3,176 research outputs found

    Two-scale composite finite element method for Dirichlet problems on complicated domains

    Get PDF
    In this paper, we define a new class of finite elements for the discretization of problems with Dirichlet boundary conditions. In contrast to standard finite elements, the minimal dimension of the approximation space is independent of the domain geometry and this is especially advantageous for problems on domains with complicated micro-structures. For the proposed finite element method we prove the optimal-order approximation (up to logarithmic terms) and convergence estimates valid also in the cases when the exact solution has a reduced regularity due to re-entering corners of the domain boundary. Numerical experiments confirm the theoretical results and show the potential of our proposed metho

    Multiscale methods for problems with complex geometry

    Full text link
    We propose a multiscale method for elliptic problems on complex domains, e.g. domains with cracks or complicated boundary. For local singularities this paper also offers a discrete alternative to enrichment techniques such as XFEM. We construct corrected coarse test and trail spaces which takes the fine scale features of the computational domain into account. The corrections only need to be computed in regions surrounding fine scale geometric features. We achieve linear convergence rate in energy norm for the multiscale solution. Moreover, the conditioning of the resulting matrices is not affected by the way the domain boundary cuts the coarse elements in the background mesh. The analytical findings are verified in a series of numerical experiments

    High-order numerical methods for 2D parabolic problems in single and composite domains

    Get PDF
    In this work, we discuss and compare three methods for the numerical approximation of constant- and variable-coefficient diffusion equations in both single and composite domains with possible discontinuity in the solution/flux at interfaces, considering (i) the Cut Finite Element Method; (ii) the Difference Potentials Method; and (iii) the summation-by-parts Finite Difference Method. First we give a brief introduction for each of the three methods. Next, we propose benchmark problems, and consider numerical tests-with respect to accuracy and convergence-for linear parabolic problems on a single domain, and continue with similar tests for linear parabolic problems on a composite domain (with the interface defined either explicitly or implicitly). Lastly, a comparative discussion of the methods and numerical results will be given.Comment: 45 pages, 12 figures, in revision for Journal of Scientific Computin

    A direct solver with O(N) complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation method

    Get PDF
    A numerical method for solving elliptic PDEs with variable coefficients on two-dimensional domains is presented. The method is based on high-order composite spectral approximations and is designed for problems with smooth solutions. The resulting system of linear equations is solved using a direct (as opposed to iterative) solver that has optimal O(N) complexity for all stages of the computation when applied to problems with non-oscillatory solutions such as the Laplace and the Stokes equations. Numerical examples demonstrate that the scheme is capable of computing solutions with relative accuracy of 10−1010^{-10} or better, even for challenging problems such as highly oscillatory Helmholtz problems and convection-dominated convection diffusion equations. In terms of speed, it is demonstrated that a problem with a non-oscillatory solution that was discretized using 10810^{8} nodes was solved in 115 minutes on a personal work-station with two quad-core 3.3GHz CPUs. Since the solver is direct, and the "solution operator" fits in RAM, any solves beyond the first are very fast. In the example with 10810^{8} unknowns, solves require only 30 seconds.Comment: arXiv admin note: text overlap with arXiv:1302.599

    Modeling anisotropic diffusion using a departure from isotropy approach

    Get PDF
    There are a large number of finite volume solvers available for solution of isotropic diffusion equation. This article presents an approach of adapting these solvers to solve anisotropic diffusion equations. The formulation works by decomposing the diffusive flux into a component associated with isotropic diffusion and another component associated with departure from isotropic diffusion. This results in an isotropic diffusion equation with additional terms to account for the anisotropic effect. These additional terms are treated using a deferred correction approach and coupled via an iterative procedure. The presented approach is validated against various diffusion problems in anisotropic media with known analytical or numerical solutions. Although demonstrated for two-dimensional problems, extension of the present approach to three-dimensional problems is straight forward. Other than the finite volume method, this approach can be applied to any discretization method

