant acceleration magnitude, and constant
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in-plane and out-of-plane angles,

ax = a0 cosφ cosα (194)

ay = a0 cosφ sinα (195)

az = a0 sinφ, (196)

where a0 is the initial acceleration magnitude due to a constant thrust and satellite

mass at the time the burn starts, and where α and φ have been shown in Figure 4.

4.2.3 Analytic Propagation of a Constant Magnitude, Constant Di-

rection Burn.

This subsection shows how there is an analytic solution to a constant acceleration

magnitude, constant direction burn when using the HCW equations, which will then

allow the optimal control problem to be posed as a parameter optimization problem

where no discretization or numerical integration is required.

The HCW equations with the acceleration terms equal to Equations 194–196 have

an analytic solution. Using MATLAB’s dsolve function, the solution is,

x(db) =
1

4ω2

(
4ax + 8c6ω + 4ax cos(dbω) + 8ay sin(dbω)

+ 8aydbω − 3c5ω cos(dbω) + 3c4ω sin(dbω)

)
(197)

y(db) = − 1

2ω2

(
6c1ω

2 − 8ay cos(dbω)− 8ay + 4ax sin(dbω) + 3ayd
2
bω

2

+ 4axdbω − 3c4ω cos(dbω)− 3c5ω sin(dbω) + 6c6dbω
2

)
(198)

z(db) =
2az + c2ω cos(dbω) + c3ω sin(dbω)

2ω2
(199)
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ẋ(db) =
8ay + 8ay cos(dbω)− 4ax sin(dbω) + 3c4ω cos(dbω) + 3c5ω sin(dbω)

4ω
(200)

ẏ(db) = − 1

2ω

(
4ax + 6c6ω + 4ax cos(dbω) + 8ay sin(dbω)

+ 6aydbω − 3c5ω cos(dbω) + 3c4ω sin(dbω)

)
(201)

ż(db) =
c3 cos(dbω)− c2 sin(dbω)

2
, (202)

where db is the duration of the burn. The coefficients c1-c6 can be determined by

setting db = 0 and plugging in the initial conditions:

c1 = 2ẋ0−ωy0
3ω

c2 = 2z0ω2−2az
ω

c3 = 2ż0 c4 = 4ωẋ0−16ay
3ω

c5 = 1
6ω

(24ω2x0 − 48ax + 16ωẏ0 + 64ax) c6 = 1
ω

(2ω2x0 − 4ax + ωẏ0 + 4ax)

. (203)

Thus, given the duration of the burn and the constant direction of the burn in three-

dimensions, Equations 197–202 can be used for each burn in the sequence, and any

coast phase can be propagated by the HCW STM, Equation 51. Mass loss is consid-

ered negligible during each burn in the sequence, but a0 is adjusted for a second burn

to account for mass lost during the first burn by the following equation,

a02 =
a0

1− db1 a0c
, (204)

where db1 is the duration of the first burn and c is the (relatively high) constant

effective exhaust velocity.

4.2.4 Targeted Teardrop.

This subsection describes how the desired teardrop is targeted for use in an

optimization problem. Depending on mission requirements, a minimum-time or

minimum-fuel solution may be required. Also, it may be required to enter the teardrop
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directly, or simply enter the trajectory which after some time ends up forming the

desired teardrop. The desired teardrop geometry, placement along the in-track direc-

tion, and out-of-plane motion must be prescribed. As explained in Chapter II, only

two independent parameters need to be chosen to fully define the teardrop geometry.

To ensure the inspector satellite maintains a minimum distance from the RSO, D

(the distance to the RSO at the closest approach) is chosen along with the period of

the teardrop, Tp, as the two independent parameters. This determines the teardrop

geometry and the two LROEs ae and xd through Equations 85 and 86.

The mission planner then defines the placement of the teardrop axis of symmetry,

denoted as yT , which is the y location of both the teardrop cusp and the point of

closest approach. According to Equation 76, it can be seen that the farthest radial

position from the RSO is when β = 0. The point of closest approach in the radial

direction is when β = π, and the radial position again reaches its farthest distance at

β = 2π, as seen in Figure 15. Thus, with yT defining the teardrop axis of symmetry, it

can be seen that y = yT when β = π, which means via Equation 78 that y = yT = yd

at that point, and happens halfway through the period, P , of the RSO. Thus, given

yT , yd0 can be calculated via Equation 71 as:

yd0 = yT +
3

2
ωxd0t, (205)

where xd0 = xd is a constant and t = 1
2
P . Thus,

yd0 = yT +
3

4
ωxdP, (206)

where this value for yd0 ensures the teardrop axis of symmetry is at the desired in-

track location. The maximum out-of-plane distance of the teardrop can be chosen

to coincide with the point of closest approach in the orbital plane as Ztop, where
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|Ztop| = zmax. This means that the constant phase difference γ between the in-plane

and out-of-plane motion is −90o for a positive Ztop and 90o for a negative Ztop. Given

this information, the set of states which will produce the desired teardrop can now

be expressed as a function of β, the in-plane phase angle only, as,

x =
−ae

2
cos β + xd (207)

ẋ =
ae
2
ω sin β (208)

y = ae sin β + yd = ae sin β + yd0 −
3

2
xdβ (209)

ẏ = aeω cos β − 3

2
ωxd (210)

z = −Ztop cos(β) (211)

ż = Ztopω sin(β). (212)

Instead of also prescribing the value of β, it will be allowed to vary as a parameter

to be optimized, which will allow the injection point into the teardrop trajectory

to move with β in order to further reduce the performance index. This injection

angle is thus designed to have bounds, enabling the user to decide what range along

the teardrop trajectory the inspector may enter. For this subproblem, the inspector

satellite is prevented from entering the teardrop trajectory anywhere after βcutoff ,

which has been chosen as the point of greatest width on the left side of the teardrop

as shown in Figure 15. This ensures the inspector satellite enters the teardrop and

has sufficient time to prepare for a potential burn as it approaches the cusp to repeat

the teardrop trajectory. βcutoff is calculated by recognizing that ẏ = 0 at that point,

and thus via Equation 79:

βcutoff = 2π − cos−1

(
3xd
2ae

)
, (213)
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where the calculated angle is ensured to be greater than π.
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Figure 15. Teardrop Example with Allowable Injection Range for β

4.2.5 Optimization Problem Formulations.

The objective of this subproblem is to find the minimum-time and minimum-

fuel solutions to inject an inspector satellite into and maintain a prescribed teardrop

trajectory. The problems can be formulated such that a static optimization problem

formulation is adequate to solve them, without discretizing them or using pseudospec-

tral methods, at least for the initial guess and mid-fidelity solutions. This is done by

using the analytic expressions for the propagation of a constant magnitude, constant

direction burn for the HCW equations in the relative frame. The initial guess is first

formulated and found via MATLAB’s PSO, and then the mid-fidelity solution, using

the PSO solution as an initial guess, is found via MATLAB’s fmincon. Finally, the

initial guess is used in GPOPS-II where a high-fidelity model is used to take into

account continuous mass loss during each of the burns.
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4.2.5.1 Parameter Optimization Problem for PSO and NLP Solver.

This subsection outlines how the problem can be posed as a parameter optimiza-

tion problem to be solved by both a PSO and an NLP solver to find both minimum-

time and minimum-fuel solutions.

For the minimum-time problem, it is assumed that the typical solution for a

minimum-time problem applies here [86]. That is, that the optimal control is to first

use maximum acceleration to guide the inspector towards the terminal conditions and

then second, to apply the same maximum acceleration (typically approximately in the

reverse direction) to meet the terminal constraints. The control is thus parameterized

into two segments, namely a burn-burn sequence, where the direction of the thrust is

assumed to be constant in the relative frame during each segment. Thus, the control

is parameterized into α1, φ1, α2, and φ2 where the subscripts represent burns one and

two. These parameters, along with the final time, tf , and the fraction of the final

time at which to switch to burn two, t2f , are the fewest variables needed to complete

the parameterization of the control. These variables and β are the parameters to be

optimized,

χ = [α1, α2, φ1, φ2, t2f , tf , β], (214)

where the upper and lower bounds are:

χl =
[
0, 0,−π

2
,−π

2
, 0, 0, 0

]
(215)

χu =
[
2π, 2π,

π

2
,
π

2
, 1, tmax, βcutoff

]
. (216)
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For the minimum-time problem, the performance index is the final time, tf ,

J = tf , (217)

subject to the equality constraints (which are terminal constraints),

h =



xf + ae
2

cos β − xd

ẋf − ae
2
ω sin β

yf − ae sin β − yd0 + 3
2
xdβ

ẏf − aeω cos β + 3
2
ωxd

zf + Ztop cos(β)

żf − Ztopω sin(β)


=



h1

h2

h3

h4

h5

h6


= 0, (218)

where the final state after the two burns, Xf = [xf , yf , zf , ẋf , ẏf , żf ]
T , minus the

solution to Equations 207–212 must be equal to zero. When utilizing the NLP solver,

these are treated as equality constraints, whereas when using the PSO, they are

appended to the cost function. Thus the actual cost function the PSO attempts to

minimize in order to also meet terminal constraints is,

J̃ = J +
6∑
r=1

Wrh
2
r(χ), (219)

where Wr must be chosen to scale the positions and velocities appropriately. Given

the seven optimization parameters in χ, the burn-burn sequence can be analytically

propagated by using Equations 197–202 twice, where db1 = t2f tf and db2 = tf (1−t2f ),

and the equality constraints can be evaluated.

For the minimum-fuel problem there are several changes. First, a coasting phase

is introduced between the two burns and second, the final time, tf , for the burn-coast-

burn sequence is now fixed, where the optimizer seeks to maximize the coast time, or
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minimize the total engine-on time. The parameters to be optimized thus become

χ = [α1, α2, φ1, φ2, tcf , t2f , β] (220)

where t2f is the fraction of the fixed final time when burn two starts and produces

the time at which burn two starts, t20 = t2f tf . Then, tcf is the fraction of t20 when

coasting starts (or the first burn ends) and produces the time at which coasting

starts, tc0 = tcf t20 . These first six variables in χ represent the minimum set needed

to parameterize the control for the burn-coast-burn sequence. Thus, the propagation

for the two burns works the same as before, but after the first burn the states are

propagated analytically with the HCW STM by the total coast time, dc = t20 − tc0 ,

and the final conditions of the coast phase become the initial conditions for the second

burn. The lower and upper bounds are

χl =
[
0, 0,−π

2
,−π

2
, 0, 0, 0

]
(221)

χu =
[
2π, 2π,

π

2
,
π

2
, 1, 1, βcutoff

]
. (222)

The cost for the NLP solver and appended cost function for the PSO are then,

J = tf − t20 + tc0 (223)

J̃ = J +
6∑
r=1

Wrh
2
r(χ), (224)

where the equality constraints are the same as in Equation 218, except that Xf is

now the final state after the burn-coast-burn sequence.

Thus, for both the minimum-time and minimum-fuel problem formulations, there

are (rather long) analytic expressions which generate Xf = [xf , yf , zf , ẋf , ẏf , żf ] and

thus the equations for the equality constraints (terminal constraints) are a function of
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seven optimization parameters. The minimum-time and minimum-fuel formulations

will first be solved by MATLAB’s PSO, and then also by MATLAB’s fmincon, us-

ing the PSO solution as an initial guess for the NLP solver. Additionally, the Radau

pseudospectral method will be employed via GPOPS-II to attempt to improve the ac-

curacy of the solution, incorporating time-varying mass loss instead of only updating

the mass after each burn.

4.2.5.2 GPOPS-II Problem Formulation.

When utilizing GPOPS-II, the problem is split into two separate multi-phase

optimization problems, where the second optimization problem solves for the optimal

control to repeat the teardrop trajectory once the inspector reaches the cusp, or

intersection point.

The first optimization problem is split up into two phases for the minimum-time

problem, where the first phase is a constant direction burn but where mass loss is

accounted for at each discretized point during the burn, as is the case for all the burns

in this pseudospectral formulation. Phase two is another constant direction burn, with

the same terminal constraints as shown in Equation 218. The two phases allow for

discontinuities in the control, but the states and times are linked from phase one to

phase two. The minimum-fuel problem has an additional coast phase in between the

two burn phases. Therefore the first burn is phase one, the coast is phase two, and

the second burn is phase three for the minimum-fuel problem.

The next optimization problem starts once the natural motion from the terminal

conditions of the first optimization problem have been propagated to βcutoff . The

first phase is the natural motion from βcutoff towards the cusp, to allow the solution

to exit this phase when required in order to make the optimal finite burn to repeat

the teardrop pattern, which is the second phase of this second optimization problem.
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The terminal constraints for the second phase are the same as in Equation 218, but

the bounds on β change the allowable entry for β to be only the right hand portion of

the teardrop in order to generate a finite burn to repeat the teardrop pattern. Thus,

the bounds on β are P−Tp
2
ω ≤ β ≤ π.

The cost functions for the first optimization problem are:

J = t
(2)
f (225)

J = t
(3)
f − t

(2)
f + t

(1)
f , (226)

for the minimum-time and minimum-fuel formulations respectively, where the super-

scripts denote the phases for each formulation, and the final times of each phase

are cumulative, meaning that for example t
(3)
f is the elapsed time of all three phases

combined for the minimum-fuel problem formulation. The cost function for the sec-

ond optimization problem is the same for both the minimum-time and minimum-fuel

formulations,

J = t
(2)
f − t

(1)
f , (227)

since the minimum-time and minimum-fuel problems have identical solutions in this

case.

4.2.6 Simulations and Results.

All simulations take place near an RSO in GEO with the parameters shown in

Table 4.

To begin, a typical resulting trajectory when using the PSO is shown for a

minimum-time formulation in Figure 16 in both two and three dimensions. The

cost for this solution is 27.27 minutes to inject. A typical solution for a minimum-
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Table 4. Problem B-1 Simulation Parameters

Spacecraft Properties Teardrop Parameters Initial Conditions

a0 = 0.02 N/kg D = −5 km x = −30 km ẋ = 0 km/s
c = 3.33 km/s Tp = P/3 y = −15 km ẏ = 0 km/s

yT = 0 km z = 0 km ż = 0 km/s
Ztop = 10 km

fuel formulation with a fixed final time of 35 minutes is shown in Figure 17 and

has an engine-on time of 11.27 minutes. Thus, comparing these minimum-time and

minimum-fuel solutions, the required engine-on time decreases dramatically if the

minimum-time case is allowed 7-8 more minutes and the fuel usage is minimized, as

would be expected.
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Figure 16. Problem B-1, PSO Min Time Solution

Now the parameter optimization problem is solved by using an NLP solver, namely

MATLAB’s fmincon solver. The NLP solver must be provided an initial guess. If no

good initial guess exists and an arbitrary (random) guess is provided, then the NLP

solver may not converge to a feasible solution. However, if an initial guess is provided

with the PSO solution, the NLP algorithm quickly converges with a computation

time of about one second. A minimum-time solution obtained with the NLP solver

given an initial guess from the PSO is shown in Figure 18 (a). The computation time
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Figure 17. Problem B-1, PSO Min Fuel Solution, tf = 35 minutes

for this particular solution is 0.8 seconds with a final time of 24.94 minutes, which is a

little less than the PSO solution. Figure 18 (b) shows a minimum-fuel solution, again

by using a PSO solution as an initial guess and then refining the result with the NLP

solver. The computation time for this scenario is again on the order of one second

with a total engine-on time of 11.00 minutes, once again refining the PSO solution.
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Figure 18. Problem B-1, fmincon Min Time & Fuel Solutions - Initial Guess with PSO

GPOPS-II is now used as a pseudospectral solver to further refine the results, allow

for time-varying mass loss, and find the optimal finite burn to repeat the teardrop

motion. The same parameters are used as in Table 4, and both a minimum-time
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and minimum-fuel solution is presented, again using an initial guess from the PSO

for each formulation. For the minimum-time solution, Figure 19 shows the optimal

states during burns one and two in (a) and also the optimal direction of the thrust

during burns one and two in (b), where the circle data points represent the collocation

points used by GPOPS-II. Figure 19 (c) and (d) show the optimal states and thrust

direction for the finite repeat burn, showing how just one constant direction burn

is required to repeat the pattern since they are intersecting trajectories, and the

minimum time to repeat the teardrop is the same as the minimum fuel to repeat.
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Figure 19. Problem B-1, GPOPS-II Min Time Solution - Initial Guess with PSO

Figure 20 shows the resulting trajectories from the minimum-time solution, where

98



the results from both optimization problems for the injection and repeat problems

are shown. That is, burns one and two in the figures correspond to phases one

and two of the first optimization problem. The coasting portion in the figures is

the resulting motion from the first optimization problem. Then, the preparation

phase in the figures for the repeat burn is the first phase of the second optimization

problem, and the repeat burn is the second phase of the second optimization problem,

maneuvering the satellite back into the teardrop. The initial guess again comes from

the PSO, which GPOPS-II refines and also accounts for mass loss during the two

burns, producing a solution of 24.88 minutes to inject.
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Figure 20. Problem B-1, GPOPS-II Min Time Trajectories, Inject and Repeat Burns

For the minimum-fuel solution, Figure 21 shows the optimal states during burn
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one, the coasting phase, and burn two in (a) and also the optimal direction of the

thrust during burns one and two in (b), where the angles during the coast are simply

set to zero since they don’t have any influence during the coasting phase. Figure 21

(c) and (d) show the optimal states and thrust direction for the repeat burn, and look

approximately identical to the minimum-time solution, as expected.
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,ż

(k
m
,

m s
)

x
y
z
ẋ
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ż

(c) States for Repeat Burn

100 101 102 103 104 105 106

t (min)

0

100

200

300

400

α
,φ

(d
eg
)

α

φ

(d) Thrust Direction, Repeat

Figure 21. Problem B-1, GPOPS-II Min Fuel Solution, tf = 35 minutes

Figure 22 shows the resulting trajectories, where the results from both optimiza-

tion problems composing the minimum-fuel solution for injection into and mainte-

nance of the teardrop trajectory are shown. That is, burns one and two correspond

to phases one and three of the first optimization problem, while the coast between

burns is phase two. The resulting motion from the first optimization problem is then

shown until the preparation phase for the repeat burn which is the first phase of the

second optimization problem. The repeat burn is the second phase of the second

optimization problem, maneuvering the satellite back into the teardrop. The solution
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from the PSO is again used as the initial guess, which the pseudospectral algorithm

refines, accounting for mass loss during the two burns and satisfying constraints to

a defined tolerance, producing a solution with an engine-on time of 10.99 minutes,

further reducing the overall cost.
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Figure 22. B-1, GPOPS-II Min Fuel Trajectories, tf = 35 minutes, Inject, Repeat Burns

A summary of the simulation results can be seen in Table 5, where all CPU times

provided throughout this research were obtained using a standard laptop with eight

2.4 GHz CPUs and 16 GB RAM. When using MATLAB’s PSO, default settings were

used with the exception of setting the swarm size to 350–500 particles or slightly

increasing the maximum number of iterations. When using MATLAB’s fmincon,

default settings were used with the exception of increasing the maximum number of

iterations and function evaluations. When using GPOPS-II, IPOPT was used as the

NLP solver, the default GPOPS-II tolerances were used, and no special treatment

regarding the settings were required to obtain the solutions.
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Table 5. Problem B-1 Simulation Results

Min Time Min Fuel (tf = 35 min)
J (min) CPU Time (s) J (min) CPU Time (s)

PSO (typical run) 27.27 ≈20 11.27 ≈20
fmincon 24.94 ≈1 11.00 ≈1

GPOPS-II 24.88 ≈1 10.99 ≈1

4.2.7 PSO Performance.

An analysis of the performance of the PSO algorithm for the minimum-time for-

mulation is presented, comparing the analytic propagation of the two burns vs. nu-

merically propagating them via a typical numerical propagator (MATLAB’s ode45 ).

Figure 23 shows the constraint violations (denoted |dr| here), costs (tf ), and CPU

times (tcomp) for 10 PSO runs with 400 particles each for both the analytic propa-

gation and numerical propagation methods. These results highlight several things.

First, the PSO finds a good solution 70-90% of the time with the parameters shown

in Table 4, varying in performance due to its stochastic nature, and is not yet reliable

enough for a user to be confident in obtaining a standalone solution every time it’s

run. However, it may be an effective way to obtain an initial guess, since when using

the analytic method it takes approximately 20 seconds on average to find a solution,

whereas the numerical method takes about 24 minutes (72 times longer) on average

to obtain a solution. Thus, using the developed expressions to analytically propa-

gate the burns provides a relatively quick way to use a metaheuristic algorithm to

obtain an initial guess, and may afford the use of more particles in the PSO, further

improving the solution.
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ż

0 2 4 6 8 10

PSO run

20

40

60

t f
(m

in
)

0 2 4 6 8 10

PSO run

0

2000

4000

t c
o
m
p
(s
ec
)

(b) Numerical Propagation

Figure 23. PSO Performance, Analytic & Numerical Propagation of Two Burns

4.2.8 Problem B-1 Conclusion.

Multiple optimization methods have been successfully employed to find both

minimum-time and minimum-fuel solutions for an inspector satellite to inject into and

maintain a prescribed three-dimensional teardrop trajectory. An analytic expression

for the six HCW states after a constant acceleration magnitude and constant direc-

tion burn can be successfully developed and utilized to propagate burns in defined

sequences which significantly decreases the solution time of the PSO (by a factor of 72

for the case shown) compared to using a numerical propagator. The PSO generates

good initial guesses for MATLAB’s fmincon and GPOPS-II, helping those methods

avoid convergence issues. The analytic propagation of the two burns also enables a

fast computation time for the NLP solver, allowing it to quickly converge to a local

minimum given the PSO solution as an initial guess. The formulation using GPOPS-

II successfully accounts for mass loss due to thrusting at each discretized point, and

further refines the solutions obtained from the PSO and NLP solver. The LROEs

and teardrop parameters can be successfully used to constrain terminal conditions

to the desired teardrop trajectory, where the user only needs to pick two teardrop

parameters along with yT and Ztop to define the three-dimensional region in which the
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quasi-hovering is desired. The bounds on the entry angle, β, enable the user to specify

where the inspector is allowed to enter, and the entire trajectory is parameterized by

this one angle. Thus, the algorithms developed here produce optimal guidance for

on/off, finite-thrust engines, where negligible mass loss assumptions pertaining to the

PSO and NLP solutions are more appropriate for low-thrust engines, and GPOPS-II

can be used to improve accuracy for higher-thrust engines.
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4.3 Problem B-2

4.3.1 Overview.

Problem B-2 uses a burn-coast-burn sequence like Problem B-1 did for the fuel-

optimal maneuvers, but focuses on maneuvering into an NMC, subject to various

lighting constraints. The entire analytic expression for the propagation of the burn-

coast-burn sequence is presented, which is developed for the purpose of finding an-

alytic derivatives so that they can be used in the NLP solvers. For the first part of

this subproblem, the sunlight constraints are developed, as well as new initial guess

methods in order to improve upon the initial guess used in Problem B-1, which was

the solution from MATLAB’s PSO. Simulations and results are then presented with

the sunlight constraints enforced, and an analysis of the initial guess methods cou-

pled with varying levels of user-supplied derivatives provided to the NLP solvers is

presented. The last part of this subproblem will also develop field-of-view constraints

in order to keep the Earth and the Moon outside of the field of view in the desired

natural motion, and simulations and results will be presented for cases where these

additional constraints are enforced in addition to the sunlight constraints.

