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A direct solver with O(N) complexity for variable coefficient elliptic PDEs
discretized via a high-order composite spectral collocation method

A. Gillman P.G. Martinsson
Department of Mathematics Department of Applied Mathematics

Dartmouth College University of Colorado at Boulder

Abstract: A numerical method for solving elliptic PDEs with variable co-
efficients on two-dimensional domains is presented. The method is based on
high-order composite spectral approximations and is designed for problems with
smooth solutions. The resulting system of linear equations is solved using a direct
(as opposed to iterative) solver that has optimal O(N) complexity for all stages of
the computation when applied to problems with non-oscillatory solutions such as
the Laplace and the Stokes equations. Numerical examples demonstrate that the
scheme is capable of computing solutions with relative accuracy of 10−10 or bet-
ter, even for challenging problems such as highly oscillatory Helmholtz problems
and convection-dominated convection diffusion equations. In terms of speed, it is
demonstrated that a problem with a non-oscillatory solution that was discretized
using 108 nodes was solved in 115 minutes on a personal work-station with two
quad-core 3.3GHz CPUs. Since the solver is direct, and the “solution operator”
fits in RAM, any solves beyond the first are very fast. In the example with 108

unknowns, solves require only 30 seconds.

1. Introduction

1.1. Problem formulation. The paper describes a numerical method with optimal O(N) complex-
ity for solving boundary value problems of the form

(1)

{

Au(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

where Ω is a rectangle in the plane with boundary Γ, and where A is a coercive elliptic partial
differential operator

(2) [Au](x) = −c11(x)[∂
2
1u](x) − 2c12(x)[∂1∂2u](x)− c22(x)[∂

2
2u](x)

+ c1(x)[∂1u](x) + c2(x)[∂2u](x) + c(x)u(x).

The methodology is based on a high order composite spectral discretization and can be modified to
handle a range of different domains, including curved ones. For problems with smooth solutions, we
demonstrate that the method can easily produce answers with ten or more correct digits.

The proposed method is based on a direct solver which in a single sweep constructs an approxima-
tion to the solution operator of (1). This gives the solver several advantages over established linear
complexity methods based on iterative solvers (e.g. GMRES or multigrid), perhaps most importantly,
the new method can solve problems for which iterative methods converge slowly or not at all. The
direct solver has O(N) complexity for all stages of the computation. A key feature is that once the
solution operator has been built, solves can be executed extremely rapidly, making the scheme excel
when solving a sequence of equations with the same operator but different boundary data.

1.2. Outline of solution procedure. The method in this paper is comprised of three steps:

(1) The domain is first tessellated into a hierarchical tree of rectangular patches. For each patch
on the finest level, a local “solution operator” is built using a dense brute force calculation.
The “solution operator” will be defined in Section 1.3; for now we simply note that it encodes
all information about the patch that is required to evaluate interactions with other patches.
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(2) The larger patches are processed in an upwards pass through the tree, where each parent can
be processed once its children have been processed. The processing of a parent node consists
of forming its solution operator by “gluing together” the solution operators of its children.

(3) Once the solution operators for all patches have been computed, a solution to the PDE can
be computed via a downwards pass through the tree. This step is typically very fast.

1.3. Local solution operators. The “local solution operators” introduced in Section 1.2 take the
form of discrete approximations to the Dirichlet-to-Neumann, or “DtN,” maps. To explain what
these maps do, first observe that for a given boundary function f , the BVP (1) has a unique solution
u (recall that we assume A to be coercive). For x ∈ Γ, let g(x) = un(x) denote the normal derivative
in the outwards direction of u at x. The process for constructing the function g from f is linear, we
write it as

g = T f.

Or, equivalently,

T : u|Γ 7→ un|Γ, where u satisfies Au = 0 in Ω.

From a mathematical perspective, the map T is a slightly unpleasant object; it is a hyper-singular
integral operator whose kernel exhibits complicated behavior near the corners of Γ. A key observation
is that in the present context, these difficulties can be ignored since we limit attention to functions
that are smooth. In a sense, we only need to accurately represent the projection of the “true”
operator T onto a space of smooth functions (that in particular do not have any corner singularities).

Concretely, given a square box Ωτ we represent a boundary potential u|Γ and a boundary flux
un|Γ via tabulation at a set of r tabulation points on each side. (For a leaf box, we use r Gaussian
nodes.) The DtN operator T τ is then represented simply as a dense matrix Tτ of size 4r × 4r that
maps tabulated boundary potentials to the corresponding tabulated boundary fluxes.

1.4. Computational complexity. A straight-forward implementation of the direct solver outlined
in Sections 1.2 and 1.3 in which all solution operators Tτ are treated as general dense matrices has as-
ymptotic complexity O(N1.5) for the “build stage” where the solution operators are constructed, and
O(N logN) complexity for the “solve stage” where the solution operator is applied for a given set of
boundary data [16]. This paper demonstrates that by exploiting internal structure in these operators,
they can be stored and manipulated efficiently, resulting in optimal O(N) overall complexity.

To be precise, the internal structure exploited is that the off-diagonal blocks of the dense solution
operators can to high accuracy be approximated by matrices of low rank. This property is a result
of the fact that for a patch Ωτ , the matrix Tτ is a discrete approximation of the continuum DtN
operator T τ , which is an integral operator whose kernel is smooth away from the diagonal.

Remark 1.1. The proposed solver can with slight modifications be applied to non-coercive problems
such as the Helmholtz equation. If the equation is kept fixed while N is increased, O(N) complexity
is retained. However, in the context of elliptic problems with oscillatory solutions, it is common to
scale N to the wave-length so that the number of discretization points per wave-length is fixed as N
increases. Our accelerated technique will in this situation lead to a practical speed-up, but will have
the same O(N1.5) asymptotic scaling as the basic method that does not use fast operator algebra.

1.5. Prior work. The direct solver outlined in Section 1.2 is an evolution of a sequence of direct
solvers for integral equations dating back to [17] and later [9, 8, 10, 4, 3]. The common idea is to
build a global solution operator by splitting the domain into a hierarchical tree of patches, build a
local solution operator for each “leaf” patch, and then build solution operators for larger patches
via a hierarchical merge procedure in a sweep over the tree from smaller to larger patches. In the
context of integral equations, the “solution operator” is a type of scattering matrix while in the
present context, the solution operator is a DtN operator.
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The direct solvers [17, 9, 8, 10, 4], designed for dense systems, are conceptually related to earlier
work on direct solvers for sparse systems arising from finite difference and finite element discretiza-
tions of elliptic PDEs such as the classical nested dissection method of George [6, 11] and the
multifrontal methods by Duff and others [5]. These techniques typically require O(N1.5) operations
to construct the LU-factorization of a sparse coefficient matrix arising from the discretization of an
elliptic PDE on a planar domain, with the dominant cost being the formation of Schur complements
and LU-factorizations of dense matrices of size up to O(N0.5) × O(N0.5). It was in the last several
years demonstrated that these dense matrices have internal structure that allows the direct solver to
be accelerated to linear or close to linear complexity, see, e.g., [22, 7, 13, 14, 19]. These accelerated
nested dissection methods are closely related to the fast direct solver presented in this manuscript. An
important difference is that the method in the present paper allows high order discretizations to be
used without increasing the cost of the direct solver. To be technical, the solvers in [22, 7, 13, 14, 19]
are based on an underlying finite difference or finite element discretization. High order discretization
in this context leads to large frontal matrices (since the “dividers” that partition the grid have to be
wide), and consequently very high cost of the LU-factorization.

