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Summary

The ability to accurately track a user’s location in the indoor environment has

many applications in the healthcare, logistic, and entertainment industries. This

thesis makes a threefold contribution to the realization and analysis of practical

indoor location tracking systems.

First, we propose an efficient channel-impulse-response-based (CIR-based)

location fingerprint, derived from receiver channel estimation results. Logarithmic

transformation is applied to ensure that each element in the fingerprint vector

contributes fairly towards the location estimation. Simulation results show that,

with the same number of access points and the same amount of training efforts, the

proposed method significantly outperforms the existing fingerprint-based methods

in the literature. It is also robust to the environmental changes caused by the

presence of a crowd of human bodies.

Second, we derive the exact theoretical expressions of both the online error

probability density function (PDF) and region of confidence (RoC) for a general-

ized location fingerprinting system. Computations of both terms require the joint

PDF for the location and the online signal parameter vector, which is practically

unknown. We therefore propose to approximate this joint PDF by nonparametric

kernel density estimation using the training fingerprints, without extra calibration

efforts. Experimental results show that, the proposed scheme predicts the empir-
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SUMMARY

ical error PDF closely for the two most popular location fingerprinting methods,

namely, the K nearest neighbour (KNN) and the probabilistic approach.

The third contribution includes two different approaches that we propose to

realize a robust pedestrian tracking system using mobile devices with low cost sen-

sors. The first approach fuses the estimates of a dead-reckoning (DR) system with

the measurements of a sparsely deployed ranging infrastructure, using a particle

filter (PF). Experimental results show that this approach significantly reduces DR

tracking error even when (i) initial location is unknown, (ii) range measurements

have errors, (iii) range updates are intermittent and sparse both temporally and

spatially. The second approach fuses the estimates of two DR modules, carried

by the same pedestrian and mounted with stable relative displacement, through

a maximum a posteriori estimation scheme. Experimental results show that, the

proposed scheme delivers robust tracking performance, with significantly smaller

average error compared to traditional DR methods, when using (i) two DR mod-

ules, each with a single orientation sensor and arbitrary device orientation, (ii) one

DR module, with two different orientation sensors and fixed device orientation.
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Chapter 1

Introduction

1.1 Background

The ability to accurately track a user’s location in the indoor environment

has many applications in the healthcare, logistic, and entertainment industries. In

an ambient-intelligent environment, obtaining accurate user location information

not only facilitates the association of computational resource with the user but

also enables the invocation of relevant services based on the user context.

The Global Positioning System (GPS) is the dominating technology in the

market of outdoor location tracking. However, the signal of GPS is either entirely

blocked by walls and ceilings or severely deteriorated by multipath propagation

in the indoor environment. On the other hand, state-of-the-art cellular-network-

based methods typically deliver an accuracy at the scale of hundreds of meters [1],

which is unacceptable for many real-world indoor applications. Therefore, accurate

indoor location tracking must rely on other technologies and infrastructure.

The past decade has witnessed the proliferation of indoor wireless communica-

tion infrastructure and the emergence of commercially accessible personal mobile
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CHAPTER 1. Introduction

devices with various sensors and multi-modal communication capabilities. These

advances have created new opportunities for the realization of cost-effective prac-

tical indoor location tracking systems.

1.2 Overview of Existing Indoor Location Track-

ing Systems

In this chapter, we classify the practical indoor tracking methods into three

categories according to their dependence on infrastructure, namely, methods that

rely on dedicated extra infrastructure, methods that rely on the existing infras-

tructure, and methods that rely on the target device itself (Dead-Reckoning). We

briefly introduce them with an emphasis on their limitations and difficulties.

1.2.1 Methods Based on Dedicated Infrastructure

The Radio Frequency Identification (RFID) technology has been widely used

as dedicated infrastructure for indoor location tracking, especially for autonomous

robots [2, 3]. However, such a system requires the dense installation of RFID tags

on the floor of the service area. The setup is very expensive in terms of not the

tags themselves but the labor input.

Another approach that usually requires dedicated infrastructure is the geo-

metric location tracking methods in the indoor environment. For distance based

methods such as Time-of-Arrival (ToA) and Time-Difference-of-Arrival (TDoA),

wireless technologies such as ultrasound [4], ultra-wide-band (UWB) [5], wideband

with enhanced sampling rate [6] are employed in order to provide satisfactory res-

olution in time, and hence distance measurements. However, transceivers in such

dedicated infrastructure normally covers limited range due to concerns such as

2
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interference control and power conservation.

On the other hand, direction based practical indoor tracking methods rely

heavily on the directionality of the antenna. Directionality is achieved by either

using a multi-element antenna array [7] in conjunction with computationally in-

tensive algorithm such as MUltiple SIgnal Classification (MUSIC) [8] or a single

antenna with actuated reflector [9]. In both ways, the system cost is high in terms

of hardware and overhead.

For both distance and direction based methods, in the heavy presence of

indoor Non-Line-of-Sight (NLoS) propagation conditions, full location tracking

coverage of the indoor service area requires a huge number of such range-limited

transceivers, which further incurs high hardware cost.

1.2.2 Methods Based on The Existing Infrastructure

IEEE 802.11 (Wi-Fi) is the most widely adopted wireless communication

technology in indoor and urban environments. While providing high speed wireless

data access, it also enables the design and implementation of practical indoor

location tracking systems on top of existing infrastructure with minimum extra

interference.

Among the practical location tracking methods which utilizes the Wi-Fi in-

frastructure, a small subset adopts the geometric trilateration methods such as

ToA [10, 11] or TDoA [6], which require extra hardware modifications or additions

to the commercially-accessible Wi-Fi adapters. On the other hand, the majority

of the practically implemented Wi-Fi based methods take the fingerprint-based

approach, which involves an off-line training phase during which the indoor Wi-Fi

received signal strength (RSS) are collected as location fingerprints in the ser-

vice area [12]. A major drawback of this approach is the heavy labor cost during

3
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the training phase, especially for large service areas. Moreover, after the train-

ing phase is completed, this approach is vulnerable to the environmental changes,

caused by change of room layout or movement of the crowd.

1.2.3 The Dead-Reckoning Approach

More and more mobile hand-held devices are equipped with low cost MEMS

sensors, such as accelerometer, magnetometer, and gyroscope, for purposes such

as, flexible user interface orientation, navigation, gaming, and augmented reality.

Availability of such sensors has made Dead-Reckoning (DR) a preferable choice

for indoor pedestrian tracking.

The DR approach iteratively estimates the current location by adding the

estimated displacement to the previously estimated location. In contrast to the

afore-mentioned approaches, in which both the target device and the infrastruc-

ture deployment are indispensable parts of the tracking system, the DR tracking

scheme is almost self-contained in the target device alone (except for the initial-

ization phase). A major drawback of such a system is that, the errors in the

estimated displacement accumulate quickly over time because of the iterative na-

ture of estimation. Moreover, compared to using dedicated sensor modules which

are fixed at pedestrian body with convenient location and orientation (foot, or

center back of waist) for tracking, DR with hand-held device suffers more noise

and disturbance due to irregular movements and shifts of the upper body and the

arm of the pedestrian.

4



CHAPTER 1. Introduction

1.3 Research Emphasis and Contributions

Based on the overview of the existing approaches, we observe that, although

the approaches based on the existing infrastructure and hand-held device have

various problems and limitations, they are still attractive options upon which

practical and robust indoor location tracking methods can be developed, owning

to their accessibility and cost-effectiveness. The research contribution of this thesis

is threefold, as described in the following sub-sections.

1.3.1 Channel Impulse Response Based Fingerprinting

In order to reduce hardware cost and RF interference, it is desirable to con-

struct a fingerprint-based localization system based on the existing indoor wireless

infrastructure, in which a small number of access points (APs) are deployed to pro-

vide communication coverage over a large area. Because each AP in such a system

contributes only one dimension to the RSS fingerprint vector, the resulting fin-

gerprint vector dimension may be too low to distinguish locations over a large

area.

In this thesis, we propose a novel location fingerprint based on the ampli-

tudes of the approximated channel impulse response (ACIR) vector. The ACIR

has much higher dimension with the same number of APs compared to the RSS

fingerprint. The high dimension and the strong location dependency have given

the ACIR higher capability to distinguish locations. We then transform the ACIR

into logarithmic scale to ensure that each element within the fingerprint vector

contributes fairly to the location estimation. Nonparametric Kernel Regression

(NKR) method with a generalized bandwidth matrix formula is applied for loca-

tion estimation. Using a realistic indoor propagation simulator, our results suggest

5
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that the proposed fingerprint and its associated signal processing technique out-

perform other fingerprint-based schemes found in the literature, with the same

amount of training efforts, under various indoor conditions.

1.3.2 Error Analysis of Fingerprint-based Methods

Compared to the large number of proposals on fingerprint-based localization

methods, there are very few works which study the theoretical online error analy-

sis of fingerprint-based localization systems, while taking the current online RSS

vector into account.

In this thesis, we derive the exact theoretical expressions of both the online

error probability density function(PDF) and Region of Confidence (RoC), con-

ditioned on the observed online RSS vector, for a fingerprint-based localization

system. As the computations of the relevant terms require exact knowledge of

the joint PDF for the location and the online RSS vector, which is practically

not available, we approximate this joint PDF by Nonparametric Kernel Density

Estimation (NKDE) techniques using the training fingerprints, without any extra

calibration efforts. Experimental results show that the proposed method closely

predicts the performance of two widely adopted fingerprint-based schemes.

1.3.3 Robust DR-Based Pedestrian Tracking Methods

Despite the intrinsic cumulative tracking error, DR is still a very attractive

option for indoor pedestrian tracking due to the high accessibility of hand-held

mobile devices nowadays. In this thesis, we propose two robust DR-based pedes-

trian tracking methods that reduce and constrain the cumulative tracking error

for hand-held mobile devices.

6
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DR-based Robust Pedestrian Tracking with Sparse Infrastructure

In the first approach, we propose an indoor pedestrian tracking system which

fuses the DR estimate with range measurements from a sparsely deployed ranging

infrastructure. We propose a particle-filter-based (PF-based) sensor fusion scheme

to reduce and constrain the tracking error for the general case in which the re-

porting rate and accuracy of the ranging system may vary. A prototype of the

proposed scheme is implemented for experimental verification with sensors on a

hand-held device and a practical ranging system. As our experimental results will

show, the proposed scheme is able to provide significantly better tracking perfor-

mance compared to a DR system alone, regardless of whether the knowledge of

initial user location is available or not. Moreover, even when the range measure-

ments are noisy and intermittent, both spatially and temporally, our proposed

system still delivers fairly accurate tracking performance.

DR-based Robust Pedestrian Tracking with Two Devices

The second approach that we propose for robust pedestrian tracking exploits

the fact that, when two sets of DR sensors are carried by the same pedestrian, they

have small and limited local random motions, as well as stable relative displace-

ments to each other, which can be utilized to reduce the overall DR tracking error.

We formulate the robust tracking task as a maximum a posteriori (MAP) sensor

fusion problem and derive the optimal solution with simplifications for computa-

tion. We also narrow the generalized algorithm to a special case in which there is

only one physical device, containing two different orientation sensors. We imple-

mented prototypes of our proposed system with commercially-accessible mobile

devices, and also an effective system for ground truth collection indoors. Through

experiments, we evaluate our proposed scheme by using, (i)two DR modules, each

7
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containing a single orientation sensor, mounted with arbitrary device orientations,

(ii)one DR module, containing two different orientation sensors, mounted with

fixed device orientation. The proposed scheme exhibits robust tracking perfor-

mance with much lower average tracking errors compared to the traditional DR

method, in both scenarios.

1.4 Organization of the Thesis

The thesis is organized in the following manner. Chapter 2 summarizes the

related work in the literature of indoor location tracking, categorized according to

their working mechanism. Chapter 3 describes our proposed CIR-based location

fingerprint and its associated signal processing techniques, with simulation verifi-

cations. Chapter 4 describes our proposed theoretical error analysis method for

location fingerprinting system, with experimental verifications. In Chapter 5, we

propose a DR-based robust pedestrian tracking approach which utilizes a sparse

ranging infrastructure for cumulative error reduction. We also include a brief in-

troduction of DR tracking with hand-held devices. In Chapter 6, we propose a

different DR-based robust pedestrian tracking approach which exploits the stable

relative displacements between two DR modules. We also include a brief introduc-

tion of DR tracking with arbitrary device orientation. In Chapter 7, we conclude

the thesis and point out future directions.

8



Chapter 2

Literature Review

In this chapter, we classify the practical indoor tracking methods in the lit-

erature into four categories according to their working mechanism, namely, the

geometric approach, the fingerprint-based approach, the DR approach, and the

hybrid approach, which combines DR with external technologies.

2.1 The Geometric Approach

2.1.1 DoA Based Methods

A typical DoA system locates the target device by estimating the direction

of the arrival signal transmitted by the target device, as shown in Fig. 2.1. Al-

gorithms such as MUSIC [8] and ESPRIT [13] have been present in the field

of outdoor DoA based localization for decades. The successes of these methods

rely on two important assumptions which are normally valid in the outdoor sce-

nario [14]. First of all, there must be a direct Line-of-Sight (LoS) path between

the transmitter and receiver. Second, the multiple signals which impinge on the

9
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Fig. 2.1: Triangulation with DoA.

receiver antenna array are usually assumed to be uncorrelated (incoherent). How-

ever, in the context of indoor localization, these assumptions often break. Even

in the situation where the LoS condition is fulfilled, the multi-path versions of the

same transmitted signal are perfectly coherent since they are scaled and delayed

versions of each other. Additional computation such as sub-array smoothing must

be applied to resolve this issue [14, 15].

Recent proposals of practical indoor DoA methods rely heavily on the special

enhancements and configurations of antennas. For example, in [7], a six-element

switched-beam antenna system is mounted on the ceiling. The computationally-

intensive MUSIC algorithm is applied for direction finding. [9] uses an actuated

reflector and a omni-directional antenna in order to find the orientation of the

strongest received signal strength. Overall, even under LoS conditions, such prac-

tical DoA solutions are expensive in hardware.

10
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(a) Trilateration with ToA. (b) Trilateration with TDoA.

Fig. 2.2: Trilateration with ToA and TDoA.

2.1.2 ToA and TDoA Based Methods

A practically implemented indoor ToA or TDoA system exploits the distance

relationship between the target device and the APs with known locations, as shown

in Fig. 2.2. If the target device and the APs have good time synchronization, the

ToA information can be utilized to compute distances between the target device

and each AP. A circle can be drawn centering each AP with the radius being the

corresponding target-AP distance. Ideally, if all distance estimations are accurate

and precise, these circles should intersect exactly at one point, which is the location

of the target device.

On the other hand, when the APs only have time synchronization with each

other but not with the target device, the TDoA measurements can be utilized

to compute differences between the distances of the target device to each AP.