4.3.2 Equations of Motion and Control Definition.

For the initial guesses and the mid-fidelity model, Problem B-2 uses the HCW

equations of motion where again for each burn the acceleration terms are constants,

as in Equations 194–196. For the high-fidelity model, Equations 4–6 are used, which

are the CNERMs.

4.3.3 Analytic Propagation of a Burn-Coast-Burn Sequence.

For all scenarios in this subproblem, minimum-fuel solutions are sought while

using a burn-coast-burn sequence. When using the HCW equations of motion and
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the control defined previously, the six final states after the burn-coast-burn sequence

have an analytic expression. Using MATLAB’s dsolve and Symbolic Toolbox, the

final states, Xf = [xf , yf , zf , ẋf , ẏf , żf ], are:

xf =
−1

ω2
(
c− a0t2f tcf tf

)(2cωẏ0 cos (tfω)− 2cωẏ0 − 4cω2x0 − cωẋ0 sin (tfω)

− a0c cos (α2) cos (φ2) + 3cω2x0 cos (tfω) + a0c cos (tfω) cos (α1) cos (φ1)

+ 2a0c sin (tfω) cos (φ1) sin (α1)

− a0c cos
(
t2f tcf tfω

)
cos (tfω) cos (α1) cos (φ1) + 2a0t2f tcf tfωẏ0

− 2a0c cos
(
t2f tcf tfω

)
sin (tfω) cos (φ1) sin (α1)

+ 2a0c sin
(
t2f tcf tfω

)
cos (tfω) cos (φ1) sin (α1)

− a0c sin
(
t2f tcf tfω

)
sin (tfω) cos (α1) cos (φ1)

+ 4a0t2f tcf tfω
2x0 + a0c cos

(
t2f tfω

)
cos (tfω) cos (α2) cos (φ2)

+ 2a0c cos
(
t2f tfω

)
sin (tfω) cos (φ2) sin (α2)

− 2a0c sin
(
t2f tfω

)
cos (tfω) cos (φ2) sin (α2)

+ a0c sin
(
t2f tfω

)
sin (tfω) cos (α2) cos (φ2)− 2a0ctfω cos (φ2) sin (α2)

− 3a0t2f tcf tfω
2x0 cos (tfω) + 2a0ct2f tfω cos (φ2) sin (α2)

+ 2a0
2t2f

2tcf
2tf

2ω cos (φ1) sin (α1)− 2a0t2f tcf tfωẏ0 cos (tfω)

− a0
2t2f tcf tf cos (tfω) cos (α1) cos (φ1) + a0t2f tcf tfωẋ0 sin (tfω)

− 2a0
2t2f tcf tf sin (tfω) cos (φ1) sin (α1)

+ a0
2t2f tcf tf cos

(
t2f tcf tfω

)
cos (tfω) cos (α1) cos (φ1)

+ 2a0
2t2f tcf tf cos

(
t2f tcf tfω

)
sin (tfω) cos (φ1) sin (α1)

− 2a0
2t2f tcf tf sin

(
t2f tcf tfω

)
cos (tfω) cos (φ1) sin (α1)

+ a0
2t2f tcf tf sin

(
t2f tcf tfω

)
sin (tfω) cos (α1) cos (φ1)

− 2a0ct2f tcf tfω cos (φ1) sin (α1)

)

(228)
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yf =
−1

2ω2
(
c− a0t2f tcf tf

)(4cωẋ0 − 2cω2y0 − 4cωẋ0 cos (tfω)− 8cωẏ0 sin (tfω)

+ 12ctfω
3x0 + 6ctfω

2ẏ0 − 8a0c cos (φ2) sin (α2)− 12cω2x0 sin (tfω)

+ 8a0c cos (tfω) cos (φ1) sin (α1)− 4a0c sin (tfω) cos (α1) cos (φ1)

− 4a0t2f tcf tfωẋ0 − 8a0c cos
(
t2f tcf tfω

)
cos (tfω) cos (φ1) sin (α1)

+ 4a0c cos
(
t2f tcf tfω

)
sin (tfω) cos (α1) cos (φ1)

− 4a0c sin
(
t2f tcf tfω

)
cos (tfω) cos (α1) cos (φ1)

− 8a0c sin
(
t2f tcf tfω

)
sin (tfω) cos (φ1) sin (α1) + 2a0t2f tcf tfω

2y0

+ 3a0ctf
2ω2 cos (φ2) sin (α2) + 8a0c cos

(
t2f tfω

)
cos (tfω) cos (φ2) sin (α2)

− 4a0c cos
(
t2f tfω

)
sin (tfω) cos (α2) cos (φ2)

+ 4a0c sin
(
t2f tfω

)
cos (tfω) cos (α2) cos (φ2)

+ 4a0ctfω cos (α2) cos (φ2) + 8a0c sin
(
t2f tfω

)
sin (tfω) cos (φ2) sin (α2)

− 12a0t2f tcf tf
2ω3x0 − 6a0t2f tcf tf

2ω2ẏ0 − 6a0
2t2f

2tcf
2tf

3ω2 cos (φ1) sin (α1)

+ 3a0
2t2f

3tcf
3tf

3ω2 cos (φ1) sin (α1)− 4a0ct2f tfω cos (α2) cos (φ2)

+ 12a0t2f tcf tfω
2x0 sin (tfω) + 3a0ct2f

2tf
2ω2 cos (φ2) sin (α2)

− 4a0
2t2f

2tcf
2tf

2ω cos (α1) cos (φ1) + 4a0t2f tcf tfωẋ0 cos (tfω)

+ 8a0t2f tcf tfωẏ0 sin (tfω)− 8a0
2t2f tcf tf cos (tfω) cos (φ1) sin (α1)

+ 4a0
2t2f tcf tf sin (tfω) cos (α1) cos (φ1)− 6a0ct2f tf

2ω2 cos (φ2) sin (α2)

− 3a0ct2f
2tcf

2tf
2ω2 cos (φ1) sin (α1) + 6a0ct2f tcf tf

2ω2 cos (φ1) sin (α1)

+ 8a0
2t2f tcf tf cos

(
t2f tcf tfω

)
cos (tfω) cos (φ1) sin (α1)

− 4a0
2t2f tcf tf cos

(
t2f tcf tfω

)
sin (tfω) cos (α1) cos (φ1)

+ 4a0
2t2f tcf tf sin

(
t2f tcf tfω

)
cos (tfω) cos (α1) cos (φ1)

+ 8a0
2t2f tcf tf sin

(
t2f tcf tfω

)
sin (tfω) cos (φ1) sin (α1)

+ 4a0ct2f tcf tfω cos (α1) cos (φ1)

)
(229)
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zf =
−1

ω2
(
c− a0t2f tcf tf

)(a0c cos (tfω) sin (φ1)− cωż0 sin (tfω)− a0c sin (φ2)

− cω2z0 cos (tfω)− a0c cos
(
t2f tcf tfω

)
cos (tfω) sin (φ1)

− a0c sin
(
t2f tcf tfω

)
sin (tfω) sin (φ1) + a0c cos

(
t2f tfω

)
cos (tfω) sin (φ2)

+ a0c sin
(
t2f tfω

)
sin (tfω) sin (φ2)− a0

2t2f tcf tf cos (tfω) sin (φ1)

+ a0t2f tcf tfω
2z0 cos (tfω) + a0

2t2f tcf tf cos
(
t2f tcf tfω

)
cos (tfω) sin (φ1)

+ a0
2t2f tcf tf sin

(
t2f tcf tfω

)
sin (tfω) sin (φ1) + a0t2f tcf tfωż0 sin (tfω)

)
(230)
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ẋf =
−1

ω
(
c− a0t2f tcf tf

)(2a0c cos (tfω) cos (φ1) sin (α1)− 2cωẏ0 sin (tfω)

− 2a0c cos (φ2) sin (α2)− 3cω2x0 sin (tfω)− cωẋ0 cos (tfω)

− a0c sin (tfω) cos (α1) cos (φ1)

− 2a0c cos
(
t2f tcf tfω

)
cos (tfω) cos (φ1) sin (α1)

+ a0c cos
(
t2f tcf tfω

)
sin (tfω) cos (α1) cos (φ1)

− a0c sin
(
t2f tcf tfω

)
cos (tfω) cos (α1) cos (φ1)

− 2a0c sin
(
t2f tcf tfω

)
sin (tfω) cos (φ1) sin (α1)

+ 2a0c cos
(
t2f tfω

)
cos (tfω) cos (φ2) sin (α2)

− a0c cos
(
t2f tfω

)
sin (tfω) cos (α2) cos (φ2)

+ a0c sin
(
t2f tfω

)
cos (tfω) cos (α2) cos (φ2)

+ 2a0c sin
(
t2f tfω

)
sin (tfω) cos (φ2) sin (α2)

+ 3a0t2f tcf tfω
2x0 sin (tfω) + a0t2f tcf tfωẋ0 cos (tfω)

+ 2a0t2f tcf tfωẏ0 sin (tfω)− 2a0
2t2f tcf tf cos (tfω) cos (φ1) sin (α1)

+ a0
2t2f tcf tf sin (tfω) cos (α1) cos (φ1)

+ 2a0
2t2f tcf tf cos

(
t2f tcf tfω

)
cos (tfω) cos (φ1) sin (α1)

− a0
2t2f tcf tf cos

(
t2f tcf tfω

)
sin (tfω) cos (α1) cos (φ1)

+ a0
2t2f tcf tf sin

(
t2f tcf tfω

)
cos (tfω) cos (α1) cos (φ1)

+ 2a0
2t2f tcf tf sin

(
t2f tcf tfω

)
sin (tfω) cos (φ1) sin (α1)

)

(231)
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ẏf =
1

ω
(
c− a0t2f tcf tf

)(4cωẏ0 cos (tfω)− 3cωẏ0 − 6cω2x0 − 2cωẋ0 sin (tfω)

− 2a0c cos (α2) cos (φ2) + 6cω2x0 cos (tfω)

+ 2a0c cos (tfω) cos (α1) cos (φ1) + 4a0c sin (tfω) cos (φ1) sin (α1)

− 2a0c cos
(
t2f tcf tfω

)
cos (tfω) cos (α1) cos (φ1) + 3a0t2f tcf tfωẏ0

− 4a0c cos
(
t2f tcf tfω

)
sin (tfω) cos (φ1) sin (α1)

+ 4a0c sin
(
t2f tcf tfω

)
cos (tfω) cos (φ1) sin (α1)

− 2a0c sin
(
t2f tcf tfω

)
sin (tfω) cos (α1) cos (φ1) + 6a0t2f tcf tfω

2x0

+ 2a0c cos
(
t2f tfω

)
cos (tfω) cos (α2) cos (φ2)

+ 4a0c cos
(
t2f tfω

)
sin (tfω) cos (φ2) sin (α2)

− 4a0c sin
(
t2f tfω

)
cos (tfω) cos (φ2) sin (α2)

+ 2a0c sin
(
t2f tfω

)
sin (tfω) cos (α2) cos (φ2)

− 3a0ctfω cos (φ2) sin (α2)− 6a0t2f tcf tfω
2x0 cos (tfω)

+ 3a0ct2f tfω cos (φ2) sin (α2) + 3a0
2t2f

2tcf
2tf

2ω cos (φ1) sin (α1)

− 4a0t2f tcf tfωẏ0 cos (tfω)− 2a0
2t2f tcf tf cos (tfω) cos (α1) cos (φ1)

+ 2a0t2f tcf tfωẋ0 sin (tfω)− 4a0
2t2f tcf tf sin (tfω) cos (φ1) sin (α1)

+ 2a0
2t2f tcf tf cos

(
t2f tcf tfω

)
cos (tfω) cos (α1) cos (φ1)

+ 4a0
2t2f tcf tf cos

(
t2f tcf tfω

)
sin (tfω) cos (φ1) sin (α1)

− 4a0
2t2f tcf tf sin

(
t2f tcf tfω

)
cos (tfω) cos (φ1) sin (α1)

+ 2a0
2t2f tcf tf sin

(
t2f tcf tfω

)
sin (tfω) cos (α1) cos (φ1)

− 3a0ct2f tcf tfω cos (φ1) sin (α1)

)

(232)
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żf =
1

ω
(
c− a0t2f tcf tf

)(cωż0 cos (tfω) + a0c sin (tfω) sin (φ1)

− cω2z0 sin (tfω)− a0c cos
(
t2f tcf tfω

)
sin (tfω) sin (φ1)

+ a0c sin
(
t2f tcf tfω

)
cos (tfω) sin (φ1) + a0c cos

(
t2f tfω

)
sin (tfω) sin (φ2)

− a0c sin
(
t2f tfω

)
cos (tfω) sin (φ2)− a0

2t2f tcf tf sin (tfω) sin (φ1)

+ a0t2f tcf tfω
2z0 sin (tfω) + a0

2t2f tcf tf cos
(
t2f tcf tfω

)
sin (tfω) sin (φ1)

− a0
2t2f tcf tf sin

(
t2f tcf tfω

)
cos (tfω) sin (φ1)− a0t2f tcf tfωż0 cos (tfω)

)
.

(233)

These equations are a function known parameters and control variables, where the

control variables will form the main optimization variables. The known parameters

are: the initial state, X0 = [x0, y0, z0, ẋ0, ẏ0, ż0], the initial acceleration magnitude, a0,

and the constant effective exhaust velocity, c, the mean motion, ω, and the fixed final

time of the burn-coast-burn sequence, tf , which is given beforehand for a minimum-

fuel maneuver. The control variables are: the in-plane and out-of-plane angles for

each burn, α1, φ1, α2, and φ2, and t2f and tcf , which along with tf are used to define

the duration of each phase in the sequence as in Problem B-1 for the minimum-fuel

formulation. Note that in Equations 228–233, the term c− a0t2f tcf tf appears in the

denominator. This term results from the fact that these equations account for the

mass lost after the first burn. For this term to approach zero, a highly unlikely and

unusual combination of the effective exhaust velocity, c, the initial thrust-to-mass

ratio, a0, and duration of the first burn, t2f tcf tf , would have to occur. Physically, it

would mean that the thrust-to-mass ratio for the second burn is approaching infinity,

which is not possible with a constant thrust since the fuel would run out before

the mass of the satellite approached zero. Therefore, for real-world problems, this

possibility can be ignored.
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4.3.4 Sunlight Constraints for NMC.

Upon entering an NMC about an RSO, it is desirable to have favorable lighting

conditions, meaning that it is desirable that the RSO is lit by the Sun from the point

of view of the inspector satellite. Thus, this section develops two different sunlight

constraints. The first constraint will be called a hard or tight sunlight constraint,

where the inspector must enter the NMC between the RSO and the Sun at a point

along the vector from the Sun to the RSO, or rs2c, when projected onto the orbital

plane of the RSO, (where the subscript c represents the chief satellite, or RSO). One

nice property about an NMC that encircles the RSO is that if the inspector satellite

obtains favorable lighting upon entry into the NMC, then the projection of rs2c will

approximately follow the inspector satellite around the NMC, at least for the course

of several days. Thus, the inspector can enter the NMC approximately in phase with

the Sun, or out of phase, or somewhere in between. The second sunlight constraint

developed in this study will be called a soft or relaxed sunlight constraint, meaning

that a margin is allowed from the hard constraint entry point by a prescribed angle

in both directions from the entry point, denoted as θs.

Given the definition of the two types of sunlight constraints, the vector from the

Sun to the RSO, rs2c, must be found and expressed in the LVLH frame of the RSO.

To do this, rs2c is first found in the J2000 Earth-Centered-Inertial (ECI) frame, by

using the algorithms supplied by Vallado [13]. First, given the total time allowed

for the maneuver, tf , that time is added to the initial Universal Time Coordinated

(UTC), UTC0, to produce the final UTC, UTCf . Given UTCf , Vallado’s algorithm

14, JulianDate, calculates the corresponding Julian Date (JD), or JDf . Given JDf ,

Vallado’s algorithm 29, sun, calculates the position vector from the Earth to the Sun,

re2s, in the J2000 ECI frame in astronomical units (AUs). This is converted to the

distance unit of choice, and then following Schaub [87], the vector from the RSO to
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the Sun, rc2s, in the RSO LVLH frame is found by:

rRc2s =R [ON ]I(rIe2s − rIe2c), (234)

where R[ON ]I is the direction cosine matrix transforming a vector from the inertial

frame, I, to the relative frame, R, and is constructed with the knowledge of the RSO

position and velocity vectors, rIe2c and vIe2c, at the final time, tf . The first two elements

of rRc2s are then extracted and normalized to produce the projected 2-D unit vector

pointing from the RSO to the Sun, or r̂Rc2sproj .

Given r̂Rc2sproj , the inspector satellite must enter the prescribed NMC at the x and

y location along the NMC that intersects this projected vector. The mission planner

must prescribe the type of NMC to enter, by defining the LROEs ae, yd0 , zmax, and

γ. It must be noted that the values chosen for ae and yd0 must be chosen such that

the RSO is inside of the NMC, otherwise the opportunity to circumnavigate the RSO

and remain in phase with the sunlight vector doesn’t exist. The closer yd0 is to zero,

the better the motion of the inspector satellite will stay in phase with the projected

sunlight vector.

This approach assumes it is appropriate to use the projection of the Sun vector.

Thus, the orbit properties of the RSO and the time of year must combine to produce

a small angle between the RSO orbit plane and the Sun vector for the scenario of

interest. For example, the approximate best case, where the projected Sun vector

is the same as the actual Sun vector, is the case where i = 23.5o (or i = −23.5o)

and Ω = 0o (or Ω = 180o) at any time of the year. Table 6 shows several best case

scenarios for when there is no difference between the actual and projected Sun vectors.

Again, the goal is for the actual Sun vector to be as close as possible to parallel with

the orbital plane of the RSO. In addition to the RSO orbit properties and the time

of year, an appropriate value for zmax (not too large compared to ae) must be chosen
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to ensure that the motion of the inspector satellite remains close to the orbital plane

of the RSO. For cases where there is an angle between the actual and projected Sun

vector, a value for zmax could be prescribed to correct for that angle, but only at

one point during the period. At the opposite side of the period, the non-zero value

for zmax would increase (worsen) the angle between the line of sight vector from the

inspector satellite to the RSO and the vector from the Sun to the RSO.

Table 6. Example Cases for No Difference Between Actual and Projected Sun Vector

i (deg) Ω (deg) Time of Year

23.5 0 Any
-23.5 180 Any
Any 0 or 180 Vernal & Autumnal Equinoxes
90 90 or 270 June & December Solstices

To find the x and y location for entry into the NMC, first the in-plane angle to

r̂Rc2sproj is calculated,

αt = atan2(r̂Rc2sproj [2], r̂Rc2sproj [1]), (235)

where the second and first components of r̂Rc2sproj are used in MATLAB’s atan2 func-

tion respectively. For an NMC to exist, xd must be equal to zero, which is equivalent

to the constraint shown in Equation 82. This means that yd = yd0 via Equation 71.

Plugging yd0 into Equation 78, solving for sin β, and substituting it into Equation 77

generates the following relationship,

ẋ = (y − yd0)
ω

2
. (236)

Denoting the target state as Xt = [xt, yt, zt, ẋt, ẏt, żt] and given αt,

yt = xt tanαt. (237)
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Substituting Equation 237 into Equation 236, and then substituting the resulting

equation along with Equation 82 into the equation for ae, Equation 162, the solution

for xt can be obtained:

xt =
− tanαtyd0 ±

√
tanα2

ta
2
e − 4y2

d0
+ 4a2

e

tanα2
t + 4

. (238)

Using the x component of r̂Rc2sproj , a simple quadrant check can be performed to obtain

the correct value for xt. Then, the rest of the in-plane target states can be found

by evaluating Equations 82, and 237 before 236. The in-plane target phasing angle,

βt, can then be calculated using Equation 60, and given zmax and γ, the out-of-plane

target states can be calculated via Equations 80–81.

For the hard sunlight constraint, the inspector is constrained to enter the NMC

exactly at this target state, Xt. For the soft sunlight constraint, the inspector may

enter the NMC at any β ∈ [βt ± θs]. This means that the final state after the burn-

coast-burn sequence, Xf , given by Equations 228–233, can vary along the trajectory

in the prescribed range for β.

4.3.5 Initial Guess Methods.

4.3.5.1 CW Targeting.

Three new methods are introduced to produce better initial guesses than MAT-

LAB’s PSO and thus improve the probability of convergence of the NLP solver. The

first is CW targeting, which uses the HCW STM, Equation 51, a given maneuver

time, tf , and a desired or target position and velocity, pt and vt respectively, to find

the ∆V magnitude and direction for the two burns in the burn-coast-burn sequence.

These impulsive burns are given by Equations 52 and 56. Once ∆V1 and ∆V2 are
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calculated, the initial guess is then produced by using the relationship

Fdb = m||∆V ||2, (239)

where the force, F , imparted by the thruster(s) in the direction of the burn and the

mass of the satellite, m, are assumed to be constant for the duration of the burn, db.

Thus, using an estimate for F and m, or a0 = F
m

, the duration of a burn is estimated

to be

db =
||∆V ||2
a0

, (240)

for the first and second burns in the burn-coast-burn sequence, using ∆V1 and ∆V2

respectively, where a0 can be updated to a02 for the second burn if desired. Then,

the initial guess for the NLP solver can be generated, where the control optimization

variables, [α1, φ1, tcf , α2, φ2, t2f ], can be calculated from the vectors ∆V1, ∆V2, and

from db1, db2, and tf . For the hard sunlight constraint, the initial guess contains just

those calculated control optimization variables. For the soft sunlight constraint, the

initial guess for the additional optimization variable β is calculated using Equation

60, which is a function of the calculated target states. One major advantage of

this initial guess method is that it is deterministic, unlike the next two methods.

However, the larger the calculated impulsive burns are, the greater the error will be

when transforming them to actual finite burns for the initial guess.