Our discretization scheme is related to earlier work on spectral collocation methods on composite
(“multi-domain”) grids, such as, e.g., [12, 23], and in particular Pfeiffer et al [18]. For a detailed
review of the similarities and differences, see [16].

An O(N1.5) complexity version of the direct solver described in this paper was presented in [16]
which in turn is based on [15]. In addition to the improvement in complexity, this paper describes a
new representation of the local solution operators that leads to cleaner implementation of the direct
solvers and allows greater flexibility in executing the leaf computation, see Remark 3.1.

1.6. Outline of paper. Section 2 introduces the mesh of Gaussian nodes that forms our basic
computational grid. Sections 3, 4, and 5 describe a relatively simple direct solver with O(N1.5)
complexity. Sections 6, 7, and 8 describe how to improve the asymptotic complexity of the direct
solver from O(N1.5) to O(N) by exploiting internal structure in certain dense matrices. Section 9
describes numerical examples and Section 10 summarizes the key findings.

2. Discretization

Partition the domain Ω into a collection of square (or possibly rectangular) boxes, called leaf boxes.
On the edges of each leaf, place q Gaussian interpolation points. The size of the leaf boxes, and the
parameter q should be chosen so that any potential solution u of (1), as well as its first and second
derivatives, can be accurately interpolated from their values at these points (q = 21 is often a good
choice). Let {xk}

N
k=1 denote the collection of interpolation points on all boundaries.

Next construct a binary tree on the collection of leaf boxes by hierarchically merging them, making
sure that all boxes on the same level are roughly of the same size, cf. Figure 1. The boxes should be
ordered so that if τ is a parent of a box σ, then τ < σ. We also assume that the root of the tree
(i.e. the full box Ω) has index τ = 1. We let Ωτ denote the domain associated with box τ .

With each box τ , we define two index vectors Iτi and Iτe as follows:

Iτe A list of all exterior nodes of τ . In other words, k ∈ Iτe iff xk lies on the boundary of Ωτ .

Iτi For a parent τ , Iτi is a list of all its interior nodes that are not interior nodes of its children.
For a leaf τ , Iτi is empty.

Let u ∈ R
N denote a vector holding approximations to the values of u of (1), in other words,

u(k) ≈ u(xk).
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Figure 1. The square domain Ω is split into 4×4 leaf boxes. These are then gathered
into a binary tree of successively larger boxes as described in Section 5.1. One possible
enumeration of the boxes in the tree is shown, but note that the only restriction is
that if box τ is the parent of box σ, then τ < σ.

Finally, let v ∈ R
N denote a vector holding approximations to the boundary fluxes of the solution u

of (1), in other words

v(k) ≈

{

∂2u(xk), when xj lies on a horizontal edge,

∂1u(xk), when xj lies on a vertical edge.

Note the v(k) represents an outgoing flux on certain boxes and an incoming flux on others. This is
a deliberate choice to avoid problems with signs when matching fluxes of touching boxes.

3. Constructing the Dirichlet-to-Neumann map for a leaf

This section describes a spectral method for computing a discrete approximation to the DtN map
T τ associated with a leaf box Ωτ . In other words, if u is a solution of (1), we seek a matrix Tτ of
size 4q × 4q such that

(3) v(Iτe ) ≈ Tτ u(Iτe ).

Conceptually, we proceed as follows: Given a vector u(Iτe ) of potential values tabulated on the
boundary of Ωτ , form for each side the unique polynomial of degree at most q − 1 that interpolates
the q specified values of u. This yields Dirichlet boundary data on Ωτ in the form of four polynomials.
Solve the restriction of (1) to Ωτ for the specified boundary data using a spectral method on a local
tensor product grid of q×q Chebyshev nodes. The vector v(Iτe ) is obtained by spectral differentiation
of the local solution, and then re-tabulating the boundary fluxes to the Gaussian nodes in {xk}k∈Iτe .

We give details of the construction in Section 3.2, but as a preliminary step, we first review a
classical spectral collocation method for the local solve in Section 3.1

Remark 3.1. Chebyshev nodes are ideal for the leaf computations, and it is in principle also possible
to use Chebyshev nodes to represent all boundary-to-boundary “solution operators” such as, e.g.,
Tτ (indeed, this was the approach taken in the first implementation of the proposed method [16]).
However, there are at least two substantial benefits to using Gaussian nodes that justify the trouble to
retabulate the operators. First, the procedure for merging boundary operators defined for neighboring
boxes is much cleaner and involves less bookkeeping since the Gaussian nodes do not include the
corner nodes. (Contrast Section 4 of [16] with Section 4.) Second, and more importantly, the use of
the Gaussian nodes allows for interpolation between different discretizations. Thus the method can
easily be extended to have local refinement when necessary, see Remark 5.2.

3.1. Spectral discretization. Let Ωτ denote a rectangular subset of Ω with boundary Γτ , and
consider the local Dirichlet problem

[Au](x) = 0, x ∈ Ωτ(4)

u(x) = h(x), x ∈ Γτ ,(5)
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(a) (b)

Figure 2. Notation for the leaf computation in Section 3. (a) A leaf before elimina-
tion of interior (white) nodes. (b) A leaf after elimination of interior nodes.

where the elliptic operator A is defined by (2). We will construct an approximate solution to (4)
using a classical spectral collocation method described in, e.g., Trefethen [21]: First, pick a small

integer p and let {zk}
p2

k=1 denote the nodes in a tensor product grid of p× p Chebyshev nodes on Ωτ .

Let D(1) and D(2) denote spectral differentiation matrices corresponding to the operators ∂/∂x1 and
∂/∂x2, respectively. The operator (2) is then locally approximated via the p2 × p2 matrix

(6) A = −C11

(

D(1)
)2

− 2C12D
(1)D(2) − C22

(

D(2)
)2

+ C1D
(1) + C2D

(2) + C,

where C11 is the diagonal matrix with diagonal entries {c11(zk)}
p2

k=1, and the other matrices Cij , Ci,
C are defined analogously.

Let w ∈ R
p2 denote a vector holding the desired approximate solution of (4). We populate all

entries corresponding to boundary nodes with the Dirichlet data from h, and then enforce a spectral
collocation condition at the interior nodes. To formalize, let us partition the index set

{1, 2, . . . , p2} = Je ∪ Ji

in such a way that Je contains the 4(p − 1) nodes on the boundary of Ωτ , and Ji denotes the set of
(p− 2)2 interior nodes, see Figure 2(a). Then partition the vector w into two parts corresponding to
internal and exterior nodes via

wi = w(Ji), we = w(e).

J Analogously, partition A into four parts via

Ai,i = A(Ji, Ji), Ai,e = A(Ji, Je), Ae,i = A(Je, Ji), Ae,e = A(Je, Je).

