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Abstract

The subject of this thesis is the development of parametric methods for the calibration of array

shape errors. Two physical scenarios are considered, the online calibration (self-calibration)

using far-field sources and the offline calibration using near-field sources. The maximum

likelihood (ML) estimators are employed to estimate the errors. However, the well-known

computational complexity in objective function optimization for the ML estimators demands

effective and efficient optimization algorithms.

A novel space-alternating generalized expectation-maximization (SAGE)-based algorithm is

developed to optimize the objective function of the conditional maximum likelihood (CML)

estimator for the far-field online calibration. Through data augmentation, joint direction of

arrival (DOA) estimation and array calibration can be carried out by a computationally simple

search procedure. Numerical experiments show that the proposed method outperforms the ex-

isting method for closely located signal sources and is robust to large shape errors. In addition,

the accuracy of the proposed procedure attains the Cramér-Rao bound (CRB).

A global optimization algorithm, particle swarm optimization (PSO) is employed to optimize

the objective function of the unconditional maximum likelihood (UML) estimator for the far-

field online calibration and the near-field offline calibration. A new technique, decaying di-

agonal loading (DDL) is proposed to enhance the performance of PSO at high signal-to-noise

ratio (SNR) by dynamically lowering it, based on the counter-intuitive observation that the

global optimum of the UML objective function is more prominent at lower SNR. Numerical

simulations demonstrate that the UML estimator optimized by PSO with DDL is optimally ac-

curate, robust to large shape errors, and free of the initialization problem. In addition, the DDL

technique is applicable to a wide range of array processing problems where the UML estimator

is employed and can be coupled with different global optimization algorithms.
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Chapter 1
Introduction

1.1 Calibration in array processing

Array processing lies in the heart of such diverse applications as radar, sonar, communications,

radio astronomy, seismology and medical diagnosis. Modern radar and sonar systems use an-

tenna or hydrophone arrays to achieve accurate measurement and detection. Demand from the

wireless communication market drives the development of multiple-antenna systems that enjoy

higher capacity, better service quality and larger area coverage. In order to detect celestial ob-

jects and estimate their characteristics, radio astronomy incorporates arrays with very long base-

lines. Seismology has long been utilizing sensor arrays to detect and locate underground natural

resources or nuclear explosions. Tomography necessitates arrays for cross-section imaging of

objects from transmitted or reflected signals in medical diagnosis. Finally, sensor networks are

employed in applications of environmental monitoring, military surveillance and agriculture.

A sensor array is a set of sensors located at distinct spatial positions to sense signals travelling

in space. At each observation interval, the array records the signal wavefront and produces a

data vector. As in any measurement system, using an array as the probe inducts errors into the

final measurement, by transforming field strength into recorded data through array response (or

steering vector), which in turn is determined by element characteristics and array geometry.

Such errors are incurred by imperfect knowledge of the array response, which is unfortunately

inevitable in real-world applications. With respect to the array shape error for instance, tactical

radar systems require that the array be dismantled and reassembled in the field [1]; towed hy-

drophone arrays suffer not only as a result of deployment but also of the platform manoeuvring

[3]; installation tolerance is expected in cellular communication systems which feature a huge

amount of antenna arrays; and antenna arrays in satellite communication systems are prone to

deformation resulting from the limited payload weight that degrades the rigidity of the array

shape [4]. Besides the array geometry perturbation that affects array response, the characteris-

tics of individual sensor and electronics are different from each other because of manufacture

tolerance, whereas only nominal values are known before calibration. Meanwhile, when ar-

ranged in an array, there is mutual coupling between sensors induced by neighboring field
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Introduction

excitations, which causes sensor response to drift away from the separate measurement made

initially. This is a potential agent of performance corruption because there are cases where it

is impossible to measure array response in an ideal anechoic chamber due to the array’s large

physical size. Moreover, these nominal characteristics of elements are subject to long-term

degradation and environmental effects such as temperature and moisture, which makes main-

taining steering vector knowledge more difficult. These effects all necessitate array calibration

or array processing methods that are robust to steering vector errors or both.

Calibration methods can be categorized into online and offline calibrations [5]. Offline cali-

bration refers to the calibration that is carried out before the array is put into use. The array

response is measured in ideal environments on proper spacial and frequency grids, and the

steering vector measurements are stored in processor storage for subsequent utilization. Online

calibration refers to simultaneous signal and array response estimation, in which signal charac-

ters such as DOA or power, together with array response parameters such as element position,

gain and phase, are calculated in the field. It is known that under certain conditions this auto-

calibration is feasible, and Cramér-Rao bounds are used to define the least attainable calibration

residual [6].

Generally speaking, sources of estimation error can be classified into finite sample approxima-

tion and model uncertainty. The former is caused by approximating the statistics with finite

numbers of samples, under which estimators experience performance degradation; the latter is

caused by model uncertainties such as noise modeling error and aforementioned steering vector

error, on which superresolution methods crucially depend. In this thesis the primary concern

is only one type of model uncertainty, the array shape error, which is calibrated by new meth-

ods developed herein. The new methods are initially developed under the assumption of the

availability of accurate statistics or equivalently infinite sample, i.e., the finite-sample error is

ignored. However simulations show that they maintain good performance with small number

of samples.

1.2 Thesis structure and contributions

1.2.1 Thesis structure

Chapter 2 gives the background of the research work in this thesis. The data model is intro-

duced first, followed by a description of the parametric array processing methods. Then the

2
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literature on sensitivity analysis of the parametric methods is reviewed, concluding that small

perturbation can lead to large estimation error, thus the modeling error must be dealt with.

Finally, existing robust estimators and calibration methods are reviewed and categorized.

In chapter 3, the far-field online calibration is carried out using the conditional maximum

likelihood (CML) estimator with space-alternating generalized expectation-maximization (SAGE)-

based optimization. A novel SAGE-based algorithm is developed for joint direction of arrival

(DOA) estimation and array shape calibration. Numerical simulations show its superior perfor-

mance over the existing method.

In chapter 4, the same calibration as in chapter 3 is conducted using the unconditional maximum

likelihood (UML) estimator optimized by particle swarm optimization (PSO). A new technique,

decaying diagonal loading (DDL) is developed to enhance the performance of PSO at high

signal-to-noise ratio (SNR) by dynamically lowering it. In addition to the optimal calibration

accuracy demonstrated by the numerical simulations, the DDL development process introduces

the “prominence” concept of the global optimum of an objective function which is important to

the success of a global optimizer.

In chapter 5, the near-field offline calibration is performed by a UML estimator optimized by

PSO with DDL that is developed in chapter 4. The optimal calibration accuracy in this case

further confirms the applicability of the DDL technique to a wide range of array processing

problems that use the UML estimator.

Chapter 6 concludes the thesis and gives suggestions for further investigation.

1.2.2 Contributions

The first contribution of the thesis is a SAGE-based algorithm for array shape self-calibration.

Through data augmentation, the multi-dimensional DOA estimation and array calibration can

be carried out by a computationally simple one-dimensional or two-dimensional search proce-

dure. In contrast to existing methods, the SAGE-based algorithm does not introduce additional

calibration residuals and is robust to large array shape errors.