4.3.5.2 Modified MATLAB PSO.

The second new initial guess method developed is a modification to MATLAB’s

PSO. One of the features of MATLAB’s PSO is that it has an adaptive neighborhood

size and inertia weight for the particles at each iteration. Also, when a component
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of a particle’s position vector violates an upper or lower bound, that optimization

variable is moved back to the bound it violated, and the corresponding component

in the velocity vector is set to zero. The modified PSO, developed herein to produce

better initial guesses, follows MATLAB’s PSO, except for the logic used when an

element of a particle’s position vector reaches a bound. Now, instead of bringing a

variable back to the bound it violated, if the variable that violated a bound is an

angle variable, i.e. α1, φ1, α2, or φ2, then it is transported to the opposite bound and

its velocity remains as it was. This modification helps to account for the periodic

nature of the angle variables, without removing the periodic bounds (which would

create additional problems).

4.3.5.3 MATLAB’s GA.

The third new initial guess method used is MATLAB’s GA which has built-in

ways to handle nonlinear constraints, unlike MATLAB’s PSO where it can be diffi-

cult to minimize the performance index and satisfy constraints simultaneously. The

two options for handling nonlinear constraints are the Augmented Lagrangian Genetic

Algorithm and the Penalty Algorithm where the former is the default option. Accord-

ing to the MATLAB documentation pages, with the Penalty Algorithm, MATLAB’s

GA solves the problem by first attempting to create a feasible GA population with

respect to all constraints via its fmincon algorithm by starting from a variety of ini-

tial points from within the bounds. It automatically uses the tournament selection

type, and then proceeds with the normal algorithm, using the penalty function as the

fitness measure. This means that if an individual in the population is feasible, then

the penalty function is the fitness function. If an individual is infeasible, then the

penalty function is the maximum fitness function from the feasible individuals in the

population plus the sum of the constraint violations of the current individual. With
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both methods tested, the non-default option, Penalty Algorithm, performs better for

the problems considered, and is thus chosen to satisfy the nonlinear constraints, with

all the other GA settings left as their defaults.

4.3.6 Optimization Problem Formulations.

4.3.6.1 Parameter Optimization Problem.

The parameter optimization problem for the metaheuristic initial guess methods

and the NLP solver is formulated in two different ways, depending on which sunlight

constraint is enforced. For the hard sunlight constraint, the optimization variables

are

χ = [α1, φ1, tcf , α2, φ2, t2f ], (241)

thus n = 6, where the 1 and 2 subscripts for the angles are for burns one and two, t2f

is the fraction of the final time, tf , when burn two starts, and tcf is the fraction of

the time up until the burn two start time when coasting begins (or burn one ends).

The box constraints, or simple bounds on the optimization variables, do not limit the

search space in any way, and are:

χl =
[
0,−π

2
, 0, 0,−π

2
, 0
]

(242)

χu =
[
2π,

π

2
, 1, 2π,

π

2
, 1
]
. (243)

The objective is to minimize the fuel used and thus the sum of the durations of burn

one and burn two. The objective can be written in terms of the optimization variables
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as:

J = t2f (tcf − 1). (244)

The problem is subject to the m = 6 equality constraints:

h = Xf −Xt = [xf − xt, yf − yt, zf − zt, ẋf − ẋt, ẏf − ẏt, żf − żt]T , (245)

where the gradient of the objective function is simply:

∇J(χ) = [0, 0, t2f , 0, 0, tcf − 1]T , (246)

and the Hessian of the objective function is:

∇2J(χ) =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0


. (247)

For the soft sunlight constraint, there is one more optimization variable,

χ = [α1, φ1, tcf , α2, φ2, t2f , β], (248)
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where β is bounded as follows to allow the inspector to enter within some angle of βt:

χl =
[
0,−π

2
, 0, 0,−π

2
, 0, βt − θs

]
(249)

χu =
[
2π,

π

2
, 1, 2π,

π

2
, 1, βt + θs

]
. (250)

The objective is the same, but the m = 6 equality constraints now become equivalent

to those used in Problem B-1, Equation 218, but for the prescribed NMC,

h =



xf −
(−ae

2
cos β

)
yf − (ae sin β + yd0)

zf − (zmax sin(γ + β))

ẋf −
(
ae
2
ω sin β

)
ẏf − (aeω cos β)

żf − (zmaxω cos(γ + β))


= 0, (251)

where Xf = [xf , yf , zf , ẋf , ẏf , żf ] again comes from Equations 228–233. The gradient

of the objective function and the Hessian of the objective function are slightly modi-

fied, with a zero row added to the end of the gradient, and a row and column of zeros

added to the bottom and right-hand side of the Hessian of the objective function.

The PSO algorithms and the GA of course do not use any derivative information

and attempt to satisfy constraints by appending them to the cost function or by

using built-in methods. The main advantage of producing an initial guess with these

methods is that they are global methods, and may be more likely to find the global

minimum. Also, as has been mentioned, no numerical integration is required due to

the development of the analytic propagation of the burn-coast-burn sequence, and

thus they are computationally fast. The solution from these methods then serves as

an initial guess for MATLAB’s fmincon and/or GPOPS-II.
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Given an initial guess, the NLP solver either approximates derivative information

or uses user-supplied derivatives, which in this case can be exact analytic deriva-

tives. With exact derivatives, an NLP solver may perform better than if approximate

derivatives are used.

4.3.6.2 Analytic Derivatives.

With an analytic expression for the six HCW states after the burn-coast-burn

sequence, the gradient of the objective function, the Jacobian of the constraint vector,

and the Hessian of the Lagrangian can be calculated analytically and supplied to

NLP solvers to potentially increase convergence rates, the accuracy of the solution,

and/or computation time. This has been accomplished by using MATLAB’s Symbolic

Toolbox. The gradient of the objective function, ∇J , is an n × 1 vector where n is

the number of optimization variables, which for this subproblem is 6 or 7 depending

on which two of the sunlight constraints is enforced, and was presented in Equation

246. The Jacobian of the equality constraint vector, h, is represented by ∇h and has

the gradient of each constraint along the columns of the n×m Jacobian matrix. The

Hessian, H, is the n× n matrix of second derivatives of the Lagrangian, L:

H = ∇2
χχL(χ, λ) = ∇2J(χ) +

m∑
r=1

λi∇2hi(χ), (252)

where λ is the vector of Lagrange multipliers. The only derivative information explic-

itly shown here is ∇J(χ), Equation 246, and the Hessian of the objective, or ∇2J(χ),

Equation 247. The Jacobian matrix of the constraint vector, ∇h, and the Hessian of

the Lagrangian, H, are far too lengthy to present on paper, but have been successfully

computed using MATLAB’s Symbolic Toolbox.
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4.3.6.3 GPOPS-II Problem Formulation.

If higher fidelity is desired, the solution from the initial guess methods or the

NLP solver may be supplied as the initial guess for GPOPS-II, where this higher-

fidelity model uses more accurate equations of motion and accounts for continuous

mass loss. The GPOPS-II problem formulation is split up into three phases, similar to

Problem B-1, where the states and times are linked between each of the phases, and

the phases correspond to the burn-coast-burn sequence where each burn is a constant

direction burn, and the acceleration magnitude increases with mass loss. Thus, it is a

three-phase optimal control problem. The bounds on the thrust angles, the objective

function, and the constraints are the same as in the previous section for the two

types of sunlight constraints, but the final state after the burn-coast-burn sequence,

Xf , is not calculated analytically, but found via GPOPS-II using the higher-fidelity

equations of motion. Because of this, the calculated analytic derivatives cannot be

supplied to the solver. The resulting NLP generated by GPOPS-II is then solved by

either IPOPT or SNOPT. This high-fidelity model is valid for low and high-thrust

engines since it accounts for continuous mass loss, and also good for longer distance

maneuvers to inject the inspector satellite into an NMC, since the CNERMs are being

used. A summary of the solvers used in the mid and high-fidelity models and their

validity is shown in Table 7.

Table 7. Mid and High-Fidelity Models Comparison

Solver Equations of Motion Suitable For:

PSO, GA HCW -Initial guess
NLP (fmincon) HCW -Low-thrust, Close prox-ops

GPOPS-II CNERMs -Low or high thrust, Close or long distance maneuvers
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4.3.7 Simulation and Results with Sunlight Constraints.

Multiple scenarios were developed and simulated with the parameters shown in

Table 8.

Table 8. Problem B-2 Simulation Parameters

Sun and Time RSO Properties Inspector Properties NMC Parameters

θs = 45o ac = 42, 164.137 km a0 = 0.02 N/kg ae = 5 km
Year0 = 2017 rIe2c0 = [ac; 0; 0] km c = 3.33 km/s yd0

= 0 km
Month0 = Aug vIe2c0 = [0; 3.0747; 0] km/s x0 = −20 km zmax = 1 km

Day0 = 31 y0 = 10 km γ = 90o

Hr0 = 23 z0 = −5 km
Min0 = 0 ẋ0 = −1.5 m/s
Sec0 = 0 ẏ0 = 0.4 m/s

ż0 = 1.1 m/s

The first simulation result presented is a typical solution obtained with the PSO,

although each PSO solution may vary due to the inherent stochastic nature of the

algorithm. The number of particles used was 300, with weights, Wr, chosen judi-

ciously for the appended cost function J̃(χ) to minimize constraint violations. This

simulation was first run with the hard sunlight constraint and a fixed final time of 1.5

hours with results shown in Figure 24. The PSO solution does well at lining up with

the projected sunlight vector at the final time, but does not produce the exact desired

NMC. However, it may be adequate to use as the initial guess for fmincon or GPOPS-

II. The computation time for this typical solution is 6.16 seconds, taking advantage

of the analytic propagation of the burn-coast-burn sequence. The actual objective

value (opposed to the appended objective value) is 502.45 seconds, representing the

total engine-on time for the minimum-fuel maneuver. However, as mentioned, the

constraints were not met to the desired tolerance.

A PSO solution is then provided as the initial guess to MATLAB’s fmincon, to see

if the NLP solver can better satisfy constraints and further refine and minimize the

total engine-on time. For now, derivative information is not supplied and fmincon

approximates the derivatives via a finite difference method. Figure 25 shows the
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Figure 24. Problem B-2, PSO Solution, Hard Sunlight Constraint, tf = 1.5 hrs
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Figure 25. Problem B-2, Mid-Fidelity Solutions, Hard Sunlight Constraint, tf = 1.5 hrs

PSO solution with the NLP solution overlaid, demonstrating how the NLP solver

successfully injects the inspector satellite into the desired NMC. The computation

time for the NLP solution is only 0.0105 seconds where the fmincon algorithm used

in this case was sqp. Given the initial guess and the analytic propagation of the

maneuver, the computation time is extremely fast. The exit flag was the best possible,

and the objective value actually increased a very small amount, to 502.95 seconds,

allowing the constraints to be met unlike the PSO solution. The best possible exit
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flag is a 1, with the four possible exit flags from MATLAB’s fmincon being −2, 0, 1

or 2, defined as follows: −2 — the step size is below the tolerance and constraints

are not satisfied; 0 — the maximum number of function evaluations or iterations has

been reached; 1 — a local minimum has been found; and 2 — the step size is below

the tolerance and constraints have been satisfied (local minimum possible).
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Figure 26. Problem B-2, All Model Solutions, Hard Sunlight Constraint, tf = 1.5 hrs

A typical PSO solution is then provided as an initial guess to GPOPS-II, where

the high-fidelity model uses the initial guess from the mid-fidelity model to generate

a solution using the CNERMs and accounting for continuous mass loss. The GPOPS-

II solution is noticeably different than the PSO and NLP solutions and is a higher-

fidelity solution for guidance. Derivative information is not supplied to GPOPS-II and

it numerically approximates the derivatives using central differencing. For this run,

SNOPT is the solver of choice, and GPOPS-II solves the problem in 1.234 seconds

given the PSO solution as an initial guess, with the best possible exit flag. The

engine-on time increases to 510.77 seconds in the high-fidelity solution. It must be

noted that the targeted NMC is an HCW NMC, i.e. it only exists perfectly in the

realm of the HCW equations. Thus, the resulting natural motion for the GPOPS-II
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solution was numerically propagated for one period, with MATLAB’s ode45, and as

can be seen in Figure 26, the resulting natural motion is very close to the desired

NMC, meaning that the constraints were sufficient in this case to produce the desired

trajectory.

The same set of simulations were performed again, but now with the soft sunlight

constraint enforced. In order to see how the objective value changes by allowing a

margin, θs, on either side of βt, the same initial conditions and problem parameters

were used as before, seen in Table 8. The PSO, NLP, and GPOPS-II solutions are all

shown together in Figures 27-28. As expected, the inspector satellite enters the NMC

at a different location compared to when the hard sunlight constraint is enforced,

entering close to (within θs of βt) the sunlight vector. This allows for more fuel

savings, as shown in Table 9, which summarizes the results for all three solvers under

both of the sunlight constraints. The exit flags are shown, where the exit flag codes

from MATLAB’s fmincon are used for GPOPS-II exit flags, i.e., IPOPT and SNOPT

exit flags are converted to the equivalent fmincon exit flags. Again, a flag of 2 means

that a local minimum is possible, a 1 means that a local minimum has been found,

a 0 means that the maximum number of iterations or function evaluations has been

reached, and a −2 means that the size of the current step is less than the tolerance

but constraints are not satisfied to the desired tolerance. As seen in Table 9, there

is one instant where the sqp exit flag is a −2. The solution is still close and appears

correct, as shown in Figure 27, but technically cannot be denoted as a local minimum.

The results shown in Table 9 were obtained with no derivative information supplied

to the solvers. For the aforementioned case when an exit flag of −2 was obtained, the

exit flag actually changed to a 1 when the derivative of the objective function and the

Jacobian of the constraints were supplied to the solver. However, it is not reported as

such in the table and remains as a −2 to be consistent with no derivative information
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Figure 27. Problem B-2, All Solutions, Soft Sunlight Constraint, 2-D, tf = 1.5 hrs
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Figure 28. Problem B-2, All Solutions, Soft Sunlight Constraint, 3-D, tf = 1.5 hrs
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being supplied to the solvers for these results. The simulations shown in Table 9

(and throughout Problem B-2) used the default settings for the PSO and NLP solver,

with the exception of any explicitly mentioned settings and increasing the maximum

number of iterations and/or function evaluations. Regarding GPOPS-II, no special

treatment was required to obtain the solutions.

Table 9. Problem B-2 Simulation Results, No Derivative Information Supplied

Solver Sunlight Constraint Exit Flag J (s) CPU Time (s)

PSO Hard NA 502.45 6.16
Soft NA 494.45 7.56

NLP (fmincon sqp) Hard 1 502.95 0.0105
Soft −2 494.39 0.0269

GPOPS-II (SNOPT) Hard 1 510.77 1.234
Soft 1 501.15 1.749

4.3.8 Initial Guess and NLP Performance with Sunlight Constraints.

As mentioned earlier, supplying derivative information to an NLP solver may aid

in obtaining a solution and increase the speed and accuracy of the solution. Also,

the solution obtained depends on the initial guess provided, which depending on the

problem may need to be a very good initial guess in order to obtain the desired

solution. In addition, depending on the problem, an interior point method may

perform better than a sequential quadratic programming method, and vice versa.

Thus, a sensitivity analysis for convergence has been developed, to determine how

well the NLP solver performs given the initial guess method, the type of sunlight

constraint, the NLP algorithm, and the level of derivatives supplied by the user, for

the same parameters as seen in Table 8.

To begin, a baseline is generated by providing uninformed initial guesses to the

NLP solver, where the initial guesses come from a hypergrid of the optimization

variables. That is, a grid is generated for each optimization variable, made up of
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N equally spaced points from its lower bound to its upper bound. For example, if

N = 3, then the variable α1 would have possible values 0, π, and 2π for the set of

initial guesses. Therefore, each possible value of each optimization variable forms an

initial guess with every other possible combination of the other optimization variables.

Thus, there are Nn initial guesses, where n = 6 for the hard sunlight constraint, and

n = 7 for the soft sunlight constraint. Two sensitivity analyses for convergence are

then performed for this first case with uninformed initial guesses, one for each type

of sunlight constraint.

For the hard sunlight constraint, N was chosen to be 4, and thus 46 = 4,096 initial

guesses were generated to analyze the performance of the NLP solver for the hard

sunlight constraint. Due to time constraints, N was limited to 4, and it must be noted

that the initial guesses do span the space, but do not have a high enough resolution for

one initial guess to happen to fall on a solution, unless extremely lucky. Each initial

guess was supplied to fmincon under five different conditions: 1) Using interior-point

with no derivative information supplied, 2) using interior-point with the gradient of

the objective function and the Jacobian of the constraint vector supplied, 3) using

interior-point with the Hessian of the Lagrangian also supplied, 4) using sqp with no

derivative information supplied, and 5) using sqp with the gradient of the objective

function and the Jacobian of the constraint vector supplied. Note that sqp does not

have the option of supplying the Hessian of the Lagrangian. Thus, the NLP solver

was run Nn × 5 = 20,480 times. For each run, the exit flag, the objective value,

the computation time, and the optimization variables were collected. The results

from the sensitivity analysis for the hard sunlight constraint can be seen in Figure

29 for interior-point and Figure 30 for sqp. Tabulated results are also provided in

Table 10 where the top half is for the hard sunlight constraint, showing the exit flag

percentages and also the average computation time for each exit flag.
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Figure 29. NLP Performance, interior-point, Grid Initial Guesses, Hard Sun Constraint
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Figure 30. NLP Performance, sqp, Grid Initial Guesses, Hard Sunlight Constraint

Before extracting results from the hard sunlight constraint data, the results are

also presented for the soft sunlight constraint sensitivity analysis. For these results,

N = 3, n = 7, and thus there were 37 = 2,187 initial guesses supplied in the same

manner as for the hard sunlight constraint sensitivity analysis. The results from
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the sensitivity analysis for the soft sunlight constraint can be seen in Figure 31 for

interior-point and Figure 32 for sqp. Numerical results are also provided in Table 10

along with the hard sunlight constraint sensitivity analysis data.
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Figure 31. NLP Performance, interior-point, Grid Initial Guesses, Soft Sun Constraint
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Figure 32. NLP Performance, sqp, Grid Initial Guesses, Soft Sunlight Constraint
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Table 10. NLP Performance, Grid Initial Guesses, Both Sunlight Constraints

Algorithm Supplied Exit Flag Obtained (%) Mean CPU Time (s) for Exit Flag

Hard Sunlight Constraint -2 0 1 2 -2 0 1 2

int-pt None 63.96 26.66 0.07 9.30 0.4184 3.4118 0.1536 0.0706
int-pt Gradients 73.90 18.31 0.10 7.69 0.6113 9.8143 0.1678 0.0362
int-pt Hessian Also 74.37 17.90 0.15 7.59 0.7487 11.7051 0.1593 0.0404

sqp None 86.52 2.27 11.21 0 0.0271 0.6706 0.0542 NA
sqp Gradients 85.01 1.73 13.26 0 0.0320 0.5573 0.0289 NA

Soft Sunlight Constraint -2 0 1 2 -2 0 1 2

int-pt None 42.02 11.01 28.48 18.47 0.5702 3.6766 0.6465 1.0049
int-pt Gradients 44.39 16.46 27.66 11.47 1.9488 11.4112 0.4521 0.4007
int-pt Hessian Also 32.87 33.83 31.82 1.46 3.1247 13.9998 0.4320 0.6606

sqp None 73.02 0.73 7.49 18.74 0.0360 1.0392 0.0854 0.1354
sqp Gradients 59.62 2.19 10.65 27.52 0.0405 1.0005 0.0759 0.1131

The same two analyses were performed again for the hard and soft sunlight con-

straints, but this time each initial guess came from a MATLAB PSO solution instead

of from the grid. Thus, 4,096 PSO solutions were generated for the hard constraint

case, and 2,187 PSO solutions were generated for the soft constraint case. The results

are presented in Table 11, to be compared to the results in Table 10.

Table 11. NLP Performance, MATLAB PSO Initial Guesses, Both Sunlight Constraints

Algorithm Supplied Exit Flag Obtained (%) Mean CPU Time (s) for Exit Flag

Hard Sunlight Constraint -2 0 1 2 -2 0 1 2

int-pt None 46.50 2.51 0 50.97 0.1897 4.0820 NA 0.0151
int-pt Gradients 47.29 1.83 0 50.87 0.2507 12.0366 NA 0.0120
int-pt Hessian Also 47.36 1.78 0 50.85 0.3184 14.6955 NA 0.0143

sqp None 50.61 0.02 49.36 0 0.0146 0.6744 0.0061 NA
sqp Gradients 50.58 0.02 49.38 0 0.0190 0.7205 0.0043 NA

Soft Sunlight Constraint -2 0 1 2 -2 0 1 2

int-pt None 18.74 5.12 51.16 24.96 0.9262 3.4230 0.4692 1.1284
int-pt Gradients 19.47 5.98 72.88 1.64 1.2010 11.0311 0.4451 1.4826
int-pt Hessian Also 14.12 12.66 67.12 6.08 1.9800 13.1942 0.3905 0.6729

sqp None 22.17 0.04 74.57 3.20 0.0360 1.1042 0.0136 0.1059
sqp Gradients 16.87 0.54 76.31 6.26 0.0278 0.9584 0.0087 0.1002

Several conclusions can be drawn from the sensitivity analyses for convergence by

comparing the results when the initial guesses came from the grid vs. when the initial

guesses came from MATLAB’s PSO:

132



Given the initial guesses from the grid:

• For the hard sunlight constraint, sqp performs best, and for the soft sunlight

constraint, interior-point performs best, where ‘best’ means that the referenced

method converged to an exit flag of 1 more often than the other method.

• Overall, supplying derivative information assists in obtaining a solution. For

both hard and soft sunlight constraints, and for both algorithms, the percentage

of exit flags equal to 1 increased as the level of derivative information supplied in-

creased, with one exception: For the soft sunlight constraint and interior-point,

the amount of exit flags equal to 1 decreased slightly with gradient information,

but then increased to above the original percentage when the analytic Hessian

was supplied.

• For every exit flag of 1 achieved, the initial guess was infeasible and uninformed,

simply taken from the poor-resolution set of initial guesses, showing that the

algorithms are capable at times to find the desired solution even with a very

bad initial guess.

• At best, the hard sunlight constraint scenario has a 13.26% chance of converging

to an exit flag of 1, and the soft sunlight constraint scenario has a 31.82% chance

of converging to an exit flag of 1, given the crude initial guesses. Thus, obviously,

a good initial guess should be supplied to increase the reliability and accuracy

of the developed algorithms.

• The objective value is about the same for any exit flag 1 achieved when compared

to other objective values with the same sunlight constraint. This shows that

for this scenario, multiple local minimums where an exit flag of 1 was achieved

were not found.
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• Overall, sqp has a faster computation time for successful results, an order of

magnitude faster than interior-point.

Given the initial guesses from MATLAB’s PSO:

• For the hard sunlight constraint, sqp again performs best. For the soft sunlight

constraint, sqp actually performs slightly better than interior-point.