The potential at the exterior nodes is now given directly from the boundary condition:

we = [h(zk)]k∈Je .

For the internal nodes, we enforce the PDE (4) via direct collocation:

(7) Ai,iwi + Ai,ewe = 0.

Solving (7) for wi, we find

(8) wi = −A−1
i,i Ai,ewe,
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3.2. Constructing the approximate DtN. Now that we know how to approximately solve the
local Dirichlet problem (4) via a local spectral method, we can build a matrix Tτ such that (3) holds
to high accuracy. The starting point is a vector u(Iτ ) ∈ R

4q of tabulated potential values on the
boundary of Ωτ . We will construct the vector v(Iτ ) ∈ R

4q via four linear maps. The combination of
these maps is the matrix Tτ . We henceforth assume that the spectral order of the local Chebyshev
grid matches the order of the tabulation on the leaf boundaries so that p = q.

Step 1 — re-tabulation from Gaussian nodes to Chebyshev nodes: For each side of Ωτ ,
form the unique interpolating polynomial of degree at most q − 1 that interpolates the q potential
values on that side specified by u(Iτe ). Now evaluate these polynomials at the boundary nodes of
a q × q Chebyshev grid on Ωτ . Observe that for a corner node, we may in the general case get
conflicts. For instance, the potential at the south-west corner may get one value from extrapolation
of potential values on the south border, and one value from extrapolation of the potential values
on the west border. We resolve such conflicts by assigning the corner node the average of the two
possibly different values. (In practice, essentially no error occurs since we know that the vector u(Iτe )
tabulates an underlying function that is continuous at the corner.)

Step 2 — spectral solve: Step 1 populates the boundary nodes of the q × q Chebyshev grid with
Dirichlet data. Now determine the potential at all interior points on the Chebyshev grid by executing
a local spectral solve, cf. equation (8).

Step 3 — spectral differentiation: After Step 2, the potential is known at all nodes on the
local Chebyshev grid. Now perform spectral differentiation to evaluate approximations to ∂u/∂x2
for the Chebyshev nodes on the two horizontal sides, and ∂u/∂x1 for the Chebyshev nodes on the
two vertical sides.

Step 4 — re-tabulation from the Chebyshev nodes back to Gaussian nodes: After Step 3,
the boundary fluxes on ∂Ωτ are specified by four polynomials of degree q−1 (specified via tabulation
on the relevant Chebyshev nodes). Now simply evaluate these polynomials at the Gaussian nodes on
each side to obtain the vector v(Iτe ).

Putting everything together, we find that the matrix Tτ is given as a product of four matrices

Tτ = L4 ◦ L3 ◦ L2 ◦ L1

4q × 4q 4q × 4q 4q × q2 q2 × 4(q − 1) 4(q − 1)× 4q

where Li is the linear transform corresponding to “Step i” above. Observe that many of these
transforms are far from dense, for instance, L1 and L4 are 4× 4 block matrices with all off-diagonal
blocks equal to zero. Exploiting these structures substantially accelerates the computation.

Remark 3.2. The grid of Chebyshev nodes {zk}
p2

j=1 introduced in Section 3.1 is only used for the
local computation. In the final solver, there is no need to store potential values at these grid points
— they are used merely for constructing the matrix Tτ .

4. Merging two DtN maps

Let τ denote a box in the tree with children α and β. In this section, we demonstrate that if the
DtN matrices Tα and Tβ for the children are known, then the DtN matrix Tτ can be constructed
via a purely local computation which we refer to as a “merge” operation.

We start by introducing some notation: Let Ωτ denote a box with children Ωα and Ωβ. For
concreteness, let us assume that Ωα and Ωβ share a vertical edge as shown in Figure 3, so that

Ωτ = Ωα ∪ Ωβ.

We partition the points on ∂Ωα and ∂Ωβ into three sets:
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Ωα ΩβJ1 J2J3

Figure 3. Notation for the merge operation described in Section 4. The rectangular
domain Ω is formed by two squares Ωα and Ωβ. The sets J1 and J2 form the exterior
nodes (black), while J3 consists of the interior nodes (white).

J1 Boundary nodes of Ωα that are not boundary nodes of Ωβ.
J2 Boundary nodes of Ωβ that are not boundary nodes of Ωα.
J3 Boundary nodes of both Ωα and Ωβ that are not boundary nodes of the union box Ωτ .

Figure 3 illustrates the definitions of the Jk’s. Let u denote a solution to (1), with tabulated potential
values u and boundary fluxes v, as described in Section 2. Set

(9) ui = u3, and ue =

[

u1
u2

]

.

Recall that Tα and Tβ denote the operators that map values of the potential u on the boundary to
values of ∂nu on the boundaries of the boxes Ωα and Ωβ, as described in Section 3. The operators
can be partitioned according to the numbering of nodes in Figure 3, resulting in the equations

(10)

[

v1
v3

]

=

[

Tα
1,1 Tα

1,3

Tα
3,1 Tα

3,3

] [

u1
u3

]

, and

[

v2
v3

]

=

[

T
β
2,2 T

β
2,3

T
β
3,2 T

β
3,3

]

[

u2
u3

]

.

Our objective is now to construct a solution operator Sτ and a DtN matrix Tτ such that

u3 = Sτ

[

u1
u2

]

(11)

[

v1
v2

]

= Tτ

[

u1
u2

]

.(12)

To this end, we write (10) as a single equation:

(13)







Tα
1,3 0 Tα

3,3

0 T
β
2,3 T

β
3,3

Tα
1,3 −T

β
2,3 Tα

3,3 − T
β
3,3











u1
u2
u3



 =





v1
v2
0



 ,

The last equation directly tells us that (11) holds with

(14) Sτ =
(

Tα
3,3 − T

β
3,3

)

−1[
−Tα

3,1

∣

∣ T
β
3,2].

By eliminating u3 from (13) by forming a Schur complement, we also find that (12) holds with

(15) Tτ =

[

Tα
1,1 0

0 T
β
2,2

]

+

[

Tα
1,3

T
β
2,3

]

(

Tα
3,3 − T

β
3,3

)

−1[
−Tα

3,1

∣

∣ T
β
3,2

]

.



8

5. The full hierarchical scheme

At this point, we know how to construct the DtN operator for a leaf (Section 3), and how to merge
two such operators of neighboring patches to form the DtN operator of their union (Section 4). We
are ready to describe the full hierarchical scheme for solving the Dirichlet problem (1). This scheme
takes the Dirichlet boundary data f , and constructs an approximation to the solution u. The output
is a vector u that tabulates approximations to u at the Gaussian nodes {xk}

N
k=1 on all interior edges

that were defined in Section 2. To find u at an arbitrary set of target points in Ω, a post-processing
step described in Section 5.3 can be used.

5.1. The algorithm. Partition the domain into a hierarchical tree as described in Section 2. Then
execute a “build stage” in which we construct for each box τ the following two matrices:

Sτ For a parent box τ , Sτ is a solution operator that maps values of u on ∂Ωτ to values of u at
the interior nodes. In other words, u(Iτi ) = Sτ u(Iτe ). (For a leaf τ , Sτ is not defined.)