The second contribution of the thesis is the development of the UML-PSO-DDL paradigm

for array shape calibration. For the first time, the UML estimator is applied to the problem

of array shape calibration. Its computation complexity is overcome by the application of the
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PSO algorithm. A novel technique, DDL is proposed to enhance PSO’s performance at high

SNR, based on the counter-intuitive observation that the global optimum of the UML objective

function is more prominent at lower SNR. The UML-PSO-DDL procedure is robust to large

shape errors and its mean squared error (MSE) approaches the Cramér-Rao bound (CRB). It

has been applied to the far-field online shape calibration and near-field offline shape calibration,

and is believed to be applicable to a wide range of array processing problems.
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Chapter 2

Model uncertainty in parametric array

processing

The resolution of conventional array processing is bounded by the Fourier limit that is associ-

ated with the array’s physical size. Parametric array processing, by further exploiting the signal

model, can achieve super-resolution that is finer than the Fourier limit [7]. Array processing by

parameter estimation can be categorized into maximum likelihood (ML) and subspace meth-

ods. The former uses conditional maximum likelihood (CML) and unconditional maximum

likelihood (UML) estimators [8] [9] and the latter multiple signal classification (MUSIC) [10]

and estimation of signal parameters via rotational invariance techniques (ESPRIT) [11], etc.

The ML estimators are derived from the ML principle and the subspace estimators are based

on the orthogonality of the signal and noise subspaces. In some special cases the subspace

estimators are asymptotically equivalent to their ML counterparts and thus can be regarded as

fast implementations of the ML estimators [12].

Theoretically, the resolution of parametric methods is limited only by signal-to-noise ratio

(SNR) and observation time, regardless of the array aperture. However, this relies on the condi-

tion that the model is free of uncertainty. In practice, model uncertainty is unavoidable and even

a small error can severely degrade the performance of array processing methods [13]. Thus the

model uncertainty must be addressed. In this chapter, the background of array processing under

model uncertainty is provided. The signal model for parametric array processing is introduced

in section 2.1, followed by a description of the estimation methods in section 2.2, then the im-

pact of model uncertainty is discussed in section 2.3, afterwards the calibration methods are

reviewed in section 2.4. Section 2.6 concludes this chapter.

2.1 Signal model

A two-dimensional far-field case is used as an example to interpret the signal model. Consider

an array of N sensors receiving signals emitted by M far-field sources, as shown in Fig. 2.1.
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Figure 2.1: Far-field array-source geometry.

The known nominal location of the nth sensor is given by [xn, yn]T , which is perturbed by

unknown error [∆xn,∆yn]T to the actual location [xn + ∆xn, yn + ∆yn]T . The perturbations

are summarized in vector δ = [∆x1,∆y1, . . . ,∆xN ,∆yN ]T , which is considered as constant

in a calibration process.

In the time domain, the output of the nth sensor, un (t), can be expressed as

un (t) =

M∑

m=1

rm (t− τnm) + en (t) , (2.1)

where rm(t − τnm) is the delayed version of radiated signal from the mth source, en(t) is the

additive noise on the nth sensor. t denotes time, and τnm is associated with the propagation

time from themth source to the nth sensor.

For the array shape calibration problem, all the information of interest is carried by τnm, there-

fore a separation of τnm from rm(t− τnm) provides algebraic and conceptual convenience. A

Fourier transform implements the separation:

xn (ωl) =
1√
T

∫ T/2

−T/2
un (t) e−jωltdt, (2.2)
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where ωl = (l′ + l)(2π/T ) is the lth angular frequency, l = 0, 1, · · · , L − 1, L being the

number of harmonic frequencies, and l′ a constant.

In principle, infinite L is required to capture all the signal information, however, if the signal en-

ergy concentrates in a finite frequency band, finite L suffices. Moreover, if a narrowband signal

is considered, that is, the signal energy concentrates in a frequency band whose width is small

compared to 2π/T , then a single Fourier coefficient of a frequency at the center of the band, ω,

suffices to represent the time domain signal. In the following narrow band signal is considered

and the dependence on the single frequency ω is suppressed for notational simplicity.

Denoting the Fourier coefficients of rm(t) and en(t) by sm(k) and nn(k), respectively, the

observation equation (2.1) is transformed into the frequency domain as

xn (k) =
M∑

m=1

e−jωτnmsm (k) + nn (k) , k = 1, . . . ,K, (2.3)

where K is the number of snapshots. In practice, a total observation period is divided into K

intervals, each with duration T and the data set in each interval subject to a Fourier transform,

Eq. (2.2). Each interval is called a snapshot and the K snapshots of transformed data are used

to form the statistics.

Eq. (2.3) can be organized into matrix form

x (k) = Hs (k) +n (k) , k = 1, . . . ,K, (2.4)

where

x (k) = [x1 (k) , x2 (k) , . . . , xN (k)]T

s (k) = [s1 (k) , s2 (k) , . . . , sM (k)]T

n (k) = [n1 (k) , n2 (k) , . . . , nN (k)]T

and the nmth element of the array manifoldH is

Hnm = exp {−jωτnm} , n = 1, 2, . . . ,N, m = 1, 2, . . . ,M. (2.5)

For the near-field case, however, the range effect must be taken into account and consequently
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the nmth element of the array manifoldH is

Hnm =
1

dnm
exp {−jωτnm} , n = 1, 2, . . . ,N, m = 1, 2, . . . ,M. (2.6)

The relation between far field and near field is elucidated in the following sub-section.

2.1.1 Near field and far field

Figure 2.2: The geometry of wave propagation.

Fig. 2.2 illustrates the geometry of a source and an array of two sensors, where d is the distance

between the source and sensor 2:

d =
√
ρ2 + a2 − 2ρa cos γ = ρ

√√√√1 +

[(
a

ρ

)2

− 2
a

ρ
cos γ

]
.

Here ρ is the distance between the source and sensor 1, which lies on the origin of the coordi-

nates without loss of generality. a is the inter-sensor spacing, and γ is the angle between ρ and

a.

For the far-field case, ρ ≫ a. Using a Taylor expansion regarding
(

a
ρ

)2
− 2a

ρ cos γ, and after

simple manipulation one has

d = ρ− a cos γ +
1

2

a2

ρ
sin2 γ + aO

((
a

ρ

)2
)
. (2.7)
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As the intersensor spacing a is comparable to the wavelength λ, the first two terms of the Taylor

series have to be included for the approximation of the phase factor ωτ as in Eq. (2.6).

For the magnitude factor 1/d in Eq. (2.6),

1

d
=

1

ρ

1√
1 +

[(
a
ρ

)2
− 2a

ρ cos γ

] =
1

ρ
+

a

ρ2
cos γ +

1

ρ
O

((
a

ρ

)2
)
. (2.8)

As a≪ ρ, the first term of the Taylor series is a good approximation of the amplitude factor.

Figure 2.3: Far-field approximation of the geometry of wave propagation.

The far-field approximation effectively reduces the wavefront to planar, or in other words the

ray of propagation to sensor 1 is parallel to that of sensor 2, as shown in Fig. 2.3. The boundary

between far-field and near-field is where the errors due to the parallel ray approximation starts

to become insignificant. The insignificance is accepted as the path length deviation due to

neglecting the third term of Eq. (2.7) is 1
16 of a wavelength. This corresponds to a phase error

of 2π
λ · λ

16 = π
8 rad [14].