• Given the PSO initial guesses, supplying derivative information doesn’t have as

much of an effect on the NLP performance. For the hard sunlight constraint, it

didn’t result in interior-point in finding a solution, and slightly increased sqp’s

performance. For the soft sunlight constraint, supplying derivatives helped, but

it’s interesting to note that the gradients were more helpful than the Hessian

for interior-point.

• Given the PSO solutions as an initial guess, the hard sunlight constraint sce-

nario’s convergence percentage increased from 13.26% to 49.38%. The soft

sunlight constraint scenario’s convergence percentage increased from 31.82% to

76.31%. Thus, the PSO initial guess increases the convergence percentage of the

NLP solver to an exit flag of 1. This gives importance to the developed PSO

algorithm, and the capability it has to quickly produce a good initial guess.

However, even more reliable initial guess methods are desired.

• For cases where an exit flag of 1 was achieved, the average computation time

was faster given the PSO initial guesses, especially for sqp, about an order

of magnitude faster given the PSO initial guesses as compared to successful

computation times given the initial guesses from the grid.

To show how the two new metaheuristic initial guess methods yield improved

convergence results, the same type of analysis is performed again for both the modified
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MATLAB PSO and MATLAB’s GA. Thus, the same simulation parameters are used

as in Table 8. The results for both the hard and soft sunlight constraints where the

solutions from the modified PSO are given as the initial guesses for the NLP solver

are shown in Table 12, and the results given the MATLAB GA solutions for initial

guesses are shown in Table 13.

Table 12. NLP Performance, Modified MATLAB PSO Initial Guesses, Both Sunlight
Constraints

Algorithm Supplied Exit Flag Obtained (%) Mean CPU Time (s) for Exit Flag

Hard Sunlight Constraint -2 0 1 2 -2 0 1 2

int-pt None 17.99 3.98 0.24 77.78 0.2551 3.8062 0.1550 0.0182
int-pt Gradients 18.65 3.44 0.39 77.51 0.4198 11.1668 0.0429 0.0157
int-pt Hessian Also 18.70 3.49 1.12 76.68 0.5099 13.2954 0.0580 0.0183

sqp None 17.80 0.17 82.03 0 0.0303 0.6533 0.0078 NA
sqp Gradients 17.63 0.15 82.23 0 0.0300 0.6596 0.0050 NA

Soft Sunlight Constraint -2 0 1 2 -2 0 1 2

int-pt None 3.57 0.27 75.08 21.08 0.3547 3.4614 0.5597 0.6749
int-pt Gradients 2.38 0.27 94.56 2.79 1.1508 11.5545 0.3468 0.1680
int-pt Hessian Also 1.87 0.91 63.33 33.88 1.9514 13.9828 0.2294 0.1569

sqp None 43.16 0.32 53.91 2.61 0.0195 0.9723 0.0097 0.1371
sqp Gradients 6.08 36.12 55.24 2.56 0.0756 0.7111 0.0064 0.0988

Given the initial guesses from the Modified PSO:

• For the hard sunlight constraint, sqp performs best.

• For the soft sunlight constraint, interior-point performs best.

• Supplying derivative information helps in all cases where a solution is found,

except for when including the Hessian also for the soft sunlight constraint when

using the interior-point method. However, by supplying first derivative infor-

mation for the soft sunlight constraint when using the interior-point method,

the convergence percentage increases by almost 20%.

• Given the modified PSO as an initial guess, the convergence percentage for

the hard sunlight constraint increases from 49.38% from the original PSO to

82.23%.
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• Given the modified PSO an an initial guess, the convergence percentage for the

soft sunlight constraint increases from 76.31% from the original PSO to 94.56%.

Table 13. NLP Performance, MATLAB GA Initial Guesses, Both Sunlight Constraints

Algorithm Supplied Exit Flag Obtained (%) Mean CPU Time (s) for Exit Flag

Hard Sunlight Constraint -2 0 1 2 -2 0 1 2

int-pt None 0 0 98.66 1.34 NA NA 0.0060 0.0150
int-pt Gradients 0 0 99.85 0.15 NA NA 0.0053 0.0129
int-pt Hessian Also 0 0 99.85 0.15 NA NA 0.0070 0.0172

sqp None 0 0 100 0 NA NA 0.0048 NA
sqp Gradients 0 0 100 0 NA NA 0.0037 NA

Soft Sunlight Constraint -2 0 1 2 -2 0 1 2

int-pt None 0 0 98.45 1.56 NA NA 0.0677 0.1203
int-pt Gradients 0 0 100 0 NA NA 0.0551 NA
int-pt Hessian Also 0 0 100 0 NA NA 0.0629 NA

sqp None 3.66 0 0.46 95.88 0.0101 NA 0.0060 0.0049
sqp Gradients 3.34 0.59 1.01 95.06 0.0885 0.6106 0.0042 0.0117

Given the initial guesses from MATLAB’s GA (see Table 13):

• For the hard sunlight constraint, sqp performs best, with a 100% convergence

rate. interior-point had similar results, with a 99.85% convergence rate.

• For the soft sunlight constraint, interior-point performs best, with a 100% con-

vergence rate, and sqp doesn’t perform well at all.

• Supplying derivative information either helped a small amount or had no effect

on achieving convergence.

The average computation times for each metaheuristic initial guess method is

shown in Table 14, emphasizing how computationally fast the metaheuristic methods

are, due to the analytic propagation of the burn-coast-burn sequence and the relatively

small amount of optimization variables.

The CW Targeting initial guess method is deterministic as compared to the meta-

heuristic initial guess methods and thus cannot be analyzed in the exact same manner.
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Table 14. Average CPU Times (seconds) for Metaheuristic Initial Guess Methods

Sunlight Constraint PSO Modified PSO GA

Hard 5.23 2.80 6.01
Soft 8.36 1.86 8.32

For the hard sunlight constraint and with tf = 1.5 hours, the CW Targeting initial

guess provides a successful guess only for the two sqp methods. For the soft sunlight

constraint, it does not provide a successful initial guess for any of the five fmincon

methods. This is due to the fixed final time, tf , being too small and thus the error

due to the impulsive approximation is too large. For example, if tf is changed to 3

hours, then all three interior-point methods converge to a solution when given the

CW Targeting initial guess. This makes sense, as it’s obvious that as the fixed final

time increases, the required engine-on time typically decreases, and the closer the

CW Targeting solution resembles the actual finite-burn solution.

To summarize these analyses, the two new metaheuristic initial guess methods

developed in this subproblem perform better than MATLAB’s PSO. If MATLAB’s

Optimization Toolbox is available, then MATLAB’s GA is the method of choice,

since it performs extremely well by using the non-default Penalty Algorithm method

to handle the nonlinear equality constraints. If MATLAB’s Optimization Toolbox

is unavailable or not desirable for use, then the Modified PSO performs well for

initial guess generation, and is relatively easy to code. If the fixed final times of the

maneuvers of interest are large enough compared to the actual finite-duration burns

required to implement the calculated ∆V s, then CW Targeting is an extremely fast

and simple method to produce a good initial guess.

4.3.9 Earth and Moon Field-of-View Constraints for NMC.

An inspector satellite may be equipped with a sensor which needs to be pointed

at the RSO throughout the NMC. It is thus desirable that the view of the RSO be
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unobscured by any bright objects behind it and in the field of view of the sensor.

Therefore, this subsection develops methods to ensure the Earth and Moon remain at

a prescribed angle away from the sensor boresight vector so that they do not appear

in the background during the NMC.

The Earth is excluded from the background of the RSO by prescribing the ap-

propriate kind of NMC which the inspector satellite may enter. Similar to the NMC

design for Problem A, an exclusion cone with a half cone angle θ is created such that

the sensor boresight vector avoids the edge of the Earth in addition to the prescribed

exclusion angle for the Earth, θe:

θ = tan−1

(
Re

2a

)
+ θe, (253)

where Re is the radius of the Earth and a is the semi-major axis of the RSO. With this

half cone angle, the LROE zmax, which is the maximum out-of-plane amplification,

can be calculated as

zmax =
ae
2

tan(θ), (254)

where ae is the prescribed size of the NMC. The LROE γ, which is the constant phase

difference between the in-plane and out-of-plane motion, must be

γ = ±90o. (255)

If these LROE values of zmax and γ are chosen, then the edge of the Earth will

stay at an angle θe away from the sensor boresight vector while pointed at the RSO

throughout the NMC.

In order to keep the Moon excluded from the background, the strategy developed
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is to project the Moon vector into the orbital plane of the RSO, as was done with

the Sun vector, and check for cases where the in-plane angle to the projected Moon

vector, αm, is within the Moon exclusion angle, θm, from the expected in-plane angle

to the inspector satellite (plus 180o), αd, throughout the NMC. In order to do this,

the first step is to use the Julian Date at the final time of the maneuver to calculate

the Moon vector using Vallado’s algorithm 31, Moon [13], following which the vector

from the RSO to the Moon is calculated in the same fashion as was done for the Sun

vector. The angle to this vector projected into the orbital frame of the RSO, αm(t),

is then calculated over the course of one period. Using the LROEs, the in-plane

angle to the inspector satellite (plus 180o), αd(t), is also calculated over the course of

one period, and the difference between the two angles is calculated. The minimum

difference between the two angles is extracted, αmin, and then used as follows: For

the hard sunlight constraint, if αmin < θm, then the desired NMC entry state, Xt, is

shifted in the smallest direction away from the projected Sun vector to a position on

the NMC such that the new αd(t) creates a new αmin which doesn’t violate θm. For

the soft sunlight constraint, the bounds on β are changed from the original angular

margin allowed from the projected Sun vector such that no β can be chosen by the

optimizer which makes αmin violate θm. If this changes the bounds on β enough to

where Xt is no longer within the bounds, then the CW Targeting target position and

velocity are changed to the state on the new bound closest to the original Xt. The

change in Xt for the hard sunlight constraint and the changes on the bounds for β

for the soft sunlight constraint ensure that the Moon will not come within θm of the

sensor boresight vector throughout the NMC, at least for the course of one period.
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4.3.10 Simulations and Results with Multiple Lighting Constraints.

This section presents simulation results where varying types of lighting constraints

are enforced for the motion in the resulting NMC. The first simulation only enforces

the hard sunlight constraint, with the same parameters as shown in Table 8, except for

the starting UTC date is changed to September 5th. The solution is obtained by using

CW Targeting for the initial guess and then IPOPT as the NLP solver (with default

settings), where both levels of analytic derivatives are supplied to IPOPT. For this

case, IPOPT successfully converges to a solution unlike fmincon did previously with

tf = 1.5 hrs. The resulting NMC from CW Targeting is erroneous, but an adequate

initial guess for IPOPT, as shown in Figure 33, where the projected sunlight vectors

from the Sun to the RSO, rs2c, are shown at the beginning of the maneuver, t0, the

final time of the maneuver, tf , and at one-fourth and one-half of the way through the

NMC, measured by the RSO period, P .
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Figure 33. Problem B-2, CWT, IPOPT Solutions, Hard Sun Constraint, tf = 1.5 hrs

For the new UTC date of September 5th, the angle to the projected Moon vector,

αm, comes within θm of αd, and even crosses αd, as seen in Figure 34. This means

that if the inspector satellite enters the NMC at the original Xt (aligned with the

Sun vector), then there is a good chance that at some point during the NMC, no
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Figure 34. Problem B-2, Moon Conflict, Hard Sunlight Constraint, tf = 1.5 hrs

matter the NMC cross-track properties, the Moon will appear in the background,

within θm of the sensor boresight vector. Thus, for this scenario, the minimum shift

for αd must be 21.78o, which is the minimum angle αm must be shifted to not cross

αd (αmin = 11.78o), and obtain θm which for this case is 10o. This means that the

inspector must enter the NMC at a shifted Xt which puts the inspector satellite

behind the Sun vector at the time of entry, as seen in Figure 35 (a), as compared to

Figure 33.

The Earth lighting constraint has also been enforced, by prescribing the appro-

priate LROEs zmax and γ as given by Equations 254–255. The result can be seen in

Figure 35 (b), where the exclusion cone shows how the NMC must be designed such

that the Earth does not appear in the field of view throughout the NMC.

The same parameters are used again but this time the soft sunlight constraint is

enforced. Figure 36 (a) shows the solution where just the soft sunlight constraint is

enforced, where the entry point has shifted from Xt (or βt) to within ±θs to further

minimize fuel usage. Now, if the Moon lighting constraint is also enforced, the shifted

Xt (and the corresponding βt) from the hard sunlight constraint example now becomes
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Figure 35. B-2, CWT, NLP Solutions, Hard Sun Constraint, Field-of-View Constraints,
tf = 1.5 hrs
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Figure 36. Problem B-2, CWT, NLP Solutions, Soft Sunlight Constraint, tf = 1.5 hrs

one of the new bounds for β. Since in this example Xt was shifted behind the original

Xt, this puts a new upper bound on β. Thus, the original lower bound is unchanged,

and the new upper bound ensures that the inspector satellite will not enter the NMC

such that the Moon may appear in the field of view. The result can be seen in Figure

36 (b), where the entry point into the NMC has shifted to the optimal entry point in

the new allowable range for β, which happens to be at the shifted Xt from the hard

sunlight constraint case.
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4.3.10.1 Range of Optimal Solutions.

Mission planners may desire a range of optimal solutions based on varying fixed

final times in order to evaluate the trade-offs for how much fuel could be saved by

changing the fixed final time of the maneuver. Typically, this is a monotonically de-

creasing curve, where the amount of fuel required decreases as the fixed final time in-

creases. However, with unique constraints such as the developed lighting constraints,

this monotonic behavior may not always be the case. To produce a range of optimal

solutions, two methods have been developed. The first is to use CW Targeting as the

initial guess for IPOPT, where both the initial guess and NLP solver is executed for

each fixed final time. The second is to use a homotopic approach, where the IPOPT

solution to the original fixed final time problem is used as the initial guess for the next

closest fixed final time problem, also solved with IPOPT. This process then continues,

step by step, for the rest of the fixed final times. An example range of solutions has

been found for tf ∈ [0.25, 13] hours with the soft sunlight constraint and Earth light-

ing constraint enforced. Figure 37 (a) shows the range of optimal solutions where the

first approach is used, and Figure 37 (b) shows the range of optimal solutions when

the second approach is used. It is interesting to note that the CW Targeting approach

provides better initial guesses for IPOPT for decreasing fixed final times compared

to the homotopy approach. It is also interesting to note that the CW Targeting ap-

proach has some convergence issues around tf = 12 hours, but regains convergence

afterwards, whereas the homotopic approach successfully converges, but follows a lo-

cal minimum to very high engine-on times as the fixed final time increases. Figure 38

shows the region of interest where the detected minimum lies, where a fixed final time

of about 8.5 hours produces the lowest engine-on time solution of about 255 seconds

for this scenario. The effects of choosing the correct fixed final time are apparent.

By examining a range of optimal solutions for a given scenario, mission planners may
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choose the correct one, and mission longevity can be significantly impacted.
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Figure 37. Problem B-2, Range of Optimal Solutions, Soft Sunlight Constraint, Costs
& Exit Flags
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Figure 38. Problem B-2, Range of Optimal Solutions, Soft Sunlight Constraint, Costs
& Exit Flags, Zoomed In
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4.3.11 Problem B-2 Conclusion.

Improved mid and high-fidelity models have been developed to find fuel-optimal

guidance for an inspector satellite with on/off thrusters to maneuver into an NMC

with favorable lighting conditions. An analytic expression for the HCW states after

a burn-coast-burn sequence, as a function of the minimum required control variables,

can be developed and used to generate analytic derivatives for use in an NLP solver.

Regarding the initial guess for the NLP solver, it has been shown that a modified

MATLAB PSO and MATLAB’s GA perform better than MATLAB’s PSO and are

computationally fast, where the GA is especially reliable. CW Targeting can also

be used to generate an initial guess for longer fixed final time problems, and has

the advantage of being analytic and deterministic as compared to the metaheuristic

methods. These improved initial guess methods help lead to fast computation times

by the NLP solvers as well. The NLP solvers’ performance can also be enhanced

by providing the exact analytic derivatives, where it has been shown that supplying

first derivative information may significantly improve performance. Via the analyses

performed, it is recommended that the sqp algorithm be used for the hard sunlight

constraint, and the interior-point algorithm be used for the soft sunlight constraint,

and that the analytic first derivative information be supplied in both cases. With

the initial guess and NLP formulations denoted as the mid-fidelity model, their solu-

tion can then be supplied to a higher-fidelity model, a pseudospectral solver, where

the CNERMs can be used to produce a more accurate, high-fidelity solution. With

the mid-fidelity solution used as an initial guess, the high-fidelity model is able to

quickly converge as well, making both the mid and high-fidelity models computa-

tionally efficient. Lighting constraints can also be successfully incorporated into the

optimization problem. The hard sunlight constraint successfully constrains the satel-

lite to enter the NMC such that it is between the RSO and the Sun, aligned with the
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projected sunlight vector upon entry. The soft sunlight constraint allows a margin

to the hard sunlight constraint, and further minimizes fuel usage. And finally, field-

of-view constraints can be developed to successfully keep the Earth and Moon out of

the inspector’s field of view throughout the motion in the NMC. A range of optimal

solutions can also be generated with the developed methods to provide mission plan-

ners with options. Thus, both a mid and high-fidelity model have been improved to

generate fuel-optimal guidance, where the mid-fidelity model is valid for low-thrust

engines and close proximity operations, and the high-fidelity model is valid for low

and high-thrust engines as well as longer-distance injection maneuvers.
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4.4 Problem B-3

4.4.1 Overview.

Problem B-3 considers using a coast-burn-coast-burn sequence instead of just a

burn-coast-burn sequence, in order to save more fuel in certain scenarios and add more

flexibility to adhere to more constraints. Like Problem B-1, Problem B-3 investigates

minimum-fuel and minimum-time maneuvers into a relative teardrop trajectory, but

now subject to lighting and collision constraints. Thus, the same type of lighting

constraints as were developed in Problem B-2 for maneuvers into an NMC will be

developed for maneuvers into a teardrop, and in addition to these lighting constraints,

passive and active collision constraints will also be developed. Therefore, the first part

of this subproblem presents the coast-burn-coast-burn sequence. Next, the targeted

teardrop is explained in further detail, and then the sunlight and field-of-view con-

straints are developed. Then, passive and active collision avoidance constraints are

presented, which take advantage of the analytic propagation of the coast-burn-coast-

burn sequence. The optimization problem formulations are then presented, including

an explanation of the analytic derivatives. Finally, simulation results are shown, along

with example ranges of optimal solutions and some solution validation.

4.4.2 Equations of Motion and Control Definition.

Problem B-3 uses the HCW equations of motion where again the acceleration

terms for each burn are constants and are described by Equations 194–196. For

the maneuvers investigated in this subproblem, a coast-burn-coast-burn sequence is

allowed, instead of just a burn-coast-burn sequence.
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4.4.3 Analytic Propagation of a Coast-Burn-Coast-Burn Sequence.

In certain scenarios, depending on the initial conditions and the fixed final time

to maneuver to a target trajectory, an additional coast period before the first burn in

the burn-coast-burn sequence may allow for the use of less fuel. Thus, this subsection

develops the analytic propagation of a new coast-burn-coast-burn sequence where

again the acceleration magnitude and direction of the burns are held constant during

each burn, approximating a high-efficiency on/off thruster. The analytic propagation

of the sequence is a function of variables which describe the duration of each phase

and the three-dimensional direction of each of the two burns. These variables, shown

in Table 15, form the minimum number of variables required to analytically propa-

gate the coast-burn-coast-burn sequence and become the core optimization variables.

Figure 39 shows how the variables relate to the transition times in the coast-burn-

coast-burn sequence.

Table 15. Coast-Burn-Coast-Burn Sequence Variables

Variable Description Bounds

t1f
fraction of coast 2 start time to start first burn [0, 1]

tcf fraction of burn 2 start time to start second coast [0, 1]
t2f

fraction of final time, tf , to start second burn [0, 1]
α1 in-plane acceleration direction for burn 1 [0, 2π]
φ1 out-of-plane acceleration direction for burn 1 [−π/2, π/2]
α2 in-plane acceleration direction for burn 2 [0, 2π]
φ2 out-of-plane acceleration direction for burn 2 [−π/2, π/2]

Figure 39. Coast-Burn-Coast-Burn Sequence Parameterization

Starting with the given time to accomplish the maneuver, tf , the duration of each

phase is calculated by using the first three optimization variables where t1f , tcf , t2f ∈
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[0, 1]. The phase durations are:

dc1 = t1f tcf t2f tf (256)

db1 = tcf t2f tf − dc1 = tcf t2f tf (1− t1f ) (257)

dc2 = t2f tf − tcf t2f tf = t2f tf (1− tcf ) (258)

db2 = tf − t2f tf = tf (1− t2f ), (259)

representing (from top to bottom) the duration of the first coast, the duration of the

first burn, the duration of the second coast, and the duration of the second burn.

Given the initial conditions, X0 = [x0, y0, z0, ẋ0, ẏ0, ż0], the analytic propagation of

the first coast phase, given its duration in Equation 256, is given by the HCW STM:

Xc1f = Θ(t0 + dc1, t0)X0. (260)

The final state from the first coast, Xc1f , then becomes the initial condition for the

first burn phase. The first burn phase, with a duration of db1 in Equation 257, is then
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propagated analytically by Equations 197–202:

xb1f =
1

ω2

(
2ωẏc1f + 4ω2xc1f + ωẋc1f sin(db1ω) + a0 cos(α1) cos(φ1)

− 3ω2xc1f cos(db1ω)− 2ωẏc1f cos(db1ω)− a0 cos(db1ω) cos(α1) cos(φ1)

− 2a0 sin(db1ω) cos(φ1) sin(α1) + 2a0db1ω cos(φ1) sin(α1)

)
(261)

yb1f =
−1

2ω2

(
4ωẋc1f − 2ω2yc1f − 8ωẏc1f sin(db1ω) + 12db1ω

3xc1f + 6db1ω
2ẏc1f

− 8a0 cos(φ1) sin(α1)− 12ω2xc1f sin(db1ω)− 4ωẋc1f cos(db1ω)

+ 8a0 cos(db1ω) cos(φ1) sin(α1)− 4a0 sin(db1ω) cos(α1) cos(φ1)

+ 3a0d
2
b1ω

2 cos(φ1) sin(α1) + 4a0db1ω cos(α1) cos(φ1)

)
(262)

zb1f =
1

2ω2

(
2a0 sin(φ1)− 2 cos(db1ω)(−zc1fω2 + a0 sin(φ1))

+ 2ωżc1f sin(db1ω)

)
(263)

ẋb1f =
1

ω

(
2ωẏc1f sin(db1ω) + 2a0 cos(φ1) sin(α1) + 3ω2xc1f sin(db1ω)

+ ωẋc1f cos(db1ω)− 2a0 cos(db1ω) cos(φ1) sin(α1)

+ a0 sin(db1ω) cos(α1) cos(φ1)

)
(264)

ẏb1f =
−1

ω

(
3ωẏc1f + 6ω2xc1f + 2ωẋc1f sin(db1ω) + 2a0 cos(α1) cos(φ1)

− 6ω2xc1f cos(db1ω)− 4ωẏc1f cos(db1ω)− 2a0 cos(db1ω) cos(α1) cos(φ1)

− 4a0 sin(db1ω) cos(φ1) sin(α1) + 3a0db1ω cos(φ1) sin(α1)

)
(265)

żb1f =
1

ω
sin(db1ω)(−zc1fω2 + a0 sin(φ1)) + żc1f cos(db1ω). (266)

This produces the state after the first burn, Xb1f , and the pattern continues, where

the second coast phase is then propagated with Equation 260, but now with Xb1f as

the initial condition and dc2, Equation 258, as the duration. This produces the final
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state from the second coast phase, Xc2f . The second burn is then propagated with

Equations 261–266, but now with Xc2f as the initial condition and db2, Equation 259,

as the duration. This produces the final state from the second burn phase, Xb2f .