Tτ The matrix that maps u(Iτe ) (tabulating values of u on ∂Ωτ ) to v(Iτe ) (tabulating values of
du/dn). In other words, v(Iτe ) = Tτ u(Iτe ).

(Recall that the index vector Iτe and Iτi were defined in Section 2.) The build stage consists of a
single sweep over all nodes in the tree. Any bottom-up ordering in which any parent box is processed
after its children can be used. For each leaf box τ , an approximation to the local DtN map Tτ is
constructed using the procedure described in Section 3. For a parent box τ with children σ1 and σ2,
the matrices Sτ and Tτ are formed from the DtN operators Tσ1 and Tσ2 via the process described
in Section 4. Algorithm 1 summarizes the build stage.

Once all the matrices {Sτ}τ have been formed, a vector u holding approximations to the solution
u of (1) can be constructed for all discretization points by starting at the root box Ω and moving
down the tree toward the leaf boxes. The values of u for the points on boundary of Ω can be obtained
by tabulating the boundary function f . When any box τ is processed, the value of u is known for
all nodes on its boundary (i.e. those listed in Iτe ). The matrix Sτ directly maps these values to
the values of u on the nodes in the interior of τ (i.e. those listed in Iτi ). When all nodes have been
processed, approximations to u have constructed for all tabulation nodes on interior edges. Algorithm
2 summarizes the solve stage.

Remark 5.1. The merge stage is exact when performed in exact arithmetic. The only approximation
involved is the approximation of the solution u on a leaf by its interpolating polynomial.

Remark 5.2. To keep the presentation simple, we consider in this paper only the case of a uniform
computational grid. Such grids are obviously not well suited to situations where the regularity of the
solution changes across the domain. The method described can in principle be modified to handle
locally refined grids quite easily. A complication is that the tabulation nodes for two touching boxes
will typically not coincide, which requires the introduction of specialized interpolation operators.
Efficient refinement strategies also require the development of error indicators that identify the regions
where the grid need to be refined. This is work in progress, and will be reported at a later date.
We observe that our introduction of Gaussian nodes on the internal boundaries (as opposed to the
Chebyshev nodes used in [16]) makes re-interpolation much easier.

5.2. Asymptotic complexity. In this section, we determine the asymptotic complexity of the
direct solver. Let Nleaf = 4q denote the number of Gaussian nodes on the boundary of a leaf box,
and let q2 denote the number of Chebychev nodes used in the leaf computation. Let L denote the
number of levels in the binary tree. This means there are 4L boxes. Thus the total number of

discretization nodes N is approximately 4Lq = (2Lq)2

q
. (To be exact, N = 22L+1q + 2L+1q.)
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Algorithm 1 (build solution operators)

This algorithm builds the global Dirichlet-to-Neumann operator for (1).
It also builds all matrices Sτ required for constructing u at any interior point.
It is assumed that if node τ is a parent of node σ, then τ < σ.

(1) for τ = Nboxes, Nboxes − 1, Nboxes − 2, . . . , 1
(2) if (τ is a leaf)
(3) Construct Sτ via the process described in Section 3.
(4) else

(5) Let σ1 and σ2 be the children of τ .
(6) Split Iσ1

e and Iσ2

e into vectors I1, I2, and I3 as shown in Figure 3.

(7) Sτ =
(

Tσ1

3,3 − Tσ2

3,3

)

−1[
−Tσ1

3,1

∣

∣ Tσ2

3,2

]

(8) Tτ =

[

Tσ1

1,1 0

0 Tσ2

2,2

]

+

[

Tσ1

1,3

Tσ2

2,3

]

Sτ .

(9) Delete Tσ1 and Tσ1 .
(10) end if

(11) end for

Algorithm 2 (solve BVP once solution operator has been built)

This program constructs an approximation u to the solution u of (1).
It assumes that all matrices Sτ have already been constructed in a pre-computation.
It is assumed that if node τ is a parent of node σ, then τ < σ.

(1) u(k) = f(xk) for all k ∈ I1e .
(2) for τ = 1, 2, 3, . . . , Nboxes

(3) u(Iτi ) = Sτ u(Iτe ).
(4) end for

Remark: This algorithm outputs the solution on the Gaussian nodes on box bound-
aries. To get the solution at other points, use the method described in Section 5.3.

The cost to process one leaf is approximately O(q6). Since there are N
q2

leaf boxes, the total cost

of pre-computing approximate DtN operators for all the bottom level is N
q2

× q6 ∼ Nq4.

Next, consider the cost of constructing the DtN map on level ℓ via the merge operation described
in Section 4. For each box on the level ℓ, the operators Tτ and Sτ are constructed via (14) and (14).
These operations involve matrices of size roughly 2−ℓN0.5 × 2−ℓN0.5. Since there are 4ℓ boxes per
level. The cost on level ℓ of the merge is

4ℓ ×
(

2−ℓN0.5
)3

∼ 2−ℓN1.5.

The total cost for all the merge procedures has complexity

L
∑

ℓ=1

2−ℓN1.5 ∼ N1.5.

Finally, consider the cost of the downwards sweep which solves for the interior unknowns. For any
non-leaf box τ on level ℓ, the size of Sτ is 2lq × 2l(6q) which is approximately ∼ 2−ℓN0.5 × 2−ℓN0.5.
Thus the cost of applying Sτ is roughly (2−ℓN0.5)2 = 2−2ℓN . So the total cost of the solve step has
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complexity
L−1
∑

l=0

22ℓ2−2ℓN ∼ N logN.

In Section 8, we explain how to exploit structure in the matrices T and S to improve the compu-
tational cost of both the precomputation and the solve steps.

5.3. Post-processing. The direct solver in Algorithm 1 constructs approximations to the solution
u of (1) at tabulation nodes at all interior edges. Once these are available, it is easy to construct
an approximation to u at an arbitrary point. To illustrate the process, suppose that we seek an
approximation to u(y), where y is a point located in a leaf τ . We have values of u tabulated
at Gaussian nodes on ∂Ωτ . These can easily be re-interpolated to the Chebyshev nodes on ∂Ωτ .
Then u can be reconstructed at the interior Chebyshev nodes via the formula (8); observe that
the local solution operator −A−1

i,i Ai,e was built when the leaf was originally processed and can be

simply retrieved from memory (assuming enough memory is available). Once u is tabulated at the
Chebyshev grid on Ωτ , it is trivial to interpolate it to y or any other point.

6. Compressible matrices

The cost of the direct solver given as Algorithm 1 is dominated by the work done at the very top
levels; the matrix operations on lines (7) and (8) involve dense matrices of size O(N0.5) × O(N0.5)
where N is the total number of discretization nodes, resulting in O(N1.5) overall cost. It turns
out that these dense matrices have internal structure that can be exploited to greatly accelerate
the matrix algebra. Specifically, the off-diagonal blocks of these matrices are to high precision rank
deficient, and the matrices can be represented efficiently using a hierarchical “data-sparse” format
known as Hierarchically Block Separable (HBS) (and sometimes Hierarchically Semi-Separable (HSS)
matrices [20, 1]). This section briefly describes the HBS property, for details see [8].