For an array consisting of multiple sensors, let Da denote the dimension of the array, then the

far-field distance ρf is found by equating the maximal value of the third term of Eq. (2.7),

which occurs for a = Da/2 and γ = 90◦, to 1
16 of a wavelength:

(Da/2)
2

2ρf
=

λ

16
,
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which gives

ρf =
2D2

a

λ
(2.9)

In addition to the condition Eq. (2.9) induced by the approximation of the electric field, a

similar approximation of the magnetic field induces the condition [14]

ρ≫ λ. (2.10)

This condition is significant for arrays operating in lower frequencies, where the array can be

small compared to the wavelength due to physical constraints.

Summarizing the constraints induced by the approximations of the phase Eq. (2.7) and magni-

tude Eq. (2.8) of the electric field, and the approximation of the magnetic field Eq. (2.10), the

far-field conditions can be expressed as follows:





ρ > 2D2
a

λ

ρ≫ Da

ρ≫ λ.

Usually, the far-field is taken to begin at a distance given by Eq. (2.9). This is usually a sufficient

condition for arrays operating in higher frequencies where the array dimension is comparable

to the wavelength. In this thesis it is assumed that the arrays operate in this mode and thus the

far-field distance ρf is defined by Eq. (2.9).

The region interior to ρf is called the near-field and can be divided into two subregions. The

subregion closer to the array is called the reactive near-field region, which extends to a distance

0.62
√
D3

a/λ from the array, as long as Da ≫ λ. Between the reactive near-field and far-

field region is the radiating near-field region. For an array focused at infinity, the region is

sometimes referred to as the Fresnel region, where a Fresnel approximation (a second-order

Taylor expansion regarding the dimension of the array) is applicable. A detailed discussion of

the Fresnel approximation and its accuracy can be found in [15].

In conclusion, the field region distances can be summarized as follows:
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Region Distance from array (ρ)

Reactive near field 0 to 0.62
√
D3

a/λ

Radiating near field (Fresnel) 0.62
√
D3

a/λ to 2D2
a/λ

Far field (Fraunhofer) 2D2
a/λ to∞

Table 2.1: Field regions.

2.2 Parameter estimation methods

Parameter estimation methods for array processing can be classified as ML methods and sub-

space methods. Sections 2.2.1 and 2.2.2 introduce them, respectively.

2.2.1 ML methods

The ML methods can be categorized into CML and UML, depending on whether the source

signals are assumed to be deterministic or random. For CML, the source signals are assumed

deterministic and subsequently their waveforms have to be estimated, along with other parame-

ters such as those geometric parameters that are of major interest. For UML, the source signals

are assumed random and their covariances have to be estimated instead, along with other pa-

rameters.

Since in the deterministic signal model the likelihood function is conditional on the signal wave-

forms, the ML method based on this model is named CML, whereas the ML method based on

the stochastic signal model is named UML. These conceptual assumptions do not change any

physical fact of the array processing problem, but determine what the unknown parameters

are and consequently determine the formats of the estimators. Owing to the parametric differ-

ence the CML and UML estimators feature different performances and the Cramér-Rao bounds

(CRB’s) based on the conditional and unconditional models are also different.

Despite the differences in modeling assumptions, the derivations of the CML and UML esti-

mators both involve a separation of the signal parameters, i.e. the signal waveforms for CML

and signal covariances for UML. The likelihood function is first maximized with respect to the

signal parameters to yield an explicit expression of the signal parameters as a function of the

other parameters, and this expression is then inserted back to the likelihood function to yield a
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likelihood function of the other parameters only, which are of major interest. In the following

the derivations of the CML and UML estimators are briefly introduced.

2.2.1.1 CML estimation

Under the conditional model, the signals are deterministic. They are frozen while the noises are

different from realization to realization. The signal waveforms have to be estimated in addition

to other parameters. Hence the unknown parameters are

α, {s(k)}K
k=1, ν, (2.11)

whereα is the vector of parameters of interest, the content of which will be specified according

to the problems considered in the following chapters. The notations {s(k)}K
k=1 and ν are the

signal waveforms and the noise power, respectively. They are the nuisance parameters of no

interest but have to be estimated alongside the parameters of interest.

Because the noise is subject to a Gaussian distribution,

n (k) ∼ G (0, νI) .

Under the conditional model assumption the array output is subject to Gaussian distribution,

with meanHs(k):

x (k) ∼ G (Hs (k) , νI) .

Then the joint probability density ofK snapshots is

pX(x) =
K∏

k=1

1

det(πνI)
exp

{
−1

ν
|x(k) −H(α)s(k)|2

}
,

and the log-likelihood function is

L(α, {s(k)}K
k=1, ν) = −KN lnπ −KN ln ν − 1

ν

K∑

k=1

|x(k) −H(α)s(k)|2. (2.12)
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Let us first assume ν is known, and solve for it later. In this case the minimization of

K∑

k=1

|x(k) −H(α)s(k)|2

in Eq. (2.12) is a separable problem [16] [17]: one can first solve for {s(k)}K
k=1 as a function

of α, and then substitute the result back to form a function of only α. The separated solution

of {s(k)}K
k=1 is the standard solution of the least squares (LS) problem:

ŝ (k) =
[
HH (α)H (α)

]−1
HH (α)x (k) , (2.13)

or in array processing context it is the output of the minimum variance distortionless response

(MVDR) beamformer.

Inserting Eq. (2.13) back into (2.12) and dropping the constant term −KN lnπ, we have

L1 (α, ν) = −KN ln ν − 1

ν

K∑

k=1

|x (k) − PH(α)x (k) |2, (2.14)

where

PH(α) = H (α)
[
HH (α)H (α)

]−1
HH (α)

is the projection matrix onto the column space ofH(α).

Notice that

K∑

k=1

|x (k) − PH(α)x (k) |2 =
K∑

k=1

|P⊥
H(α)x (k) |2 =

K∑

k=1

xH (k)P⊥
H(α)P

⊥
H(α)x (k)

= tr

K∑

k=1

xH (k)P⊥
H(α)x (k) = tr

K∑

k=1

P⊥
H(α)x (k)xH (k)

= Ktr

[
P⊥

H(α)

1

K

K∑

k=1

x (k)xH (k)

]

= Ktr
[
P⊥

H(α)R̂
]
,

where

P⊥
H(α) = I − PH(α)
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is the orthogonal complement of PH(α), and

R̂ =
1

K

K∑

k=1

x (k)xH (k)

is the sample covariance matrix, then Eq. (2.14) can be rewritten as

L1 (α, ν) = −K
{
N ln ν +

1

ν
tr
[
P⊥

H(α)R̂
]}

. (2.15)

Now let us solve for ν. Setting
∂

∂ν
L1 (α, ν) = 0

we obtain

ν̂ =
1

N
tr
[
P⊥

H(α)R̂
]
. (2.16)

Substituting Eq. (2.16) into Eq. (2.15) gives

L1 (α) = −KN
{
ln tr

[
P⊥

H(α)R̂
]
− lnN + 1

}
. (2.17)

Maximizing Eq. (2.17) is equivalent to minimizing the argument of the logarithm, so the CML

estimator can be expressed as

α̂ = arg min
α

{
tr
[
P⊥

H(α)R̂
]}

. (2.18)

It is remarked that the minimizer α̂ of Eq. (2.18) also maximizes Eq. (2.15) when ν is known,

thus knowing the noise power ν does not affect the CML estimate.