In this case, a hyperbolic curve can be drawn between any pair of APs. Again,

ideally, if all distances estimations are accurate and precise, these hyperbolas

should intersect at exactly the same point, which is the location of the target

device.

11
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It has been shown that the time (distance) resolution of such ToA and TDoA

based trilateration methods are dominated by the system bandwidth [16], [17],

[18]. Although Ultra-Wide-Band (UWB) receivers [19] and wideband receivers

with enhanced sampling rates [6], or additional hardware [10] can achieve high time

resolution, their operating ranges are usually limited in order to reduce interference

or conserve power.

Even with very high distance resolution, the ToA measurements obtained in

practical situations are still with errors. A simple and effective method in this

case will be to search the possible location space in a Gradient Descent manner in

order to find the location whose distance relationships to all the APs are closest

to the measured distances in a least square sense, as proposed in [20]. Other more

advanced methods are also proposed in the literature, such as [21] and [22].

2.1.3 The Non-Line-of-Sight Problem

NLoS conditions are very common in the indoor environments due to the

heavy presence of obstacles and barriers. One way to eliminate NLoS conditions is

to extensively deploy infrastructure transceivers indoors. However, it is unrealistic

in terms of the hardware cost and the wireless interference caused by such a dense

deployment.

In the literature, several recent works investigate the problem of localization

in the presence of NLoS conditions. [23] assumes a scenario in which both LoS

and NLoS conditions co-exist, their proposed algorithm filters out the NLoS sig-

nals and only uses the LoS ones for localization. On the other hand, methods that

solely utilize NLoS arrival signals themselves for localization [24, 25] require ac-

curate knowledge of bidirectional ToA, DoA, and Direction-of-Departure (DoD).

Algorithms for estimating these parameters in heavy multipath environment, such

12



CHAPTER 2. Literature Review

as MUSIC and ESPRIT, require antenna arrays with a large number of array el-

ements on both transceivers, and signal processing techniques such as sub-array

smoothing, which greatly increases the overhead and hardware cost of the system.

2.2 The Fingerprint-based Approach

2.2.1 Algorithms

A typical fingerprint-based system requires a number of reference locations,

also known as “training locations”, to be selected in the service area. During an off-

line training phase, certain location-dependent signal parameters, most commonly

RSS, are collected by multiple APs for each training location. The vector of RSS

values is then stored as the fingerprint for that particular training location. During

the online localization phase, when the RSS vector of the target device is captured,

it is used in conjunction with the fingerprints stored in the training database to

infer the location of the target device.

One of the earliest fingerprinting methods, the K Nearest Neighbor (KNN)

scheme [12], returns the location estimate as the average of the coordinates of

the K training locations whose fingerprint vectors have the shortest Euclidean

distances to the online RSS vector. A special and primitive case of KNN is the

Nearest Neighbor in Signal Space (NNSS) [12], in which K = 1. In [26], the K

nearest neighbors are weighted by the reciprocal of their signal space Euclidean

distance to the online RSS vector to obtain better performance. Both [27] and

[28] have taken the probabilistic approach, in which the training data are used

to construct PDF for the location and the fingerprint vectors. The conditional

expectation of the location is then returned as the estimate. The mathemati-

cal expressions of the location estimates are equivalent to the Nadaraya-Watson
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Kernel Regression estimator [29]. However, both [27] and [28] assume that the

elements of the fingerprint vector are statistically independent from each other for

the simplicity of computation, which may not be always true in general.

In [30], fine resolution indoor CIR is collected using a channel sounder and

a spectrum analyzer, both operating at a very high bandwidth (200 MHz). A

vector of features concerning the power delay characteristics are extracted from

the CIR as the location fingerprint. An Artificial Neural Network (ANN) is trained

using the training data to infer location when given an online feature vector.

Although it has achieved good localization accuracy, this scheme has its own

limitations. First, the cost, physical size and weight, and system bandwidth of

the devices are unacceptable in an ubiquitous computing context. Second, after

the fine resolution measurements are obtained, only a few features are extracted,

which is not an efficient utilization of resources devoted to obtain the fine resolution

CIR in the first place. Moreover, some features, such as mean excess delay, root

mean square of excess delay, and overall gain of channel, are parameters regarding

the entire delay spread. In order to acquire such features, a lower bandwidth may

be sufficient. However, [30] has not conducted performance study with varying

system bandwidth.

2.2.2 Performance Analysis

In practice, error PDF and RoC conditioned on the online RSS vector not

only conveniently indicate the reliability of the current location estimate, but also

facilitate the fusion of multiple sensors [31]. Due to the presence of multipath

propagation, noise, and interference, there can be significant temporal and spatial

variations in the online RSS vectors. As illustrated in Fig. 2.3, different samples

of online RSS vectors can result in different estimated locations and radii of RoCs,
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Fig. 2.3: Estimated locations and RoCs based on two different online RSS vectors collected at
the same actual location.

even if they are collected at the same actual target location.

Compared to the huge amount of proposals of fingerprint-based localization

methods, there are very few works which study the theoretical error analysis of

fingerprint-based localization systems, while taking the current online RSS vector

into account. The analyses in [32] and [33] are only applicable to the special and

primitive case of NNSS, which is not widely applied due to its poor performance.

Online error analysis for more advanced and popular schemes such as KNN and

probabilistic approach have not been explored theoretically. [34] formulates RoC

geometrically in order to filter outliers in localization results. However, the for-

mulation is only validated empirically, without any theoretical justifications.

2.3 The DR based Approach

Early DR tracking scheme estimates location by double integration of acceler-

ation measurements to obtain displacement. It has been shown experimentally in

[35] that, double integration of accelerometer measurements introduces fast error

accumulation over time.
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In order to reduce this cumulative tracking error, the “zero velocity update”

(ZUPT) algorithm has been proposed [36]. This algorithm exploits an intrinsic

property of pedestrian walking: the bottom of the sole has static contact with

the floor which results in both zero acceleration and zero velocity during a certain

phase of each step taken. Therefore, any non-zero acceleration or velocity com-

puted from the noisy sensor measurements during this particular phase should

be eliminated because they must be the results of the accumulated error. Both

[36] and [37] propose to reset the velocity error during the zero-velocity phase of

each detected step, while [38] applies ZUPT as pseudo-measurements (observa-

tions), fed to an extended Kalman filter (EKF) for tracking error reduction. This

algorithm is capable of effectively reducing errors in pedestrian DR systems. How-

ever, the extra hardware cost of such a sensor module and the cumbersomeness of

wearing such a module on the foot limits this algorithm only to special types of

pedestrians, such as battle combatants and emergency responders.

For the case of non-foot-mounted pedestrian DR systems, the step-based DR

tracking approach is a preferable choice because it avoids double-integration. In

the literature, most of the works which adopt this approach mount DR sensors

on fixed parts of the user body with fixed orientation which is convenient for DR.

For example, [39] mounts the sensor module on the center back of the pedestrian’s

waist. [40] mounts the sensor module on a helmet. However, there are also several

works which implement DR tracking with arbitrary sensor placement and orienta-

tion in practical scenarios. For example, [41] proposes a simple algorithm to find

the horizontal plane when the 3-axis accelerometer is oriented arbitrarily. In [42],

the principal component analysis (PCA) technique is applied to find the heading

orientation, whose effectiveness is also verified experimentally by [43].
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2.4 The Hybrid Approach

In the domain of outdoor location tracking, hybrid schemes are proposed

in order to reduce the cumulative DR tracking error with the aid of external

technologies. Many works in this category use the location coordinates reported

by the GPS device as a complete piece of location information for the purpose of

tracking error reduction [44–46].

A correction scheme using range information is proposed in [47] for outdoor

on-wheel robot tracking. The DR is accomplished with a fine accuracy wheel en-

coder (with 0.001 m/meter error standard deviation) and a gyroscope, which is

not applicable for tracking indoor pedestrian. Tracking errors are frequently cor-

rected using range measurements that arrive at an average rate of 7 times/second.

Ranging beacon nodes (BNs) are deployed such that two or more of them can be

heard at any point along the robot’s path.

For the indoor scenario, a hybrid scheme utilizing WLAN based localization

result and map information for DR error correction is proposed in [48]. However,

a complete set of location information is used for correction in [48].
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Chapter 3

Channel Impulse Response Based

Location Fingerprinting

In this chapter, we propose a fingerprint-based localization scheme that ex-

ploits the location dependency of the CIR. We approximate the CIR by applying

inverse fourier transform (IFT) to the receiver’s channel estimation result. The

amplitudes of the approximated CIR (ACIR) vector are further transformed into

the logarithmic scale in order to ensure that elements in the ACIR vector con-

tribute fairly towards location estimation, which is accomplished through Non-

parametric Kernel Regression. As shown in our simulations, when both the

number of APs and density of training locations are the same, our proposed

scheme exhibits significant advantages in localization accuracy, compared to other

fingerprint-based methods found in the literature. Moreover, absolute localization

accuracy of the proposed scheme is shown to be robust in the presence of real

time environmental changes caused by human bodies with random positions and

orientations.
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3.1 The Channel Impulse Response Based Fin-

gerprint

Channel impulse response, which completely characterizes the multipath chan-

nel and preserves the location dependency [49], is a good choice for location finger-

print to be developed upon. In order to make the localization service more cost-

effective and accessible for users of the emerging wideband Orthogonal Frequency

Division Multiplexing (OFDM) technologies with different system bandwidths, we

propose to approximate the CIR from the receiver’s channel estimation result. In

OFDM systems, channel estimation can be seen as a vector of Nsc complex ele-

ments describing the channel in the frequency domain, where Nsc is the number of

sub-carriers [50]. The time domain CIR can therefore be approximated by taking

the IFT of the frequency domain discrete channel estimation vector. Our proposed

fingerprint is based on the amplitudes of the approximate CIR vector. Fig. 3.1

shows the resemblance between two ACIR vectors collected from two transmitters

located 1 m apart from each other in our simulation testbed, at a system band-

width of 60 MHz (The map of the testbed is shown in Fig. 3.2 with the coordinate

axes, dimensions, and the origin indicated).

As shown also in Fig. 3.1, the time range of the ACIR vector is inefficiently

large. The bandwidth of the system is 60 MHz in this case, yielding a time

resolution of 16.67 ns. In this chapter, we have used Nsc = 128 for the IFT.

Therefore the overall time range is 2133.7 ns. However, the maximum excess delay

of indoor channel, τmax, is usually smaller than 500 ns, which corresponds to at

most the first 30 time samples in this case. Therefore, the remaining 98 samples are

irrelevant for localization purpose. When the Signal-to-Noise-Ratio (SNR) is not

high enough, the receiver-end Additive White Gaussian Noise (AWGN) at these
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Fig. 3.1: ACIR vectors with transmitters located 1 m apart, at 60 MHz.

time samples will only make the localization accuracy worse. As system bandwidth

goes higher, the time resolution becomes better and the number of irrelevant time

samples becomes smaller. Therefore, based on the system bandwidth, a reasonable

number of relevant time samples should be chosen for the sake of computation

efficiency and accuracy. In this chapter, we preserve the first b τmax

1/BW
c samples

in the ACIR vectors for localization purpose, where τmax (in seconds) can be

determined by experimental measurement or simulation for each specific testbed,

and BW is the system bandwidth in Hz.

3.2 System Implementation Issues

Currently, the receiver channel estimation result is not accessible in off-the-

shelf wireless adapters or APs. However, hardware and firmware modifications can
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Fig. 3.2: Simulation testbed.

be made in the future to reveal the channel estimation result, which is demanded

by more and more localization methods [18],[30]. Alternatively, the raw samples

of the received signal at the output of the receiver’s Analog-to-Digital Converter

(ADC) can be obtained through special hardware interfaces and utilized for CIR

approximation. The latter approach is adopted in [10] experimentally. However,

[10] has used the debug version of the Intel Pro/Wireless adapter, which is re-

stricted to internal debugging and research purpose only and not commercially

available.

3.3 Localization by Nonparametric Kernel Re-

gression

Assume that there are M APs installed in the indoor service area. During

the off-line training phase, in order to obtain the ith training fingerprint, si, the

ACIR vectors obtained from the M APs are first transformed into the logarithmic

scale (as discussed later in Section 3.3.2) and then concatenated in a fixed order.
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The training location at which si is collected is denoted as ci. Together, (si, ci) is

referred to as a training record. Note that, different fingerprint vectors collected

at the same physical training location are still considered to belong to different

training records. Assume there are overall Ntr training records, (si, ci), i =

1, 2, ..., Ntr.

During the online localization operation, the ACIR vectors collected by the

M APs are also transformed and concatenated in the same order and denoted as

s. Let D denote the dimension of the concatenated ACIR vector. Let the D ×D

matrix, Rs, denote the sample covariance matrix, which is computed from the

fingerprint vectors, s1, s2, ..., sNtr .

The localization task is to find an estimator ĉ, for the actual target device

location c, based on the observed online signal parameter vector s. Probabilistic

localization methods, such as those in [27] and [28], normally use the conditional

expectation, ĉ = E{c|s}, as the location estimator, which minimizes the mean

square error conditioned on s [51]. Notice that,

E{c|s} =

∫
cf(c|s) dc

=

∫
cf(c, s) dc

f(s)

=

∫
cf(c, s) dc∫
f(c, s) dc

. (3.1)

Therefore, the computation of E{c|s} requires exact knowledge of the joint PDF,

f(c, s), which is usually not available in practice. However, recall that from

the training phase, we have obtained Ntr pairs of training records, (si, ci), i =

1, 2, ..., Ntr. When the online user signal parameter vector s is collected, E{c|s}
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can be approximated by the Nadaraya Watson Kernel Regression estimator [29],

E{c|s} ≈
∑Ntr

i=1 ciKHs(s− si)∑Ntr

i=1 KHs(s− si)
, (3.2)

where,

KHs(s− si) =
1

|Hs|K[H−1
s · (s− si)]. (3.3)

In the above equation, the term |Hs| is the determinant of the matrix Hs. The

function K(y− z) is known as the kernel function. Generally, it is chosen in such

a way that its value is larger when y− z has smaller magnitude in all dimensions.

In other words, the more similar y and z are, the larger the resulting kernel

function’s value is. Intuitively, the Nadaraya-Watson Kernel Regression estimator

is the normalized weighted average of all the training locations’ coordinates. A

training location with a fingerprint vector more/less similar to the online ACIR

vector receives a higher/lower weight, accordingly.