Thus, as a function of the seven core optimization variables in Table 15, an analytic

expression has been developed for the final six HCW states after a coast-burn-coast-

burn sequence, denoted as Xb2f or Xf :

Xb2f = Xf = [xf , yf , zf , ẋf , ẏf , żf ] = f(t1f , tcf , t2f , α1, φ1, α2, φ2), (267)

where the computations were facilitated by MATLAB’s Symbolic Toolbox. These are

the final states, Xf , at the given fixed final time, tf , upon completing the maneuver.

Note also that for the second burn, the acceleration magnitude is updated to account

for mass lost during the first burn as was done previously,

a02 =
a0

1− db1 a0c
, (268)

where again c is the effective exhaust velocity. The complete analytic expressions for

the final states, Xf , are too long to show, but have been symbolically computed and

used, particularly in order to compute analytic derivatives, which is discussed in a

later section.

4.4.4 Targeted Teardrop.

The teardrop parameter equations developed by Lovell, et al. [17, 1] deserve some

extra attention in order for mission planners to correctly choose the parameters which

produce the desired relative motion. As Lovell’s papers explain, the equations have

been developed for cases where xd < 0, i.e. for lower teardrops, where the cusp or

intersection of the trajectory occurs below the rounded portion of the teardrop. Thus,
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the following clarifications are based on the equations for a lower teardrop.

If the user wishes to prescribe the teardrop parameters D and Tp, then these

values, when used in the equations for ae and xd, will ensure a lower teardrop is

created, i.e. with xd < 0, as long as the allowable values for D and Tp are chosen.

These two values determine ae and xd according to Equations 85–86, repeated here

for convenience:

ae =
6DωTp

2

3ωTp
2
− 4 sin(ωTp

2
)

(269)

xd =
−4D sin(ωTp

2
)

3ωTp
2
− 4 sin(ωTp

2
)
. (270)

Thus, there is a vertical asymptote when ωTp ≈ 2.55139, or when Tp
P
≈ 0.4061.

Therefore, values of Tp close to this asymptote should be avoided. Also, in order to

generate a lower teardrop and maintain the requirement that xd < 0, then there are

two regions where the appropriate values for D and Tp must be chosen. To the left

of the asymptote, where ωTp ∈ (0, 2.55139), D should be a negative value, and thus

the point of maximum radial position will occur beneath the RSO at D. If values of

Tp are desired where Tp ∈ (2.55139/ω, P ), then the value for D must be positive and

the resulting teardrop is still a lower teardrop, but with the maximum radial position

occurring above the RSO at (positive) D instead of beneath the RSO. In this case,

as Tp → P , the resulting motion approaches an NMC.

The cross-track motion for a teardrop trajectory is also of interest. Typically

teardrop trajectories are created to remain in the orbit plane of the RSO. However,

some type of cross-track motion may be desired. As was shown in Problem B-1, the

point of maximum radial position can be chosen to coincide with zmax, positive or

negative. Another cross-track motion of interest is for the maximum radial position

to coincide with z = 0, such that during half of the teardrop the cross-track position
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is negative and during the other half it is positive. Table 16 explicitly lays out options

for different cross-track motions of interest and the corresponding required values for

γ.

Table 16. Teardrop Cross-Track Options

Desired Cross-Track Motion γ (deg)

Reach Positive zmax at Maximum x -90
Reach Negative zmax at Maximum x 90

Start Positive, Reach z = 0 at Maximum x 0
Start Negative, Reach z = 0 at Maximum x 180

Planar Teardrop (i.e. zmax = 0) NA

Given these clarifications, the user may correctly choose the necessary parameters

to target the desired relative teardrop trajectory. The user thus needs to choose D and

Tp, which produce the required ae and xd and prescribes the in-plane geometry of the

teardrop. The values for zmax and γ prescribe the desired cross-track geometry. The

placement of the teardrop along the in-track axis is prescribed by yT which determines

yd0 via Equation 206. And finally, the point at which the satellite enters the teardrop

trajectory can be prescribed by choosing βt, or a range of allowable entry angles can

be prescribed by setting bounds on β. These LROEs can then be used to calculate

the Cartesian states via Equations 76–81 to be targeted by the coast-burn-coast-burn

sequence.

4.4.5 Lighting Constraints for Teardrop.

The teardrop lighting constraints developed in this subsection are similar to those

developed in Problem B-2 for entry into an NMC. The key difference here, when

formulating lighting constraints for entry into a teardrop trajectory, is that the relative

trajectory is unbounded. For a bounded relative trajectory, e.g. an NMC, no matter

what the fixed final time is for the maneuver, the desired lighting condition can be

obtained or will be obtained after a certain amount of natural motion in the NMC.
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However, when entering a teardrop trajectory, the inspector satellite has a limited

amount of time to maneuver into the trajectory before the desired lighting condition

has passed. If the first opportunity does pass, then the spacecraft must wait longer

for the next opportunity to arrive or enter the trajectory at such a point where it can

coast for the amount of time required to sync with the next opportunity.

Two types of sunlight constraints, similar to those developed in Problem B-2, have

been developed for entry into a teardrop trajectory. The first type is called a tight (or

hard) sunlight constraint. The tight sunlight constraint ensures that the vector from

the Sun to the RSO, or rs2c, when projected into the orbital plane, is directly aligned

with the projected vector from the inspector satellite to the RSO, rd2c, when the

inspector satellite reaches the maximum radial position in the teardrop. Thus, this

type of lighting constraint applies to lower teardrops where D is negative, and where

the teardrop is being formed directly beneath the RSO and not shifted in the in-track

direction (yT = 0). The tight sunlight constraint is formulated by first approximating

the amount of time from t0, the time at the beginning of the maneuver, until the

projected Sun vector is pointed in the desired direction. This is approximated by

assuming that over the course of one or two days the projected sunlight vector points

in the same inertial direction, and thus rotates in the relative frame equal to the

constant mean motion, ω. Thus, the amount of time from t0 until the Sun is in the

desired position is

τ =
αs
ω
, (271)

where αs is the angle to the projected Sun vector at t0. It is then assumed that entry

into the teardrop is desired at or before the cusp, or the intersection point. Thus,

given τ , there are a series of checks which need to occur.

• Check 1: If τ < 1
2
Tp, then τ = τ+P . In other words, if there is not enough time
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to coast from the cusp to the top of the teardrop, then the inspector satellite

must wait until the next opportunity.

• Check 2: If τ < 1
2
Tp + tfmin

, then τ = τ + P (where tfmin
is the minimum-time

solution for the given scenario). In other words, if there is not enough time to

enter the teardrop trajectory, then the inspector satellite must wait until the

next opportunity.

• Check 3: If tf < tfmin
, then tf = tfmin

. In other words, if the user has chosen

a tf smaller than the minimum-time solution, then the tf is changed and the

problem is solved with the minimum-time solution.

• Check 4: If τ < 1
2
Tp + tf , then τ = τ + P . In other words, if the provided tf is

too large, then the inspector satellite must wait until the next opportunity.

After all of these checks are complete and required modifications are made, the

coast time in the teardrop from the injection point to the cusp is calculated:

tcoast = τ − 1

2
Tp − tf . (272)

Since the value of the LROE β increases linearly with time, the change in β during

tcoast, or ∆β, can be calculated as

∆β = tcoastω. (273)

This means that the injection point into the teardrop trajectory must be at

βt = βcutoff −∆β, (274)

where βt is the entry angle to target and βcutoff is the angle associated with the
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teardrop cusp, the last point along the trajectory where injection is allowed. This

ensures, given tf , that upon maneuver completion, the inspector satellite coasts for the

appropriate amount of time to obtain the desired lighting condition once it reaches

the top of the teardrop. This βt, along with the other previously chosen LROEs,

provide the target state, Xt, via Equations 76–81 to target for the end of the coast-

burn-coast-burn sequence.

The other type of sunlight constraint, denoted the relaxed (or soft) sunlight con-

straint, allows an angular margin, θs, from the tight sunlight constraint requirement.

Thus, θs is chosen by the user, and the maximum and minimum values of τ are

calculated by

τmax =
αs + θs
ω

(275)

τmin =
αs − θs
ω

. (276)

Checks 1, 2, and 4 from the tight sunlight constraint are thus modified, using τmax

in the if statement instead of τ , and for any true statements, both τ and τmax (and

τmin) are increased by P . The target LROE βt is calculated the same way with τ ,

and then the bounds on β are defined as

βu = min(βcutoff , βt + θs) (277)

βl = βt − θs, (278)

where the upper bound on β can’t go beyond βcutoff . Then, instead of a target state, a

target trajectory is used where the satellite may enter the trajectory anywhere within

the bounds on β.

It may also be desirable that no other bright celestial objects appear in the sensor’s

field of view for some time during a portion of the teardrop. Due to the nature of a
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lower teardrop where D is negative, the Earth will not appear in the field of view.

However, there are times when the Moon may appear in the field of view, unless

the maneuver is modified to ensure that there is some angular margin, θm or greater,

which exists between the in-plane angle to the unit vector pointing from the inspector

satellite to the RSO, αd2c, and the in-plane angle to the projected vector pointing from

the RSO to the Moon, αc2m. This margin of θm or greater must exist for a specified

fraction of Tp, denoted tm, where the desired time for the field of view to be clear

is tclear = tmTp. Thus, αd2c and αc2m are calculated during tclear, with an example

shown in Figure 40. In a case like this, the maneuver must be modified such that

there is no crossing of the two angles during tclear, and also such that θm or more

exists between the two angles throughout tclear.
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Figure 40. Example Moon Conflict for Teardrop

For both the tight and relaxed sunlight constraint, the first step is to determine

the minimum angle between αd2c and αc2m during tclear, or αmin. If αmin < θm, then βt

and thus Xt must be shifted. The direction and amount of the shift is determined by

examining αc2m if the entry into the teardrop were both shifted backward or forward
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along the trajectory. Once the minimum angle between the shifted αc2m and αd2c for

tclear is greater than or equal to θm, a new βt must be defined. If the tight sunlight

constraint is enabled, then the new βt corresponding to the new Xt is βt = βt+tshiftω.

If the relaxed sunlight constraint is enabled, then for cases where the arrival is shifted

forward in the trajectory, (but not entering past βcutoff ), then βl = βt, where βt is the

new, shifted value. For cases where the arrival is shifted backward in the trajectory,

then βu = βt.

For cases where the original αmin ≥ θm and the relaxed sunlight constraint is also

enabled, there is some additional checking to do. βu and βl may need to be modified

to prevent cases where the optimal entry angle within the bounds may create a Moon

conflict scenario. Thus, if αmin ≥ θm, and if αmin < θm + θs, then the bounds on

β must be adjusted. If this is the case, then similar to before, αmin is recalculated

by shifted forward or backward the entry into the teardrop until αmin ≤ θm. If this

inequality becomes true for larger values of β, then βu is decreased (as long as it is

still less than βcutoff ), to βu = βt + tshiftω. If the inequality becomes true for lower

values of β, then βl is increased to βl = βt + tshiftω, where tshift would be negative.

In summary, for the tight sunlight constraint, Xt is determined in order to obtain

the exact desired lighting condition. If the Moon avoidance constraint is also active,

then Xt may be shifted to avoid any conflicts. For the relaxed sunlight constraint,

bounds on β are determined in order to allow entry into the trajectory at any point

within those bounds. If the Moon avoidance constraint is also active, then the bounds

on β are adjusted such that no Moon conflict occurs. Thus, sunlight and field-of-view

constraints can be incorporated into the problem formulation without creating path

constraints, where the entry point or bounds on the entry point are simply shifted. It

should be noted, however, that these methods have been developed for Sun and Moon

vectors projected into the orbital plane of the RSO. This approximation assumes that
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the projections of these vectors are reasonably close to the actual three-dimensional

vectors.

4.4.6 Collision Avoidance.

This subsection develops a method to avoid collisions between the inspector satel-

lite and the RSO by adding inequality constraints to the optimization problem. To

begin, it is assumed that the initial trajectory the spacecraft is following is a safe one,

and will not collide with the RSO for a safe amount of time. Given this, there are

then two types of collisions which must be avoided. The first collision which must be

avoided is one which could occur after the first burn in the coast-burn-coast-burn se-

quence. This means that the transfer trajectory created by the first burn must avoid

an exclusion zone which is modeled here by a keep-out ellipsoid centered around the

RSO. The second type of collision which must be avoided is a passive collision, which

is one which would occur in a certain amount of time (defined by the user) if the sec-

ond (final) burn in the coast-burn-coast-burn sequence failed to occur. The method

developed in this study to avoid both types of collisions is to use an analytic expres-

sion for the three final HCW positions after the first burn, propagated forward to N

discrete points in time, ti, past the beginning of the second coast phase. Thus, there

are N inequality constraints contained in g:

gi = 1−
(
x2
c2i

x2
ell

+
y2
c2i

y2
ell

+
z2
c2i

z2
ell

)
≤ 0, i = 1, ..., N, (279)

where xell, yell, and zell define the size of the keep-out ellipsoid which is centered about

the non-maneuvering RSO at the origin of the relative frame. The discrete positions
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along the second coast arc (and beyond for passive collision avoidance) are

xc2i =
ẋb1f sin(tiω)

ω
−
ẏb1f (2 cos(tiω)− 2)

ω
− xb1f (3 cos(tiω)− 4) (280)

yc2i = yb1f + xb1f (6 sin(tiω)− 6tiω)

+
ẏb1f (4 sin(tiω)− 3tiω)

ω
+
ẋb1f (2 cos(tiω)− 2)

ω
(281)

zc2i = zb1f cos(tiω) +
żb1f sin(tiω)

ω
, (282)

where the initial conditions are Xb1f , determined by Equations 261–266. Thus, the

user prescribes the value for N , the number of times the trajectory after the first burn

will be checked until a certain amount of time has passed after tf , which time is also

prescribed by the user. This amount of time checked after tf is a lower bound to the

amount of time the passive collision avoidance is enforced. The higher N is, the more

dense the checks are and the more inequality constraints exist to ensure the spacecraft

does not enter the keep-out zone. The N inequality constraints are analytic constraint

functions, and can be evaluated very quickly inside of an optimization routine, as

well as be used to calculate analytic derivatives. As long as the sampling density is

sufficiently high, this method ensures that the inspector satellite does not enter the

keep-out ellipsoid after the first burn or if the second burn fails to occur.

4.4.7 Optimization Problem Formulations.

In order to determine the minimum fuel or the minimum time required to ma-

neuver into a prescribed relative teardrop trajectory, multiple optimization problems

have been formulated depending on the type of sunlight constraint enabled. The re-

sulting optimization problems are all nonlinear, non-convex, constrained optimization

problems which require a good initial guess in order to converge to the desired local

minimum. Due to its established performance on other subproblems, MATLAB’s GA
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is used to generate an initial guess. The solution from the GA is then used as the

initial guess for MATLAB’s fmincon, which may further refine the solution and take

advantage of gradient information.

4.4.7.1 Minimum-Fuel Formulation.

The goal of the minimum-fuel formulation is to minimize the engine-on time,

ton = db1 +db2, for a given fixed final time, tf . Since tf is a constant, the cost function

can be expressed as:

J = t2f (tcf − t1f tcf − 1), (283)

where the optimization variables, their lower and upper bounds, and any equality or

inequality constraints depend on whether the tight or relaxed sunlight constraint is

enabled.

4.4.7.1.1 Tight Sunlight Constraint. If the tight sunlight constraint is

enabled, then the optimization variables are

χ = [t1f , α1, φ1, tcf , α2, φ2, t2f ], (284)

with lower and upper bounds

χl =
[
0, 0,−π

2
, 0, 0,−π

2
, 0
]

(285)

χu =
[
1, 2π,

π

2
, 1, 2π,

π

2
, 1
]
, (286)
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and the equality constraints are

h = Xf −Xt = 0. (287)

If collision avoidance is enabled, then the problem is also subject to the N inequality

constraints as shown in Equation 279.

4.4.7.1.2 Relaxed Sunlight Constraint. If the relaxed sunlight con-

straint is enabled, then there is one additional optimization variable,

χ = [t1f , α1, φ1, tcf , α2, φ2, t2f , β], (288)

with lower and upper bounds

χl =
[
0, 0,−π

2
, 0, 0,−π

2
, 0, βl

]
(289)

χu =
[
1, 2π,

π

2
, 1, 2π,

π

2
, 1, βu

]
, (290)

and the equality constraints are

h =



xf

yf

zf

ẋf

ẏf

żf


−



−ae
2

cos β + xd

ae sin β + yd

zmax sin(γ + β)

ae
2
ω sin β

aeω cos β − 3
2
ωxd

zmaxω cos(γ + β)


= 0, (291)

where β is now allowed to vary within its bounds to further minimize the cost function.

If collision avoidance is enabled, then the problem is also subject to the N inequality
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constraints as shown in Equation 279.

4.4.7.2 Minimum-Time Formulation.

The goal of the minimum-time formulation is to minimize the total time of the

maneuver, or tf , where tf becomes one of the optimization variables for this type of

problem. The cost function is thus:

J = tf , (292)

where the optimization variables are

χ = [tf , t1f , α1, φ1, tcf , α2, φ2, t2f , β], (293)

and where their lower and upper bounds, and any equality or inequality constraints

depend on whether the tight or relaxed sunlight constraint is enabled.

4.4.7.2.1 Tight Sunlight Constraint. If the tight sunlight constraint is

enabled, then bounds on the optimization variables are

χl =
[
0, 0, 0,−π

2
, 0, 0,−π

2
, 0, βMIN

]
(294)

χu =
[
tfmax , 1, 2π,

π

2
, 1, 2π,

π

2
, 1, βcutoff

]
, (295)

where tfmax should be chosen to be large enough to allow a solution to be found. The

bounds on β allow the entry angle to vary from the point of maximum coast time

up until the last point allowed for entry, βcutoff . The β angle associated with the

point of maximum coast time is found by setting tf equal to zero, and calculating the
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maximum possible coast time,

tcoastmax = τ − 1

2
Tp, (296)

and thus

βMIN = βcutoff − tcoastmaxω. (297)

The equality constraints are the same as Equation 291 with one additional equality

constraint, h7,

h7 = τ − 1

2
Tp − tf −

(βcutoff − β)

ω
= 0, (298)

which ensures that the tight sunlight constraint is met. If collision avoidance is

enabled, then the problem is also subject to the N inequality constraints as shown in

Equation 279.

4.4.7.2.2 Relaxed Sunlight Constraint. If the relaxed sunlight con-

straint is enabled, then the lower bound on β is modified to:

βMIN = βcutoff − tcoastmaxω = βcutoff − (τmax −
1

2
Tp)ω. (299)

The equality constraints are the same as Equation 291, and there are now two in-

equality constraints described by,

g =

τmin − 1
2
Tp − tf − βcutoff−β

ω

tf +
βcutoff−β

ω
− τmax + 1

2
Tp

 ≤ 0, (300)
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where this ensures that the inspector satellite enters the trajectory at a tf where it

will satisfy the relaxed sunlight constraint. If collision avoidance is enabled, then

the problem is also subject to the additional N inequality constraints as shown in

Equation 279.

4.4.7.3 Analytic Derivatives.

Since all of the cost functions and constraint functions have analytic expressions

as functions of the optimization variables, the analytic gradients can be found and

supplied to the NLP solver. Thus, the analytic gradients of the objective functions

and the analytic Jacobians of the constraint functions have been developed by us-

ing MATLAB’s Symbolic Toolbox for the minimum-fuel problems. Specifically, to

produce the analytic gradient of the objective functions, the following line of code is

executed: gradient(J, χ). To produce the analytic Jacobians of the constraint func-

tions, the following line of code is executed: jacobian(h, χ). The analytic gradients

of the objective functions, ∇J , are fairly simple, whereas the Jacobian of the equality

and inequality constraints, ∇h and ∇g, are quite complex and far too lengthy to

present. The Hessian has not been calculated analytically (although it could be) and

thus is approximated by the NLP solver.

4.4.8 Simulations and Results.

This subsection presents multiple simulation results in order to demonstrate the

efficacy of the developed methods. Three parameter sets are used to produce four sets

of results. The first set of results illustrates the effects of the tight and relaxed sunlight

constraints, and compares the new coast-burn-coast-burn sequence to the burn-coast-

burn sequence. The next set of results demonstrates the effects of the Moon avoidance

option, for both the tight and relaxed sunlight constraints. The following set of results

165



shows both active and passive collision avoidance scenarios, where the developed

collision avoidance methodology ensures a safe maneuver. Finally, the last set of

results presents a range of optimal solutions for a specific scenario, showing the Pareto

front of optimal solutions and their corresponding trajectories.

4.4.8.1 Sunlight Constraints.

The first results presented use the parameter set A shown in Table 17, where the

time is given in UTC. The semi-major axis of the RSO is represented by ac, and f0

is the initial true anomaly of the RSO, measured from the ECI Î axis, which along

with ac defines the initial inertial state of the RSO since the RSO is assumed to be in

a circular, zero-inclination orbit. The initial conditions of the inspector satellite are

the initial states in the relative frame and for this scenario correspond to the satellite

starting out in an NMC with ae = 20 km, yd0 = 0 km, zmax = 2 km, γ = 0o, and

β0 = 145o.