2.2.1.2 UML estimation

Under the unconditional model, the signals are stochastic. It is the signal covariances that have

to be estimated in addition to other parameters. Hence the unknown parameters are

α,S, ν,

where α and ν are the same as those in CML estimation, (2.11), and S = E
[
s(k)sH(k)

]
is

the signal covariance matrix. S and ν are the nuisance parameters of no interest but have to be
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estimated alongside the parameters of interest, α.

It is further assumed in Eq. (2.4) that s(k) and n(k) are zero mean and mutually independent

Gaussian random variables, then the array output is subject to a Gaussian distribution

x (k) ∼ G (0,R) ,

whereR = E
[
x (k)xH (k)

]
= HSHH + νI is the covariance matrix of x (k).

Under mild regularity conditions {x(k)}K
k=1 are mutually independent [18], then the joint prob-

ability density of K snapshots is

pX(x) =

K∏

k=1

1

det(πR)
exp

{
−xH(k)R−1x(k)

}
,

and the log-likelihood function is

L(α, {s(k)}K
k=1, ν) = −KN lnπ −K ln detR−

K∑

k=1

xH(k)R−1x(k). (2.19)

When the noise power ν is known, a necessary condition for maximizing the log-likelihood

function is that
∂L(α,R)

∂Sij
= 0, i, j = 1, 2, . . . ,N, (2.20)

where Sij denotes the ijth element of S. This gives

Ŝ (α) =
(
HHH

)−1
HH

(
R̂− νI

)
H
(
HHH

)−1
. (2.21)

Inserting Eq. (2.21) back into Eq. (2.20) and dropping the constant terms, one has the UML

estimator after some manipulation as [19]:

α̂ = arg max
α

{
− ln det[PHR̂PH + νP⊥

H] − 1

ν
tr[P⊥

HR̂]

}
, (2.22)

where PH = H(HHH)−1HH is the projection matrix of H , and P⊥
H = I − PH is its

orthogonal complement.

15



Model uncertainty in parametric array processing

If the noise power ν is unknown, we set

∂L

∂ν
= 0,

thus

ν̂ =
tr[P⊥

HR̂]

N −M
. (2.23)

Substituting (2.23) into (2.22), we obtain

α̂ = arg max
α

{
− ln det[PHR̂PH +

tr[P⊥
HR̂]P⊥

H

N −M
]

}
. (2.24)

A pure algebraic derivation can be found in [20].

2.2.2 Subspace methods

A typical subspace method is multiple signal classification (MUSIC). In this method, the sam-

ple covariance matrix

R = H (α)SHH (α) + νI (2.25)

is decomposed into

R =
N∑

n=1

λnqnq
H
n ,

where λn and qn are the eigenvalues and eigenvectors ofR, respectively.

Organizing {λn}N
n=1 in descending order,

λ1 > λ2 > · · · > λM > λM+1 = λM+2 = · · · = λN = ν,

the first M eigenvalues correspond to the M signals and the associated M eigenvectors are

referred to as the signal-subspace eigenvectors. The eigenvectors associated with the lastN−M
eigenvectors equal to ν are referred to as the noise-subspace eigenvectors.

Arrange the signal-subspace eigenvectors and the noise-subspace eigenvectors into matrices:

Qs = [q1,q2, . . . ,qM ] ,
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Qn =
[
qM+1,qM+2, . . . ,qN

]
.

The signal subspace spanned by the signal-subspace eigenvectors is orthogonal to the noise

subspace spanned by the noise-subspace eigenvectors

span {Qs} ⊥ span {Qn} ,

or in other words

QH
s Qn = 0.

Moreover, the signal subspace is also spanned by the steering vectors,

span {Qs} = span {H} ,

that is to say

HHQn = 0 (2.26)

In practice, the eigenvalues and eigenvectors are estimated from the sample covariance matrix

R̂ using eigenvalue decomposition or singular value decomposition, then a MUSIC pseudo-

spectrum is composed:

p (α) =
1

hH (α) Q̂nQ̂
H

n h (α)
, (2.27)

where Q̂n is the estimate of Qn and h (α)is the steering vector. A search of theM peaks over

the pseudo-spectrum gives the parameters associated with theM signals.

The relation between CML and UML is given in [19] and [21]. The relation between CML and

MUSIC is given in [12] and [19].

2.3 Impact of model uncertainties

It is clear from the signal model and the estimator expression that to achieve an accurate param-

eter estimation, the array manifoldH must be perfectly known and the noise must be perfectly

spatially white. However, in reality only partial knowledge is known aboutH due to imperfec-

tions such as
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• sensor location error

• sensor gain and phase error

• mutual coupling between sensors

• statistical modeling errors of noise

Recall the data covariance matrix

R = HSHH + νN . (2.28)

For a spatially white noise field,N = I, and hence Eq. (2.28) degenerates into (2.25).

A general perturbation model that incorporates the aforementioned array imperfections is

R̃ = (H + ∆H)S (H + ∆H)H + ν (N + ∆N) ,

where the matrices∆H and∆N result from various types of model perturbations. The matrix

∆H represents the deviation from the nominal array manifold H , which incorporates the ef-

fects due to sensor location error, sensor gain and phase error, and signal-only mutual coupling.

The Hermitian matrix ∆N represents the deviation from the nominal noise covarianceN .

An immediate question is how these errors propagate through an estimator to the final estimate,

and a straightforward answer is provided by a Taylor expansion of the objective function with

respect to the modeling errors, although the derivation usually requires considerable matrix ma-

nipulation. A number of researchers have carried out the error analysis using a first and second

order Taylor expansion. In particular, B. Friedlander [22] performed a first-order analysis of

CML with respect to general array manifold perturbation, including sensor gain, phase and lo-

cation errors. He [23] also conducted a first-order analysis of MUSIC regarding sensor gain ,

phase and location errors with an emphasis on the degradation of resolution ability.

A. Lee Swindlehurst and T. Kailath [24] conducted first-order analysis of MUSIC with re-

spect to array manifold errors, such as sensor gain and phase error, sensor location error and

mutual coupling, and with respect to noise and channel model errors. The emphasis was on

the degradation of accuracy. They [25] also conducted a first-order analysis of the class of

LS subspace fitting algorithms, including CML, multidimensional MUSIC, weighted subspace

fitting (WSF) and total least squares – estimation of signal parameters via rotational invariance
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techniques (TLS-ESPRIT) with respect to both array and noise model errors. Li and Vaccaro

[26] carried out first-order analysis of least squares – estimation of signal parameters via ro-

tational invariance techniques (LS-ESPRIT) with respect to array manifold errors and noise

model errors.

Anne Ferréol et al. conducted a second-order analysis of MUSIC [27] [28] and CML [29] with

respect to general array manifold error that incorporates mutual coupling and sensor location

error, etc. The second-order analysis accommodates errors larger than that first-order analysis

can handle and reaches an error magnitude where the algorithms break down.

These analyses conclude that even a small perturbation on the data model can result in signif-

icant estimation error, and sometimes can lead to algorithm breakdown. Thus in real applica-

tions the modeling errors must be compensated for. One remedy is to modify the algorithms

such that they are less sensitive to modeling errors [24] [25]. However, this method can result in

sub-optimal performance [24]. The other remedy is to directly calibrate the errors. This method

can completely remove the model error under suitable conditions and consequently the result

is optimal. In this thesis we shall concentrate on the latter method, in particular, the calibration

techniques for sensor location error. So firstly a review of the calibration techniques is given,

with an emphasis on the calibration of sensor location error.