In this chapter, we adopt the popular Gaussian kernel function,

K(y − z) =
1

(2π)D/2
exp [−1

2
(y − z)T · (y − z)]. (3.4)

The D ×D matrix Hs in (4.3) is called the “bandwidth matrix”. It controls

the shape and orientation of the kernel function. Note that the term “bandwidth”

here refers to the spread of the kernel. It should not be confused with the system

bandwidth in the RF spectrum. The choice of the bandwidth matrix is critical

to the accuracy of the kernel density estimator. For simplicity of computation,

both [27] and [28] have chosen a diagonal bandwidth matrix so that only D kernel

bandwidth parameters need to be selected. This is implicitly assuming that the

elements in the fingerprint vector are always independent from each other. In this
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chapter, we drop this assumption of independence between the fingerprint vector

elements. Instead, we use the multivariate generalization of the Scott’s Rule of

Thumb for bandwidth selection [52],

Hs = N
−1/(D+4)
tr Rs

1/2, (3.5)

in which Ntr is the size of training data set, D is the dimension of the concate-

nated fingerprint vector, and Rs is the sample covariance matrix computed from

the training samples. This formula of bandwidth matrix computation takes into

consideration the general statistical inter-dependence between the fingerprint vec-

tor elements by first transforming them using their sample covariance matrix.

Note that, detailed description and derivation of NKR techniques and band-

width matrix selection is beyond the scope of this thesis. Interested readers are

referred to [29], [52], and [53] for more detailed information.

3.3.1 Low-Pass Smoothing

We apply a simple low-pass smoothing technique in order to smooth out the

individual variations among fingerprint vectors collected within close proximity

while preserving their common location dependency. For each training record

(si, ci), the smoothed fingerprint vector is obtained by taking the average of train-

ing ACIR vectors in the set, {sk| ‖ck−ci‖ ≤ r0}, where the constant r0 determines

the size of the smoothing window. We have found experimentally that a good

choice for the 2-D window size, r0, is to make it equal to the training grid spacing.
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3.3.2 Logarithmic Scale Transformation

In order to understand the necessity and effect of transforming the decimal

scale ACIR vector into the logarithmic scale, consider an online ACIR vector

in decimal scale, h = [h1, h2, ...hNsc ]
T , which is the discrete time domain de-

scription of the multipath channel’s amplitude gain at delay time instances, nTs,

n = 1, 2, ..., Nsc, where Ts is the symbol duration. For any n, the amplitude gain

hn can be expressed as the product of two terms, which will be described below.

The first term is the amplitude gain which is purely caused by the propagation

path loss and the antenna characteristics. Assume that a signal z(t) is transmitted

at time instant 0. The multipath version of the transmitted signal received at time

instant nTs will be, a(nTs) · z(t− nTs), where a(nTs) is the gain purely caused by

propagation path loss. If the transmitted power at the transmitter end is P0, we

have,

P0 =
1

T

∫ T

0

|z(t)|2dt, (3.6)

where T is the time over which the power is measured. If we only consider the

effect of propagation path loss and antenna characteristics, the power of the signal

received at time instant nTs at the receiver end will be,

Pn =
1

T

∫ nTs+T

nTs

|a(nTs) · z(t− nTs)|2dt

= |a(nTs)|2 · 1

T

∫ nTs+T

nTs

|z(t− nTs)|2dt

= |a(nTs)|2 · P0 (3.7)

On the other hand, the overall distance travelled by the signal received at nTs

seconds after transmission is,

d = vRF · nTs, (3.8)
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where vRF is the propagation speed of the RF signal in the medium. Here, we

assume that the differences in propagation speeds among different media are neg-

ligible. Since we are only considering the pure effects of propagation path loss and

antenna characteristics here, by Friis transmission formula [54], we have,

Pn = GtxGrx(
λ

4πd
)2P0, (3.9)

where Gtx and Grx are the gains of transmitter and receiver antennas respectively,

and λ is the carrier wavelength. Using (3.7) and (3.9), the amplitude gain at delay

instant nTs purely caused by propagation path loss and antenna characteristics is

therefore,

|a(nTs)| =
√

GtxGrxλ

4πvRF

· 1

nTs

. (3.10)

The second term is the amplitude gain caused by the penetrations, reflections,

and diffractions experienced by the signal travelling through the indoor environ-

ment. The location dependency is mainly caused by this term. We model the

aggregated result of these phenomena by α(nTs) for the multipath version of the

signal received at nTs. Note that if there is no multipath signal received at nTs,

α(nTs) = 0. Therefore, the overall amplitude gain caused by the indoor channel

on a signal that is received at time nTs is,

hn = α(nTs) ·
√

GtxGrxλ

4πvRF

· 1

nTs

, (3.11)

for n = 1, 2, ..., Nsc in the online ACIR vector h.

The location estimation in (3.2) involves computing kernel functions using the

online ACIR vector and every fingerprint ACIR vector. Consider any fingerprint

ACIR vector, g = [g1, g2, ...gNsc ]
T , whose nth element can be similarly expressed
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as,

gn = β(nTs) ·
√

GtxGrxλ

4πvRF

· 1

nTs

, (3.12)

where β(nTs) accounts for the aggregated amplitude gain other than propagation

path loss or antenna characteristics, introduced by the indoor channel on the

multipath version of the signal received at nTs. When computing h − g for the

kernel function, the difference at the nth vector element is,

hn − gn = α(nTs) ·
√

GtxGrxλ

4πvRF

· 1

nTs

− β(nTs) ·
√

GtxGrxλ

4πvRF

· 1

nTs

= [α(nTs)− β(nTs)] ·
√

GtxGrxλ

4πvRF

· 1

nTs

. (3.13)

For a given SNR and bandwidth condition, as long as the ACIR vector length is

still within the relevant range, the values of α(nTs) and β(nTs) for all n should be

treated with equal importance, as far as location estimation is concerned. How-

ever, as seen in (3.13), simply taking the difference between the corresponding

vector elements in the decimal scale ACIR vectors leaves the time index term n in

the denominator. This means that the contribution from the channel amplitude

gains with larger delays, corresponding to those elements with larger indices in

the ACIR vector, is unnecessarily reduced due to a larger n.

On the other hand, if we transform the elements of the two ACIR vectors to

the logarithmic scale, we have,

log hn − log gn = [log α(nTs) + log (
√

GtxGrxλ
4πvRF

· 1
nTs

)]

−[log β(nTs) + log (
√

GtxGrxλ
4πvRF

· 1
nTs

)]

= log α(nTs)− log β(nTs). (3.14)

As can be seen in (3.14), the difference between log hn and log gn is not scaled by
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the time index term n anymore. In other words, all the elements in the ACIR

vector within the relevant time range contribute fairly to the kernel computation

and the location estimation.

It should be noted that, the cancellation of the time index term can also be

achieved by directly dividing hn by gn. The two methods are equivalent in this

sense. However, in order to be consistent with the kernel function computation

in which a substraction between two vectors is involved, we take the logarithmic

transformation approach in this chapter.

3.4 Simulations and Discussions

Since the channel estimation results are currently not accessible in off-the-

shelf wireless adapters and APs, the localization performance of the proposed

method is evaluated through simulations as a first step. We have chosen a 3-D

ray-tracing based simulator, the Radiowave Propagation Simulator (RPS) [55],

in order to closely emulate the realistic indoor RF propagations. RPS is able to

generate fine-resolution CIR, taking into consideration the effects of the path loss,

penetrations, reflections, and diffractions experienced by an RF signal, after the

environment model, transmitter-receiver locations, antenna characteristics, and

carrier frequency are specified by the user. The accuracy of RPS simulator has

been verified via comparison with real indoor experimental measurements in [56].

The CIR generated by RPS are used as the practical channel models. Transceiver

operations, such as sampling, channel estimation, and AWGN, are simulated using

MATLAB programmes.

We have constructed the 3-D model for one part of our campus. It is 16 m×35 m

in dimension, including two laboratory rooms on one side, eight staff offices on
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Table 3.1: Material characteristics for the testbed

Object εRe εIm Thickness (m)

Floor and Ceiling 4 -0.2 0.5

Wall 4 -0.4 0.15

Human Body 11 -2.04 0.25

the other, and a corridor between them. As shown in Fig. 3.2, this indoor sim-

ulation testbed is a mixture of both LoS and NLoS propagation conditions. The

material characteristics of the testbed elements affecting the RF propagation are

summarized in Table 3.1, in which εRe and εIm are the real and imaginary parts

of the relative permittivity of the material respectively. As also shown in Fig. 3.2,

the two shaded circles at the bottom correspond to the locations of the actual

Wi-Fi APs deployed in the building for campus wireless communication cover-

age, while the two on the top are added to the testbed to study the effects of

varying the number of APs on the localization accuracy, in our simulation. The

APs and the user mobile device are placed 2 m and 1.2 m above the ground, re-

spectively. We assume that all the transmitters and receivers are equipped with

omni-directional antennas. The carrier frequency is set to 5 GHz, which conforms

to the IEEE 802.11a standard. The transmission power is set to 20 dBm, which

is a common power setting for indoor Wi-Fi APs.

Training grid spacing of 1 m [30] or 2 m [27],[28] are commonly chosen for

indoor fingerprint-based systems. In our simulations, we use 1.5 m training grid

spacing to evaluate the localization accuracy of the proposed system under varying

factors such as system bandwidth, number of APs, and number of people in the

testbed which create random environmental changes. We also study the effect

of changing the training density itself by setting the training grid spacing from
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1 m to 2.5 m, with a 0.5 m step size. There are 173 testing locations picked in

the testbed. Twenty testing samples, each injected with pseudo-random noise,

are taken at each testing location, resulting in 3460 testing samples overall for

the entire testbed in each set of simulations. Note that, in order to compare the

performance of the schemes under the variations of different factors, the average

localization error of these 3460 testing samples are used as the performance metric.

Whenever applicable, the 95% confidence interval [57] for each data point is also

shown in the figures to indicate the reliability of the results.

3.4.1 Performance with Varying System Bandwidth

The localization accuracy of the proposed logarithmic-scale ACIR fingerprint

with Nonparametric Kernel Regression (LOG-ACIR-NKR) is first compared with

three other methods, namely, RSS fingerprint with Kernel distance method (RSS-

Kernel), as described in [28], decimal-scale ACIR fingerprint with Nonparametric

Kernel Regression (ACIR-NKR), and decimal-scale ACIR fingerprint with General

Regression Neural Networks (ACIR-GRNN), generalized from [30], with system

bandwidth increasing from 20 MHz to 200 MHz, at a step size of 20 MHz, when

two APs, 1.5 m training grid spacing are used. In order to implement the ACIR-

GRNN scheme, five features are extracted from the ACIR vector, namely, the

mean excess delay, the root mean square (rms) of the excess delay, the overall

power gain of the channel, as well as the power gain and delay of the first arrival

path. A GRNN [58] is used to map features to location coordinates.

As shown in Fig. 3.3, the proposed LOG-ACIR-NKR scheme has achieved

much higher localization accuracy compared to the RSS-Kernel scheme and the

ACIR-GRNN scheme for all the system bandwidths tested. The higher dimension-

ality of the LOG-ACIR fingerprint preserves more location dependency compared
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Fig. 3.3: Localization accuracy vs. system bandwidth (using only AP 1 and AP 2).

to both RSS and features extracted from the decimal scale ACIR. It is also im-

portant to note that, the logarithmic transformation is critical to the superior

performance advantage, as can be shown by the huge difference in performance

between LOG-ACIR-NKR scheme and the ACIR-NKR scheme. As explained ear-

lier, this is because the elements in the logarithmic scale ACIR vector now have

fair contributions to the location estimation.

3.4.2 Cumulative Error Distribution

Fig. 3.4 shows the cumulative error distribution functions of RSS-Kernel,

ACIR-GRNN, and the proposed LOG-ACIR-NKR, when two APs, a training grid

spacing of 1.5 m, and a system bandwidth of 60 MHz are used. As can be seen,

the proposed scheme achieves a localization error of under 2.05 m for 80% of the
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Fig. 3.4: Cumulative error probability (using only AP 1 and AP 2).

testing samples, which is significantly smaller than those of ACIR-GRNN (4.09 m)

and RSS-Kernel (8.15 m) with the same probability.

3.4.3 Effect of Varying Training Location Density

The effect of varying training location density can be examined by choosing

different subsets of the training locations with different training grid spacing. The

localization error of RSS-Kernel, ACIR-GRNN, and LOG-ACIR-NKR at 60 MHz

with two APs are shown in Fig. 3.5. When training grid spacing increases from

1 m to 2.5 m, with a step size of 0.5 m, the performance of all the three methods

becomes worse. However, it should be noted that, the error of the proposed LOG-

ACIR-NKR scheme with 2.5 m training grid spacing, which corresponds to 78

training locations, is smaller than that of ACIR-GRNN scheme with 1 m training
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Fig. 3.5: Localization accuracy vs. training density (using only AP 1 and AP 2).

grid spacing, which corresponds to 544 training locations. This means that the

proposed LOG-ACIR-NKR scheme is much more efficient in utilizing the available

training data and training efforts.

3.4.4 Effect of Varying the Number of Access Points

Next, we keep the training grid spacing at 1.5 m, system bandwidth at

60 MHz, and vary the number of APs. As shown in Fig. 3.6, all the three al-

gorithms benefit from an increase in the number of APs. When there are four

APs, the average localization error for RSS-Kernel is 3.23 m, which is comparable

with the experimental results presented in the literature for RSS fingerprint-based

localization, under similar settings. It should be emphasized that, even with only

two APs, the localization error of the proposed LOG-ACIR-NKR scheme is still
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Fig. 3.6: Localization accuracy vs. number of APs.

better than that of the ACIR-GRNN scheme with 4 APs. This result implies that,

when we have to construct a localization system in an area where there can only

be limited number of APs, the proposed scheme is a preferred choice which utilizes

the available hardware efficiently.

3.4.5 Effect of Real Time Variation in Environment

One major cause of real time changes in the indoor environment is the crowd of

people with random positions and body orientations. This is because the human

body contains a large amount of water, which is an excellent absorber of RF

radiation. In this section, we model the human body by a 0.5 m×0.25 m×1.8 m

cuboid with the same relative permittivity as pure water. As shown in Fig. 3.7,
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Fig. 3.7: Localization accuracy vs. number of people randomly placed and oriented in the testbed
(using only AP 1 and AP 2).

based on the training data collected when no one is in the testbed, the localization

accuracy of RSS-Kernel, ACIR-GRNN, and LOG-ACIR-NKR schemes are tested

in cases where different number of people are randomly positioned and oriented in

the testbed, which operates with 60 MHz bandwidth, two APs, and 1.5 m training

grid spacing. For each data point, the average location errors are computed and

plotted for 10 random snapshots. In each snapshot, the same number of people

are randomly placed and oriented in the testbed. As can be seen in Fig. 3.7, the

performance of all three methods become worse when there are more people in

the environment. However, the LOG-ACIR-NKR scheme maintains its superior

advantage in absolute localization accuracy among the three methods. Even in

the random presence of 40 people, it is still able to outperform the ACIR-GRNN

scheme with no one in the testbed. Note that, for each data point, the worst-case
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95% confidence interval among the 10 snapshots is shown.