6.1. Block separable. Let H be an mp×mp matrix that is blocked into p× p blocks, each of size
m ×m. We say that H is “block separable” with “block-rank” k if for τ = 1, 2, . . . , p, there exist
m× k matrices Uτ and Vτ such that each off-diagonal block Hσ,τ of H admits the factorization

(16)
Hσ,τ = Uσ H̃σ,τ V∗

τ , σ, τ ∈ {1, 2, . . . , p}, σ 6= τ.
m×m m× k k × k k ×m

Observe that the columns of Uσ must form a basis for the columns of all off-diagonal blocks in row
σ, and analogously, the columns of Vτ must form a basis for the rows in all the off-diagonal blocks
in column τ . When (16) holds, the matrix H admits a block factorization

(17)
H = U H̃ V∗ + D,

mp×mp mp× kp kp× kp kp×mp mp×mp

where

U = diag(U1, U2, . . . , Up), V = diag(V1, V2, . . . , Vp), D = diag(D1, D2, . . . , Dp),

and

H̃ =











0 H̃12 H̃13 · · ·

H̃21 0 H̃23 · · ·

H̃31 H̃32 0 · · ·
...

...
...











.
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Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 4. Numbering of nodes in a fully populated binary tree with L = 3 levels.
The root is the original index vector I = I1 = [1, 2, . . . , 400].

6.2. Hierarchically Block-Separable. Informally speaking, a matrix H is Heirarchically Block-
Separable (HBS), if it is amenable to a telescoping block factorization. In other words, in addition

to the matrix H being block separable, so is H̃ once it has been reblocked to form a matrix with
p/2 × p/2 blocks. Likewise, the middle matrix from the block separable factorization of H̃ will be
block separable, etc.

In this section, we describe properties and the factored representation of HBS matrices. Details
on constructing the factorization are provided in [8].

6.3. A binary tree structure. The HBS representation of an M × M matrix H is based on a
partition of the index vector I = [1, 2, . . . , M ] into a binary tree structure. We let I form the root
of the tree, and give it the index 1, I1 = I. We next split the root into two roughly equi-sized vectors
I2 and I3 so that I1 = I2 ∪ I3. The full tree is then formed by continuing to subdivide any interval
that holds more than some preset fixed number m of indices. We use the integers ℓ = 0, 1, . . . , L
to label the different levels, with 0 denoting the coarsest level. A leaf is a node corresponding to a
vector that never got split. For a non-leaf node τ , its children are the two boxes σ1 and σ2 such that
Iτ = Iσ1

∪ Iσ2
, and τ is then the parent of σ1 and σ2. Two boxes with the same parent are called

siblings. These definitions are illustrated in Figure 4.

6.4. Definition of the HBS property. We now define what it means for an M × M matrix H

to be hierarchically block separable with respect to a given binary tree T that partitions the index
vector J = [1, 2, . . . , M ]. For simplicity, we suppose that for every leaf node τ the index vector Iτ
holds precisely m points, so that M = m 2L. Then H is HBS with block rank k if the following two
conditions hold:

(1) Assumption on ranks of off-diagonal blocks at the finest level: For any two distinct leaf nodes τ
and τ ′, define the m×m matrix

(18) Hτ,τ ′ = H(Iτ , Iτ ′).

Then there must exist matrices Uτ , Vτ ′ , and H̃τ,τ ′ such that

(19)
Hτ,τ ′ = Uτ H̃τ,τ ′ V∗

τ ′ .
m×m m× k k × k k ×m

(2) Assumption on ranks of off-diagonal blocks on level ℓ = L−1, L−2, . . . , 1: The rank assumption
at level ℓ is defined in terms of the blocks constructed on the next finer level ℓ+ 1: For any distinct
nodes τ and τ ′ on level ℓ with children σ1, σ2 and σ′

1, σ
′

2, respectively, define

(20) Hτ,τ ′ =

[

H̃σ1,σ
′

1
H̃σ1,σ

′

2

H̃σ2,σ
′

1
H̃σ2,σ

′

2

]

.
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Name: Size: Function:
For each leaf Dτ m×m The diagonal block H(Iτ , Iτ ).
node τ : Uτ m× k Basis for the columns in the blocks in row τ .

Vτ m× k Basis for the rows in the blocks in column τ .
For each parent Bτ 2k × 2k Interactions between the children of τ .
node τ : Uτ 2k × k Basis for the columns in the (reduced) blocks in row τ .

Vτ 2k × k Basis for the rows in the (reduced) blocks in column τ .

Figure 5. An HBS matrix H associated with a tree T is fully specified if the factors
listed above are provided.

Then there must exist matrices Uτ , Vτ ′ , and H̃τ,τ ′ such that

(21)
Hτ,τ ′ = Uτ H̃τ,τ ′ V∗

τ ′ .
2k × 2k 2k × k k × k k × 2k

An HBS matrix is now fully described if the basis matrices Uτ and Vτ are provided for each node
τ , and in addition, we are for each leaf τ given the m×m matrix

(22) Dτ = H(Iτ , Iτ ),

and for each parent node τ with children σ1 and σ2 we are given the 2k × 2k matrix

(23) Bτ =

[

0 H̃σ1,σ2

H̃σ2,σ1
0

]

.

Observe in particular that the matrices H̃σ1,σ2
are only required when {σ1, σ2} forms a sibling pair.

Figure 5 summarizes the required matrices.

6.5. Telescoping factorization. Given the matrices defined in the previous section, we define the
following block diagonal factors:

D(ℓ) = diag(Dτ : τ is a box on level ℓ), ℓ = 0, 1, . . . , L,(24)

U(ℓ) = diag(Uτ : τ is a box on level ℓ), ℓ = 1, 2, . . . , L,(25)

V(ℓ) = diag(Vτ : τ is a box on level ℓ), ℓ = 1, 2, . . . , L,(26)

B(ℓ) = diag(Bτ : τ is a box on level ℓ), ℓ = 0, 1, . . . , L− 1, .(27)

Furthermore, we let H̃
(ℓ)

denote the block matrix whose diagonal blocks are zero, and whose off-
diagonal blocks are the blocks H̃τ,τ ′ for all distinct τ, τ

′ on level ℓ. With these definitions,

(28) H = U(L) H̃
(L)

(V(L))∗ + D(L);
m 2L × n 2L m 2L × k 2L k 2L × k 2L k 2L ×m 2L m 2L ×m 2L

for ℓ = L− 1, L− 2, . . . , 1 we have

(29) H̃
(ℓ+1)

= U(ℓ) H̃
(ℓ)

(V(ℓ))∗ + B(ℓ);
k 2ℓ+1 × k 2ℓ+1 k 2ℓ+1 × k 2ℓ k 2ℓ × k 2ℓ k 2ℓ × k 2ℓ+1 k 2ℓ+1 × k 2ℓ+1

and finally

(30) H̃
(1)

= B(0).
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7. Fast arithmetic operations on HBS matrices

Arithmetic operations involving dense HBS matrices of size M×M can often be executed in O(M)
operations. This fast matrix algebra is vital for achieving linear complexity in our direct solver. This
section provides a brief introduction to the HBS matrix algebra. We describe the operations we need
(inversion, addition, and low-rank update) in some detail for the single level “block separable” format.
The generalization to the multi-level “hierarchically block separable” format is briefly described for
the case of matrix inversion. A full description of all algorithms required is given in [7], which is
related to the earlier work [2].