Last but not least, an example of far-field source localization is used to demonstrate the effect

of array shape error on the performance of MUSIC. The nominal array shape is perturbed by

Gaussian displacement, with σp designating the standard deviation in fraction of intersensor

spacing. It is seen from Fig. 2.4 that sensor location error causes bias, peak fading and peak

merging in the MUSIC pseudo-spectrum. When sensor location error is absent, two peaks ap-

pear around the true DOA’s, −3◦ and 3◦. As the error grows, the two DOA’s become biased

toward larger values, to different extents. In addition the two peaks fade to the floor and merge

together. When the standard deviation (STD) of perturbation grows to 2% of the intersensor

spacing, the two peaks are merged to the extent that they cannot be clearly distinguished. This

example shows that even a small perturbation (STD 2% intersensor spacing) can severely de-

grade the performance of MUSIC. The impact of array shape error on ML methods is difficult

to visualize as the objective function is 2-dimensional for 2-source localization, however it can

be seen from the simulation results in Chapter 3.
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Figure 2.4: The impact of array shape perturbation on the MUSIC pseudo-spectrum. The nom-

inal array is a 5-sensor UCA with λ/2 intersensor spacing, perturbed by Gaussian
displacement. 2 equi-power far-field sources radiate from −3◦ and 3◦ DOA. 1000
snapshots, 20 dB signal-to-noise ratio (SNR).

2.4 Calibration techniques

Calibration techniques are categorized into offline and online techniques, dependant on whether

calibration sources are at known or unknown positions. Offline calibration (often termed cali-

bration for short) uses sources at known positions to calculate the array specifications, under ei-

ther a parametric or non-parametric model. This straightforward configuration can be regarded

as the inverse problem of source localization. Online calibration (or termed self-calibration,

auto-calibration, blind calibration) uses sources at unknown positions to jointly calculate source

locations and array parameters. Owing to the interplay of the large number of unknown param-

eters, certain identifiability conditions must be satisfied to avoid ambiguity.

2.4.1 Offline calibration

Offline calibration uses sources at known locations to calibrate an array. The conceptually sim-

plest procedure is to measure the array response at a sufficiently dense grid of source locations

and tabulate the response for look-up in array operation afterwards. This procedure, despite its

ability to calibrate all types of error, is expensive in data collection. If the array response is
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constrained by a certain structure, the number of unknowns can be reduced and more advanced

procedures can be applied. The conventional offline calibration methods with interpolation

based on a smoothness constraint of array response is reviewed in section 2.4.1.1, followed

by CML/LS and subspace methods based on the physical modeling of the array response in

sections 2.4.1.2 and 2.4.1.3, respectively.

2.4.1.1 Conventional offline calibration

The most common offline calibration uses one signal source placed at multiple known locations.

Then the array response vector (steering vector) at these known locations can be calculated, for

example for far-field calibration, as follows. From Eq. (2.4), the array output for a calibration

signal coming from DOA θm is given by

xm (k) = h (θm) sm (k) + nm (k) m = 1, 2, . . . M k = 1, 2, . . . ,K.

If the transmitted signal sm (k) is known, the steering vector can be estimated by the LS solution

ĥ (θm) =

∑K
k=1 xm (k) s∗m (k)
∑K

k=1 |sm (k) |2
.

If sm (k) is unknown, then the steering vector has to be estimated from the principal eigenvector

of the sample covariance matrix

R̂m =
1

K

K∑

k=1

xm (k)xH
m (k) =

N∑

n=1

λ̂nq̂nq̂
H
n ,

and

ĥ (θm) ∝ ê1,

where ê1 is the principal eigenvector associated with the largest eigenvalue λ̂1. In this case, a

gain and phase ambiguity remains and should be determined by other means.

A major advantage of this procedure is that any types of error, for instance sensor gain, phase

and position error, and mutual coupling, are included, and all the errors are calibrated together.

A drawback of the calibration procedure is the data collection of a large number of calibration

points that is needed for an accurate estimation of the steering vector within the bearing range

of interest. This drawback is even more severe for near-field calibration, where the data has to
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be collected from a two-dimensional calibration grid of known bearings and ranges. In practice,

the data collection can be a costly and laborious task.

The reason for the requirement of a large amount of data is that the steering vector is assumed

with no structure, hence the large number of unknowns – the steering vector itself at various

focusing locations have to be estimated. To counteract this drawback, one may model the

steering vector, resulting in much lesser number of unknown parameters. Consequently much

less data is needed to identify the parameters.

A natural structure is the assumption that the steering vector is smooth with respect to the source

location. Then a sparse calibration grid can be interpolated to a dense one to save data collection

efforts. A more sophisticated interpolation takes effect on the correction matrix instead of the

array manifold itself: the correction matrixQ performs a linear transform on the nominal array

manifoldH to yield the actual array manifold H̃ :

H̃ = QH .

AlthoughQ is assumed as independent of source location in [30] [31] [32] for a “global calibra-

tion”, it is assumed as dependent on source location in [33] [34] [35] for a “local calibration”.

The local calibration is then interpolated from a sparse calibration grid to a dense one regarding

the calibration matrix, as the calibration matrix is smoother than the array manifold itself with

respect to source location.

Another structure is based on the spatial Fourier expansion of the steering vector [36] [37] [38]

[39]. Through Fourier expansion, a steering vector of an arbitrary array can be approximated

by the sum of a number of uniform linear arrays (ULA’s). The calibration method then aims

at estimating the Fourier coefficients. The most precise structure is the physical model of the

sensors in Eq. (2.6), as usually used in the parametric array processing estimators. Fistas and

Manikas [40] used the physical model to parameterize the steering vector in terms of sensor

gain, phase and location. The actual values of them are then calculated from the differences

among three measurements at different DOA’s. If multiple measurements are available, more

sophisticated estimators can be used with the parametric model. These methods fall into two

categories based on the CML/LS principle or orthogonal subspace principle, in line with the

source localization problem.
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2.4.1.2 Offline calibration based on CML/LS principle

Based on the CML cost function Eq. (2.18),

α̂ = arg min
α

{
tr
[
P⊥

H(α)R̂
]}

,

lettingα be the array parameters such as sensor gain, phase or location, and using data collected

from sources at known locations, an estimator for offline calibration is constructed similarly to

that for sources localization. Ng and Nehorai [41] implemented this estimator for calibration

of sensor location errors using gradient optimization.

It is clear from the derivation of Eq. (2.18) in section 2.2.1.1 that the CML estimation under

Gaussian assumption is equivalent to an LS estimation, see Eq. (2.12). An example of offline

calibration based on LS formulation can be found in [42], where a single source is used to

calibrate the sensor gain, phase and noise power of a radio telescope array. The proposed

method is verified by experimental data.

In offline calibration, the calibration sources are placed at known locations. An important ques-

tion is: given the requirement of localization accuracy, howmany calibration sources are needed

to meet the accuracy requirement? Another important question is: given the number of calibra-

tion sources, what is the optimal source placement? Porat and Friedlander [5] relate the off-line

calibration accuracy to the DOA estimation errors for a CML estimator, and further propose a

criterion for the minimal calibration resources to meet requirements of DOA estimation. Ng

and Nehorai [43] [44] conducted research on the optimal placement of far-field sources for best

calibration accuracy. They give the optimal source placement by deriving the CRB under the

model of deterministic signals of known waveform or waveform with an unknown magnitude,

and analyze the performances of the estimators based on CML and orthogonal subspace prin-

ciples, concluding that the CRB can be asymptotically achieved by CML estimator. They also

give Newton-type algorithms for implementation.