3.4.6 Computation Time

The low-pass smoothing and logarithmic transformation of the fingerprint

vectors can be pre-computed off-line, after training is completed. During the on-

line location estimation, as can be seen from (3.2), most of the time is spent on

computing the kernel function values for the Ntr training sample vectors. For each

Gaussian kernel computation, the most time-consuming operation is the matrix

multiplication in the exponent. Therefore, if the fingerprint vector’s dimension is

D, the localization scheme has a complexity O(D2). For our simulation, we have

carried out the localization computation in MATLAB, running on a desktop PC

with Intel Core 2, 2.83 GHz Quad CPU, and 3 GB RAM. The average time (over

3460 samples) spent in locating one testing sample is 3.33 ms for the proposed fin-

gerprint, when two APs, a training grid spacing of 1.5 m, and a system bandwidth

of 60 MHz are used. The absolute overhead incurred in locating a single user can

be very small if a powerful, dedicated localization server is used to implement the

proposed scheme.
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Chapter 4

Error Analysis for

Fingerprint-based Localization

In this chapter, we derive the theoretical expression of the error PDF and RoC

conditioned on the online signal parameter vector, for a generalized fingerprint-

based localization system. As the computation of these terms require the exact

expression of the joint PDF for both the target device location and the online

signal parameter vector, which is often not available practically, we propose to ap-

proximate this joint PDF by Nonparametric Kernel Density Estimation (NKDE)

techniques using the existing training fingerprints, without any extra calibration

efforts.

4.1 Nonparametric Kernel Density Estimation

Before proceeding to derive the error PDF and RoC, we first briefly describe

the relevant NKDE technique in this section, in the context of an indoor RSS-
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based fingerprinting localization system. Note that, our proposed scheme in this

chapter is applicable to generalized fingerprint-based systems. However, for the

convenience of discussion and experimental evaluation with accessible hardware,

we take the example of a RSS-based fingerprinting system in our derivation.

Assume that, for a RSS-based fingerprinting system, we have collected Ntr

data samples as the training records, (si, ci), i = 1, 2, ..., Ntr, in which si =

[si,1, si,2, ..., si,M ]T is the M -dimensional fingerprint vector of the ith training

fingerprint, and ci = [xi, yi]
T is the 2-dimensional coordinates of the training

location at which the ith fingerprint is collected. Note that, different RSS vectors

taken at the same training location are treated as different training fingerprints in

this chapter. Also, let the vectors, s = [s1, s2, ..., sM ]T and c = [x, y]T , denote the

online RSS vector and the actual target device location coordinates, respectively.

For the convenience of discussions, let,

u = [x, y, s1, s2, ..., sM ]T , (4.1)

and

ui = [xi, yi, si,1, si,2, ..., si,M ]T . (4.2)

The dimension of both vectors u and ui is therefore D = M + 2.

In order to approximate the joint PDF of c and s, fc,s(u), which is now the

multivariate PDF of u, a kernel function,

KHi
(u− ui) =

1

|Hi|K(H−1
i · (u− ui)), (4.3)

can be placed at each training sample ui. In (4.3), |Hi| denotes the determinant

of the matrix Hi. The choice of K(z) determines the functional form of the kernel.
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The “bandwidth matrix”, Hi, controls the spread and orientation of the kernel

function.

Therefore, the multivariate density estimation of fc,s(u) is,

f̂c,s(u) =
1

Ntr

Ntr∑
i=1

KHi
(u− ui). (4.4)

In this chapter, we still adopt the popular Gaussian kernel,

K(z) =
1

(2π)D/2
exp (−1

2
zT · z). (4.5)

The choice of the bandwidth matrix, Hi, is critical to the density estimation.

In this chapter, we have adopted the local adaptive bandwidth selection method

which is introduced in [53]. In the following paragraphs, we briefly describe this

technique for the sake of better understanding.

First, we compute a fixed “pilot bandwidth matrix”,

H′ = ω ·R1/2. (4.6)

In equation (4.6), the scalar,

ω = (
4

2D + 1
)
1/(D+4) · (Ntr)

−1/(D+4), (4.7)

is the theoretically optimal plug-in bandwidth for each dimension, when the dis-

tribution of the underlying D-dimensional vector elements are independent and

Gaussian distributed [53]. The matrix, R, is the sample covariance matrix com-

puted from the vectors, ui, i = 1, 2, ..., Ntr. It is used to reduce the inter-dependence

between elements in the vector u. Using H′ and (4.4), a “pilot density” value,
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f̂ ′(ui), for each training data point ui can be computed. Let

f̄ ′ = Ntr

√√√√
Ntr∏
i=1

f̂ ′(ui), (4.8)

be the geometric mean of the pilot density values. The local adaptive bandwidth

for the training data sample, ui, is then [53],

Hi = (
f̂ ′(ui)

f̄ ′
)
−1/2 ·H′. (4.9)

Intuitively, the fixed bandwidth matrix, H′, in the pilot density computation

underestimates the difference between large and small density values. Such a for-

mulation of the local adaptive bandwidth matrix, Hi, re-adjusts the local density

value based on its comparison with the geometric average in order to obtain better

density estimation.

Similar to (4.4), fs(s) can be estimated as,

f̂s(s) =
1

Ntr

Ntr∑
i=1

KHs
i
(s− si). (4.10)

Obtaining Hs
i is relatively easy given that Hi has already been computed. This is

because, theoretically,

f̂s(s) =

∫
f̂c,s(u) dc

=
1

Ntr

Ntr∑
i=1

∫
KHi

(u− ui) dc, (4.11)

where each KHi
(u−ui) is equivalently a multivariate Gaussian PDF characterized

by mean vector ui and covariance matrix HiH
T
i . Therefore, each integration in
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(4.11) results in a marginal Gaussian PDF characterized by mean vector si, and

the M ×M covariance matrix Φss
i , which is a sub-matrix of HiH

T
i corresponding

to the auto-covariance of s, i.e.,

HiH
T
i =




Φcc
i Φcs

i

Φsc
i Φss

i


 . (4.12)

Therefore, Hs
i = [Φss

i ]1/2.

4.2 Theoretical Error Performance Analysis

Recall that c = [x, y]T is the actual online target device location, which is

unknown. Let ĉ = [x̂, ŷ]T be the location estimate provided by any one of the

existing fingerprint-based algorithms. The error vector from the location estimate

to the actual target device location is defined as,

e = [x− x̂, y − ŷ]T . (4.13)

Let η and γ be the length and angle of the error vector e, respectively. We have,

[η cos γ, η sin γ]T = [x− x̂, y − ŷ]T . (4.14)

Hence,

[x, y]T = [x̂ + η cos γ, ŷ + η sin γ]T . (4.15)
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The Jacobian matrix J is,

J =




∂x
∂η

∂x
∂γ

∂y
∂η

∂y
∂γ


 =




cos γ −η sin γ

sin γ η cos γ


 . (4.16)

Therefore, the determinant of J is simply the error distance, η.

If fc,s(c, s) is the joint PDF of the online RSS vector s and the actual target

device location c, we can perform the transformation of variables from [x, y]T to

[η, γ]T , as follows:

f[η, γ]T ,s([η, γ]T , s) = fc,s([x̂ + η cos γ, ŷ + η sin γ]T , s) · η. (4.17)

Integrating over γ, we have,

fη,s(η, s) =

∫ 2π

0

f[η, γ]T ,s([η, γ]T , s) dγ. (4.18)

Once the joint PDF of η and s is obtained, the PDF of the localization error

distance η conditioned on the online RSS vector s is simply,

fη|s(η|s) =
fη,s(η, s)

fs(s)

=

∫ 2π

0
fc,s([x̂ + η cos γ, ŷ + η sin γ]T , s) · η dγ

fs(s)
.

(4.19)
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Substituting (4.4) and (4.10) into (4.19), we have,

f̂η|s(η|s) =

∫ 2π

0

∑Ntr

i=1 KHi
(




x̂ + η cos γ

ŷ + η sin γ

s



− ui) · η dγ

∑Ntr

i=1 KHs
i
(s− si)

(4.20)

The conditional probability that the localization error is less than a given

distance, r0, can then be estimated as,

Pr0 = P̂r(η ≤ r0|s) =

∫ r0

η=0

f̂η|s(η|s) dη. (4.21)

For a given Pr0, (4.21) could be used to obtain the radius of the corresponding

RoC (e.g. 90% RoC) numerically, which is commonly shown as a circle centering

the estimated location on a map.

4.3 Experimental Verifications and Discussions

4.3.1 Testbed Setup and Experimental Equipments

In order to verify the effectiveness of our proposed method, we have set up

the experimental testbed in our lab, as shown in Fig. 4.1. Three Linksys-WRT54G

wireless routers are deployed in the testbed as APs, broadcasting beacon frames

periodically in channels 1, 6, and 11, respectively, in order to minimize frame

collisions. A Fujitsu S6410 notebook equipped with an Intel Wireless WiFi Link

4965AGN adapter, is used to collect RSS measurements. The Linux packet sniffer,

tcpdump, is used to monitor the beacon frames transmitted by the APs. The MAC

addresses of APs, timestamps, and the Received Signal Strength Indicator (RSSI)
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Fig. 4.1: Layout of the experimental testbed.

values are retrieved from the radiotap header of each captured packet. Note that,

although the beacon frames from the APs arrive asynchronously, we can still use

the timestamps of the arriving packets to synchronize the reported RSSI values

and form RSS vectors.

The size of the testbed is approximately 130 m2. Within the accessible area

of the testbed, 125 training locations and 126 testing locations are uniformly

selected, such that the spacing between adjacent training locations is 0.85 m and

the spacing between a training location and its nearest testing location is 0.6 m.

At each training location, 50 training RSS vectors are collected. At each testing

location, 5 testing RSS vectors are collected, resulting in 630 testing cases in our

experiment.
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4.3.2 Statistical Verification

Let us denote the jth testing data sample as, (c(j), s(j)), and the corresponding

location estimate as ĉ(j), for j = 1, 2, ..., Nte, where Nte = 630. From the testing

samples, we can compute the error PDF, f̂η|s(j)(η|s(j)), for each testing online RSS

vector, s(j). However, it is not possible to verify its correctness individually, since

the pair of estimated location and ground truth corresponding to s(j) only gives us

a single error distance value for η. Therefore, rather than verifying each error PDF

individually, we derive the overall error PDF conditioned on the entire testing set,

Ste, i.e.,

f̂(η|Ste) =

∑Nte

j=1 f̂η|s(j)(η|s(j)) · f̂s(j)(s
(j))

∑Nte

j=1 f̂s(j)(s
(j))

, (4.22)

where f̂η|s(j)(η|s(j)) and f̂s(j)(s
(j)) can be obtained from (4.20) and (4.10). From

here, we can estimate the overall error Cumulative Density Function (CDF) and

compare it with the empirical error CDF to indirectly verify the correctness of

our approach. In order to predict the error CDF, we compute f̂(η|Ste) for η

ranging from 0 m to 10.5 m (experimentally determined), with a step size of

0.5 m. Simple rectangle-rule-based numerical integration is then applied to give

the discrete error CDF prediction. For the empirical error CDF, we apply the

Kaplan-Meier algorithm implemented in the MATLAB “ecdf()” function, on the

actual error distances.

We have chosen the two most widely adopted fingerprint-based localization

methods, namely, KNN and probabilistic approach, for our study. As shown in

Fig. 4.2, our empirical error CDFs are comparable with that in [28] although our

testbed is different from theirs. In both cases, the predicted error CDFs computed

by our proposed scheme track the empirical error CDFs closely. In particular,

comparison of the mean error distance, and error distances corresponding to 0.25,

45



CHAPTER 4. Error Analysis for Fingerprint-based Localization

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Distance (m)

O
ve

ra
ll 

C
um

ul
at

iv
e 

E
rr

or
 P

ro
ba

bi
lit

y 
fo

r 
K

N
N

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Distance (m)

O
ve

ra
ll 

C
um

ul
at

iv
e 

E
rr

or
 P

ro
ba

bi
lit

y 
fo

r 
P

ro
ba

bi
lis

tic
 A

pp
ro

ac
h

Experiment
Prediction

Experiment
Prediction

Fig. 4.2: Comparison of predicted and empirical error CDFs.

Table 4.1: Comparison between empirical and predicted error (in meters)

KNN Probabilistic
Empirical Predicted Empirical Predicted

CEP = 0.25 1.51 1.81 1.74 1.73
CEP = 0.50 2.69 2.93 2.69 2.75
CEP = 0.75 4.02 4.37 3.79 3.97
Mean Error 2.94 3.24 2.88 2.99

0.50, and 0.75 overall cumulative error probabilities (CEP) between the predicted

and the empirical data, are presented in Table I.
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DR-based Robust Pedestrian

Tracking with Sparse

Infrastructure Support

In this chapter, we propose an indoor pedestrian tracking system which fuses

the DR estimate with range measurements from a sparse infrastructure. The DR

estimate is obtained by a digital step counter and a digital compass, implemented

using low cost sensors on a hand-held mobile device. The ranging infrastructure

can be deployed in such a sparse manner that, at any point within the service

area, at most one LoS ranging BN can be heard, as it is done in our experimental

testbed. The DR location estimate has a cumulative tracking error. Occasionally,

when a range measurement from one infrastructure BN is heard, it can be used to

constrain and correct the accumulated tracking error. We propose a particle-filter-

based (PF-based) sensor fusion scheme to correct the tracking error for the general

case in which the reporting rate and accuracy of the ranging system may vary.
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A prototype of the proposed scheme is implemented for experimental verification

with sensors on a hand-held device and a practical ranging system. As shown

in the experimental results, the proposed scheme is able to provide significantly

better tracking performance compared to a DR system alone, regardless of whether

the knowledge of initial user location is available or not. Moreover, even when the

range measurements are intermittent and noisy, our proposed system still delivers

fairly accurate tracking performance.

5.1 Step-based Dead Reckoning with Hand-held

Mobile Device

Before proceeding to describe the proposed method, we first briefly describe

the step-based DR algorithm on a hand-held mobile device in this section. We have

built the step-based DR sub-system using the accelerometer and magnetometer

embedded in the Apple iPhone 4. Therefore we base our discussion on these

sensors in this device for the rest of this chapter. However, despite the differences

in the implementation details, the proposed scheme is applicable to a generalized

hand-held mobile device equipped with similar sensors.

A typical step-based DR tracking system estimates pedestrian location by

iteratively computing,

li = li−1 + [ρi cos θi, ρi sin θi]
T , (5.1)

in which li−1 and li denote the locations before and after the ith step is detected,

respectively. ρi and θi denote the stride length and stride orientation of the ith

step, respectively. Next, we introduce the techniques to estimate both parameters.
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Fig. 5.1: Vertical acceleration variations over time for 11 steps.