Table 17. Problem B-3 Simulation Parameters, Set A

Sun and Time RSO Properties Inspector Properties Teardrop Parameters

θs = 45o ac = 42, 164.137 km a0 = 0.02 N/kg D = −1.5 km
Year0 = 2017 f0 = 45o c = 3.33 km/s Tp = 0.3P

Month0 = Aug x0 = 8.192 km yT = 0 km
Day0 = 28 y0 = 11.472 km zmax = 2 km

Hr0 = 4 z0 = 1.147 km γ = 0o

Min0 = 0 ẋ0 = 0.4183 m/s
Sec0 = 0 ẏ0 = −1.1947 m/s

ż0 = −0.1195 m/s

The GA is used to produce an initial guess for these minimum-fuel solutions, and

MATLAB’s fmincon is used as the NLP solver to further refine the solutions from

the GA. The tight sunlight constraint is enabled first, with results shown in Figure

41, where tf was chosen to be 14 hours. Figure 41 (a) shows the burn-coast-burn

solution and has an engine-on time, or ton, of ton = 68.39 seconds. Figure 41 (b)

shows the modified trajectory when a coast phase is allowed before the burn-coast-

166



burn sequence, with a reduced engine-on time of ton = 62.01 seconds. Thus it can be

seen that for this scenario, the additional coast phase in front of the burn-coast-burn

sequence saves fuel compared to the previously developed burn-coast-burn sequence.

Note that for both scenarios the NLP solver solution falls almost directly on top of

the GA solution, showing that the initial guess method provides a good initial guess

(denoted IG in the plots). The effects of the tight sunlight constraint can be seen

in both of these plots, where the projected vector from the Sun to the RSO, rs2c, is

shown at four different times: at the beginning of the maneuver, t0; at the end of the

maneuver, tf ; at the time that the inspector satellite reaches the teardrop cusp; and,

at the time the inspector satellite reaches the top of the teardrop. In both plots, it can

be seen that the inspector satellite successfully maneuvers into the teardrop such that

the projected sunlight vector aligns with the line-of-sight vector from the inspector

satellite to the RSO once the inspector satellite reaches the top of the teardrop.
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(b) Coast-Burn-Coast-Burn

Figure 41. B-3, Tight Sunlight Constraint, Min Fuel Solution, tf = 14 hrs

Next, the relaxed sunlight constraint is enabled, allowing the inspector satellite

to enter the trajectory within determined bounds such that the projected sunlight

vector is within ±θs of the tight sunlight constraint. The results can be seen in

Figure 42, where (a) shows the result with just the burn-coast-burn sequence, and
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(b) Coast-Burn-Coast-Burn

Figure 42. B-3, Relaxed Sunlight Constraint, Min Fuel Solution, tf = 14 hrs

(b) shows it with the coast-burn-coast-burn sequence. Without the additional coast

phase, ton = 59.61 seconds, whereas with the additional coast phase, ton = 47.85

seconds. Thus, as expected with the relaxed sunlight constraint, both cases have

lower engine-on times than their respective tight sunlight constraint cases, and there

is a 19.73% fuel savings for the relaxed sunlight constraint scenario if there is an

additional coast phase included before the burn-coast-burn sequence.

4.4.8.2 Moon Avoidance Constraint.

Now, a scenario is presented where there is a Moon conflict, i.e., the in-plane

vector from the RSO to the Moon comes within θm of the in-plane vector from the

inspector satellite to the RSO (thus it is in the sensor’s field of view) during the

desired time for no conflicts to occur, tclear. Table 18 shows the parameter set B used

for this scenario, where the parameters were chosen to produce a Moon conflict.

The tight sunlight constraint is enabled first with results seen in Figure 43, where

the fixed final time for these cases is tf = 1 hour. Figure 43 (a) shows the Moon

conflict of the resulting trajectory, which was the example for Figure 40, showing

there is a conflict between the two in-plane angles during the prescribed period of
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Table 18. Problem B-3 Simulation Parameters, Set B

Sun and Time RSO Properties Inspector Properties Teardrop Parameters

θs = 45o ac = 42, 164.137 km a0 = 0.02 N/kg D = −1.5 km
Year0 = 2017 f0 = 265o c = 3.33 km/s Tp = 0.3P

Month0 = Sept x0 = −17 km yT = 0 km
Day0 = 4 y0 = −9 km zmax = 0 km
Hr0 = 23 z0 = 0 km γ =NA
Min0 = 0 ẋ0 = 0 m/s
Sec0 = 0 ẏ0 = 0.5 m/s

ż0 = 0 m/s
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Figure 43. B-3, Moon Avoidance, Tight Sunlight Constraint, Min Fuel, tf = 1 hr
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Figure 44. B-3, Moon Avoidance, Relaxed Sunlight Constraint, Min Fuel, tf = 1 hr
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time where no conflicts are desired, where tclear = 1
3
Tp for this case. The engine-on

time for this case is ton = 300.31 seconds. Figure 43 (b) then shows the result when

the Moon avoidance constraint is enabled, where the point of entry into the teardrop

trajectory has been shifted such that the two angles maintain θm = 10o between

them during tclear. This case has an engine-on time of ton = 188.60 seconds and has

a much lower cost, which may be the case often, since the Moon avoidance constraint

has forced the tight sunlight constraint to be violated. These results show how the

developed methods successfully shift the entry into the trajectory such that there is

no conflict.

With the relaxed sunlight constraint enabled, the results can be seen in Figure

44 where the fixed final time is again tf = 1 hour. Figure 44 (a) shows the resulting

Moon conflict with an engine-on time of ton = 149.20 seconds. Note that since the

relaxed sunlight constraint was enabled, under certain scenarios the solution may

avoid a Moon conflict without enabling the Moon avoidance constraint. However,

with the Moon avoidance constraint enabled, it is ensured that the solution avoids

the Moon conflict and maintains at least θm during tclear, as seen in Figure 44 (b).

This solution appears to be the same as the tight sunlight constraint scenario, with

an engine-on time of ton = 188.60 seconds, since the shifted βt value associated with

the shifted Xt from the tight sunlight constraint scenario was set as the upper bound

on β for the relaxed sunlight constraint case.

4.4.8.3 Collision Avoidance.

The developed collision avoidance constraints can be enabled in any one of the

cases already presented. The first collision avoidance example presented here demon-

strates how if the inspector satellite is going to enter the defined exclusion zone during

the second coast period (and before the second burn), then the burns will be modified
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such that the resulting trajectory avoids the exclusion zone. The parameters used for

this simulation are parameter set C shown in Table 19, where the inspector satellite’s

initial conditions come from initially being in an NMC with ae = 5 km, yd0 = 0 km,

zmax = 2 km, γ = 180o, and β0 = 45o. The collision avoidance parameters are defined

in Table 20.

Table 19. Problem B-3 Simulation Parameters, Set C

Sun and Time RSO Properties Inspector Properties Teardrop Parameters

θs = 45o ac = 42, 164.137 km a0 = 0.02 N/kg D = −1.5 km
Year0 = 2017 f0 = 135o c = 3.33 km/s Tp = 0.3P

Month0 = Aug x0 = −1.7678 km yT = 0 km
Day0 = 28 y0 = 3.5355 km zmax = 2 km

Hr0 = 4 z0 = −1.4142 km γ = 0o

Min0 = 0 ẋ0 = 0.1289 m/s
Sec0 = 0 ẏ0 = 0.2578 m/s

ż0 = −0.1031 m/s

Table 20. Collision Avoidance Parameters

xell (km) yell (km) zell (km) Passive Time (Lower Bound) N

1 2 1 ≥ 0.55tf 80

The results can be seen in Figure 45 for a fixed final time of tf = 6 hours and with

the relaxed sunlight constraint enabled. Figure 45 (a) shows how, if left unmodified,

the trajectory enters the exclusion zone (represented by the red ellipse) on its way to

the injection point. Figure 45 (b) shows the exact same scenario, but with the collision

avoidance constraint enabled, demonstrating how the inspector satellite coasts at the

beginning, followed by the first burn which leads to a trajectory that avoids the

exclusion zone and still satisfies the relaxed sunlight constraint. This 2-D plot may

appear as if the exclusion zone is still slightly violated, but in 3-D in Figure 46 it can

be seen that the trajectory actually travels underneath the xy plane, and just touches

the edge of the exclusion zone, with N = 80.

The second collision avoidance example presented here demonstrates the passive

collision avoidance capability. Thus, a scenario has been developed where, if the
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Figure 45. B-3, Active Collision Avoidance, Relaxed Sunlight, Min Fuel, tf = 6 hr
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Figure 46. B-3, Active Collision Avoided, Relaxed Sunlight, Min Fuel, tf = 6 hr, 3-D

second burn fails to take place, the inspector satellite would continue coasting into

the exclusion zone. For this scenario, parameter set B from Table 18 is used, along

with the same collision avoidance parameters in Table 20, and the tight sunlight

constraint is enabled with a fixed final time of tf = 1 hour. Figure 47 (a) shows the

scenario without the collision avoidance constraint enabled, where it can be seen that

if the satellite fails to perform the second burn, then the satellite would coast into

the exclusion zone. Figure 47 (b) shows the exact same scenario again, but now with

the collision avoidance constraint enabled. Thus the maneuver has been successfully
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modified, coasting for a period of time before making longer burns such that it is

passively safe, but still arrives at Xt in the given amount of time, tf .
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Figure 47. B-3, Passive Collision Avoidance, Tight Sunlight, Min Fuel, tf = 1 hr

4.4.8.4 Summary of Simulation Data.

Table 21 shows the summary of scenarios presented, where each row contains the

following: the parameter set used, whether the new coast-burn-coast-burn sequence

was used or not, which constraints were active, the final time used, the algorithm

used inside fmincon, the engine-on time or the total burn time from both the GA and

the NLP solver, and the computation time from both the GA and the NLP solver.

Regarding the algorithm used within fmincon, the sqp solution was used unless it did

not converge to an exit flag of 1 (meaning a local minimum was found), in which

case the solution from the interior-point method was used. For all scenarios, first

derivative information was supplied to the solver and the solver successfully converged

to a local minimum. All other solver settings were left at their default values, with the

exception of increasing the maximum number of iterations and function evaluations,

and tightening the step size tolerance to 1 × 10−16. One important takeaway from

Table 21 are the computation times. Due to the analytic propagation of the coast-
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burn-coast-burn sequence and the way in which the constraints were formulated, the

computation times are fast, on the order of 10 seconds for the GA and on the order

of 1 second or less for the NLP solver. The only exception is when the collision

avoidance method is enabled, which increases the computation time of the GA to

about 1.5 minutes.

Table 21. Problem B-3 Simulation Results

Param First Constraints tf fmincon Burn Time (s) CPU Time (s)
Set Coast Sun Moon Collision (hr) algorithm GA NLP GA NLP

A off tight off off 14 sqp 68.39 68.39 7.52 0.14
A on tight off off 14 int-pt 63.97 62.01 9.42 0.83
A off relaxed off off 14 sqp 59.61 59.61 11.42 0.01
A on relaxed off off 14 int-pt 50.44 47.85 10.65 2.69

B on tight off off 1 int-pt 303.3 300.3 5.53 0.53
B on tight on off 1 int-pt 189.4 188.6 6.87 0.77
B on relaxed off off 1 int-pt 151.3 149.2 8.25 0.81
B on relaxed on off 1 int-pt 188.9 188.6 8.01 4.61
B on tight off on 1 sqp 1252 867.9 94.1 1.93

C on relaxed off off 6 sqp 118.1 118.1 8.60 0.03
C on relaxed off on 6 sqp 143.1 141.7 101.0 11.3

4.4.8.5 Range of Optimal Solutions.

If the fixed final time of the maneuver, tf , does not have to be a specific value,

then a range of optimal solutions can be generated for varying fixed final times. The

strategy employed to generate such a plot is to first solve the minimum-time problem

for the given scenario. Then, for a range of fixed final times prescribed by the user,

the minimum-fuel solution is calculated for the discrete fixed final times. The GA is

used at the beginning, to help find an initial guess for the minimum-time problem,

and then the solution is fed to fmincon for refinement. Then, for the next fixed final

time, the fmincon solution from the previous fixed final time is used as the initial

guess. If the fixed final time reaches the point where the inspector satellite must

wait until the next sunlight opportunity, then the GA is used again to find an initial

guess for the first solution corresponding to the next opportunity. Once the range of
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optimal solutions is generated, the user can examine the Pareto front of solutions and

determine the best solution, weighing engine-on time, ton, vs. the amount of time

required to maneuver, tf .

Figure 48 shows an example scenario with the parameters from set A in Table

17 and the tight sunlight constraint enabled, where the range of fixed final times are

discretized from the minimum-time solution, tfmin
= 1.347 hours, to tfmin

plus one

period of the RSO. The minimum-fuel solution is calculated one-hundred times with

the sqp algorithm used inside fmincon. These solutions take a total of 11.771 seconds

to compute, where one minimum-time GA, one minimum-fuel GA, and one-hundred

minimum-fuel fmincon solutions were generated in that amount of time. Figure 48

(a), subplot 1 shows the Pareto front of optimal solutions, with the minimum-time

solution being the one at the very left. At tf = 15.85 hours, the maneuver time is too

long to enter the teardrop and meet the tight sunlight constraint, thus that solution

and all other solutions to the right are calculated for the next opportunity to meet

the tight sunlight constraint. Figure 48 (a) subplot 2 shows the fmincon exit flags

corresponding to each solution. An exit flag of 1 means that the first-order optimality

measure was less than the tolerance and the maximum constraint violation was less

than its tolerance, whereas an exit flag of 2 means that the change in the optimization

variables was less than its tolerance and the maximum constraint violation was less

than its tolerance. Thus, an exit flag of 1 is preferred, but an exit flag of 2 may also

be acceptable, and still means a local minimum is possible. Figure 48 (b) shows the

resulting trajectories, where the minimum-time solution is apparent by the engine

being on the entire time. It can be seen that as tf increases, the inspector satellite

continues coasting in its initial NMC until the point where it must make its first

burn. Once tf increases to the point where it must wait for the next opportunity, the

trajectories leave the initial NMC and head upwards and to the far left.
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Figure 48. B-3, Range of Solutions, fmincon sqp, Tight Sunlight Constraint, Min Fuel
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Figure 49. B-3, Range of Solutions, fmincon sqp, Soft Sunlight Constraint, Min Fuel

If the exact same scenario is run as before, but now with the relaxed sunlight

constraint enabled, the results are as expected, shown in Figure 49. This range of

solutions takes 18.05 seconds to compute. Figure 49 (b) shows how the solutions start

grouping together close to βcutoff , since the relaxed sunlight constraint allows more

solutions to make the first opportunity, and less solutions have to wait for the next
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opportunity, as can be seen in Figure 49 (a), subplot 1, where the opportunity divide

is now at tf = 18.91 hours.

4.4.9 Solution Validation.

The guidance solutions generated herein for each problem can be validated to

a certain degree by using the control generated in an independent simulation with

a corresponding high-accuracy propagator. The resulting trajectory can then be

analyzed and compared against the desired trajectory to see if the results satisfy the

mission planner. Thus, for many of the results throughout Problem B, FreeFlyer∗

has been used to visualize and validate the results. One example of some validation

performed is shown in this subsection, for the passive collision avoidance scenario,

where the collision avoidance constraint was enabled. Thus, the trajectory from

Figure 47 (b) will be compared to the trajectory generated from FreeFlyer.

The FreeFlyer scenario is initiated with the parameters in Table 18. Thus, the

initial date and time, the initial orbit of the RSO, and the initial relative state of

the inspector satellite were set as the initial conditions in FreeFlyer. The engine

properties of the inspector satellite were also set to produce the initial thrust-to-mass

ratio, a0, as well as the engine efficiency, c. The propulsion system is modeled by a

chemical-spherical tank with a blow-down pressure model and thus continuous mass

loss is accounted for. The integrator for both the RSO and the inspector satellite was

the Runge Kutta 8(9) integrator with a fixed step size of 40 seconds and a relative

error tolerance of 1 × 10−9. The aerodynamic properties for both satellites were

left as the default values, and aerodynamic and solar radiation pressure forces were

accounted for. For both satellites, the Earth forces field type accounted for four zonal

and four tesseral terms, and the forces from the Sun and the Moon were also taken

∗FreeFlyer, (2017). Engineer Version 7.2.1. Lanham: a.i. solutions, Inc. https://

ai-solutions.com/freeflyer/
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into account.
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Figure 50. FreeFlyer Validation Example

The resulting trajectory can be seen in Figure 50, where the magenta curve shows

the FreeFlyer trajectory. For this case, the trajectory resulting from the developed

algorithms and the FreeFlyer trajectory are very similar, where the two teardrops

are just slightly distinguishable. Rigorous comparisons could be performed on the

results, depending on the level of analysis required in order to approve the generated

guidance. Of course, these are just the open-loop trajectories, and don’t include

any feedback or closed-loop control, which would probably be incorporated into the

expected trajectory as well. In summary, using an independent simulation with a

high-accuracy propagator such as FreeFlyer can help to both visualize and validate

the generated guidance, and show that the control profile generated by the developed

algorithms works as intended and would be suitable for use on an actual satellite.
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4.4.10 Problem B-3 Conclusion.

Both minimum-time and minimum-fuel optimization problems have been formu-

lated and solved to find optimal maneuvers for an inspector satellite to enter a

teardrop trajectory relative to an RSO in GEO, subject to lighting and collision

constraints. A coast-burn-coast-burn sequence was developed and shown, in certain

scenarios, that it can save fuel in a minimum-fuel problem compared to just a burn-

coast-burn sequence. It was also demonstrated how for the non-periodic, relative

teardrop trajectory, sunlight constraints can be formulated such that the inspector

satellite obtains the desired lighting condition at the first feasible opportunity. The

developed tight sunlight constraint successfully aligns the projected sunlight vector

with the projected vector from the inspector satellite to the RSO at the top of the

teardrop, where the relaxed sunlight constraint successfully allows an angular margin

and further reduces the performance index, as desired. The Moon avoidance methods

can also be enabled to ensure the Moon is not in the sensor’s field of view during

a prescribed portion of the teardrop, where the bounds of allowable entry into the

teardrop are simply adjusted. The collision avoidance methods developed can also be

enabled for fail-safe maneuvering, where both active and passive collision avoidance

were demonstrated and the maneuvers were successfully modified to avoid entering a

keep-out zone. It was also shown that a range of optimal solutions can be generated,

allowing a mission planner to choose the best time vs. fuel solution from the Pareto

front of optimal solutions. The generated control can also be simulated and validated

with an independent, high-fidelity propagator, where one example showed that the

generated guidance was suitable for use in a higher-fidelity environment. For all cases

presented, the computation times were shown to be fast, making these algorithms

suitable for rapid mission planning.
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V. Problem C

5.1 Overview

Unlike Problems A and B, Problem C assumes that the RSO maneuvers away

from the reference orbit, and more specifically that the RSO maneuvers away opti-

mally from the inspector satellite to evade the inspector satellite’s inspection goal.

Therefore, instead of formulating and solving one-sided optimal control problems

as in Problems A and B, Problem C addresses pursuit-evasion games, or differential

games, where the inspector satellite is denoted the pursuer and the maneuvering RSO

is denoted the evader. The solutions from solving the games are open-loop strategies

for the pursuer to achieve an inspection goal as soon as possible and for the evader

to prolong it as long as possible, where the guidance for each player is generated

from the known initial conditions. The games addressed are assumed to be urgent,

where each player’s thruster is continually on and using the maximum available thrust

throughout the game, and the direction of the thrust vector is each player’s control.

This may be the case for two satellites with electric engines, where each satellite has

one, body-fixed electric engine that is continually on during the game. Problem C

also differs in that the Tschauner-Hempel equations of motion are used instead of

the Hill-Clohessy-Wiltshire equations of motion, to allow the maneuvering RSO to

have already departed its circular orbit. Metaheuristic methods will be used to solve

multiple games, where each game considers a specific inspection goal. The inspection

goals considered in this problem are the following: intercept, rendezvous, obtain Sun

vector, match energy, obtain sun vector and match energy, and match energy and

remain close.

This chapter is organized as follows. First, the equations of the motion and the

control definition for both players are outlined. Next, the solution technique to be
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used, the indirect heuristic method, and how it applies to the examined games is

presented. The different game conditions, or inspection goals, are then developed,

which are the terminal constraints for each game. Then, the techniques used to solve

each game, again following the indirect heuristic method, are put forth. Finally,

the results are presented, along with some validation efforts to give confidence that

differential game solutions have indeed been found.

5.2 Equations of Motion and Control Definition

The equations of motion used for this problem are a heterogeneous form of the

Tschauner-Hempel equations of motion, Equations 11–13, where the acceleration

terms due to a constant, steerable thrust are retained. The acceleration terms are

thus composed of a time-varying acceleration magnitude, a(t), as in Equation 160.

This magnitude increases with time, and its direction is defined by the in-plane and

out-of-plane thrust angles, α and φ, similar to the angles defined in Figure 4, but

where α in this case is measured in the opposite direction from the ŷ axis. These two

angles are the control variables and are bounded as follows:

α ∈ [−π, π] (301)

φ ∈
[
−π

2
,
π

2

]
. (302)

Thus, the acceleration terms can be described by,

ax = a(f) sinα(f) cosφ(f) (303)

ay = a(f) cosα(f) cosφ(f) (304)

az = a(f) sinφ(f), (305)
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where the acceleration magnitude (and the angles) are now functions of the true

anomaly, f , of the reference orbit since that is the independent variable when using

the Tschauner-Hempel equations of motion. When these acceleration terms are re-

tained in the development of the Tschauner-Hempel equations of motion, they become

multiplied by a scalar coefficient, like in [88],

B(f) =
p3a(f)

µk(f)3
, (306)

where a(f) has been included in the scalar coefficient. With the defined acceleration

terms and this coefficient, the Tschauner-Hempel equations of motion become,

x̃′′ = 2z̃′ +B(f) sinα cosφ (307)

ỹ′′ = −ỹ +B(f) cosα cosφ (308)

z̃′′ =
3z̃

k(f)
− 2x̃′ +B(f) sinφ, (309)

where it is understood that the control variables and Tschauner-Hempel states, X̃ =

[x̃, ỹ, z̃, x̃′, ỹ′, z̃′]T , are also functions of the true anomaly. These equations can be

written in state space form as:

X̃ ′ = A(f)X̃ +B(f)U(α, φ), (310)

where

U(α, φ) =

[
0 0 0 sinα cosφ cosα cosφ sinφ

]T
. (311)

Both the pursuer and evader use Equation 310 as their equations of motion, where

the dynamics of the pursuer will be represented with a subscript ‘p’, and the evader
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with a subscript ‘e’:

X̃ ′p = A(f)X̃p +B(f)Up (312)

X̃ ′e = A(f)X̃e +B(f)Ue. (313)

5.3 Differential Game Formulations using Indirect Heuristic Method

Given the equations of motion and control for both players, the differential games

can now be formulated. Six main types of games are examined in this problem, where

in all games the pursuer has a higher initial acceleration value than the evader, i.e.

a0p > a0e , and both players have the same effective exhaust velocity. This ensures

that the pursuer will always win, if given enough time.