2.4.1.3 Offline calibration based on orthogonal subspace principle

Recall the fundamental orthogonality of subspaces, Eq. (2.26):

HHQn = 0,
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where the array manifold H is a function of both array parameters and source locations. In a

localization problem, one assumes that the array parameters are known and estimate the source

locations. Conversely, in an offline calibration problem, one can assume that the source loca-

tions are known and estimate the array parameters.

Seymour et al. [45] deal with sensor location errors. They use the orthogonality of the sig-

nal subspace and noise subspace to compose a cost function of sensor locations. A gra-

dient search is then used to perform the optimization for parameter estimation. The multi-

dimensional search is needed because the objective function is multi-dimensional, rather than

one-dimensional in the MUSIC algorithm. Similar to MUSIC, the cost function does not re-

quire temporal separation of the source as that of section 2.4.1.1, and in fact takes advantage of

the presence of multiple sources to identify the parameters.

Ng et al. deal with sensor gain and phase error [46], and sensor gain, phase and location error

[47]. They assume that the errors are small and a first-order Taylor expansion is applied upon

the errors to yield an analytical solution. This technique is similar to that of [1] and [2]. In [47],

they carry out experimental measurements to verify the proposed method.

2.4.2 Online calibration

Online calibration uses sources at unknown locations, and the unknown source locations have

to be estimated along with the array parameters. As a result the number of unknowns for online

calibration is more than that of a corresponding offline calibration. The large number of un-

knowns cause difficulty to optimization algorithms, and may cause ambiguity to the estimator.

To reduce the number of unknown parameters, certain constraints must be imposed. Usually

the physical modeling Eq. (2.6) is adopted, in contrast to offline calibration where more flexible

structures are acceptable, as mentioned in section 2.4.1.1. Additionally, certain identifiability

conditions must be satisfied [6] [48] [49] [50]. These parametric methods based on the physical

modeling can be categorized into CML/LS methods and Subspace methods, in line with the

parametric source localization and offline calibration.

2.4.2.1 CML/LS methods

Paulraj and Kailath [51] use an LS formulation for sensor gain and phase self-calibration by

exploiting the Toeplitz structure of the correction matrix of a uniform linear array (ULA). An
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analytical solution is obtained for the LS problem, but with a phase ambiguity. This phase

ambiguity can be resolved by additional measurement of the relative phase difference between

any two sensors in the array, or more elegantly, by imposing a constraint that the sum of phase

errors is zero [52] [53]. Reference [52] has a Newton-iterative solution and [53] has an analyt-

ical solution. For this problem, Li and Er [54] analyse the effects of the unknown elements in

the multiplicative correction matrix on the performance and determine the optimal structure of

the correction matrix. Yip and Zhou [55] consider gain and phase self-calibration by exploiting

the cyclostationarity of the signals. The LS objective function is optimized by alternating min-

imization. Selone and Serra [56] use an LS formulation for mutual coupling self-calibration by

exploiting the structure of ULA, and obtain an analytical solution.

Böhme and Kraus [57] consider unknown noise field self-calibration. The unknown covari-

ance matrix of the noise field is approximated by the weighted sum of known matrices, and

the weights are then estimated from an LS formulation. The entire algorithm iterates between

estimating noise parameters and source DOA’s until convergence is achieved. Friedlander and

Weiss [58] further parameterize the unknown noise covariance by a Fourier expansion, then

jointly estimate the DOA’s and Fourier coefficients by optimizing a UML or LS objective func-

tion. The latter objective function is further concentrated with respect to the Fourier coefficients

to reduce the dimension of the objective function.

See and Poh [59] use a multiplicative calibration matrix to account for general steering vector

errors, such as sensor gain, phase and location errors, and mutual coupling. The calibration

matrix is independent of source location, and the calibration sources are temporally and spa-

tially disjoint. The concentrated LS objective function is eventually optimized using a Newton-

Genetic algorithm. Mir et al. [60] conduct an experimental study of steering vector estimation

using one source scanning at unknown directions (or in other words temporally and spatially

disjoint sources at unknown directions). The LS objective function is optimized by iterative

algorithm.

Chen et al. [61] consider wideband near-field source localization using a CML estimator with

gradient search. The method is then extended to simultaneously estimate source location and

one sensor location (partial self-calibration). The near-field processing is not based on a Fresnel

approximation. Chen et al. [62] also consider self-calibration of non-uniform noise using

wideband far-field sources. The noise covariance matrix is modeled as a diagonal matrix with

unknown unequal diagonal elements, and a CML cost function is formed to jointly estimate
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the DOA’s and non-uniform noise powers using iterative numerical concentration of the cost

function. The derivation of wideband CRB is included.

Finally, Weiss and Friedlander’s self-calibration method [1] for sensor location error is reviewed

below with some mathematical details, as it is closely related to the work in this thesis. Weiss

and Friedlander algorithm 1 [1] (WF1) is an array shape self-calibration algorithm using far-

field sources. The parameters to be estimated are α =
[
θT , δT

]T
, where θ is the DOA vector

and δ is the shape perturbation vector.

The objective function is based on CML, and the algorithm is essentially a block-alternating

optimization, iterating between the DOA parameters θ and the perturbation parameters δ. Tak-

ing advantage of the assumption that the perturbations are small, a first-order Taylor expansion

is applied with regard to δ, and the δ-block optimization is carried out analytically.

The algorithm is sketched as follows. It starts with the CML objective function Eq. (2.18).

To maximize the likelihood, it suffices to minimize the last term of Eq. (2.12). Thus the cost

function is

Fc =
K∑

k=1

‖x (k) −H (θ, δ) s (k) ‖2,

which is also the LS cost function due to the assumption that the noise is Gaussian and spatially

white.

For the DOA parameters θ = [θ1, θ2, . . . , θM ], an alternate minimization is applied, i.e. for

θm, fix other θ’s and minimize with respect to θm only, and then repeat for θm+1. After every θ

has been optimized once, update {s (k)}K
k=1 according to Eq. (2.13). Repeat the minimization

regarding θ and the update of {s (k)}K
k=1until convergence is reached.

For the perturbation parameters δ, notice that the cost function Eq. (2.4.2.1) is a sum over the

sensors,

Fc =

N∑

n=1

K∑

k=1

‖xn (k) −
M∑

m=1

H (θm, δn) sm (k) ‖2 =

N∑

n=1

Fcn,

therefore the minimization can be split sensor-wise, i.e. for n = 1, 2, . . . N , minimize

Fcn =
K∑

k=1

‖xn (k) −
M∑

m=1

H (θm, δn) sm (k) ‖2, (2.29)
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in which

H (θm, δn) = exp

{
j
2π

λ
[(xn + ∆xn) sin θm + (yn + ∆yn) cos θm]

}
(2.30)

is the nmth element of the array manifoldH .