5.1.1 Step Detection

In order to reduce the effect of measurement noise, the accelerometer’s mea-

surements on the vertical axis are first passed to a low-pass filtering window

containing the readings of the most recent 200 ms, yielding smoothed vertical

acceleration readings.

Fig. 5.1 shows the temporal variation of the smoothed vertical accelerations

for 11 steps taken at normal walking speed. A new step is detected if a valid local

minimum and a valid local maximum are detected in sequence. A local minimum

is valid if it occurs at least 200 ms after the most recent valid local maximum, and

the value of the vertical acceleration at the local minimum is smaller than that of

the most recent local maximum by at least a threshold value, ∆threshold. Similarly,

a local maximum is valid if it occurs at least 200 ms after the most recent valid
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local minimum, and the value of the vertical acceleration at the local maximum

is higher than that of the most recent local minimum by at least ∆threshold. The

choice of the 200 ms time difference threshold is due to the fact that, at normal

walking speed, humans approximately take two steps per second, which leads to

four peaks correspondingly. Hence, it is reasonable to pick 200 ms as the minimum

inter-peak time difference.

5.1.2 Stride Length Estimation

Practically, stride length varies from step to step even for the same pedestrian.

An empirical adaptive model [59] relying on the walking acceleration pattern has

been used to estimate the stride length in [39], in which the sensor module is

mounted at the center back of the waist. However, in our case of a hand-held

device, a user holds his device in one hand, off the center of his body, such that

the steps from both legs can create different impact on the acceleration variations

sensed by the device. Moreover, random movements of the upper body and arm

of the pedestrian introduce more noise into the acceleration measurements. These

factors have rendered the adaptive model in [59] unsuitable. We therefore resort

to an average stride estimation scheme which also brings computational simplicity.

5.1.3 Step Parameter Calibration

The optimal values for both the step detection threshold, ∆threshold and the av-

erage stride length vary among different users. Simple and convenient calibrations

can be carried out to determine them. For example, ∆threshold can be determined

by requiring the user to walk a known number of steps and adjust ∆threshold such

that the correct number of steps are detected. On the other hand, the stride length

can be determined by obtaining the actual distance covered by a user during a
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calibration walking trial in which a fixed number of steps are taken.

5.1.4 From Magnetometer to Digital Compass

The magnetometer in the iPhone reports magnetic field strength measured

in the device’s local x, y, z coordinate system. Using the average accelerometer

reading during a step, we first estimate the pose of the phone relative to the

vertical direction. The Earth magnetic field strength can then be projected onto

the horizontal plane, which indicates the North direction. Therefore, the yaw

direction of the device can be retrieved.

In this section, for ease of implementation, we assume that, when a hand-

held device is being used, the yaw direction of the device is aligned with the user’s

heading. Therefore, a simple method to estimate the direction of a step and to

reduce the measurement noise would be to take the average of the yaw readings

between the starting and ending time of that step. However, in a step taken when

the user is turning, the yaw direction of the device will only be aligned with the

true step orientation at the end of that step. By considering this fact, we estimate

the user’s heading by averaging over only the yaw readings collected during the

last 200 ms of a step.

5.2 The Ranging Infrastructure

In this chapter, we have employed the Cricket Motes as BNs of our indoor

ranging infrastructure. The Cricket-based range measurement is carried out be-

tween a BN and a listener node (LN). The BN periodically sends out an RF

packet and an ultrasound pulse at almost the same time, t0. Upon receiving the

RF packet at time tRF, the LN starts to wait for the ultrasound pulse to arrive.
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Upon receiving the ultrasound pulse at time tUS, or upon a timeout event, the LN

stops waiting and starts to listen for new RF packets.

Due to the huge difference between the speed of RF and ultrasound propaga-

tion, the difference between tUS− t0 and tUS− tRF is almost negligible. Therefore,

tUS − tRF can be treated as the propagation time of the ultrasound signal. The

LN-BN separation, d, can be computed as,

d = vUS · (tUS − tRF), (5.2)

where vUS is the speed of ultrasound in air at room temperature.

In order to reduce blocking of signals, the BNs are normally mounted on

ceilings. Let hv denote the vertical height difference between a BN mounted on

the ceiling and the LN carried by the user. The distance, r, projected onto the

2-D plane is,

r =
√

d2 − h2
v. (5.3)

For the rest of this chapter, unless otherwise stated, the term “range measurement”

shall refer to the projected 2-D distance after taking the height difference into

consideration.

5.3 The Value of Sparse Information

Suppose we have a DR-based indoor pedestrian tracking system in place and

we would like to deploy an infrastructure in order to provide side information to

improve location tracking. In this context, there is contention between several

factors: having a finite set of resources; meeting coverage specifications; and sat-

isfying accuracy requirements. One design choice is to use the limited infrastruc-
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Fig. 5.2: Snapshot of uncertainty regions at a particular time instance.

ture resources to provide reliable and complete location information (e.g., using

trilateration) for a small fraction of the service area. However, in real-life indoor

environments such as museums, shopping malls, and campus buildings, users are

constantly moving over a large service area. A better design tradeoff may be to

deploy the limited infrastructure resources to provide partial location information

over a larger service area in a sparse and intermittent manner. The intuition is

that, although partial information such as the range from a single BN is ambigu-

ous for location purposes on its own, it can be used as side information to reduce

the uncertainty region for another location tracking system. This point can be

illustrated in Fig. 5.2. The lightly shaded area is a snapshot of the uncertainty

region of a mobile user being tracked by a DR system. The ringed area between

the dotted lines is the uncertainty region of a sparse ranging system, which can

lead to a large location uncertainty on its own. However, it can be used to sig-

nificantly reduce location tracking error by considering its intersection with the

DR uncertainty region. The reduced uncertainty region is represented by the dark

shaded area.
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Fig. 5.3: The proposed system architecture.

5.4 System Architecture

In our proposed system as shown in Fig. 5.3, several ranging BNs are sparsely

installed in the service area. Since occasional ranging coverage from only one LoS

BN is sufficient for error reduction within the service area, the number of BNs is

much smaller than that of a typical indoor trilateration system.

On the user side, a digital step counter, a digital compass, and a range sen-

sor are integrated into a mobile device to be hand-held by the user. The digital

step counter and the digital compass form the DR sub-system, which provides

the displacement estimate relative to the initial user location, or to the last es-

timated user location. The range sensor and the ranging infrastructure form the

ranging sub-system. The distance measurement to a nearby BN provided by this

sub-system can be utilized to correct the accumulated tracking error. More impor-

tantly, when a mobile user first appears in the service area, the ranging sub-system

is able to constrain the possible initial user locations.
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Therefore, our tracking system is able to fuse the DR estimate and the range

measurement. In the following sections, we first characterize both inputs proba-

bilistically. Afterwards, we describe the PF-based tracking scheme.

5.5 Statistical Characterization

5.5.1 Step Estimates of the DR Sub-system

The ith step is described by the stride length ρi and step orientation θi. The

displacement vector of a step is si = [ρi cos θi, ρi sin θi]
T .

The error in the estimated stride length is caused by the variations of stride

length for each step taken, device noise, and irregular movements of the user’s

arm and body. We model this error by a zero-mean Gaussian random variable

with standard deviation σρ. The error in the orientation measurement is caused

by device noise, irregular user arm movements, and distortion of Earth’s magnetic

field by nearby metallic objects. We similarly model this error by a zero-mean

Gaussian random variable with standard deviation σθ.

5.5.2 Distance Estimates of the Ranging Sub-system

In order to correct the cumulative DR tracking error, the range measurements

are treated as observations in the PF-based fusion scheme.

Let rk denote the kth range measurement. Let bk denote the index of the BN

from which this measurement is taken, and lk = [xk, yk]
T denote the pedestrian

location at which this measurement is taken, respectively. We assume that rk ∼
N(µk, σ

2
r), in which,

µk =
√

(xk − x(bk))2 + (yk − y(bk))2, (5.4)
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where [x(bk), y(bk)]T denotes the location of the BN indexed by bk. σr denotes the

standard deviation of the noise in the range measurements.

Therefore, we have,

fbk
(rk|lk) =

1√
2πσr

exp [−(rk − µk)
2

2σ2
r

], (5.5)

in which fbk
(rk|lk) is the PDF to obtain a range measurement rk from the BN

indexed by bk at the location lk.

5.6 Fusion by Particle Filter

In order to track lk, a PF uses a collection of Ns weighted samples, {ljk, wj
k}, j =

1, 2, ..., Ns, to approximate its conditional PDF, f(lk|o0:k) [60],

f(lk|o0:k) ≈
Ns∑
j=1

wj
kδ(lk − ljk), (5.6)

where δ(·) is the Dirac-Delta function. The term o0:k denotes all the observations

obtained up until the kth update.

In this chapter, we choose the Sampling Importance Resampling (SIR) PF.

The implementations, including initialization, sampling, weight update, and re-

sampling, are briefly described as follows. More details regarding PF and SIR PF

can be found in [60].

5.6.1 Initialization

In the special case where the starting location of the pedestrian is known and

given as [x0, y0]
T , Ns identical samples can be generated as, {lj0 = [x0, y0]

T , wj
0 =

1
Ns
}, j = 1, 2, ..., Ns.
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On the other hand, when the starting location is unknown, the initialization

is performed based on the first range measurement, r0, from the BN indexed by

b0, as follows. A collection of Ns samples, {lj0, wj
0 = 1

Ns
}, j = 1, 2, ..., Ns, are

uniformly generated in the service area. The weight, wj
0, for each sample lj0, is

then multiplied by fb0(r0|lj0), which is defined in (5.5).

Therefore, samples are weighted by their likelihood to obtain the first range

measurement r0 from the BN with index b0.

5.6.2 Importance Sampling

Assume there are Nk steps detected between (k−1)th and kth range measure-

ments. Let the displacement vector of the ith step detected between the (k − 1)th

and the kth range measurements be denoted as,

sk,i = [ρk,i cos θk,i, ρk,i sin θk,i]
T , (5.7)

in which ρk,i and θk,i are the estimated stride length and orientation of this step,

respectively.

Upon hearing the kth range measurement, we first draw each of the Ns samples

from the so-called “importance density”, f(lk|ljk−1), based on these Nk detected

steps between the (k − 1)th and the kth iteration, sk,i, i = 1, 2, ..., Nk, and the

samples from the previous iteration, {ljk−1, w
j
k−1 = 1

Ns
}, j = 1, 2, ..., Ns. In other

words, we generate,

ljk = ljk−1 +

Nk∑
i=1

sj
k,i, for j = 1, 2, ..., Ns. (5.8)
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Note that for each sample j, we have,

sj
k,i = [ρj

k,i cos θj
k,i, ρ

j
k,i sin θj

k,i]
T , (5.9)

in which the sample ρj
k,i is obtained by adding a zero-mean Gaussian random

number with variance σ2
ρ to the estimated stride length ρk,i, and the sample θj

k,i

is obtained by adding a zero-mean Gaussian random number with variance σ2
θ to

the estimated step orientation θk,i.

5.6.3 Weight Update and Resampling

According to [60], when the importance density is f(lk|ljk−1), the weight up-

date from the (k − 1)th iteration to the kth iteration is accomplished as,

wj
k ∝ wj

k−1 · f(ok|ljk). (5.10)

The term f(ok|ljk) denotes the likelihood for the observation ok to be obtained

at sample location, ljk, at the kth update. When the observation ok is a range

measurement, rk, obtained from the BN indexed by bk, we have,

f(ok|ljk) = fbk
(rk|ljk), (5.11)

in which fbk
(rk|ljk) is defined in (5.5).

The particle degeneracy problem may occur because the range measurement

correction may cause some samples to receive very small weights. After several

iterations, few particles would remain with meaningful weights. In order to address

this problem, the SIR PF resamples the Ns particles {ljk} from the approximated

PDF,
∑Ns

j=1 wj
kδ(lk − ljk). Each resampled particle is then weighted by wj

k = 1
Ns

.
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5.6.4 Location Estimator

Once the PDF f(lk|r0:k) is approximated by the SIR PF, the real-time pedes-

trian location can be estimated. The minimum mean square error (MMSE) esti-

mator is chosen in this chapter because it can be efficiently computed as,

lk|k = E{lk|r0:k}

=

∫
lkf(lk|r0:k)dlk

=

∫
lk

Ns∑
j=1

1

Ns

δ(lk − ljk)dlk

=
1

Ns

Ns∑
j=1

∫
lkδ(lk − ljk)dlk

=
1

Ns

Ns∑
j=1

ljk, (5.12)

which is simply the average of the resampled particles.

It is easy to see that, when the initial location is unknown, the MMSE esti-

mator for the initial location is simply the location of the BN from which the first

range measurement is made.

5.7 Experiments and Discussions

5.7.1 Sensor Evaluation for Sub-systems

DR Sub-system

The proposed PF-based tracking scheme requires two parameters to be de-

termined for the DR sub-system, namely, the standard deviation of stride length

estimation error σρ, and the standard deviation of stride orientation estimation
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error σθ.

In order to obtain σρ, 20 ten-step straight-line walking trials are carried out.

The actual distance covered in each trial is measured. The resulting error standard

deviation for ten-step straight-line walking is 0.203 m. If we treat the ten strides

as independent and identically distributed (iid) random variables, the standard

deviation of stride length estimation error for each step is 0.203√
10

= 0.064 m. In

order to account for the disturbance caused by irregular body movements and

noise in the acceleration measurements, we set σρ to be 0.1 m in our experiments.

Note that, the average stride length of the 20 trials is 0.58 m, which means

the error standard deviation per meter travelled in the stride length estimation is

roughly, 0.064 m
0.58 m

= 0.11 m/meter. It is much larger than that of the wheel encoder

used in [47], which has a error standard deviation of 0.001 m/meter travelled.

The magnetometer-based digital compass is vulnerable to both its inherent

bias and distortion of Earth’s magnetic field caused by metallic furniture. This is

illustrated in Fig. 5.4, which are the temporal fluctuations of yaw measurements of

the digital compass for 3 walking paths involving a 90 degree turn. Paths taken in

Fig. 5.4(b) and Fig. 5.4(c) have exactly the same starting directions but different

starting locations, such that the path in Fig. 5.4(b) is far away from any metallic

furniture but the path in Fig. 5.4(c) is in the proximity of a metallic cabinet.

The path taken in Fig. 5.4(a) starts with a different orientation with no metallic

furniture nearby.

Several observations can be made from Fig. 5.4. First, during the straight-

line portions of the walking paths in Fig. 5.4(a) and Fig. 5.4(b), the orientation

measurements fluctuate within a reasonable range. Second, although the actual

turning angles are the same, the differences in average path orientation measure-

ments before and after the turn are 77.9 degrees and 117.6 degrees, respectively,
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(a) Starting orientation 1 with-
out metallic furniture.
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(b) Starting orientation 2 with-
out metallic furniture.
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(c) Starting orientation 2 with
metallic furniture.