Before we start, we recall that a block separable matrix H consisting of p × p blocks, each of size
m×m, and with “HBS-rank” k < m, admits the factorization

(31)
H = U H̃ V∗ + D.

mp×mp mp× kp kp× kp kp×mp mp×mp

7.1. Inversion of a block separable matrix. The decomposition (31) represents H as a sum

of one term UH̃V∗ that is “low rank,” and one term D that is easily invertible (since it is block
diagonal). By modifying the classical Woodbury formula for inversion of a matrix perturbed by the
addition of a low-rank term, it can be shown that (see Lemma 3.1 of [8])

(32) H−1 = E (H̃+ D̂)−1 F∗ + G,

where

D̂ =
(

V∗ D−1 U
)

−1
,(33)

E = D−1UD̂,(34)

F = (D̂V∗D−1)∗,(35)

G = D−1 −D−1UD̂V∗ D−1,(36)

assuming the inverses in formulas (32) — (36) all exist. Now observe that the matrices D̂, E, F, and
G can all easily be computed since the formulas defining them involve only block-diagonal matrices.
In consequence, (32) reduces the task of inverting the big (size mp × mp) matrix H to the task of

inverting the small (size kp× kp) matrix H̃+ D̂.
When H is not only “block separable”, but “hierarchically block separable”, the process can be

repeated recursively by exploiting that H̃ + D̂ is itself amenable to accelerated inversion, etc. The
resulting process is somewhat tricky to analyze, but leads to very clean codes. To illustrate, we
include Algorithm 3 which shows the multi-level O(M) inversion algorithm for an HBS matrix H.
The algorithm takes as input the factors {Uτ , Vτ , Dτ , Bτ}τ representingH (cf. Figure 5), and outputs
an analogous set of factors {Eτ , Fτ , Gτ}τ representing H−1. With these factors, the matrix-vector
multiplication y = H−1x can be executed via the procedure described in Algorithm 4.

7.2. Addition of two block separable matrices. Let HA and HB be block separable matrices
with factorizations

HA = UAH̃
A
VA∗ +DA, and HB = UBH̃

B
VB∗ +DB .

Then H = HA +HB can be written in block separable form via

(37) H = HA +HB =
[

UAUB
]

[

H̃
A

0

0 H̃
B

]

[

VAVB
]∗

+
(

DA +DB
)

.

To restore (37) to block separable form, permute the rows and columns of
[

UAUB
]

and
[

VAVB
]

to attain block diagonal form, then re-orthogonalize the diagonal blocks. This process in principle
results in a matrix H whose HBS-rank is the sum of the HBS-ranks of HA and HB . In practice, this
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Algorithm 3 (inversion of an HBS matrix)

Given factors {Uτ , Vτ , Dτ , Bτ}τ representing an HBS matrix H, this algorithm constructs factors

{Eτ , Fτ , Gτ}τ representing H−1.

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 1
loop over all boxes τ on level ℓ,

if τ is a leaf node

D̃τ = Dτ

else

Let σ1 and σ2 denote the children of τ .

D̃τ =

[

D̂σ1
Bσ1,σ2

Bσ2,σ1
D̂σ2

]

end if

D̂τ =
(

V∗

τ D̃
−1

τ Uτ

)

−1
.

Eτ = D̃
−1

τ Uτ D̂τ .

F∗

τ = D̂τ V
∗

τ D̃
−1

τ .

Gτ = D̃
−1

τ − D̃
−1

τ Uτ D̂τ V
∗

τ D̃
−1

τ .
end loop

end loop

G1 =

[

D̂2 B2,3

B3,2 D̂3

]−1

.

Algorithm 4 (application of the inverse of an HBS matrix)

Given x, compute y = H−1 x using the factors {Eτ , Fτ , Gτ}τ resulting from Algorithm 3.

loop over all leaf boxes τ
x̂τ = F∗

τ x(Iτ ).
end loop

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 1
loop over all parent boxes τ on level ℓ,

Let σ1 and σ2 denote the children of τ .

x̂τ = F∗

τ

[

x̂σ1

x̂σ2

]

.

end loop

end loop
[

ŷ2
ŷ3

]

= G1

[

x̂2
x̂3

]

.

loop over all levels, coarser to finer, ℓ = 1, 2, . . . , L− 1
loop over all parent boxes τ on level ℓ

Let σ1 and σ2 denote the children of τ .
[

ŷσ1

ŷσ2

]

= Eτ x̂τ + Gτ

[

x̂σ1

x̂σ2

]

.

end loop

end loop

loop over all leaf boxes τ
y(Iτ ) = Eτ q̂τ + Gτ x(Iτ ).

end loop

rank increase can be combated by numerically recompressing the basis matrices, and updating the
middle factor as needed. For details, as well as the extension to a multi-level scheme, see [2, 7].
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7.3. Addition of a block separable matrix with a low rank matrix. Let HB = QR be a
k-rank matrix where Q and R∗ are of size mp× k. We would like to add HB to the block separable
matrix HA. Since we already know how to add two block separable matrices, we choose to rewrite
HB in block separable form. Without loss of generality, assume Q is orthogonal. Partition Q into p
blocks of size m× k. The blocks make up the matrix UB . Likewise partition R into p blocks of size
k × m. The block matrix DB has entries Dτ = QτRτ for τ = 1, . . . , p. To construct the matrices
VB , for each τ = 1, . . . , p, the matrix Rτ is factorized into R̃τVτ∗ where the matrix Vτ is orthogonal.

The matrices R̃τ make up the entries of H̃
B
.

8. Accelerating the direct solver

This section describes how the fast matrix algebra described in Sections 6 and 7 can be used to
accelerate the direct solver of Section 5 to attain O(N) complexity. We recall that the O(N1.5) cost
of Algorithm 1 relates to the execution of lines (7) and (8) at the top levels, since these involve dense
matrix algebra of matrices of size O(N0.5)×O(N0.5). The principal claims of this section are:

• The matrices Tσ1

1,3, T
σ1

3,1, T
σ2

2,3, T
σ2

3,2 have low numerical rank.

• The matrices Tσ1

1,1, T
σ2

2,2, T
σ1

3,3, T
σ2

3,3 are HBS matrices of low HBS rank.

To be precise, the ranks that we claim are “low” scale as log(1/ν) × log(m) where m is the number
of points along the boundary of Ωτ , and ν is the computational tolerance. In practice, we found that
for problems with non-oscillatory solutions, the ranks are extremely modest: when ν = 10−10, the
ranks range between 10 and 80, even for very large problems.