    Composite Finite Elements for Trabecular Bone Microstructures

    Get PDF
    In many medical and technical applications, numerical simulations need to be performed for objects with interfaces of geometrically complex shape. We focus on the biomechanical problem of elasticity simulations for trabecular bone microstructures. The goal of this dissertation is to develop and implement an efficient simulation tool for finite element simulations on such structures, so-called composite finite elements. We will deal with both the case of material/void interfaces (complicated domains) and the case of interfaces between different materials (discontinuous coefficients). In classical finite element simulations, geometric complexity is encoded in tetrahedral and typically unstructured meshes. Composite finite elements, in contrast, encode geometric complexity in specialized basis functions on a uniform mesh of hexahedral structure. Other than alternative approaches (such as e.g. fictitious domain methods, generalized finite element methods, immersed interface methods, partition of unity methods, unfitted meshes, and extended finite element methods), the composite finite elements are tailored to geometry descriptions by 3D voxel image data and use the corresponding voxel grid as computational mesh, without introducing additional degrees of freedom, and thus making use of efficient data structures for uniformly structured meshes. The composite finite element method for complicated domains goes back to Wolfgang Hackbusch and Stefan Sauter and restricts standard affine finite element basis functions on the uniformly structured tetrahedral grid (obtained by subdivision of each cube in six tetrahedra) to an approximation of the interior. This can be implemented as a composition of standard finite element basis functions on a local auxiliary and purely virtual grid by which we approximate the interface. In case of discontinuous coefficients, the same local auxiliary composition approach is used. Composition weights are obtained by solving local interpolation problems for which coupling conditions across the interface need to be determined. These depend both on the local interface geometry and on the (scalar or tensor-valued) material coefficients on both sides of the interface. We consider heat diffusion as a scalar model problem and linear elasticity as a vector-valued model problem to develop and implement the composite finite elements. Uniform cubic meshes contain a natural hierarchy of coarsened grids, which allows us to implement a multigrid solver for the case of complicated domains. Besides simulations of single loading cases, we also apply the composite finite element method to the problem of determining effective material properties, e.g. for multiscale simulations. For periodic microstructures, this is achieved by solving corrector problems on the fundamental cells using affine-periodic boundary conditions corresponding to uniaxial compression and shearing. For statistically periodic trabecular structures, representative fundamental cells can be identified but do not permit the periodic approach. Instead, macroscopic displacements are imposed using the same set as before of affine-periodic Dirichlet boundary conditions on all faces. The stress response of the material is subsequently computed only on an interior subdomain to prevent artificial stiffening near the boundary. We finally check for orthotropy of the macroscopic elasticity tensor and identify its axes.Zusammengesetzte finite Elemente fĂŒr trabekulĂ€re Mikrostrukturen in Knochen In vielen medizinischen und technischen Anwendungen werden numerische Simulationen fĂŒr Objekte mit geometrisch komplizierter Form durchgefĂŒhrt. Gegenstand dieser Dissertation ist die Simulation der ElastizitĂ€t trabekulĂ€rer Mikrostrukturen von Knochen, einem biomechanischen Problem. Ziel ist es, ein effizientes Simulationswerkzeug fĂŒr solche Strukturen zu entwickeln, die sogenannten zusammengesetzten finiten Elemente. Wir betrachten dabei sowohl den Fall von Interfaces zwischen Material und Hohlraum (komplizierte Gebiete) als auch zwischen verschiedenen Materialien (unstetige Koeffizienten). In klassischen Finite-Element-Simulationen wird geometrische KomplexitĂ€t typischerweise in unstrukturierten Tetraeder-Gittern kodiert. Zusammengesetzte finite Elemente dagegen kodieren geometrische KomplexitĂ€t in speziellen Basisfunktionen auf einem gleichförmigen WĂŒrfelgitter. Anders als alternative AnsĂ€tze (wie zum Beispiel fictitious domain methods, generalized finite element methods, immersed interface methods, partition of unity methods, unfitted meshes und extended finite element methods) sind die zusammengesetzten finiten Elemente zugeschnitten auf die Geometriebeschreibung durch dreidimensionale Bilddaten und benutzen das zugehörige Voxelgitter als Rechengitter, ohne zusĂ€tzliche Freiheitsgrade einzufĂŒhren. Somit können sie effiziente Datenstrukturen fĂŒr gleichförmig strukturierte Gitter ausnutzen. Die Methode der zusammengesetzten finiten Elemente geht zurĂŒck auf Wolfgang Hackbusch und Stefan Sauter. Man schrĂ€nkt dabei ĂŒbliche affine Finite-Element-Basisfunktionen auf gleichförmig strukturierten Tetraedergittern (die man durch Unterteilung jedes WĂŒrfels in sechs Tetraeder erhĂ€lt) auf das approximierte Innere ein. Dies kann implementiert werden durch das Zusammensetzen von Standard-Basisfunktionen auf einem lokalen und rein virtuellen Hilfsgitter, durch das das Interface approximiert wird. Im Falle unstetiger Koeffizienten wird die gleiche lokale Hilfskonstruktion verwendet. Gewichte fĂŒr das Zusammensetzen erhĂ€lt man hier, indem lokale Interpolationsprobleme gelöst werden, wozu zunĂ€chst Kopplungsbedingungen ĂŒber das Interface hinweg bestimmt werden. Diese hĂ€ngen ab sowohl von der lokalen Geometrie des Interface als auch von den (skalaren oder tensorwertigen) Material-Koeffizienten auf beiden Seiten des Interface. Wir betrachten WĂ€rmeleitung als skalares und lineare ElastizitĂ€t als vektorwertiges Modellproblem, um die zusammengesetzten finiten Elemente zu entwickeln und zu implementieren. Gleichförmige WĂŒrfelgitter enthalten eine natĂŒrliche Hierarchie vergröberter Gitter, was es uns erlaubt, im Falle komplizierter Gebiete einen Mehrgitterlöser zu implementieren. Neben Simulationen einzelner LastfĂ€lle wenden wir die zusammengesetzten finiten Elemente auch auf das Problem an, effektive Materialeigenschaften zu bestimmen, etwa fĂŒr mehrskalige Simulationen. FĂŒr periodische Mikrostrukturen wird dies erreicht, indem man Korrekturprobleme auf der Fundamentalzelle löst. DafĂŒr nutzt man affin-periodische Randwerte, die zu uniaxialem Druck oder zu Scherung korrespondieren. In statistisch periodischen trabekulĂ€ren Mikrostrukturen lassen sich ebenfalls Fundamentalzellen identifizieren, sie erlauben jedoch keinen periodischen Ansatz. Stattdessen werden makroskopische Verschiebungen zu denselben affin-periodischen Randbedingungen vorgegeben, allerdings durch Dirichlet-Randwerte auf allen SeitenflĂ€chen. Die Spannungsantwort des Materials wird anschließend nur auf einem inneren Teilbereich berechnet, um kĂŒnstliche Versteifung am Rand zu verhindern. Schließlich prĂŒfen wir den makroskopischen ElastizitĂ€tstensor auf Orthotropie und identifizieren deren Achsen
    • 

    corecore