Fig. 5.4: Difference in yaw measurements of the digital compass in walking trials with and
without the presence of metallic furniture. Note: the vertical dash-dot lines mark the instances
of detected steps.

for Fig. 5.4(a) and Fig. 5.4(b). Even for the case where both paths are far away

from metallic furniture, Fig. 5.4(a) and Fig. 5.4(b) report different turning an-

gles. More importantly, the existence of a metallic cabinet introduces significantly

larger fluctuations in Fig. 5.4(c). Considering these factors, we reasonably set the

standard deviation in the orientation measurement error to be 20 degrees.

Ranging Sub-system

Fig. 5.5 shows the histograms for the Cricket ranging data with BN-LN sep-

aration of 1 m and 2 m respectively. In both cases, the range measurements have

some offsets from the true separations. Through experiments, we have discovered

that there is a near-linear relationship between these offsets and the measured

ranges. Therefore, the offsets can be easily compensated for any calibrated BN-LN

combination. The offset versus measured range relationship is plotted in Fig. 5.6

for a particular BN-LN combination.
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Fig. 5.5: Histograms for range measurements corresponding to 1m (left) and 2m (right) true
separations.
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Fig. 5.6: Offset from true separation versus measured range.
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(a) Experimental testbed with dimensions and
locations of BNs indicated.

(b) Experimental walking path with
ground truth waypoints indicated.

Fig. 5.7: Experimental testbed and walking path.

5.7.2 Experimental Setup

Experimental Testbed and Infrastructure

In order to evaluate the tracking performance of the proposed scheme, we have

chosen a laboratory on our campus as the indoor tracking testbed. The testbed is

13.2 m by 20.0 m by 2.5 m in dimension. It contains a common working area and

a meeting room. The layout of the testbed is shown in Fig. 5.7(a) with walls and

pillars indicated. As shown in Fig. 5.7(b), an indoor walking path is picked in our

testbed. The path covers about 90 m in total distance, with various obstacles and

turns. It takes about 2 minutes to walk along it, under normal indoor walking

speed. Note that, actual distances covered and time taken for travel vary across
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different experimental trials.

Ten Cricket Motes are installed on the ceiling in the testbed as BNs to form

the ranging infrastructure. Therefore, the average BN density of our system is

0.04/m2. However, only a maximum of 6 BNs are actually used for range cor-

rections in each round of our experiments. Compared to the trilateration system

implemented with Cricket Motes in [4], in which 4 BNs are installed to cover a

testbed of 3.04×2.43 m2 with a BN density of 0.54/m2, our infrastructure deploy-

ment is much more sparse.

Note that, we intentionally choose such a sparse deployment of BNs in our

testbed in order to illustrate that our system can benefit tremendously from very

sparse side information. In practice, our proposed scheme has no difficulty working

properly even when more than one range BN can be heard at any location.

In order to minimize the collisions between the BNs’ RF packets, we imple-

mented a simple TDMA-based BN transmission scheduling protocol, as follows.

BN 1 transmits its RF packet (and the ultrasound pulse) once every second. Upon

hearing BN 1’s RF packet, BN n will wait for tw · (n − 1) amount of time before

its own transmission. In our system, since there are 10 BNs, tw is chosen to be

100 ms.

One Cricket Mote functioning as the LN is hand-held by the pedestrian to-

gether with the iPhone. The LN is kept at approximately 1.2 m above the ground.

Whenever a range measurement, r, is made with respect to BN n, at time t, an

RF packet containing the 3-tuple, {rn, n, t}, is wirelessly sent to another Cricket

Mote, labelled as the “Base Station”, which is connected to a desktop personal

computer (PC) through RS232 serial interface.

Through calibration, we have found that, although the RF beacon can be

heard over a long distance, the ultrasound emitted by a BN mounted on the ceiling
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cannot be heard by a LN at 1.2 m above ground when the horizontal distance is

larger than 2.5 m. Therefore, due to our sparse testbed setup, the LN can measure

the distance from at most one infrastructure BN at any given location. Moreover,

the raw range measurements after compensation are only treated as valid if they

fall within the range [1.3 m, 2.8 m] (because
√

1.32 + 2.52 ≈ 2.8). We note that

invalid readings may be caused by reflected ultrasound signals.

Synchronization of Sub-systems

Since the DR sub-system and the ranging sub-system are implemented on

separate hardware with different system clocks, synchronization between these

two sub-systems is critical for correct operation. For the convenience of off-line

study, we synchronize both sub-systems to the desktop PC.

For the ranging sub-system, the LN reports its local timestamp tc to the PC

by sending a synchronization message through the RS-232 serial interface. The PC

records its local timestamp tPC when the LN’s synchronization message is received.

The clock offset for the ranging sub-system is computed as ∆c = tPC − tc.

Synchronization between the phone and the PC is accomplished wirelessly

through a TCP socket connection, while they are both connected to the same

wireless router. The PC sends a synchronization message SYNC1 to the phone

and records the sending time t1. Upon receiving SYNC1, the phone sends a

synchronization message SYNC2 containing its local timestamp tp back to the PC

through the on-device Wi-Fi. The PC records the receiving time of SYNC2 as t2.

If we assume that both SYNC1 and SYNC2 spend almost the same amount of

time travelling between the PC and the phone, the time offset between the phone

and the PC can be computed as ∆p = (t1 + t2)/2− tp.
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Ground Truth Collection

There are mainly two methods to collect ground truth for performance eval-

uation in the DR-based pedestrian tracking literature. The first method uses

location coordinates provided by GPS [40]. It works only in the outdoor scenario.

Moreover, commercial GPS’s location estimation itself is subject to considerable

error. The second method obtains ground truth relying on a reference DR unit

[43], which is built on top of dedicated hardware with low noise and good updating

rate. It can be foot-mounted on the tester so that ZUPT can be applied for noise

cancellation. However, this approach is expensive and the reference DR system

itself is still subject to error propagation over time.

For our experiment, we developed an efficient approach to collect accurate

ground truth indoors, utilizing the mobile device and testbed setup. Along the

walking path we have marked 10 distinctive locations as waypoints on the floor.

Because each waypoint location is reached twice or thrice along the walking path,

ground truth can be recorded and referred to for a total of 22 times in one walking

trial. Note that, in order to maintain natural walking behavior, the pedestrians

who participate in the experiment are not required to follow the path strictly as

sketched in the figure, nor do they have to step on the waypoint locations precisely,

as long as all the waypoints are passed through exactly in the correct sequence.

The pedestrian starts one trial of experiment by tabbing the “Start” button

on the touch screen of the device. The device will instantly start sensor data

collection. Whenever the pedestrian is passing through a certain waypoint on the

walking path, he will tab the “Waypoint” button on the touch screen of the device,

which will record the timestamp of this particular instance of passing. Therefore,

22 pieces of ground truth with timestamps can be collected accurately and effi-

ciently for each trial of experiment. The estimated location, at the instance when
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Estimated locations upon passing
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(a) Tracking path of DR.

Waypoints

Beacon node locations

Tracking path of proposed method

Estimated locations upon passing
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(b) Tracking path of the pro-
posed scheme with the knowl-
edge of initial location.
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(c) Tracking path of the pro-
posed scheme without the knowl-
edge of initial location.

Fig. 5.8: Tracking paths of DR and proposed scheme, both with and without the knowledge of
the initial location.

a certain actual waypoint is passed by, can be compared to the actual waypoint

location for error distance computation.

5.7.3 Tracking Performance

Sample Tracking Path

The estimated user trajectories by the proposed scheme, both with and with-

out the knowledge of initial location, are visualized for better understanding in

Fig. 5.8(b) and Fig. 5.8(c), respectively, for a sample experimental trial. The

performance of the DR algorithm for the same trial is also provided for compar-

ison purpose in Fig. 5.8(a). The corresponding temporal error propagations are

shown in Fig. 5.9(a) and Fig. 5.9(b), respectively. As shown in these figures, er-

rors in both the stride length estimation and the digital compass output cause the

tracking errors in the DR estimation to accumulate quickly over time.
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Fig. 5.9: Temporal tracking error propagation of the proposed scheme with and without the
knowledge of the initial location.

On the other hand, the proposed scheme can effectively constrain error prop-

agation with the aid of the sparse ranging infrastructure. Occasionally, when a

range measurement is obtained from a certain BN, the particles representing the

accumulated uncertainty in the user location are weighted by the likelihood of the

reasonably accurate range measurement. Hence, the uncertainty in location can

be significantly reduced.

Recall that, the proposed scheme starts tracking by making use of the first

range measurement when the initial location is unknown. As shown in Fig. 5.9(b),

initialization based solely on the first range measurement causes significantly larger

tracking error at the beginning, compared to DR. However, as more range mea-

surements are heard, the excess tracking error diminishes, and allows the proposed

scheme to outperform the DR scheme rather rapidly.

After showing the sample tracking paths for the proposed scheme for a single

trial of experiment, we study the performance of the proposed scheme under vari-

ations of different factors, including standard deviation of ranging errors, sparsity
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of range corrections, and stride length errors. We use the average tracking error

(in meter) as the performance metric. In the Fig. 5.10 to 5.13, each data point

is the average of results obtained by repeating the tracking algorithm over 100

trials on the previously collected data. Each trial provides different results be-

cause there is some randomness in the injected range errors and the particle filter

implementation. As mentioned, each trial provides 22 ground truth comparisons

for tracking error computation. Therefore, each data point is the average of 2200

error values. We also show the 95% confidence interval for each data point on the

graph whenever applicable, in order to indicate the reliability of the results.

Effect of Ranging Errors

Apart from the easily compensated near-linear offsets in the range measure-

ments as described previously, the Cricket ranging technology provides rather

accurate range information. In order to study the effect of ranging errors on

tracking performance for a more general ranging system, we intentionally inject a

zero-mean Gaussian random error into each range measurement. Fig. 5.10 shows

the average tracking error corresponding to different standard deviations of the

injected pseudo-random ranging error. As expected, the average error of the pro-

posed scheme increases when the standard deviation of the range measurement’s

error gets larger. However, an interesting observation can also be made here; the

excess tracking error caused by the lack of initial location information could be

compensated by the availability of more accurate range measurements. For ex-

ample, the average tracking error for the case where the initial location is known

and the ranging error’s standard deviation is 0.5 m, is comparable with that of

the case where the initial location is unknown and the ranging error’s standard

deviation is 0.3 m.
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Fig. 5.10: Average tracking error vs. standard deviation of errors injected into range measure-
ments.

Effect of Varying Sparsity

In this section, we study the robustness of the tracking performance when

the range measurements become more sparse both temporally and spatially. In

practice, temporal sparsity may be caused by heavy interference, or perhaps due

to the user device’s power conservation strategies that turn off its receiver every

now and then. On the other hand, the shortage of infrastructure BNs may cause

spatial sparsity.

In order to emulate temporal sparsity of range measurements, we repeat the

algorithm on the collected data, for both cases with and without the knowledge of

initial location. However, each time a range measurement occurs, the algorithm

randomly decides whether to accept it or not, with chosen probability values of

0.25, 0.5, 0.75, or 1.
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Fig. 5.11: Average tracking error vs. probability of accepting range measurements.

We set the ranging error’s standard deviation to be 0.1 m. As shown in

Fig. 5.11, the average tracking error decreases rapidly as the range measurements

become more frequent. For comparison, note that the simple DR with known

initial location delivers an average error of 4.79 m for our experimental walking

path. We observe that even when the initial location information is not available,

and only half of the range measurements are utilized for fusion, the proposed

algorithm still reduces the average error by 72.9%, compared to the case of DR

with knowledge of initial location.

In order to emulate the effect of spatial sparsity of BNs, we repeat the al-

gorithm on the collected data for both cases with and without initial location

information, by accepting range measurements from only a subset of BNs encoun-

tered on the path.

As shown in Fig. 5.12, as range measurements from more BNs are accepted for
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Fig. 5.12: Average tracking error vs. number of BNs whose range measurements are accepted.

fusion, the average tracking error decreases rapidly. Compared to simple DR with

initial location given, the proposed scheme is able to reduce the average tracking

error by 57.4%, even when the initial location information is not available, and

range measurements from only one BN are used.

In order to study the performance of the proposed scheme when both spa-

tial and temporal sparsity are present, we set the probability of accepting range

measurements to be 0.25 and only utilize the range measurements from one BN

(besides the first range measurement used for initialization). The average track-

ing errors for the experimental walking path under these settings are listed in

Table 5.1, for both cases with and without the knowledge of initial location. As

shown in the table, even when the range measurements are extremely sparse, the

proposed scheme is still able to achieve observable error reductions of up to 43.6%
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Table 5.1: Average error and rate of corrections of the proposed scheme with both temporal and
spatial sparsity

When all the range
measurements are
used from six BNs

When 25% of the
range measurements
are used from only
one BN

Average tracking error with
knowledge of initial location
(meter)

0.88 (81.6%) 2.60 (45.7%)

Average tracking error
without knowledge of initial
location (meter)

0.98 (79.5%) 2.70 (43.6%)

Average correction rate (per
second)

0.46 0.028

Note: The percentage values in the brackets represent the reduction in aver-
age tracking error compared to the DR approach. Each average error value
reported in the table is computed over 2200 data samples. The worst case
(maximum) 95% confidence interval among the average error values is 0.089 m.

when the knowledge of the initial location is not available. Note that, such a signif-

icant amount of error reduction is achieved when there are only 0.028 corrections

per second on average.

Effect of Calibration Error in Stride Length Constant

The stride length ρ needs to be calibrated for each individual user. In this

section, we study the effects of calibration errors in ρ on the tracking performance.

In our experiments, the value of the calibrated ρ is ρcal = 0.58 m. Fig. 5.13

shows the average tracking errors of the proposed scheme for the experimental

walking path for ρ = 0.5ρcal to 1.5ρcal, with a 0.1ρcal step size. As can be observed,

the average tracking errors are all kept below 2.5 m. The proposed scheme is able

to limit the effects of the stride length calibration error because of the range

corrections.
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Fig. 5.13: Average tracking error vs. stride length.
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Chapter 6

DR-based Robust Pedestrian

Tracking with Two Sensor

Modules

In this chapter, we propose a robust pedestrian tracking scheme using low

cost DR sensors, which exploits the stable relative displacements between two

sensor modules carried by the same pedestrian. We formulate the tracking task

as a maximum a posteriori (MAP) sensor fusion problem and derive the optimal

solution. We experimentally evaluate our proposed scheme by using, (i)two DR

devices, each containing a single orientation sensor, mounted with arbitrary de-

vice orientations, (ii)one DR device, containing two different orientation sensors,

mounted with fixed device orientation. Our proposed scheme has exhibited robust

tracking performance with significant error reductions, compared to traditional

DR, in both scenarios.
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6.1 Dead Reckoning with Arbitrary Device Ori-

entation

Before proceeding to describe the proposed method, we first briefly intro-

duce the state-of-the-art pedestrian DR tracking algorithm with arbitrary device

orientation.