The cause of the rank deficiencies is that the matrix Tτ is a highly accurate approximation to the
Dirichlet-to-Neumann operator on Ωτ . This operator is known to have a smooth kernel that is non-
oscillatory whenever the underlying PDE has non-oscillatory solutions. Since the domain boundary
∂Ωτ is one-dimensional, this makes the expectation that the off-diagonal blocks have low rank very
natural, see [8]. It is backed up by extensive numerical experiments (see Section 9), but we do not
at this point have rigorous proofs to support the claim.

Once it is observed that all matrices in lines (7) and (8) of Algorithm 1 are structured, it becomes
obvious how to accelerate the algorithm. For instance, line (7) is executed in three steps: (i) Add
the HBS matrices Tσ1

3,3 and −Tσ2

3,3. (ii) Invert the sum of the HBS matrices. (iii) Apply the inverse

(in HBS form) to one of the low rank factors of
[

−Tα
3,1

∣

∣ T
β
3,2

]

. The result is an approximation to Sτ ,

represented as a product of two thin matrices. Executing line (8) is analogous: First form the matrix
products Tσ1

1,3 S
τ and Tσ2

2,3 S
τ , exploiting that all factors are of low rank. Then perform a low-rank

update to a block-diagonal matrix whose blocks are provided in HBS-form to construct the new HBS
matrix Tτ .

Accelerating the solve stage in Algorithm 2 is trivial, simply exploit that the matrix Sτ on line (3)
has low numerical rank.

Remark 8.1. Some of the structured matrix operators (e.g. adding two HBS matrices, or the low-
rank update) can algebraically lead to a large increase in the HBS ranks. We know for physical reasons
that the output should have rank-structure very similar to the input, however, and we combat the
rank-increase by frequently recompressing the output of each operation.

Remark 8.2. In practice, we implement the algorithm to use dense matrix algebra at the finer levels,
where all the DtN matrices Tτ are small. Once they get large enough that HBS algebra outperforms
dense operations, we compress the dense matrices by brute force, and rely on HBS algebra in the
remainder of the upwards sweep.

9. Numerical Examples

In this section, we illustrate the capabilities of the proposed method for the boundary value problem
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(38)

{

−∆u(x)− c1(x) ∂1u(x)− c2(x) ∂2u(x)− c(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2, Γ = ∂Ω, and c1(x), c2(x), and c(x) are smooth, cf. (2). The choice of the functions
c1(x), c2(x), and c(x) will vary for each example.

All experiments reported in this section were executed on a machine with two quad-core Intel
Xeon E5-2643 processors and 128GB of RAM. The direct solver was implemented in Matlab, which
means that the speeds reported can very likely be improved, although the asymptotic complexity
should be unaffected.

In Section 9.1 we apply the direct solver to four problems with known analytic solutions. This
allows us to very accurately investigate the errors incurred, but is arguably a particularly favorable
environment. Section 9.2 presents results from more general situations where the exact solution is
not known, and errors have to be estimated.

In all experiments, the number of Gaussian points per leaf edge q is fixed at 21, and 21×21 tensor
product grids of Chebyshev points are used in the leaf computations. Per Remark 8.2, we switch
from dense computations to HBS when a box has more than 2000 points on the boundary.

9.1. Performance for problems with known solutions. To illustrate the scaling and accuracy of
the discretization technique, we apply the numerical method to four problems with known solutions.
The problems are:

Laplace: Let c1(x) = c2(x) = c(x) = 0 in (38).
Helmholtz I : Let c1(x) = c2(x) = 0, and c(x) = κ2 where κ = 80 in (38). This represents

a vibration problem on a domain Ω of size roughly 12 × 12 wave-lengths. (Recall that the
wave-length is given by λ = 2π

κ
.)

Helmholtz II : Let c1(x) = c2(x) = 0, and c(x) = κ2 where κ = 640 in (38). This corresponds
to a domain of size roughly 102 × 102 wave-lengths.

Helmholtz III : We again set c1(x) = c2(x) = 0, and c(x) = κ2 in (38), but now we let κ grow
as the number of discretization points grows to maintain a constant 12 points per wavelength.

The boundary data in (38) is chosen to coincide with the known solutions uexact(x) = log |x̂− x|
for the Laplace problem and with uexact(x) = Y0(κ|x̂−x|) for the three Helmholtz problems, where
x̂ = (−2, 0), and where Y0 denotes the 0’th Bessel function of the second kind.

In a first experiment, we prescribed the tolerance in the “fast” matrix algebra to be ǫ = 10−7.
Table 1 reports the following quantities:

N Number of Gaussian discretization points.

Ntot Total number of discretization points. (N plus the number of Chebyshev points)

Tbuild Time for building the solution operator.

Tsolve Time to solve for interior nodes.

Tapply Time to apply the approximate Dirichlet-to-Neumann operator T1.

R Amount of memory required to store the solution operator.
Epot = maxk : xk∈Ω

{
∣

∣uapp(xk)− uexact(xk)
∣

∣

}

,
where uapp denotes the approximate solution constructed by the direct solver.
Our expectation is for all problems except Helmholtz III to exhibit optimal linear scaling for both

the build and the solve stages. Additionally, we expect the cost of applying the Dirichlet-to-Neumann
operator T1 to scale as N0.5 for all problems except Helmholtz III. The numerical results clearly bear
this out for Laplace and Helmholtz I. For Helmholtz II, it appears that linear scaling has not quite
taken hold for the range of problem sizes our hardware could manage. The Helmholtz III problem
clearly does not exhibit linear scaling, but has not yet reached its O(N1.5) asymptotic at the largest
problem considered, which was of size roughly 426 × 426 wave-lengths. We remark that the cost
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Ntot N Tbuild Tsolve Tapply R Epot

(seconds) (seconds) (seconds) (MB)

Laplace
1815681 174720 91.68 0.34 0.035 1611.19 2.57e-05
7252225 693504 371.15 1.803 0.104 6557.27 6.55e-05
28987905 2763264 1661.97 6.97 0.168 26503.29 2.25e-04
115909633 11031552 6894.31 30.67 0.367 106731.61 8.62e-04

Helmholtz I
1815681 174720 62.07 0.202 0.027 1611.41 6.86e-06
7252225 693504 363.19 1.755 0.084 6557.12 7.47e-06
28987905 2763264 1677.92 6.92 0.186 26503.41 1.55e-05
115909633 11031552 7584.65 31.85 0.435 106738.85 1.45e-04

Helmholtz II
1815681 174720 93.96 0.29 0.039 1827.72 5.76e-07
7252225 693504 525.92 2.13 0.074 7151.60 7.06e-07
28987905 2763264 2033.91 8.59 0.175 27985.41 4.04e-06

Helmholtz III
1815681 174720 93.68 0.29 0.038 1839.71 1.29e-06
7252225 693504 624.24 1.67 0.086 7865.13 1.21e-06
28987905 2763264 4174.91 10.28 0.206 33366.45 1.76e-06

Table 1. Timing results in seconds for the PDEs considered in Section 9.1. For
these experiments, ǫ = 10−7.

of the solve stage is tiny. For example, a problem involving 11 million unknowns (corresponding to
approximately 100 million discretization points) takes 115 minutes for the build stage and then only
30 seconds for each additional solve. The cost for applying the Dirichlet-to-Neumann operator is
even less at 0.36 seconds per boundary condition. Figure 6 illustrates the scaling via log-log plots.