For all games, the cost function is

J = ff , (314)

which is equivalent to the final time of the game. This means that the pursuer wishes

to minimize the time to achieve a specific inspection goal, whereas the evader wishes

to prolong that inspection goal as long as possible. This is a zero-sum game, since

the sum of the two players’ cost is zero.

Given the dynamic system of the two players, Equations 312–313, their initial

conditions, the terminal constraints for each game,

ψ(X̃p(ff ), X̃e(ff ), ff ) = 0, (315)

and the performance criterion, Equation 314, the goal is to find u∗ and v∗ such that

J(u∗, v) ≤ J(u∗, v∗) ≤ J(u, v∗), (316)
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where

u =

[
αp φp

]T
(317)

v =

[
αe φe

]T
. (318)

Following the indirect heuristic method (IHM), it is desired to find the game-

theoretic saddle point by first applying the first-order necessary conditions. The

Hamiltonian for all games considered is,

H = λTp X̃
′
p + λTe X̃

′
e = λTp

[
A(f)X̃p +B(f)Up

]
+ λTe

[
A(f)X̃e +B(f)Ue

]
, (319)

where λp and λe are the vectors of costates,

λp = [λ1, λ2, λ3, λ4, λ5, λ6]T (320)

λe = [λ7, λ8, λ9, λ10, λ11, λ12]T . (321)

The costate equations for all games are

λ′p = −A(f)Tλp (322)

λ′e = −A(f)Tλe, (323)

where like Stupik [75, 74], it is desirable to find the state transition matrix for the

costate equations. Since the YA STM, Θ in Equation 16, already exists for the system

X̃ ′ = A(f)X̃, (324)

then it can be used to find the STM for the costates equations when A(f) is −A(f)T .
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The STM for the costate equations, Ξ, can be found symbolically by using MATLAB’s

Symbolic Toolbox via:

Ξ(f, f0) =
(
Θ(f, f0)−1

)T
. (325)

The optimal control for each player must satisfy,

[
u∗

T
v∗

T

]T
= arg max

v
min
u
H, (326)

since the controls are bounded. It can be seen that the Hamiltonian is separable, thus

u∗ =

[
α∗p φ∗p

]T
= arg min

(αp,φp)
(λ4 sinαp cosφp + λ5 cosαp cosφp + λ6 sinφp) . (327)

This can be written as

u∗ =

[
α∗p φ∗p

]T
= arg min

(αp,φp)
(cosφp(λ4 sinαp + λ5 cosαp) + λ6 sinφp) , (328)

which is in a form where Isaacs’s Lemma on Circular Vectograms [64] may be applied

to obtain:

sinα∗p =
−λ4√
λ2

4 + λ2
5

(329)

cosα∗p =
−λ5√
λ2

4 + λ2
5

(330)

sinφ∗p =
−λ6√

λ2
4 + λ2

5 + λ2
6

. (331)

Similarly, the optimal control equations for the evader can be obtained from

v∗ =

[
α∗e φ∗e

]
= arg max

(αe,φe)
(cosφe(λ10 sinαe + λ11 cosαe) + λ12 sinφe) , (332)
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and thus

sinα∗e =
λ10√

λ2
10 + λ2

11

(333)

cosα∗e =
λ11√

λ2
10 + λ2

11

(334)

sinφ∗e =
λ12√

λ2
10 + λ2

11 + λ2
12

. (335)

These optimal control equations are the same for all games examined in this problem.

The costate boundary conditions are different for each game considered. For each

game, the function Φ is generated,

Φ = ff + νTψ, (336)

where ψ is different for each game, or inspection goal. The next section describes

the specific terminal constraints and costate boundary conditions for each game.

To use the IHM, according to Pontani [33], the costate boundary conditions must

be homogeneous with respect to the costates in conjunction with the homogeneity

of the costate equations. The developed costate equations, Equations 322–323, are

homogeneous, and thus it is desirable that the costate boundary conditions developed

in the next section are homogeneous as well. If these conditions apply, then Pontani

claims that the transversality condition (Hf + 1 = 0 for all games considered) is

ignorable, and if an initial value of λ for the pursuer and evader can be found such

that λ0 = kλλ
∗
0, (kλ > 0), then the same proportionality holds between λ and the

optimal λ∗ at any time. And, since the optimal control equations depend only on

the relative magnitude of the costates and not the optimal costates themselves, then

by satisfying all of the necessary conditions except for the transversality condition,

the optimal control law can be found, with a scaled version of the optimal costates.
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In addition to the homogeneity of the boundary conditions, it is also desirable that

the terminal constraints (developed in the next section) are linear with respect to the

states, as this simplifies the resulting boundary value problem and makes the problem

more tractable to solve.

For most games examined, as will be seen, the following property holds, as in

[74, 75],

λpf + λef = 0. (337)

Using the STM for the costates, it can be seen that,

λpf + λef = 0 = Ξλp0 + Ξλe0 = Ξ(λp0 + λe0), (338)

which, assuming Ξ is invertible, means that

λp0 = −λe0 , (339)

and thus at any true anomaly,

λp = −λe, (340)

meaning that the pursuer and evader costates are always equal and opposite. Plugging

this relationship into the optimal control equations, it can be seen that, as shown in

[74, 75],

α∗p = α∗e (341)

φ∗p = φ∗e. (342)
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5.4 Game Conditions

For each game, a different set of terminal constraints is considered. Therefore,

the following subsections present the terminal constraints for each game and the

corresponding costate boundary conditions, which are all homogeneous and allow the

use of the IHM.

5.4.1 Intercept.

In the intercept game, the goal of the pursuer is to match the final position of the

evader in minimum time, while the goal of the evader is to delay that condition as

long as possible. Thus, the vector of terminal constraints is simply:

ψ =


x̃p − x̃e

ỹp − ỹe

z̃p − z̃e

 , (343)

and the costate boundary conditions become

λ1f = ν1 λ7f = −ν1

λ2f = ν2 λ8f = −ν2

λ3f = ν3 λ9f = −ν3

λ4f = 0 λ10f = 0

λ5f = 0 λ11f = 0

λ6f = 0 λ12f = 0.

(344)

If given λ1f − λ3f , all final costates can be determined.
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5.4.2 Rendezvous.

In the rendezvous game, the goal of the pursuer is to match the final position and

velocity of the evader in minimum time, while the goal of the evader is to delay that

condition as long as possible. Thus, the vector of terminal constraints is simply:

ψ =



x̃p − x̃e

ỹp − ỹe

z̃p − z̃e

x̃′p − x̃′e

ỹ′p − ỹ′e

z̃′p − z̃′e


, (345)

and the costate boundary conditions become

λ1f = ν1 λ7f = −ν1

λ2f = ν2 λ8f = −ν2

λ3f = ν3 λ9f = −ν3

λ4f = ν4 λ10f = −ν4

λ5f = ν5 λ11f = −ν5

λ6f = ν6 λ12f = −ν6.

(346)

If given λ1f − λ6f , all final costates can be determined.

5.4.3 Obtain Sun Vector.

In this game, the goal of the pursuer is to align its position with the vector from

the Sun to the evader at a point between the Sun and the evader such that the

evader is lit with respect to the pursuer, in minimum time. The goal of the evader

is to delay that condition as long as possible. Figure 51 shows the general terminal
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conditions for this game, where the goal of the pursuer is to end on the vector from

the Sun to the evader, rse, at some distance from the evader, thus at κrse, where

κ ∈ (0, 1) and should be very close to one. This formulation is linear with respect

Figure 51. General Terminal Conditions for Obtaining the Sun Vector

to the states. However, the final range cannot be exactly prescribed, and some error

must be allowed from the prescribed final range. For example, if a final range of d

km is desired between the pursuer and evader, then κ may be estimated as

κ =
−d||rs(f0)||2 + ||rs(f0)||22

||rs(f0)||22
, (347)

where rs is the vector to the Sun in the relative frame. This should produce a final

range relatively close to d as long as the motion of the pursuer and evader remain

close to the evader’s original orbit (the reference orbit), and the game does not last

for too long with respect to the period of the reference orbit. Given an estimate for

κ to achieve d, then the terminal constraint may be expressed as

rp = rs + κ(rse), (348)
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where rp is the relative position of the pursuer, re is the relative position of the evader,

and rse = re − rs. Thus, in standard form, the vector of terminal constraints is

ψ =


x̃p − x̃s − κ(x̃e − x̃s)

ỹp − ỹs − κ(ỹe − ỹs)

z̃p − z̃s − κ(z̃e − z̃s)

 , (349)

where rs does not depend on the pursuer and evader states and can be calculated for

any given final true anomaly via Vallado’s sun algorithm [13]. This formulation of

the terminal constraints produces the following costate boundary conditions,

λ1f = ν1 λ7f = −κν1

λ2f = ν2 λ8f = −κν2

λ3f = ν3 λ9f = −κν3

λ4f = 0 λ10f = 0

λ5f = 0 λ11f = 0

λ6f = 0 λ12f = 0,

(350)

which are not a function of the players’ states or the position of the Sun, thus simpli-

fying the resulting boundary value problem. If given λ1f − λ3f , all final costates can

be determined.

5.4.3.1 Obtain Sun Vector at Exact Range.

This game condition is the same as the previous, but where κ can be changed in

an iterative fashion in an outer loop if the resulting final range is not close enough

to the value desired. The game can be solved multiple times until some tolerance is

reached and the resulting κ value produces the desired terminal range between the

pursuer and evader.
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5.4.4 Match Energy.

The match energy game is where the goal of the pursuer is to match the energy of

the evader in minimum time, such that if each player stopped thrusting at the end of

the game, then the relative motion between the two players would remain bounded

after one period. The goal of the evader is to delay that condition as long as possible.

To ensure the energy of the two players is matched, the change in the semi-major

axes of both players should be the same. Thus, using Equation 32 for each player,

the following should apply,

δap =
2a

η2
c3p = δae =

2a

η2
c3e , (351)

where a and η are those of the reference orbit, and the coefficients c3p and c3e from

Equation 40 are referenced to the reference orbit as well, but are functions of the

relative states of the pursuer and evader respectively. Expressing the terms multiplied

by the pursuer or evader states inside Equations 38–41 as bij, where i = 1, ..., 4 for

each ci and where j = 1, ...3 for the three terms multiplied by the relative states inside

each ci, the vector of terminal constraint can be written as,

ψ =

[
b31(x̃p − x̃e) + b32(x̃′p − x̃′e) + b33(ỹ′p − ỹ′e)

]
, (352)
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where each bij is a function of the final true anomaly. This formulation of the terminal

constraints produces the following costate boundary conditions,

λ1f = b31ν1 λ7f = −b31ν1

λ2f = 0 λ8f = 0

λ3f = 0 λ9f = 0

λ4f = b32ν1 λ10f = −b32ν1

λ5f = b33ν1 λ11f = −b33ν1

λ6f = 0 λ12f = 0.

(353)

If given λ1f and the final true anomaly, all final costates can be determined.

5.4.5 Obtain Sun Vector and Match Energy.

In this game, the goal of the pursuer is a combination of two previous conditions

— to align itself with the Sun vector at an approximate range while also matching

the energy of the evader in minimum time — while the goal of the evader is to delay

that combination of conditions as long as possible. The vector of terminal constraints

is thus,

ψ =



x̃p − x̃s − κ(x̃e − x̃s)

ỹp − ỹs − κ(ỹe − ỹs)

z̃p − z̃s − κ(z̃e − z̃s)

b31(x̃p − x̃e) + b32(x̃′p − x̃′e) + b33(ỹ′p − ỹ′e)


, (354)
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and the costate boundary conditions become,

λ1f = ν1 + b31ν4 λ7f = −κν1 − b31ν4

λ2f = ν2 λ8f = −κν2

λ3f = ν3 λ9f = −κν3

λ4f = b32ν4 λ10f = −b32ν4

λ5f = b33ν4 λ11f = −b33ν4

λ6f = 0 λ12f = 0.

(355)

If given λ1f − λ4f and the final true anomaly, all final costates can be determined.

5.4.6 Match Energy and Remain Close.

In this last game considered, the goal of the pursuer is to both match the energy of

the evader and also remain within a prescribed range of the evader during the ensuing

period, and to accomplish these goals in minimum time, while the goal of the evader

is to delay that combination of conditions as long as possible. In order to remain close

during the ensuing period, Sengupta’s relative orbit parameters for periodic, elliptical

relative motion, %1, %2, and %3 in Equations 24–26, can be constrained to place the

pursuer into the same orbit as the evader, at a prescribed distance away, and with an

amplitude for any desired relative cross-track motion.

To do this, the same energy matching constraint must be enforced as before,

namely Equation 352. Next, %1 must be set equal to zero, where this is one of the two

relative motion size parameters for the motion of the pursuer relative to the evader,

not relative to the reference orbit. Thus, examining Equation 27, δe and δM0 of the

pursuer relative to the evader must both be equal to zero. Therefore, δep and δee

(the change in eccentricity of each player with respect to the reference orbit or the
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original orbit of the evader) must be equal. Therefore, the second constraint is

δep − δee = −η2(c1p − c1e) = 0. (356)

Likewise, δM0p and δM0e must be equal, and the third constraint is

δM0p − δM0e =
η3

e
(c2p − c2e) = 0. (357)

These two constraints ensure that %1 = 0 for the motion of the pursuer with respect

to the evader. Next, %2
pe

(where pe is the semi-latus rectum of the evader’s final orbit

since this is for the motion of the pursuer relative to the evader) must be set equal to

the desired in-track placement of the pursuer relative to the evader, or dy. Therefore,

the following condition must apply,

%2 = pedy. (358)

It can be seen by examining Equation 28, that since δM0 of the pursuer relative to

the evader is already equal to zero, then a way to enforce Equation 358 is to set δΩ of

the pursuer relative to the evader equal to zero, and then the following must apply,

%2 = pe
(
δωœp − δωœe

)
. (359)

Therefore, setting this equation equal to Equation 358,

δωœp − δωœe = dy, (360)
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and thus the fourth constraint, using Equation 37, is

δωœp − δωœe =

(
c4p −

δM0p

η3
− δΩp cos i

)
−
(
c4e −

δM0e

η3
− δΩe cos i

)
= c4p − c4e = dy. (361)

As mentioned, δΩ of the pursuer relative to the evader must also set equal to zero,

thus the fifth constraint is

δΩp − δΩe = 0, (362)

or,

cos(ωœ + f)(z̃e − z̃p) + sin(ωœ + f)(z̃′p − z̃′e) = 0. (363)

And finally, the sixth and final constraint prescribes the amplitude of the ensuing

cross-track motion of the pursuer relative to the evader. To do this, %3
pe

must be set

equal to the desired amplitude, or dz. Therefore,

%3 = pedz, (364)

and by examining Equation 29 and realizing that δΩ of the pursuer relative to the

evader is already set equal to zero, then the following condition must apply,

%3 = pe(δip − δie). (365)

Thus, setting the two previous equations equal to one another,

δip − δie = dz, (366)
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and so the sixth and final constraint can be written as

sin(ωœ + f)(z̃p − z̃e) + cos(ωœ + f)(z̃′p − z̃′e)− dz = 0. (367)

The vector of terminal equality constraints can thus be written as

ψ =



b31(x̃p − x̃e) + b32(x̃′p − x̃′e) + b33(ỹ′p − ỹ′e)

b11(x̃p − x̃e) + b12(x̃′p − x̃′e) + b13(ỹ′p − ỹ′e)

b21(x̃p − x̃e) + b22(x̃′p − x̃′e) + b23(ỹ′p − ỹ′e)

b41(x̃p − x̃e) + b42(x̃′p − x̃′e) + b43(ỹ′p − ỹ′e) + ỹp − ỹe − dy

cos(ωœ + f)(z̃e − z̃p) + sin(ωœ + f)(z̃′p − z̃′e)

sin(ωœ + f)(z̃p − z̃e) + cos(ωœ + f)(z̃′p − z̃′e)− dz


. (368)

These constraints ensure that the pursuer matches the orbit of the evader at a pre-

scribed in-track distance away, dy, and with a relative cross-track amplitude of dz.

They have been developed to be linear with respect to the states such that the result-

ing boundary value problem is more tractable to solve. The corresponding costate

boundary conditions are

λ1f = b31ν1 + b11ν2 + b21ν3 + b41ν4 λ7f = −λ1f

λ2f = ν4 λ8f = −λ2f

λ3f = − cos(ωœ + f)ν5 + sin(ωœ + f)ν6 λ9f = −λ3f

λ4f = b32ν1 + b12ν2 + b22ν3 + b42ν4 λ10f = −λ4f

λ5f = b33ν1 + b13ν2 + b23ν3 + b43ν4 λ11f = −λ5f

λ6f = sin(ωœ + f)ν5 + cos(ωœ + f)ν6 λ12f = −λ6f .

(369)

If given λ1f − λ6f and the final true anomaly, all final costates can be determined.
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5.5 Boundary Value Problem Formulations via Indirect Heuristic Method

Following the IHM, each boundary value problem resulting from each game con-

dition is solved by formulating a parameter optimization problem to be solved by

a metaheuristic method, namely MATLAB’s PSO or GA, where the purpose of the

optimizer is solely to satisfy the terminal constraints contained in ψ for each game.

For all games, the minimum number of final costates required to determine all final

costates, (which is equal to the number of terminal constraints, m), become opti-

mization variables. Stupik, et al. [74, 75] used initial costates; however, the final

costates are used here to make the problem simpler to formulate and solve. Since the

conditions necessary to apply the IHM are satisfied, only the relative magnitude of

the costates are of importance, and thus following the IHM, the m final costates for

each problem can be bounded as follows,

λif ∈ [−1, 1] i = 1, ...,m. (370)

The final time (which can be converted to the final true anomaly) is also included as

an optimization variable in each problem, and is bounded,

tf ∈ [0, tfmax ], (371)

where tfmax should be large enough to ensure a solution can be found. The optimiza-

tion variables for each problem must then be found to satisfy the terminal constraints.

This is accomplished as follows:

1. Given the value of each of the minimum number of final costates required for

the current problem, determine the rest of the final costates via the costate

boundary condition equations for the current problem.
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2. Propagate the costates backwards analytically from the given final time (final

true anomaly) using the costate STM, Ξ, in Equation 325, to find the initial

costates.

3. Propagate the states forward numerically (for example with MATLAB’s ode45 ),

using Equations 312-313, where at each time step the control is calculated via

Equations 329–331 (and Equations 333–335 if necessary), which are functions

of the costates and can be propagated forward analytically from the initial

costates, again with Ξ.

4. Once the states have been propagated to the given final time (or final true

anomaly), evaluate the terminal constraints contained in ψ for the current prob-

lem.

5. Iterate (using the metaheuristic optimization algorithm), repeating steps 1.-4.

until the prescribed tolerance is met.

6. Extract the differential game solution.

For each problem, the static optimization problem is solved with either MATLAB’s

PSO or MATLAB’s GA, depending on the amount and type of constraints. If the

PSO is used, the constraints are satisfied by summing the square of each constraint

in the cost function

JPSO =
m∑
i

ψ2
i . (372)

If the GA is used, then the cost function is set equal to zero,

JGA = 0, (373)
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and the equality constraints are satisfied by using the non-default nonlinear constraint

algorithm, Penalty Algorithm. Table 22 shows the following for each game: the

number of equality constraints, m, contained in ψ, the optimization parameters, and

the solver to be used.

Table 22. Problem C (Game Optimization Problem) Formulations

Inspection Goal Size of ψ (m) Optimization Parameters Solver

Intercept 3 χ = [λ1f
, λ2f

, λ3f
, tf ] PSO

Rendezvous 6 χ = [λ1f
, λ2f

, λ3f
, λ4f

, λ5f
, λ6f

, tf ] GA
Obtain Sun Vector 3 χ = [λ1f

, λ2f
, λ3f

, tf ] PSO
Match Energy 1 χ = [λ1f

, tf ] PSO
Obtain Sun Vector & Match Energy 4 χ = [λ1f

, λ2f
, λ3f

, λ4f
, tf ] GA

Match Energy & Remain Close 6 χ = [λ1f
, λ2f

, λ3f
, λ4f

, λ5f
, λ6f

, tf ] GA

5.6 Simulations and Results

The solutions presented in this section use the simulation parameters shown in

Table 23, where these include the initial conditions from [74, 75] in order to compare

the intercept case when the eccentricity is set equal to zero. Note that a0p > a0e to

ensure the games can be completed.

Table 23. Problem C Simulation Parameters

Time and Sun Reference Orbit Pursuer Properties Evader Properties

Date0=17 Mar 2018 ac = 42, 164.137 km rp0
= [−38.93,−100, 0]T km re0 = [0, 0, 0]T km

Time0=13:00.00 e = 0.2 vp0 = [0, 0, 0]T m/s ve0 = [0, 0, 0]T m/s
κ = 0.9999999328126 f0 = 0o a0p

= 0.0686 m/s2 a0e
= 0.0343 m/s2

i = 5o cp = 3 km/s ce = 3 km/s
ωœ = 10o

Ω = 45o

It was desired to compare the intercept solution with e = 0 to the first solution

obtained in [74, 75] to see if they were approximately the same and to verify that

the solution collapsed to the HCW solution when the eccentricity was set equal to

zero. Indeed, the same solution was obtained, with a final time of tf = 41.32 minutes

and the same final position. This solution took 38.5 seconds to compute, where
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all solutions obtained in this section use MATLAB’s parallel processing with four

processors. The value of the cost function, or the sum of the constraint violations

squared was 1.15× 10−8. Since the solutions match, they are not shown here.
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Figure 52. Intercept Game: Costates and Control
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Figure 53. Intercept Game: States and Trajectory

With the zero-eccentricity intercept solution matching [74, 75], the intercept game

was run with e = 0.2, which the rest of the games in this section use to showcase
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the ability to solve games that take place with respect to an elliptical reference orbit.

The resulting costates and control are shown in Figure 52, where the evader costates

are equal and opposite the pursuer costates, and the control for both players is the

same. Note that the last control values in the plot are a result from the velocity

costates being zero, and are invalid and not of importance. The states and trajectory

are shown in Figure 53. This solution took 36.4 seconds to compute, with a final time

of tf = 41.53 minutes, and a PSO constraint violation of 3.79× 10−8.
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Figure 54. Rendezvous Game: Costates and Control

The rendezvous game costates and control are shown in Figure 54, where the

evader costates are equal and opposite the pursuer costates, and the control for both

players is the same. The states and trajectory are shown in Figure 55. The states take

an interesting shape, where the optimal states for the evader prolong the rendezvous

condition as long as possible. This solution took 8.64 minutes to compute since the

GA was used instead of the PSO. The final time is tf = 57.61 minutes, and the

maximum GA constraint violation is 5.12× 10−10.