Under the small perturbation assumption that

∆xn sin θm + ∆yn cos θm ≪ λ

2
,

H (θm, δn) can be linearized with respect to δn = [∆xn,∆yn]K using a first-order Taylor

approximation

exp

[
j
2π

λ
(∆xn sin θm + ∆yn cos θm)

]
≈ 1 + j

2π

λ
(∆xn sin θm + ∆yn cos θm) . (2.31)

By substituting Eqs. (2.31) and (2.30) back to Eq. (2.29), the minimization of Fn is converted

to an LS problem, thus δn can be solved analytically. This analytical procedure is repeated

for every sensor. The overall algorithm then starts from a nominal value of δ and alternates

between optimizing θ and δ until convergence is reached.

2.4.2.2 Subspace methods

Friedlander and Weiss [63] conduct self-calibration of sensor gain and phase errors using far-

field sources based on a subspace formulation. The sensor gain and phase errors are solved

analytically, and the entire algorithm iterates between DOA and error estimations until conver-

gence is achieved. Friedlander and Weiss [64] also conduct gain, phase and mutual coupling

self-calibration using far-field sources. The sensor gain and phase errors, and mutual coupling

are solved analytically, and the entire algorithm iterates among DOA, gain and phase error

and mutual coupling estimations until convergence is achieved. A related work of gain and

direction-dependent phase self-calibration is in [65].

Flieller et al. [66] perform self-calibration of general direction-dependent modelling errors.

The MUSIC-type cost function is penalized with the prior of the modelling errors. The pe-

nalization is similar to that in [67] of a maximum a posteriori (MAP) principal. Note that

subspace fitting is used to approximate the likelihood function and gradient algorithm is used
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to optimize the MAP objective function in [67]. Jansson et al. extend [67] to the case when

both model error and finite sample error are present. Wan and Chia [68] perform array shape

self-calibration using far-field sources. The cost function is composed from inverse subspace

fitting and is optimized by alternate minimization similar to that in [1].

Finally, Weiss and Friedlander’s self-calibration method [2] for sensor location error is reviewed

below with some mathematical details, as it is closely related to the work in this thesis. Weiss

and Friedlander algorithm 2 [2] (WF2) is a self-calibration algorithm using far-field sources.

It incorporates a block-alternating technique to optimize the objective function, the objective

function is based on MUSIC. The algorithm is sketched as follows.

It starts from Eq. (2.26), and the cost function is

FM (α) = ‖QH
n H (α) ‖2 =

M∑

m=1

‖QH
n hm (θm, δ) ‖2,

where hm(θm, δ) is themth column ofH(α).

For the DOA parameters θ = [θ1, θ2, . . . , θM ], a standard MUSIC algorithm is applied. Assum-

ing nominal sensor positions or their latest estimate, the M peaks of the pseudo spectrum Eq.

(2.27) gives θ. This is also the minimizer of F since every ‖QH
n hm (θm, δ) ‖2 is minimized.

For the perturbation parameters δ, the same Taylor approximation as Eq. (2.31) is applied. F

is then converted to an LS cost function and thus δ can be solved analytically. The overall

algorithm starts from a nominal value of δ and alternates between optimizing θ and δ until

convergence is reached.

Compared with offline calibration, online calibration trades computational complexity for sim-

plicity of data collection. It is worth mentioning some of the real-world applications of the

online calibration techniques. Steinberg [69] conducted pioneering work of array shape self-

calibration, Sahr [60] performed self-calibration of airborne radar array, Wijnholds [70] carried

out self-calibration of astronomical radio arrays.

2.5 Identifiability in calibration

Certain geometrical conditions must be satisfied to identify the parameters in a calibration pro-

cess. For instance, if in a self-calibration both the array and sources are rotated relative to the
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center of the array by a certain angle, the data collected after would be the same as before the

rotation, and consequently no calibration process can tell the absolute positions of the sensors

and sources without an angular reference. Rockah et al. investigate the identifiability issue in

self-calibration using the CRB. The rationale is that if the CRB goes to zero as the observation

time or SNR goes to infinity, the array is calibratable with the sources, and vice versa. The sce-

narios investigated are far-field [6] and near-field [48] array shape self-calibration and sensor

phase self-calibration [49]. However, due to analytical complexity the investigation is limited

to sources disjoint in the time or frequency domain despite numerical results showing minor

difference for sources overlapping in the time or frequency domain.

Levi and Messer [50] investigate the identifiability in calibration using pure geometry for near

and far field sources in known and unknown locations. They also state that the results have

been obtained using statistical and numerical tools. The investigation is applicable to sources

overlapping in the time or frequency domain, and the result is in agreement with [6] [48]. For

the two physical scenarios considered in Chapters 3, 4 and 5 of this thesis, the identifiability

conditions are cited below.

2.5.1 Far-field online calibration

• The nominal array coordinates do not lie along a straight line (i.e. not a linear array).

• One sensor’s location and its direction to a second sensor are known.

• There are at least 3 far-field sources at unknown but distinct directions.

2.5.2 Near-field offline calibration

For an array of 6 sensors or more, a sufficient condition of full calibration is that there are 3 or

more near-field sources at known locations [50] (Tab. 2).

2.6 Conclusion

In this chapter, parametric array processing methods have been introduced. While featuring

high resolution, these methods are known to be sensitive to model errors. The model errors

have to be calibrated to prevent performance degradation. Among the model errors, array shape
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error is difficult to deal with as it is tightly associated with source location and is nonlinearly ex-

pressed in the array manifold. Linearization by Taylor series expansion simplifies computation

but causes accuracy and robustness problems [1] [2]. Among the calibration methods, CML/LS

and subspace methods have received extensive research. Although the UML estimator is su-

perior to CML/LS and subspace estimators for DOA estimation [21] [71] and gain-and-phase

offline calibration [72], and this superiority is conjectured to be general, it is seldom used in

array calibration, due to its complicated objective function that is difficult to optimize. Finally,

array calibration using near-field sources is computationally more difficult than using far-field

sources because the far-field approximation is invalid in the near field. By using novel tech-

niques, this thesis attempts to resolve these difficulties for performance improvement.
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Chapter 3

Far-field online calibration I

This chapter addresses the problem of array shape online calibration (self-calibration) using

narrowband far-field sources at unknown directions. The unknown source directions of arrival

(DOA’s) and sensor locations are jointly estimated by a conditional maximum likelihood (CML)

estimator. The resulting objective function, unfortunately, is complicated to optimize, due

partly to the additional parameters of sensor location, compared with a DOA estimation prob-

lem. Previous efforts have been to linearize the location error parameters by first-order Tay-

lor approximation, based on the small error assumption. Although the computational com-

plexity is reduced, the Taylor approximation introduces bias to the estimate and renders the

self-calibration inapplicable to large sensor location errors. To overcome these difficulties,

the well-known space-alternating generalized expectation-maximization (SAGE) algorithm is

applied to the multidimensional nonlinear optimization for the CML estimator. It breaks the

multi-dimensional optimization down into multiple one or two dimensional optimizations, thus

significantly reduces the computational cost. And as no approximation is resorted to, the new

algorithm outperforms existing ones in critical scenarios such as large sensor location errors

and closely-located sources. Moreover, it is statistically efficient.

The structure of the chapter is as follows. It starts with formulating the CML objective function

in section 3.1, followed by introducing expectation-maximization (EM) and SAGE algorithms

in section 3.2, the SAGE algorithm for self-calibration in section 3.3 and the expression of the

Cramér-Rao bound (CRB) in subsection 3.4. It ends with simulation results in section 3.5.