In a second set of experiments, we investigated the accuracy of the computed solutions, and in
particular how the accuracy depends on the tolerance ǫ in the fast matrix algebra. In addition to
reporting Epot, Table 2 reports

Egrad = max
k : xk∈Γ

{∣

∣un,app(xk)− un,exact(xk)
∣

∣

}

,

where uapp denotes the approximate solution constructed by the direct solver for tolerances ε =
10−7, 10−10, and 10−12. The number of discretization points was fixed problem to be N = 693504
(Ntot = 7252225).

ǫ = 10−7 ǫ = 10−10 ǫ = 10−12

Epot Egrad Epot Egrad Epot Egrad

Laplace 6.55e-05 1.07e-03 2.91e-08 5.52e-07 1.36e-10 8.07e-09
Helmholtz I 7.47e-06 6.56e-04 5.06e-09 4.89e-07 1.38e-10 8.21e-09
Helmholtz II 7.06e-07 3.27e-04 1.42e-09 8.01e-07 8.59e-11 4.12e-08
Helmholtz III 1.21e-06 1.28e-03 1.85e-09 2.69e-06 1.63e-09 2.25e-06

Table 2. Errors for solving the PDEs in Section 9.1 with different user prescribed
tolerances when the number of discretization points is fixed at N = 693504 (Ntot =
7252225).

The solution obtains (or nearly obtains) the prescribed tolerance while the normal derivative
suffers from a three digit loss in accuracy. This loss is likely attributable to the unboundedness of the
Dirichlet-to-Neumann map. The compressed representation captures the high end of the spectrum
to the desired accuracy while the low end of the spectrum is captured to three digits less than the
desired accuracy.
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Figure 6. The first three graphs give the times required for building the direct
solver (Tbuild), solving a problem (Tsolve) and applying the approximate Dirichlet-to-
Neumann operator on ∂Ω (Tapply). The fourth graph gives the memory R in MB
required to store the solution operator.

9.2. Convergence for unknown solutions. In this section, we apply the direct solver to three
problems for which we do not know an exact solution:

Constant convection : Let the convection in the x2 direction be constant by setting c1(x) = 0,
c2(x) = −100, 000 and set c(x) = 0.

Diffusion-Convection : Introduce a divergence free convection by setting c1(x) = −10, 000 cos(4πx2),
c2(x) = −10, 000 cos(4πx1), and c(x) = 0.

Variable Helmholtz : Consider the variable coefficient Helmholtz problem where c1(x) = 0,
c2(x) = 0, c(x) = κ2(1− (sin(4πx1) sin(4πx2))

2) and κ = 640.

For the three experiments, the boundary data is given by f(x) = cos(2x1)(1 − 2x2).
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Ntot N uN (x̂) EN
int uN

n (x̂) EN
bnd

Constant Convection

455233 44352 -0.474057246846306 0.477 -192794.835134257 824.14
1815681 174720 -0.951426960146812 8.28e-03 -191970.688228300 1.47
7252225 693504 -0.959709514830931 6.75e-10 -191972.166912008 0.365
28987905 2763264 -0.959709515505929 -191972.532606428

Variable Helmholtz

114465 11424 2.50679456864385 6.10e-02 -2779.09822864819 3188
455233 44352 2.56780367343056 4.63e-07 409.387483435691 2.59e-02
1815681 174720 2.56734097240752 1.77e-09 409.413356177218 3.30e-07
7252225 693504 2.56734097418159 409.413355846946

Diffusion-Convection

455233 44352 0.0822281612709325 5.04e-5 -35.1309711271060 2.23e-3
1815681 174720 0.0822785917678385 2.67e-8 -35.1332056731696 7.57e-6
7252225 693504 0.0822786184699243 5.41e-12 -35.1332132455725 2.11e-09
28987905 2763264 0.0822786184753420 -35.1332132476795

Table 3. Convergence results for solving the PDE’s in Section 9.2 with a user sub-
scribed tolerance of ǫ = 10−12.

Ntot N Tbuild Tsolve R
(seconds) (seconds) (MB)

Constant Convection

455233 44352 21.04 0.85 683.25
1815681 174720 176.09 3.47 2997.80
7252225 693504 980.93 13.76 8460.94
28987905 2763264 5227.52 77.03 48576.75

Variable Helmholtz

114465 11424 4.61 0.19 167.68
455233 44352 42.72 1.110 774.34
1815681 174720 450.68 4.54 3678.31
7252225 693504 3116.57 17.64 15658.07

Diffusion-Convection

455233 44352 28.31 0.795 446.21
1815681 174720 131.23 3.20 2050.20
7252225 693504 906.11 17.12 8460.94
28987905 2763264 4524.99 66.99 47711.17

Table 4. Times in seconds for solving the PDE’s in Section 9.2 with a user subscribed
tolerance of ǫ = 10−12.

To check for convergence, we post-process the solution as described in Section 5.3 to get the
solution on the Chebyshev grid. Let uN denote the solution on the Chebyshev grid. Likewise,let uNn
denote the normal derivative on the boundary at the Chebyshev boundary points. We compare the
solution and the normal derivative on the boundary pointwise at the locations

x̂ = (0.75, 0.25) and ŷ = (0.75, 0)

respectively, via

EN
int = |uN (x̂)− u4N (x̂)| and EN

bnd = |uNn (ŷ)− u4Nn (ŷ)|.

The tolerance for the compressed representations is set to ǫ = 10−12. Table 3 reports the pointwise
errors. We see that high accuracy is obtained in all cases, with solutions that have ten correct digits
for the potential and about seven correct digits for the boundary flux.

The computational costs of the computations are reported in Table 4. The memory R reported
now includes the memory required to store all local solution operators described in Section 5.3.
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10. Conclusions

We have described a direct solver for variable coefficient elliptic PDEs in the plane, under the
assumption that the solution and all coefficient functions are smooth. For problems with non-
oscillatory solutions such as the Laplace and Stokes equations, the asymptotic complexity of the
solver is O(N), with a small constant of proportionality. For problems with oscillatory solutions,
high practical efficiency is retained for problems of size up to several hundred wave-lengths.

Our method is based on a composite spectral discretization. We use high order local meshes
(typically of size 21 × 21) capable of solving even very large scale problems to ten correct digits or
more. The direct solver is conceptually similar to the classical nested dissection method [6]. To
improve the asymptotic complexity from the classical O(N1.5) to O(N), we exploit internal structure
in the dense “frontal matrices” at the top levels in a manner similar to recent work such as, e.g.,
[2, 7, 13, 14, 19]. Compared to these techniques, our method has an advantage in that high order
discretizations can be incorporated without compromising the speed of the linear algebra. The reason
is that we use a formulation based on Dirichlet-to-Neumann operators. As a result, we need high
order convergence only in the tangential direction on patch boundaries.

The direct solver presented requires more storage than classical iterative methods, but this is
partially off-set by the use of high-order discretizations. More importantly, the solver is characterized
by very low data-movement. This makes the method particularly well suited for implementation on
parallel machines with distributed memory.
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