The obtain Sun vector game control and trajectory are shown in Figure 56. The

control for both players are approximately the same, but not exactly, since λpf +λef 6=

0. For this game, the desired range at the end of the game was set to d = 10 km. Using
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Figure 55. Rendezvous Game: States and Trajectory

Equation 347 for κ to obtain d, the resulting range is 10.0006 km. The trajectory

shows how at the end of the game, the pursuer is approximately 10 km away from

the evader, at a point along the Sun vector with respect to the evader, such that the

evader is illuminated with respect to the pursuer. This solution took 51.3 seconds

to compute, with a final time tf = 40.08 minutes, and a PSO constraint violation of

6.97× 10−7.
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Figure 57. Match Energy Game: Trajectories After Game Concludes

The match energy game ends relatively quickly, with a final time of tf = 3.86

minutes. This is quite possible, since no other constraint is being enforced and the

pursuer simply needs to match the semi-major axis of the evader. The resulting

motion right after the game concludes is shown in Figure 57, where (a) shows the

relative positions of both players with respect to the original reference orbit, and (b)

shows the position of the pursuer with respect to the evader over the course of a couple

orbits. Thus, as can be seen, the two players travel far from the original reference

orbit. Also, they don’t necessarily remain close to each other, but the motion of the

pursuer is bounded with respect to the evader since the energy has been matched.

This solution took just 13.2 seconds to compute, with a PSO constraint violation of

1.00× 10−10.

The obtain Sun vector and match energy game results are shown in Figure 58,

where (a) shows that the desired lighting is obtained at the end of the game, and (b)

shows that the energy has been matched. With the estimate for κ, the final range,

10.0008 km, is very close to the desired (10 km). It is interesting to note however

that although the energy has been matched, the pursuer does not remain close to the

evader throughout the ensuing motion, and gets even farther away from the evader

than in the previous game. This solution took 2.73 minutes to compute, with a final
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time of tf = 51.80 minutes and a maximum GA constraint violation of 1.58× 10−10.
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Figure 58. Obtain Sun Vector & Match Energy Game: 3-D Trajectories

For the match energy and remain close game, the desired in-track distance of the

pursuer from the evader for the motion after the game concludes is dy = 10 km, and

the desired cross-track amplitude for the motion after the game ends is dz = 10 km.

The results can be seen in Figure 59, where (a) shows the trajectory during the game,

and (b) shows that the desired motion after the game concludes has been achieved.

Due to the elliptic nature of the orbit, the in-track separation distance oscillates

throughout the orbit. This solution took 13.10 minutes to compute, with a final time

of tf = 59.56 minutes and a maximum GA constraint violation of 1.26× 10−10.

A summary of the simulation results is shown in Table 24. When using the PSO,

the settings were left at their defaults, with the exception of using MATLAB’s parallel

processing as previously mentioned. When using the GA, in addition to using the

parallel processing, the maximum number of generations was increased to 1,500, and

the number of starting points was set to 200 which happened to be a non-default

option for just one of the cases.
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Figure 59. Match Energy & Remain Close Game: 3-D Trajectories

Table 24. Problem C Simulation Results (using Table 23 parameters)

Game Condition tf (min) Solver CPU Time Constraint Violation

Intercept (with e = 0) 41.32 PSO 38.5 sec 1.15× 10−8

Intercept 41.53 PSO 36.4 sec 3.79× 10−8

Rendezvous 57.61 GA 8.64 min 5.12× 10−10

Obtain Sun Vector 40.08 PSO 51.3 sec 6.97× 10−7

Match Energy 3.86 PSO 13.2 sec 1.00× 10−10

Obtain Sun Vector and Match Energy 51.80 GA 2.73 min 1.58× 10−10

Match Energy and Remain Close 59.56 GA 13.10 min 1.26× 10−10

5.7 Solution Validation

This section is designed to provide some confidence that the solutions obtained in

the previous section are in fact the differential game solutions. If a differential game

solution has been found, that is, if u∗ and v∗ have been found such that

J(u∗, v) ≤ J(u∗, v∗) ≤ J(u, v∗), (374)

then, if any suboptimal v is used while u∗ is used, then the pursuer should be able

to further minimize the performance index. Likewise, if any suboptimal u is used

while v∗ is used, then the evader should be able to further maximize the performance
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index. Thus, this section uses that logic to formulate and solve one-sided optimal

control problems, again using the IHM, where the control of one of the players is

deterministic, or known beforehand, to add confidence that the differential game

solutions have indeed been found. Both the intercept game and rendezvous game

solutions are analyzed, where these two have been chosen to be analyzed since one

used the PSO to solve the resulting boundary value problem and the other used the

GA.

To analyze both the intercept game and rendezvous game solutions, multiple one-

sided problems are formulated and solved. The first one-sided optimal control problem

uses v∗ for the control of the evader and a problem is formulated to see if the pursuer

can intercept (or rendezvous with) the evader any sooner than the final time obtained

from the differential game solution. If the solution obtained in the previous section is

indeed the differential game solution, then the final time from this one-sided optimal

control problem should match. To do this for the intercept case, approximating poly-

nomials are fit to x̃∗e, ỹ
∗
e , and z̃∗e as functions of the true anomaly. This was done to

avoid numerically propagating the deterministic position of the evader, and instead

use the polynomial functions in the terminal constraint vector. For the rendezvous

case, the approximating polynomials were not accurate enough, thus the evader state

is numerically propagated based on the optimal evader costates found from the dif-

ferential game. The objective for this first one-sided optimal control problem is to

minimize the time to intercept (or rendezvous with) the deterministic position (or

state) of the evader. Thus, the cost function is,

J = tf , (375)
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subject to,

ψ =


x̃pf − x̃∗e(ff )

ỹpf − ỹ∗e(ff )

z̃pf − z̃∗e(ff )

 , (376)

for the intercept case and,

ψ =



x̃pf − x̃∗e(ff )

ỹpf − ỹ∗e(ff )

z̃pf − z̃∗e(ff )

x̃′pf − x̃
′∗
e (ff )

ỹ′pf − ỹ
′∗
e (ff )

z̃′pf − z̃
′∗
e (ff )


, (377)

for the rendezvous case, where it is emphasized that the terminal states of the evader

are solely functions of the given final true anomaly. These boundary conditions still

allow for the use of the IHM for these one-sided optimal control problems because after

applying the necessary conditions, the costate boundary conditions are the same as

they were for the pursuer in the differential game for both the intercept and rendezvous

cases. Applying the necessary conditions also produces the same control, costate, and

state equations that the pursuer had in the differential games.

For the rest of the one-sided optimal control problems, the evader uses a control

other than v∗. Thus, the pursuer, in a one-sided optimal control problem, should be

able to intercept the evader sooner. If there is a v which outperforms v∗, i.e. makes

the pursuer take longer to intercept (or rendezvous with) the evader compared to the

differential game solution, then the differential game solution was not found. For these

one-sided optimal control problems where a v other than v∗ is used for the evader, the
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first strategy for v is to point the thruster in the direction of rp0 such that the evader

accelerates continually away from rp0 . For the rest of the suboptimal v strategies,

the thruster is pointed in a constant, random direction during each of the problems.

These formulations still allow the use of the IHM, and are developed to show that the

pursuer can intercept the evader equal to or sooner than the differential game final

time for any of the suboptimal strategies tested. For these one-sided optimal control

problems, the evader states are numerically propagated from the initial conditions

with the constant control laws. The cost function is the same as before, and the

terminal constraints are the same except that the evader states at a given final true

anomaly are not the optimal ones from the differential game solution. Again, for

all these one-sided optimal control problems, the IHM can be used, and the same

equations from applying the necessary equations are obtained as before.

The intercept game analysis results, where MATLAB’s PSO is used to solve the

resulting boundary value problems for the one-sided optimal control problems, can be

seen in Figure 60. Figure 60 (a) shows the PSO exit flags, the constraint violations,

and the CPU times for all fifty one-sided problems tested. As can be seen, constraints

were satisfied for every problem, and most problems were solved in less than one

minute. Figure 60 (b) shows the final time for each problem. The first final time

obtained matches the differential game final time, as it should, since v∗ was used for

the evader’s control. The rest of the final times obtained are less than the differential

game final time, as they should be, since a v other than v∗ is used and the pursuer is

able to further minimize the performance index.

The rendezvous game analysis results, where MATLAB’s GA is used to solve the

resulting boundary value problems for the one-sided optimal control problems, can

be seen in Figure 61. Figure 61 (a) shows the GA exit flags, the constraint violations,

and the CPU times for all fifty one-sided problems. As can be seen, constraints were
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Figure 60. Intercept Game: Solution Validation

satisfied for every problem, and most problems were solved in about six minutes.

Figure 61 (b) shows the final time for each problem. The first final time obtained

matches the differential game final time, as it should. The rest of the final times

obtained are less than the differential game final time, also as they should be.
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5.8 Problem C Conclusion

It is desirable to formulate differential games (and possibly some one-sided prob-

lems) such that the IHM can be used due to: a) no need for an initial guess for the

costates, b) the ability to search for the final (or initial) costates in an arbitrary range,

c) the relatively fast computation times, d) the global nature of the method, and e)

the fact that an entire dynamic, differential game can be reduced to a static opti-

mization problem composed of very few optimization variables. Regarding point c),

the fast computation times are partly due to the analytic propagation of the costates.

Thus, it is desirable that the costates can be propagated analytically, for example

with a state transition matrix. If not, the computation times would be slower, and

the costates may become unstable from the numerical propagation.

Pontani’s IHM and Stupik’s framework for solving a differential game can be

successfully applied to multiple types of zero-sum, pursuit-evasion games using the

Tschauner-Hempel equations of motion and the Yamanaka-Ankersen state transition

matrix. Thus, the developed method can be used for games with respect to a non-

circular player or reference orbit, and the costates can still be propagated analytically.

Pursuit-evasion games can be formulated and solved for not only the intercept case,

but also for the following games: a) rendezvous, b) obtain Sun vector, c) match energy,

d) obtain Sun vector and match energy, and e) match energy and remain close. The

terminal constraints for these games can be formulated in such a way that the IHM

can still be used, and such that the problem remains tractable. Also, the differential

game solutions can be somewhat verified by solving multiple one-sided optimal control

problems and comparing the solutions to the differential game solution.

The solutions to these games provide the open-loop strategies for the pursuer and

evader and may help to answer several questions. First, the solutions may provide the

worst-case time (and corresponding fuel) for the pursuer to accomplish its inspection
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goal since it is based on the evader playing optimally. If the evader behaves any

differently, then the pursuer may ideally be able to accomplish its inspection goal

sooner and thus with less fuel. Second, the game solutions may provide the actual

strategy for the evader to implement in such a scenario, no matter the strategy of the

pursuer. If the evader uses the open-loop strategy generated from these solutions,

then it may give it the best chance at evading the pursuer, forcing the pursuer to use

the most time (and corresponding fuel) to chase the evader. It may force the pursuer

to discontinue its pursuit, if the pursuer realizes the time and fuel which would be

required continue pursuing the optimally evading evader. Third, these game solutions

may aid in the design process. Based off the expected capabilities of the other player,

the propulsion properties of the player of interest may be designed to perform to a

certain level in the differential games.
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VI. Summary

Optimal, finite-thrust guidance methods have been successfully developed for vari-

ous constrained proximity operations maneuvers of an inspector satellite maneuvering

about a non-maneuvering or maneuvering RSO. As hypothesized in Chapter I, it has

been shown that by using advanced optimization techniques such as pseudospectral

methods and metaheuristic methods, time and fuel-optimal guidance can be found for

complex, highly constrained, nonlinear problems. Three different finite-control types

have been investigated, where the developed algorithms for Problems A, B, and C ac-

count for each control type. Both NMCs and teardrops were thoroughly investigated,

and constraints such as keep-out zones, lighting constraints, and collision avoidance

constraints were successfully incorporated into the problems. The following sections

describe the contributions generated by answering each research question, and any

related potential future work.

6.1 Contributions

The main contributions are algorithms which answer each research question. Along

with each main contribution are some ways in which they were evaluated. The main

contributions are:

1. A path planning algorithm using pseudospectral methods to determine minimum-

time and minimum-fuel solutions for an inspector satellite with one, finite-

thrust, body-fixed engine and maximum slew rates. Furthermore, an algorithm

which uses this control type to inject an inspector satellite into an NMC about

a non-maneuvering RSO, and transfer to an orthogonal one in order to reach

viewing angles from all eight octants surrounding the RSO, while staying out

of a keep-out cone.
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This algorithm could be used to generate guidance for an initial inspection-

type mission of an RSO. One of the ways this algorithm was evaluated was by

comparing the guidance generated from the multi-phase problem to the guidance

generated if the problems were optimized separately. It was shown that time

and fuel could be saved by combining the two maneuvers into one, multi-phase

optimization problem.

2. A path planning algorithm using various optimization techniques to determine

minimum-time and minimum-fuel solutions for an inspector satellite with multi-

ple on/off thrusters and capable of reorienting its thrust vector instantaneously.

Furthermore, an algorithm which uses this control type to inject an inspector

satellite into a relative teardrop trajectory (as well as into an NMC) about a

non-maneuvering RSO, while adhering to lighting and collision constraints.

This algorithm was evaluated several ways. One way was to compare the

guidance generated with impulsive burns to the guidance generated where the

finite nature of the burn was accounted for, and seeing that for many scenarios

the impulsive burn solutions contained a significant amount of error. Another

way was to use the control generated in an independent, high-fidelity propa-

gator and seeing the the resulting trajectory was close enough to the desired

trajectory.

3. A differential game solution technique using metaheuristic methods to deter-

mine optimal zero-sum, open-loop strategies for a pursuer and evader, both

using constant, steerable thrust, where the pursuer wishes to achieve a spe-

cific inspection goal as soon as possible and the evader wishes to prolong that

condition as long as possible, for various inspection goals.

One of the ways this algorithm was evaluated was by ensuring that the
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solutions obtained were the differential game solutions. This was done by run-

ning many one-sided optimal control problems with suboptimal strategies, and

seeing that the differential game solution held.

4. A reliable application of metaheuristic optimization algorithms to provide initial

guesses for and/or complete solutions to the problems addressed in Problems B

and C.

The reliability of these algorithms were evaluated in Problem B by running

them many times, and determining how often they were an adequate initial

guess for an NLP solver. For Problem C, they were run many times for the

one-sided problems and always led to a solution for the cases run.

The solutions generated by these algorithms show that highly constrained and

nonlinear problems can successfully be formulated and solved. They account for

more realistic spacecraft control and constraints, and thus can generate more accurate

guidance. This helps to save time and/or fuel, and if used on an actual satellite may

help to improve a satellite’s capability and/or mission life.

6.1.1 Problem A Contributions.

Specific contributions from Problem A include:

• A method to find optimal guidance (with respect to time or fuel) for a com-

bined formation establishment and reconfiguration mission, given the minimum

amount of time desired in the first NMC, which saves time and/or fuel compared

to optimizing each mission component separately.

• A way to incorporate one, body-fixed engine with variable thrust and slew rate

limits into an optimal control problem, thus coupling the translational trajectory

to rotational constraints.
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• A technique for augmenting the cost function such that results are relatively

smooth and suitable for satellite operations.

• Constraint formulations which allow the optimizer to converge to one of two

initial NMCs, and enter at any point along that NMC.

• A way to produce a family of optimal solutions via a homotopic approach,

starting with the minimum-time solution.

• A conference paper [80] containing the research for Problem A: “Optimal Slew-

Rate-Limited Guidance for Combined Formation Establishment and Reconfig-

uration of Inspector Satellite With Exclusion Cone”.

6.1.2 Problem B Contributions.

Specific contributions from Problem B include:

• A parameterization of the control for sequences composed of constant accel-

eration magnitude and direction burn and coast phases, where the number of

control variables resulting from the parameterization is relatively small. Also,

the parameterization transforms the optimal control problem into a static op-

timization problem, without any discretization required. The control variables

can be bounded in this static optimization problem, for minimum-fuel problems,

such that the search space is not limited whatsoever.

• A semi-analytic guidance method for on/off thrusters, where the final HCW

states after a defined sequence can be calculated analytically, given the control

variables. This avoids the need to numerically propagate the HCW states when

using a metaheuristic algorithm or an NLP solver, thus greatly increasing the

speed of those algorithms.
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• A burn-burn and a burn-coast-burn sequence used to find minimum-time and

minimum-fuel solutions respectively.

• A coast-burn-coast-burn sequence where the first coast phase can save fuel com-

pared to using just a burn-coast-burn sequence and provide the flexibility needed

to satisfy certain constraints.

• A way to use the LROEs and Lovell’s teardrop parameters to generate the de-

sired NMC or teardrop, where the user only needs to choose four or five parame-

ters to define the desired trajectory. Additionally, teardrop design clarifications

for Lovell’s teardrop parameters.

• A way to use β as an optimization variable to allow the entry point to move

along the trajectory within bounds on β to further reduce the performance

index.

• Reliable and fast initial guess methods: CW Targeting, MATLAB’s PSO, mod-

ified MATLAB PSO, and MATLAB’s GA. If MATLAB’s Optimizaton Toolbox

is available, use MATLAB’s GA with the non-default Penalty Algorithm. If the

toolbox is unavailable, use CW Targeting or the modified MATLAB PSO.

• Fast mid and high-fidelity models, where the high-fidelity model takes into ac-

count higher-fidelity equations of motion and continuous mass loss. The com-

putation times are fast for the mid-fidelity model due to the low number of

optimization variables, the analytic propagation of the sequence, and the good

initial guesses, and the computation times are fast for the high-fidelity model

due to the good initial guesses from the mid-fidelity model and the use of pseu-

dospectral methods.

• Recommendations on NLP algorithms to use for best chances at convergence:
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sqp for the tight sunlight constraint, and interior-point for the relaxed sunlight

constraint. If both methods work well, then use sqp due to its faster computa-

tion times.

• Recommendation to use the relaxed sunlight constraint when possible since it

converges more often than the tight sunlight constraint.

• Analytic derivatives for NLP solvers, where it has been shown that supplying

exact, analytic first derivatives can increase chances of convergence. (Some NLP

solvers also require user-supplied first derivatives, like IPOPT).

• Two types of sunlight constraints and field-of-view constraints for the Earth and

the Moon, developed for both NMCs and teardrops, where these constraints are

incorporated into the terminal constraints and are not path constraints.

• Collision avoidance methods, to include passive collision avoidance, using the

developed algorithms.

• Methods to produce a range of optimal solutions with the developed algorithms.

• Visualization and validation performed with FreeFlyer.

• A conference paper [81] containing the research for Problem B-1: “Optimal In-

spector Satellite Guidance to Quasi-Hover Via Relative Teardrop Trajectories”.

• A journal article [82] containing the research for Problem B-1: “Optimal in-

spector satellite guidance to quasi-hover via relative teardrop trajectories”.

• Two conference papers [83, 84] containing the research for Problem B-2: “Com-

putationally Efficient Methods for Fuel Optimal Proximity Maneuvers with

Constraints”, and “Fuel Optimal, Finite Thrust Guidance Methods to Circum-

navigate with Lighting Constraints”.
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• A conference paper [85] containing the research for Problem B-3: “Optimal

Guidance for Relative Teardrops with Lighting and Collision Constraints”.

6.1.3 Problem C Contributions.

Specific contributions from Problem C include:

• A way to use the Tschauner-Hempel equations of motion and the Yamanaka-

Ankersen STM within Pontani’s IHM and Stupik’s differential game framework.

• Constraint formulations which can be used within the IHM and are linear with

respect to the states such that the resulting boundary value problem is easier

to solve. These constraints have been developed for the following games (in

addition to intercept): rendezvous, obtain Sun vector, match energy, obtain

Sun vector and match energy, and match energy and remain close.

• Relatively fast boundary value problem solution techniques by using the IHM

and either MATLAB’s PSO, or MATLAB’s GA with the non-default Penalty

Algorithm.

• A method using the IHM to help validate the differential game solutions by

solving multiple one-sided optimal control problems using optimal or suboptimal

strategies for the deterministic player.

• Worst case scenarios to expect on orbit or to aid in propulsion system design.

• Optimal evader strategies which could be used regardless of the pursuer strate-

gies.

• Demonstration that the IHM is a suitable method for solving these types of

differential games.
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6.2 Future Work

Future work for both Problems A and B include experimenting with higher-fidelity

equations of motion or propagators as the dynamics inside of GPOPS-II and targeting

the corresponding higher-fidelity natural trajectories. This would lead to even more

accurate guidance and would still benefit from the mid-fidelity solutions serving as the

initial guesses. Additionally, a model predictive control technique could be developed

for Problems A and B, where the optimal control could be regenerated at points along

the path as the error or predicted error grows too large. This could serve as a type

of feedback control technique or could accompany a closed-loop controller.

For Problem B specifically, more burns could be added to the sequence, where

the solution from the previous sequence would serve as an initial guess for the next

iteration of the sequence. For example, the coast-burn-coast-burn solution could

serve as the initial guess for a coast-burn-coast-burn-coast-burn sequence. It could

be investigated if more burns reduce the performance index even more. Obviously, it

may be difficult to keep generating and using analytic derivatives, and thus derivative

approximations would have to be used. Also, for Problem B, a multi-phase problem

may be able to be solved by using an extended sequence and adding another set of

terminal constraints as linkage constraints. If possible, a multi-phase problem could

be investigated where the inspector satellite must visit two different RSOs, and thus

two different natural trajectories would be targeted in the same optimization problem

(similar to Problem A). Regarding the analytic solution to a constant acceleration

magnitude, constant direction burn, it could be investigated as to if similar expressions

can be developed for the Tschauner-Hempel equations of motion. With respect to

collision avoidance, an adaptive method could be developed to more intelligently select

the points at which to check for a collision, such that collisions aren’t checked for at

every point along the trajectory. And finally, regarding passive collision avoidance
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specifically, GPOPS-II could be used, where the passive trajectory could be handled

as a staging event, where the satellite splits into two, one having made the final burn,

and one having failed to make the final burn.

For Problem C, a good study would be to determine the difference in the behavior

of the evader between prolonging the pursuer’s inspection goal as long as possible

vs. actually trying to achieve the inspection goal itself. It would also be desirable

to determine a way to weigh the fuel being used vs. achieving the goal in the game.

That is, each player may want to try and win the game, but at what point is it no

longer worth it, based on the fuel required to do so? And finally, with the current

setup, a Monte Carlo analysis could be run, where the initial conditions and spacecraft

properties vary, in order to determine relationships between those parameters and the

outcome of the game.

While there is still much work to be done, the research herein establishes the

necessary framework and shows the benefits of using optimization algorithms to solve

the exhibited problems. The optimal guidance solutions generated will save more

time and/or fuel and ultimately improve SSA of the GEO belt.
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