161 research outputs found

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Parametric array calibration

    Get PDF
    The subject of this thesis is the development of parametric methods for the calibration of array shape errors. Two physical scenarios are considered, the online calibration (self-calibration) using far-field sources and the offline calibration using near-field sources. The maximum likelihood (ML) estimators are employed to estimate the errors. However, the well-known computational complexity in objective function optimization for the ML estimators demands effective and efficient optimization algorithms. A novel space-alternating generalized expectation-maximization (SAGE)-based algorithm is developed to optimize the objective function of the conditional maximum likelihood (CML) estimator for the far-field online calibration. Through data augmentation, joint direction of arrival (DOA) estimation and array calibration can be carried out by a computationally simple search procedure. Numerical experiments show that the proposed method outperforms the existing method for closely located signal sources and is robust to large shape errors. In addition, the accuracy of the proposed procedure attains the Cram´er-Rao bound (CRB). A global optimization algorithm, particle swarm optimization (PSO) is employed to optimize the objective function of the unconditional maximum likelihood (UML) estimator for the farfield online calibration and the near-field offline calibration. A new technique, decaying diagonal loading (DDL) is proposed to enhance the performance of PSO at high signal-to-noise ratio (SNR) by dynamically lowering it, based on the counter-intuitive observation that the global optimum of the UML objective function is more prominent at lower SNR. Numerical simulations demonstrate that the UML estimator optimized by PSO with DDL is optimally accurate, robust to large shape errors, and free of the initialization problem. In addition, the DDL technique is applicable to a wide range of array processing problems where the UML estimator is employed and can be coupled with different global optimization algorithms

    Algorithms and performance analysis for indoor location tracking systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A room acoustics measurement system using non-invasive microphone arrays

    Get PDF
    This thesis summarises research into adaptive room correction for small rooms and pre-recorded material, for example music of films. A measurement system to predict the sound at a remote location within a room, without a microphone at that location was investigated. This would allow the sound within a room to be adaptively manipulated to ensure that all listeners received optimum sound, therefore increasing their enjoyment. The solution presented used small microphone arrays, mounted on the room's walls. A unique geometry and processing system was designed, incorporating three processing stages, temporal, spatial and spectral. The temporal processing identifies individual reflection arrival times from the recorded data. Spatial processing estimates the angles of arrival of the reflections so that the three-dimensional coordinates of the reflections' origin can be calculated. The spectral processing then estimates the frequency response of the reflection. These estimates allow a mathematical model of the room to be calculated, based on the acoustic measurements made in the actual room. The model can then be used to predict the sound at different locations within the room. A simulated model of a room was produced to allow fast development of algorithms. Measurements in real rooms were then conducted and analysed to verify the theoretical models developed and to aid further development of the system. Results from these measurements and simulations, for each processing stage are presented

    Real time correlation-based stereo: algorithm, implementations and applications

    Get PDF
    This paper describes some of the work on stereo that has been going on at INRIA in the last four years. The work has concentrated on obtaining dense, accurate and reliable range maps of the environment at rates compatible with the real-time constraints of such applications as the navigation of mobile vehicles in man-made or natural environments. The class of algorithms which has been selected among several is the class of algorithms which has been selected among several is the class of correlation-based stereo algorithms because they are the only ones that can produce sufficiently dense range maps with an algoritmic structure which lends itself nicely to fast implementations because of the simplicity of the underlying computation. We describe the various improvements that we have brought to the original idea, including validation and characterization of the quality of the matches, a recursive implementation of the score computation which makes the method independent of the size of the correlation window and a calibration method which does not require the use of a calibration pattern. We then describe two implementations of this algorithm on two very different pieces of hardware. The first implementation is on a board with four digital signal processors designed jointly with Matra MSII. This implementation can produce 64x64 range maps at rate varying between 200 and 400 ms, depending upon the range of disparities. The second implementation is on a board developed by DEC-PRL and can perform the cross-correlation of two 256X256 images in 140 ms. The first implementation has been integrated in the navigation system of the INRIA cart and used to correct for inertial and odometric errors in navigation experiments both indoors and outdoors on road. This is the first application of our correlation-based algorithm which is described in the paper. The second application has been done jointly with people from the french national space agence (CNES) to study the possibility of using stereo on a future planetary rover for the construction of digital elevation maps. We have shown that real time stereo is possible today at low-cost and can be applied in real applications. The algorithm that has been described is not the most sophisticated available but we have made it robust and reliable thanks to a number of improvements. Evan though each of these improvements is not earth-shattering from the pure research point of view, altogether they have allowed us to go beyond a very important threshold. This threshold measures the difference between a program that runs in the laboratory on a few images and one that works continuously for hours on a sequence of stereo pairs and produces results at such rates and of such quality that they can be used to guide a real vehicle or to produce discrete elevation maps. We believe that this threshold has only been reached in a very small number of cases