We have used two Android-based smartphones (HTC Magic and Google Nexu-

sOne) as our experimental devices for the scenario of tracking with arbitrary device

orientation in this chapter. Both smartphones are equipped with 3-axis accelerom-

eter and 3-axis digital compass. We therefore based our discussions in this chapter

on these sensors in the devices. However, despite the differences in the implemen-

tation details, the proposed scheme is applicable to generalized mobile devices

equipped with similar sensors.

6.1.1 Orientation Projection for Arbitrary Device Posture

Practically, devices such as mobile phones or PDAs are very likely to be placed

with arbitrary orientation. Therefore, the first step of pedestrian tracking in such

scenarios is to project the phone’s acceleration measurements reported in its x-y-z

local coordinate system into the East-North-Up (E-N-U) world coordinate system,

using the digital compass’ orientation measurements.

The three orientation measurements (pitch, roll, yaw) reported by the An-

droid API represent a sequence of rotations of the phone, starting from the initial

orientation in which its x-y-z local coordinate system is aligned with the E-N-U

world coordinate system. The three rotations are performed in an extrinsic man-

ner. Rotations about the Up axis (yaw), the North axis (roll), and the East axis

(pitch) are applied in sequence. In order to obtain the acceleration values in the
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world coordinate system, we multiply the inverse of the corresponding rotation

matrices in the reversed order (inverse pitch, inverse roll, and inverse yaw) to the

acceleration vector reported in the local coordinate system.

6.1.2 Noise Filtering

Both the accelerometer and the digital compass in the smartphones give noisy

measurements. In this chapter, we adopt low-pass filters (LPF) for noise reduc-

tion. However, the fluctuating orientation measurements reported by the Android

API often experience sudden changes between two edge values such as 0 and 360

degrees, or −180 and 180 degrees. Applying LPF in these cases would cause the

filtered measurements to be opposite or perpendicular to the true orientations.

Therefore, we perform the filtering operation as follows. The raw acceleration

measurements are passed into a pre-LPF with 200 ms window width. Next, the

pre-filtered acceleration measurements are projected into the E-N-U world co-

ordinate system, using the latest raw orientation measurements. Effects of the

orientation noise are reduced indirectly by passing the projected accelerations to

a post-LPF with 200 ms window width.

6.1.3 Step Detection and Stride Length Calibration

After the acceleration measurements have been projected into the E-N-U

world coordinate system as described above, the step detection and stride length

calibration can be executed similarly as described in Chapter 5.
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6.1.4 Heading Orientation

In [42], PCA is applied to the horizontal E-N plane to find the heading orienta-

tion, after the original accelerations are projected into the E-N-U world coordinate

system. The same approach is verified in [43] experimentally. However, [43] uses

a dedicated inertial measurement unit (IMU), with a sensor data updating rate

of 50 Hz. On the other hand, the low cost sensors in our Android smartphones

have a non-uniform data updating rate of less than 25 Hz on average. Therefore,

we only have fewer than half of the data samples compared to [43] for PCA-based

heading detection, which delivers poor performance.

Limited by the low cost sensor’s hardware data reporting rate, we choose a

different heading detection scheme. The adopted scheme performs trapezoidal-

rule-based numerical integration over the acceleration readings that are projected

onto the E-N 2-D plane, over the latest 1.4 seconds (for about two steps), in order

to approximate the current heading direction. Through experiments, it proves to

be a simple and effective scheme.

6.2 System Architecture and Assumptions

Assume that the pedestrian is carrying two DR modules, each with arbitrary

device orientation, labelled by module A and module B, respectively. Each mod-

ule is capable of performing DR location tracking on its own, with independent

tracking error.

We also assume that, the two modules have reasonably stable relative dis-

placement with respect to each other. Mathematically speaking, if we let lAi and
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lBi denote the coordinates of locations for the two modules at the ith step, we have,

lAi = mA
i + vA

i , (6.1)

and,

lBi = mB
i + vB

i , (6.2)

where both mA
i and mB

i are vectors representing deterministic and fixed displace-

ments with respect to the center of pedestrian motion, while vA
i and vB

i are ran-

dom vectors which account for the limited local random movements of the two

modules. vA
i and vB

i are uniformly distributed within a spherical region centered

at 0 with radii rA and rB, respectively. In order to simplify notations, assume

r = rA = rB = max {rA, rB}.
Based on this model, we can normalize mA

i = mB
i = mi, where mi is the

center of motion at the ith step, for the convenience of representation. Therefore

the prior PDF for lAi and lBi is,

f(lAi , lBi ) =





κ if ‖lAi − lBi ‖ ≤ 2r,

0 otherwise,
(6.3)

where κ is a constant whose value is dependent on the dimension of the tracking

problem and the radius of uncertainty region, r. ‖ · ‖ is the magnitude of a vector.

Note that, (6.3) implies that it is equally likely for the two modules to be at any

pair of locations as long as their inter-distance is less than or equal to 2r.
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6.3 The Robust Tracking Algorithm

6.3.1 Initialization

The DR system alone is only able to estimate the displacement vector but not

the initial location. In order to initialize, the starting location, m0, must be pro-

vided to the DR system through either user indication or some other localization

technologies.

Recall that, lAi = mi + vA
i and lBi = mi + vB

i are the locations of the two

modules after the fixed displacements with respect to the center of motion are

normalized. In order to initialize, we conveniently assume that, vA
0 = vB

0 = 0.

Therefore, lA0 = lB0 = m0.

6.3.2 Maximum A Posteriori Sensor Fusion

Let l̂Ai and l̂Bi denote the DR estimates reported by the two modules indepen-

dently at the ith step. The fusion task is to find lAi and lBi which maximize the a

posteriori PDF, f(lAi , lBi | l̂Ai , l̂Bi ). In other words, we need to solve the following

optimization problem,

maximize
lAi ,lBi

f(lAi , lBi | l̂Ai , l̂Bi )

From this point onwards, we can drop the index term i for simplicity of

representation, because the following discussions are all referring to the fusion

algorithm at the ith step.

According to Bayes’ Theorem, we have,

f(lA, lB | l̂A, l̂B) =
f (̂lA, l̂B | lA, lB) · f(lA, lB)

f (̂lA, l̂B)
. (6.4)
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Because the two modules provide independent DR estimates,

f(lA, lB | l̂A, l̂B) =
f (̂lA| lA) · f( l̂B| lB) · f(lA, lB)

f (̂lA, l̂B)
. (6.5)

On the right hand side of (6.5), the evidence PDF in the denominator, f (̂lA, l̂B),

is not affected by the choice of either lA or lB because,

f (̂lA, l̂B) =

∫
f (̂lA| lA) · f( l̂B| lB) · f(lA, lB)d(lA, lB). (6.6)

Therefore, maximizing f(lA, lB | l̂A, l̂B) is equivalent to maximizing f (̂lA| lA)·
f( l̂B| lB) · f(lA, lB).

The terms f (̂lA| lA) and f (̂lB| lB) are the likelihood PDFs of observing l̂A

and l̂B, conditioned on the actual locations, lA and lB, respectively. Due to the

residual noise in filtered sensor measurements and irregularity in pedestrian body

movements, each step’s displacement is estimated with independent error. The

likelihood PDF for the DR estimation for each estimation instance can therefore

be modelled as Gaussian, according to the Central Limit Theorem (CLT). Similar

assumption has been made in [48] for fusing the DR estimates with WLAN-based

localization result.

Therefore, both f (̂lA| lA) and f (̂lB| lB) are Gaussian. The value of the prior

PDF f(lA, lB) in (6.3) is a positive constant within a spherical region and 0

elsewhere. The robust tracking task therefore becomes a constrained optimization

problem as,

maximize
lA,lB

f (̂lA| lA) · f( l̂B| lB)

subject to ‖lA − lB‖ ≤ 2r.

We further observe that there are two cases in which the maximal value can
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be obtained.

In the first case, ‖̂lA− l̂B‖ ≤ 2r, which means the location estimates reported

by the two DR modules are within a distance of 2r. In this case, both Gaussian

PDFs can obtain their maximal values (hence their product is maximized) at

l̃A = l̂A and l̃B = l̂B, while satisfying f (̃lA, l̃B) 6= 0. However, in this case,

because the optimal l̃A and l̃B are close to each other, it is not necessary for the

fusion to take place.

In the second case, ‖̂lA−l̂B‖ > 2r. The estimates reported by the two modules

deviate from each other to such an extent that error correction needs to be done.

In order to satisfy that f(lA, lB) 6= 0, the distance between the optimal l̃A and l̃B

must be 2r in this case. This can be proven, almost trivially, by contradiction as

follows. For simplicity, we only consider the 2-D case here.

Given that, the reported location estimates, l̂A and l̂B, satisfy,

‖̂lA − l̂B‖ > 2r, (6.7)

and f (̂lA| lA) · f (̂lB| lB) is maximized at optimal points, lA = l̃A and lB = l̃B,

respectively, which satisfy ‖̃lA − l̃B‖ = d < 2r, draw two circles CA and CB

centered at l̃A and l̃B with arbitrarily small radii pA and pB, respectively, such that

pA + pB +d < 2r. If any point on CA or CB results in a larger f (̂lA| lA) · f (̂lB| lB),

it would contradict the condition that l̃A and l̃A are the optimal feasible points.

Therefore, both l̃A and l̃B must be the local maximum of the likelihood PDFs

f (̂lA| lA) and f (̂lB| lB), respectively. However, each Gaussian PDF has only

one local maximum which is also the global maximum. Therefore, l̃A = l̂A and

l̃B = l̂B, which contradicts the fact that ‖̂lA− l̂B‖ > 2r. Therefore, we must have,

‖̃lA − l̃B‖ = 2r when the distance between the two reported location estimates l̂A
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and l̂B is larger than 2r.

Consequently, the constrained optimization problem becomes,

maximize
lA,lB

f (̂lA| lA) · f( l̂B| lB)

subject to ‖lA − lB‖ = 2r.

In order to solve it, let,

lB = lA + q = [xA + 2r cos φ, yA + 2r sin φ]T , (6.8)

which eliminates the constraint and adds one more free variable, φ, to the maxi-

mization problem.

The objective function to be maximized can therefore be written as,

F = f (̂lA| lA) · f( l̂B| lB) = f (̂lA| lA) · f( l̂B| lA + q) = Q · exp [G], (6.9)

where,

Q =
1

4π2 · |RA| 12 · |RB| 12
, (6.10)

and RA and RB are the covariance matrices for the Gaussian PDFs f (̂lA| lA) and

f (̂lB| lB), respectively. We also have in the exponent,

G = −1

2
(lA − l̂A)TR−1

A (lA − l̂A)− 1

2
(lA + q− l̂B)TR−1

B (lA + q− l̂B). (6.11)

For the unconstrained objective function in (6.9), at the optimal point, we
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have the equalities about its partial derivatives,

∂F

∂xA

= 0, (6.12)

∂F

∂yA

= 0, (6.13)

∂F

∂φ
= 0. (6.14)

Correspondingly, by the Chain Rule, we have,

∂F

∂G
· [ ∂G

∂lA
]T · ∂lA

∂xA

= 0, (6.15)

∂F

∂G
· [ ∂G

∂lA
]T · ∂lA

∂yA

= 0, (6.16)

∂F

∂G
· [∂G

∂q
]T · ∂q

∂φ
= 0. (6.17)

The term, ∂F
∂G

= Q · exp [G], is always nonzero. Therefore, we can ignore it in

further discussions.

The term ∂G
∂lA

is evaluated as,

∂G

∂lA
= −R−1

A (lA − l̂A)−R−1
B (lA + q− l̂B). (6.18)

Let,

lA = [xA, yA]T , (6.19)

l̂A = [x̂A, ŷA]T , (6.20)

l̂B = [x̂B, ŷB]T . (6.21)
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We have,

∂lA

∂xA

= [1, 0]T , (6.22)

∂lA

∂yA

= [0, 1]T . (6.23)

The term ∂G
∂q

is evaluated as,

∂G

∂q
= −R−1

B (lA + q− l̂B). (6.24)

The term ∂q
∂φ

is evaluated as,

∂q

∂φ
= [−2r sin φ, 2r cos φ]T . (6.25)

For any specific l̂A, l̂B, RA, and RB, (6.15) to (6.17) give us three linear

equations, which can be solved for xA, yA, and φ.

However, the covariance matrices, RA and RB, for DR estimates, are difficult

to evaluate or estimate in general. Therefore, we further assume that,

RA = σ2
AI, (6.26)

RB = σ2
BI, (6.27)

in which I denotes the identity matrix. Following this assumption, we can simplify

(6.15) to (6.17) to,

xA − x̂A

σ2
A

+
xA − x̂B + 2r cos φ

σ2
B

= 0, (6.28)

yA − ŷA

σ2
A

+
yA − ŷB + 2r sin φ

σ2
B

= 0, (6.29)

xA sin φ− x̂B sin φ− yA cos φ + ŷB cos φ = 0. (6.30)
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Combining (6.28) and (6.29) gives us,

tan φ =

yA−ŷB

σ2
B

+ yA−ŷA

σ2
A

xA−x̂B

σ2
B

+ xA−x̂A

σ2
A

. (6.31)

Dividing (6.30) by cos φ gives us,

tan φ =
yA − ŷB

xA − x̂B

(6.32)

=

yA−ŷB

σ2
B

xA−x̂B

σ2
B

. (6.33)

Combining (6.31) and (6.33) we have,

tan φ =

yA−ŷB

σ2
B

xA−x̂B

σ2
B

=

yA−ŷA

σ2
A

xA−x̂A

σ2
A

=
yA − ŷA

xA − x̂A

(6.34)

=
ŷB − ŷA

x̂B − x̂A

. (6.35)

The result in (6.33) and (6.35) implies that, lA = [xA, yA]T lies on the line that

connects l̂A and l̂B.

Moreover, rewriting (6.28) and (6.29), we have,

xA =
σ2

Bx̂A + σ2
Ax̂B − 2rσ2

A cos φ

σ2
A + σ2

B

, (6.36)

yA =
σ2

B ŷA + σ2
AŷB − 2rσ2

A sin φ

σ2
A + σ2

B

. (6.37)

Consequently,

xB =
σ2

Bx̂A + σ2
Ax̂B + 2rσ2

B cos φ

σ2
A + σ2

B

, (6.38)

yB =
σ2

B ŷA + σ2
AŷB + 2rσ2

B sin φ

σ2
A + σ2

B

. (6.39)

86



CHAPTER 6. DR-based Robust Pedestrian Tracking with Two Sensor Modules

Fig. 6.1: Illustration for the geometry of the solution.