    Towards joint communication and sensing (Chapter 4)

    Get PDF
    Localization of user equipment (UE) in mobile communication networks has been supported from the early stages of 3rd generation partnership project (3GPP). With 5th Generation (5G) and its target use cases, localization is increasingly gaining importance. Integrated sensing and localization in 6th Generation (6G) networks promise the introduction of more efficient networks and compelling applications to be developed

    Angle of Arrival Estimation Utilising Frequency Diverse Radio Antenna Arrays

    Get PDF
    The purpose of this research is to investigate a novel way of combining carrier signals that are transmitted successively over Multiple Frequencies (MF) and traditional metrics to improve AoA estimation. Every signal contains three metrics, amplitude, phase, and frequency. To achieve localisation, current systems utilise the metrics of amplitude (also known as Received Signal Strength (RSS)) and phase that resolves the AoA. However, the metric of frequency is mostly used with Orthogonal Frequency-Division Multiplexing (OFDM) to increase the number of RSS and AoA metrics, which is not optimal. This research answers two questions. Can the use of MF improve AoA estimation? Also, how can MF and traditional metrics be combined for AoA estimation? The aim is to prove that the metric of frequency can be utilised more optimally. Therefore, measurements of RSS and AoA are performed in different environments for MF. To perform these measurements, ten frequency diverse Software Defined Radios (SDRs) are employed. A novel technique to time/frequency synchronise the SDRs is developed and presented. Moreover, a ten element Uniform Linear Array (ULA) is designed, simulated and manufactured. The outcomes of this research are two novel algorithms for the MF AoA estimation of a carrier transmitter. Findings of the first algorithm show that the use of MF with the RSS metric performs equally with current systems that have a higher cost and complexity. The second algorithm that utilises MF with the AoA metric demonstrates a significant reduction in the AoA estimation error, compared to current systems. Specifically, for 50\% of the measured cases the AoA estimation error is reduced by 3.7 degrees, while for 95\% of the measured cases the AoA estimation error is reduced by 27 degrees. Hence, this research proves that MF with traditional metrics can reduce system complexity and greatly improve AoA estimation