An illustration for the geometry of the solution is shown in Fig. 6.1. After

fusion, both location estimates lA and lB lie on the line that connects l̂A and

l̂B. Moreover, lA and lB are both r meters away from the location which is the

weighted average of l̂A and l̂B, from both sides.

In practice, it is difficult to calibrate or estimate the real-time tracking error

variances of the two modules. In the case where two devices are mounted at

symmetrical locations on the same pedestrian’s body, we assume the two sensor

modules have equal variances.

6.4 The Special Case:A Single Device with Two

Different Orientation Sensors

In the special case, where there is only one device, containing two different

orientation sensors (e.g., gyroscope and magnetometer), our proposed scheme can
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also be applied, as follows.

We compute two different DR estimates, lAi and lBi , each utilizing one of the

orientation sensors for heading direction, as well as the accelerometer for step

detection. Next, because the two sets of estimates are from the same physical

device, they experience the same random body movements. Therefore, we assume

their DR tracking error variances to be equal. We also note that, ‖lAi − lBi ‖ = 0

for all i as far as the same physical device is concerned. The generalized fusion

algorithm becomes a simple mean computation for each detected step in this case.

6.5 Experiments and Discussions

6.5.1 Experimental Testbed Setup and Devices Used

In order to evaluate the performance of the proposed scheme, we use the same

testbed setup as described in Chapter 5.

We have conducted experiments for two different scenarios. As shown in

Fig. 6.2(a), in Scenario 1, we have used both Google NexusOne (Slave A) and

HTC Magic (Slave B) as the slave devices, each containing a 3-axis digital compass

for heading detection and a 3-axis accelerometer for step detection, carried with

arbitrary device orientations in the pedestrian’s two trouser pockets. We also

use one HTC Hero as the master device for experiment control and ground truth

collection purpose.

As shown in Fig. 6.2(b), in Scenario 2, we have used the Apple iPhone 4 as

the slave device, containing both a 3-axis magnetometer (Slave compass) and a

3-axis gyroscope (Slave gyro) for heading detection, and a 3-axis accelerometer for

step detection, mounted with fixed orientation on the pedestrian’s side waist. We

also use the Google NexusOne as the master device for experiment control and
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(a) Data collection devices for Scenario 1, from
left to right: Google NexusOne (Slave A); HTC
Magic (Slave B); HTC Hero (Master).

(b) Data collection devices for Scenario 2, from
left to right: Apple iPhone 4 (Slave) and Google
NexusOne (Master).

Fig. 6.2: Experimental devices for two testing scenarios.

ground truth collection purpose.

Note that, our proposed method itself does not require the user to carry

multiple smartphones in practice. Instead, mobile devices such as a mobile phone,

a tablet PC, or even a DR sensor set embedded in a customized key chain, can be

grouped flexibly to form multiple sensor sets.

6.5.2 System Synchronization

The synchronization scheme between multiple smartphones are similar as the

synchronization scheme between a smartphone and the PC in Chapter 5. All

the devices are connected to the same Wi-Fi router for experimental purposes.

Each smartphone records data using its own local clock with millisecond time

resolution. The synchronization between the phones in both scenarios is performed

as follows. As soon as the pedestrian taps the “Start” button on the master, it

records down its local timestamp T1, and sends out a START message to each

slave. The slave records its local timestamp, T2, and replies with an ACK message
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immediately, when it receives the START message. The master records down

the local timestamp T3 when the ACK message is received from the slave. We

assume both the START message and ACK message between master and slave

take the same amount of transmission time. In order to synchronize with each

other, the master subtracts (T1 + T3)/2 from all of its local timestamps, while the

slave subtracts T2 from all of its local timestamps.

6.5.3 Ground Truth Collection

The ground truth collection scheme is performed in the same way, using the

smartphone’s touch screen interface, as that in Chapter 5.

6.5.4 Tracking Performance

Performance with Two Devices

Fig. 6.3 shows the average location tracking error for Scenario 1, before and

after the proposed fusion algorithm is applied, for 10 experimental trials. The

radius of the local random movement sphere, r, is 0.075 m in this case, considering

both modules’ random local movements in the pedestrian’s trouser pockets.

As shown in the figure, the effects of the proposed scheme can be categorized

into two different cases.

In the first case (Trial 3, 4, 5, 6, and 8), both devices’ average tracking errors

using traditional DR have been significantly reduced with our proposed fusion

scheme. The largest error reduction rate is reported in Trial 6 at 73.7%. We

show the error propagation (Fig. 6.4) and actual tracking paths (Fig. 6.5) for

this trial, as an example here. Fig. 6.5 shows that, individual DR systems of

the two devices exhibit adverse error biases in location tracking estimates. On
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Fig. 6.3: Average tracking errors before and after fusion for 10 experimental trials for Scenario
1, using two devices, each containing one magnetometer as orientation sensor, mounted with
arbitrary orientations.

the other hand, Fig. 6.4 shows that the difference between the magnitudes of the

two devices’ (adverse) error biases is not very significant. Therefore, the proposed

scheme effectively cancels these error biases out, leaving small residual errors. As a

result, the tracking errors of the proposed scheme for both devices are significantly

smaller than those before fusion.

In the second case (Trial 1, 2, 7, 9, 10), the proposed algorithm delivers

intermediate tracking performance, with average errors in between those of the two

devices’ individual DR systems. Here, we show the error propagation (Fig. 6.6)

and actual tracking paths (Fig. 6.7) for Trial 7, as an example. Fig. 6.7 shows

that, the two devices still give adverse error biases in location tracking estimates,

as in the previous scenario. On the other hand, Fig. 6.6 shows that, the difference

between the magnitudes of the two devices’ (adverse) error biases is much larger

than before; Device B’s DR tracking error before fusion happens to be very small
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Fig. 6.4: Temporal error propagation before and after fusion for Trial 6.

in this particular trial. Therefore, even after the proposed scheme cancels part

of the error bias out, a large residual error bias is still left in the fused results.

Therefore, the tracking errors of the proposed scheme for the two devices are

between those of the two device’s original DR systems.

Performance with One Device

Fig. 6.8 shows the average location tracking error of Scenario 2, before and

after the proposed fusion algorithm is applied, for 18 experimental trials. The

radius of the local random movement sphere is 0 m in this case, because the two

estimates are taken from the same physical device.

Similar to the previous case, the effects of the proposed scheme can be cate-
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Waypoints

Phone A before fusion

Phone A after fusion

(a) Tracking paths before and after fusion for
device A.

Waypoints

Phone B before fusion

Phone B after fusion

(b) Tracking paths before and after fusion for
device B.

Fig. 6.5: Tracking paths before and after fusion for Trial 6.

gorized into two different cases.

In the first case, the proposed algorithm effectively reduces the average DR

tracking error. For 13 out of 18 trials (Trial 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 17,

18), both outputs’ average tracking errors using traditional DR have been signifi-

cantly reduced with our proposed fusion scheme. We show the error propagation

(Fig. 6.9) and actual tracking paths (Fig. 6.11(a)) for Trial 4 as a typical example

here. Fig. 6.11(a) shows that, the two individual DR outputs exhibit adverse error

biases in location tracking estimates. On the other hand, Fig. 6.9 shows that the

difference between the magnitudes of the two DR outputs’ (adverse) error biases

is not very big. Therefore, the proposed scheme effectively cancels out these error

biases to a large extent, leaving small residual errors. As a result, the tracking
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Fig. 6.6: Temporal error propagation before and after fusion for Trial 7.

errors of the proposed scheme for both outputs are significantly smaller than those

before fusion, for most of the time.

In the second case, the proposed algorithm delivers intermediate tracking per-

formance, with average errors in between those of the two individual DR outputs

(Trial 1, 6, 10, 11, 15). Here, we show the error propagation (Fig. 6.10) and ac-

tual tracking paths (Fig. 6.11(b)) for Trial 11, as a typical example. Fig. 6.11(b)

shows that, the two DR outputs still give adverse error biases in location tracking

estimates, as in the previous scenario. On the other hand, Fig. 6.10 shows that,

the difference between the magnitudes of the two outputs’ (adverse) error biases

is much larger than that observed in Fig. 6.9; Slave gyro’s DR tracking error be-

fore fusion happens to be as large as in the previous case for this particular trial.
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(a) Tracking paths before and after fusion for
device A.
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(b) Tracking paths before and after fusion for
device B.

Fig. 6.7: Tracking paths before and after fusion for Trial 7.

However, Slave compass’s error in this trial is much larger than before. Therefore,

even after the proposed scheme cancels out part of the error bias, a large resid-

ual error bias is still left in the fused results. As a result, the tracking errors of

the proposed scheme for the two outputs are between those of the two outputs’

original DR systems.

In both scenarios, there are cases in which the proposed algorithm delivers

intermediate tracking performance. However, we argue that, even in such cases,

the proposed scheme is still useful, for two reasons. First, in practical application

scenarios, it is hard, if not impossible, for the pedestrian user to determine which

one of the two DR outputs is providing better tracking performance, especially

when both are from the same physical device. This instability in performance is
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Fig. 6.8: Average tracking errors before and after fusion for 18 experimental trials for Scenario
2, using one device, containing two different orientation sensors, mounted with fixed device
orientation.

also observed in our 18 experimental trials. Second, the absolute error reduction

by the proposed scheme, from the more erroneous DR estimate, is significantly

larger than the error that it has raised, from the estimate with small original

errors. Overall, the proposed scheme is still giving robust and stable tracking

performance.

96



CHAPTER 6. DR-based Robust Pedestrian Tracking with Two Sensor Modules

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

T
ra

ck
in

g 
er

ro
r 

(m
)

Slave gyro before fusion

Slave compass before fusion

After fusion

Fig. 6.9: Temporal error propagation before and after fusion for Trial 4.
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Fig. 6.10: Temporal error propagation before and after fusion for Trial 11.
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Ground truth

Slave gyro

Slave compass

Proposed scheme

(a) Tracking paths before and after fusion for
Trial 4.

Ground truth
Slave gyro
Slave compass
Fusion result

(b) Tracking path before and after fusion for
Trial 11.

Fig. 6.11: Tracking paths for two typical cases.
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Chapter 7

Conclusion and Future Work

In this thesis, we have devoted our research efforts on the algorithms and per-

formance analysis for practical indoor location tracking systems. Taking practical

factors, such as system cost-effectiveness and indoor NLoS conditions, into consid-

eration, we have chosen to focus our investigation into tracking methods that are

based on existing wireless infrastructure and commercially accessible hand-held

mobile devices with low cost MEMS sensors.

7.1 CIR-based Location Fingerprinting

The widely adopted RSS-fingerprint-based localization method is not only

labor-intensive but also vulnerable to environmental changes after the training is

completed. In Chapter 3, we proposed a CIR-based location fingerprint which can

be efficiently derived from receiver’s channel estimation. We have also developed

the associated signal processing technique which transforms the fingerprint vector

into logarithmic scale in order to eliminate the effect of propagation path loss and

ensure each element in the fingerprint vector contributes fairly to the location
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estimation.

Simulation results using a realistic indoor propagation simulator have shown

that, the proposed CIR-based fingerprint and its associate logarithmic transfor-

mation exhibit superior performance advantage, compared to traditional RSS

fingerprint-based methods, and also the scheme which combines neural network

and extracted features from CIR. The significance of improvement in accuracy

is verified under different bandwidth conditions. Results have also shown that,

our proposed scheme is not only robust to real-time channel variations caused by

random positions and orientations of human bodies, but is also more efficient in

utilizing hardware infrastructure and training effort, compared to other schemes

proposed in the literature.

We suggest two future directions based on this work. First, since channel

estimation results are currently not accessible in off-the-shelf products, we aim to

search or implement transceiver modules with suitable size and RF specifications,

in order to verify our proposed method in a realistic and extended testbed. Second,

our work in this thesis focuses on the task of locating static users. In practice,

the users are moving from time to time. Making use of the real time variation of

the channel-related information for mobile user tracking will be a challenging task

which is worth exploring.

7.2 Error Analysis for Fingerprint-based Local-

ization Systems

Very few works in the literature study the online error performance for lo-

cation fingerprinting systems theoretically. Some existing solutions study only

certain special cases, while others are validated empirically, without any theoreti-
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cal justifications.

In Chapter 4, we derive the exact theoretical expressions of both the online er-

ror PDF and RoC for a generalized location fingerprinting system. Computations

of both terms require the unknown joint PDF for the target location and the online

signal parameter vector. We therefore propose to approximate this joint PDF by

nonparametric kernel density estimation using the training fingerprints, without

any extra calibration. Experimental results have shown that, the proposed scheme

predicts the empirical error PDF closely for the two most popular location finger-

printing methods, namely, K nearest neighbour and the probabilistic approach, in

a practical indoor testbed.

The online error PDF and RoC computations for a fingerprinting system re-

quire both training and online data. However, for ToA-based trilateration and

DoA-based triangulation, only online received signals are present. Therefore,

dedicated theoretical analysis, calibration efforts, and numerical techniques are

required in order to obtain the error statistics for the geometric localization ap-

proach.

7.3 DR-based Robust Pedestrian Tracking

This thesis has taken two different approaches in realization of DR-based ro-

bust pedestrian tracking on top of hand-held devices with low cost MEMS sensors.

In Chapter 5, we present our first approach, which fuses the output of a DR

sub-system and a sparsely deployed ranging sub-system. We have adopted the

SIR PF-based approach to incorporate both DR and range measurements. In

order to verify the effectiveness of the proposed system, we have implemented

an indoor tracking system using the sensors on a hand-held mobile device and a
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ranging system using Cricket technology. Experimental results have shown that,

the proposed system not only delivers much better tracking performance com-

pared to the DR approach, but also eliminates the location uncertainty rapidly

and provides satisfactory tracking accuracy even when the initial user location is

unknown. More importantly, even with very sparse and intermittent infrastruc-

ture support, in both time and space domains, the proposed scheme is still able to

deliver significant improvements in tracking performance compared to DR alone.

In Chapter 6, we present our second approach, which exploits the stability of

relative displacements between DR modules carried by the same pedestrian. We

have formulated the robust tracking algorithm as a MAP sensor fusion problem,

derived the optimal fusion solution, and then narrowed it to a special case for a

single physical device. Prototypes of the proposed system, as well as an effective

indoor ground truth collection system have been implemented with accompanying

performance evaluation. The proposed scheme has shown significant performance

improvement in a realistic indoor testbed when using (i) two sensor modules each

containing a single orientation sensor, mounted with arbitrary device orientation,

(ii) one sensor module containing two different orientation sensors, mounted with

fixed device orientation.

We point out two future directions based on our work in robust DR pedestrian

tracking. First, in both approaches, we have used a very simple assumption for

DR error variance in order to simplify the solutions. A deeper understanding and

better modelling of real-time DR error properties would definitely help make our

proposed schemes more robust and effective. Second, map-matching technologies

can also be fused into the proposed schemes to further reduce tracking error.
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