    Applications of compressive sensing to direction of arrival estimation

    Get PDF
    Die Schätzung der Einfallsrichtungen (Directions of Arrival/DOA) mehrerer ebener Wellenfronten mit Hilfe eines Antennen-Arrays ist eine der prominentesten Fragestellungen im Gebiet der Array-Signalverarbeitung. Das nach wie vor starke Forschungsinteresse in dieser Richtung konzentriert sich vor allem auf die Reduktion des Hardware-Aufwands, im Sinne der Komplexität und des Energieverbrauchs der Empfänger, bei einem vorgegebenen Grad an Genauigkeit und Robustheit gegen Mehrwegeausbreitung. Diese Dissertation beschäftigt sich mit der Anwendung von Compressive Sensing (CS) auf das Gebiet der DOA-Schätzung mit dem Ziel, hiermit die Komplexität der Empfängerhardware zu reduzieren und gleichzeitig eine hohe Richtungsauflösung und Robustheit zu erreichen. CS wurde bereits auf das DOA-Problem angewandt unter der Ausnutzung der Tatsache, dass eine Superposition ebener Wellenfronten mit einer winkelabhängigen Leistungsdichte korrespondiert, die über den Winkel betrachtet sparse ist. Basierend auf der Idee wurden CS-basierte Algorithmen zur DOA-Schätzung vorgeschlagen, die sich durch eine geringe Rechenkomplexität, Robustheit gegenüber Quellenkorrelation und Flexibilität bezüglich der Wahl der Array-Geometrie auszeichnen. Die Anwendung von CS führt darüber hinaus zu einer erheblichen Reduktion der Hardware-Komplexität, da weniger Empfangskanäle benötigt werden und eine geringere Datenmenge zu verarbeiten und zu speichern ist, ohne dabei wesentliche Informationen zu verlieren. Im ersten Teil der Arbeit wird das Problem des Modellfehlers bei der CS-basierten DOA-Schätzung mit gitterbehafteten Verfahren untersucht. Ein häufig verwendeter Ansatz um das CS-Framework auf das DOA-Problem anzuwenden ist es, den kontinuierlichen Winkel-Parameter zu diskreditieren und damit ein Dictionary endlicher Größe zu bilden. Da die tatsächlichen Winkel fast sicher nicht auf diesem Gitter liegen werden, entsteht dabei ein unvermeidlicher Modellfehler, der sich auf die Schätzalgorithmen auswirkt. In der Arbeit wird ein analytischer Ansatz gewählt, um den Effekt der Gitterfehler auf die rekonstruierten Spektra zu untersuchen. Es wird gezeigt, dass sich die Messung einer Quelle aus beliebiger Richtung sehr gut durch die erwarteten Antworten ihrer beiden Nachbarn auf dem Gitter annähern lässt. Darauf basierend wird ein einfaches und effizientes Verfahren vorgeschlagen, den Gitterversatz zu schätzen. Dieser Ansatz ist anwendbar auf einzelne Quellen oder mehrere, räumlich gut separierte Quellen. Für den Fall mehrerer dicht benachbarter Quellen wird ein numerischer Ansatz zur gemeinsamen Schätzung des Gitterversatzes diskutiert. Im zweiten Teil der Arbeit untersuchen wir das Design kompressiver Antennenarrays für die DOA-Schätzung. Die Kompression im Sinne von Linearkombinationen der Antennensignale, erlaubt es, Arrays mit großer Apertur zu entwerfen, die nur wenige Empfangskanäle benötigen und sich konfigurieren lassen. In der Arbeit wird eine einfache Empfangsarchitektur vorgeschlagen und ein allgemeines Systemmodell diskutiert, welches verschiedene Optionen der tatsächlichen Hardware-Realisierung dieser Linearkombinationen zulässt. Im Anschluss wird das Design der Gewichte des analogen Kombinations-Netzwerks untersucht. Numerische Simulationen zeigen die Überlegenheit der vorgeschlagenen kompressiven Antennen-Arrays im Vergleich mit dünn besetzten Arrays der gleichen Komplexität sowie kompressiver Arrays mit zufällig gewählten Gewichten. Schließlich werden zwei weitere Anwendungen der vorgeschlagenen Ansätze diskutiert: CS-basierte Verzögerungsschätzung und kompressives Channel Sounding. Es wird demonstriert, dass die in beiden Gebieten durch die Anwendung der vorgeschlagenen Ansätze erhebliche Verbesserungen erzielt werden können.Direction of Arrival (DOA) estimation of plane waves impinging on an array of sensors is one of the most important tasks in array signal processing, which have attracted tremendous research interest over the past several decades. The estimated DOAs are used in various applications like localization of transmitting sources, massive MIMO and 5G Networks, tracking and surveillance in radar, and many others. The major objective in DOA estimation is to develop approaches that allow to reduce the hardware complexity in terms of receiver costs and power consumption, while providing a desired level of estimation accuracy and robustness in the presence of multiple sources and/or multiple paths. Compressive sensing (CS) is a novel sampling methodology merging signal acquisition and compression. It allows for sampling a signal with a rate below the conventional Nyquist bound. In essence, it has been shown that signals can be acquired at sub-Nyquist sampling rates without loss of information provided they possess a sufficiently sparse representation in some domain and that the measurement strategy is suitably chosen. CS has been recently applied to DOA estimation, leveraging the fact that a superposition of planar wavefronts corresponds to a sparse angular power spectrum. This dissertation investigates the application of compressive sensing to the DOA estimation problem with the goal to reduce the hardware complexity and/or achieve a high resolution and a high level of robustness. Many CS-based DOA estimation algorithms have been proposed in recent years showing tremendous advantages with respect to the complexity of the numerical solution while being insensitive to source correlation and allowing arbitrary array geometries. Moreover, CS has also been suggested to be applied in the spatial domain with the main goal to reduce the complexity of the measurement process by using fewer RF chains and storing less measured data without the loss of any significant information. In the first part of the work we investigate the model mismatch problem for CS based DOA estimation algorithms off the grid. To apply the CS framework a very common approach is to construct a finite dictionary by sampling the angular domain with a predefined sampling grid. Therefore, the target locations are almost surely not located exactly on a subset of these grid points. This leads to a model mismatch which deteriorates the performance of the estimators. We take an analytical approach to investigate the effect of such grid offsets on the recovered spectra showing that each off-grid source can be well approximated by the two neighboring points on the grid. We propose a simple and efficient scheme to estimate the grid offset for a single source or multiple well-separated sources. We also discuss a numerical procedure for the joint estimation of the grid offsets of closer sources. In the second part of the thesis we study the design of compressive antenna arrays for DOA estimation that aim to provide a larger aperture with a reduced hardware complexity and allowing reconfigurability, by a linear combination of the antenna outputs to a lower number of receiver channels. We present a basic receiver architecture of such a compressive array and introduce a generic system model that includes different options for the hardware implementation. We then discuss the design of the analog combining network that performs the receiver channel reduction. Our numerical simulations demonstrate the superiority of the proposed optimized compressive arrays compared to the sparse arrays of the same complexity and to compressive arrays with randomly chosen combining kernels. Finally, we consider two other applications of the sparse recovery and compressive arrays. The first application is CS based time delay estimation and the other one is compressive channel sounding. We show that the proposed approaches for sparse recovery off the grid and compressive arrays show significant improvements in the considered applications compared to conventional methods
    corecore