3.1 Problem formulation

For far-field sources, the time delay in Eq. (2.5) is expressed by

τnm = dnm/c, (3.1)
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Figure 3.1: The array-source geometry of the far-field case.

where c is the propagation speed and dnm is the distance of sensor n to the origin projected

onto the source m’s DOA θm,

dnm = [sin θm cos θm]


 xn + ∆xn

yn + ∆yn


 .

Noting that c = λω/(2π), λ being the wavelength, the n,mth element of the array manifold

H (θ, δ) can be expressed as

Hnm (θm,∆xn,∆yn) = exp

{
−j 2π

λ

[
(xn + ∆xn) sin θm + (yn + ∆yn) cos θm

]}
,

n = 1, . . . ,N, m = 1, . . . ,M.

(3.2)

Compared with the near-field case, Eq. (2.6), the magnitude factor 1
dnm
is omitted in the far-

field case because the array dimension is small compared with the distance between the source

and the array, thus the magnitude change of a signal traversing the array can be ignored. The

magnitude difference due to different path length can be expressed by the power of the signals.

The signal vector s (k) is considered to be stochastic. The noise vector n (k) is independent,

identically complex normally distributed with zero mean and covariance matrix νI , where ν is

an unknown noise spectral parameter and I is anN×N identity matrix. Given the observations
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{y(k)}K
1 , the problem of central interest is to estimate the DOA parameters θ and perturbation

parameters δ.

Following [19], the CML estimator for θ and δ can be expressed as

(θ̂, δ̂) = arg max
(θ,δ)

{
tr
(
PH(θ,δ)R̂

)}

︸ ︷︷ ︸
Fc(θ,δ)

, (3.3)

where R̂ = 1
K

∑K
k=1 x(k)xH(k) is the sample covariance matrix, PH = H(HHH)−1HH

is the projection matrix ofH . The dependence ofH on θ and δ is suppressed for notational

simplicity, and Fc(θ, δ) denotes the CML objective function.

3.2 The EM and SAGE algorithms

Although the objective function Fc(θ, δ) has been concentrated regarding signal and noise

parameters, it is multi-modal, multi-dimensional and nonlinear. Direct application of the max-

imum likelihood principle would lead to a computationally expensive optimization procedure.

By using a data augmentation scheme, EM/SAGE algorithm can decompose the multi-dimen-

sional optimization problem into multiple one or two dimensional ones, thus dramatically re-

ducing the computational complexity, at the expense of iterations.

The SAGE algorithm is a fast variant of the widely used EM algorithm for ML estimation. Like

the EM algorithm, SAGE algorithm breaks down the difficult multi-dimensional optimization

into simpler, lower dimensional optimizations by data augmentation; Unlike the EM algorithm,

SAGE algorithm incorporates a flexible data augmentation scheme that enables a sequential

update of partitions of the parameters, leading to faster a convergence than for the EM algorithm

[73].

3.2.1 EM algorithm

To properly introduce the SAGE algorithm, it is best to build it on the foundation of the EM

algorithm [74]. The EM algorithm is a general iterative approach for solving ML estimation

problems given observed (incomplete) data. It employs a certain data augmentation scheme

to generate the augmented (complete) data from the observed data. The augmented data, if

properly generated, has a simpler relation with the parameters than the observed data, therefore
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simplifies the ML estimation of the parameters. The principle of the EM algorithm is given

below.

Suppose the complete data is Y . When observed, only the incomplete dataX is output by the

observation mechanism. The complete data Y is related to the incomplete data by a many-to-

one mapping that is non-invertible,

T (Y ) = X.

Let fY (y;ϑ) and fX (x;ϑ) denote the probability densities of Y andX , respectively, where

ϑ is the parameter vector to be estimated. Their relation can be expressed by

fY (y;ϑ) = fY |X=x (y;ϑ) · fX (x;ϑ) , (3.4)

where fY |X=x (y;ϑ) is the conditional probability density of Y givenX = x.

Take logarithm on Eq. (3.4):

log fX (x;ϑ) = log fY (y;ϑ) − log fY |X=x (y;ϑ) , (3.5)

and take conditional expectation on Eq. (3.5) given X = x at a parameter value ϑ̂, Eq. (3.5)

becomes

log fX (x;ϑ)︸ ︷︷ ︸
L(ϑ)

= E
Y |X=x;ϑ̂ {log fY (y;ϑ)}
︸ ︷︷ ︸

Q(ϑ,ϑ̂)

−E
Y |X=x;ϑ̂

{
log fY |X=x (y;ϑ)

}
︸ ︷︷ ︸

U(ϑ,ϑ̂)

,

where L(ϑ), Q(ϑ, ϑ̂) and U(ϑ, ϑ̂) are defined for notational convenience.

By Jensen’s inequality [75]

U
(
ϑ, ϑ̂

)
6 U

(
ϑ̂, ϑ̂

)
, (3.6)

therefore, to maximize the log-likelihood of the observed data, L(ϑ), it suffices to maximize

the conditional expectation of the log-likelihood of the augmented data, Q(ϑ, ϑ̂). The maxi-

mization is with respect to ϑ.

The EM algorithms is thus formulated as below:

An EM iteration consists of an expectation (E) step and a maximization (M) step. In the ith it-

eration, Q
(
ϑ, ϑ̂

[i]
)
is computed using the current parameter estimate ϑ̂

[i]
, then it is maximized
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Algorithm 1: EM algorithm

for i = 0, 1, . . . do1

E step: compute2

Q
(
ϑ, ϑ̂

[i]
)

M step3

ϑ̂
[i+1]

= arg max
ϑ

Q
(
ϑ, ϑ̂

[i]
)
,

end4

regarding ϑ to yield the updated estimate ϑ̂
[i+1]
. The algorithm is initialized with an arbitrary

guess of the parameter, ϑ̂
[0]
, and terminated when two consecutive estimates are closer than a

threshold or two consecutive Q values are closer than a threshold.

Although in general a closed-form analytical expression of Q
(
ϑ, ϑ̂

)
cannot be found, for the

case thatX and Y are jointly Gaussian related by a linear transformation

X = TY ,

such an expression of Q(ϑ, ϑ̂) can be derived. An example derivation of the EM algorithm

for DOA estimation is given below, on which the derivation of the SAGE algorithm for self-

calibration will be based.

Let the augmented data

y (k) =




y1 (k)

y2 (k)
...

yM (k)




=




h1 (θ1) s1 (k)

h2 (θ2) s2 (k)
...

hM (θM) sM (k)




+




n1 (k)

n2 (k)
...

nM (k)



,

where nm (k) are decomposed from n (k) under an independence constraint, i.e.

M∑

m=1

nm (k) = n (k)

and

E {nm (k)nm′ (k)} = νmIδ
(
m−m′

)
,
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where δ (m−m′) is the Kronecker delta function, and

M∑

m=1

νm = ν.

A convenient choice is νm = 1
M ν.

The relation between the augmented data and the observed data is

x (k) = Ty (k) ,

where

T =
[
I · · · I

]

︸ ︷︷ ︸
M items

.

Such an augmentation scheme leads to

y (k) ∼ G (sh (k;ϑ) ,Λ) ,

where

sh (k;ϑ) =




h1 (θ1) s1 (k)

h2 (θ2) s2 (k)
...

hM (θM ) sM (k)




and

Λ =




ν1I 0

ν2I

. . .

0 νMI



. (3.7)
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The log-likelihood of y (k) forK snapshots is

log fY (y;ϑ)

=
M∑

m=1

K∑

k=1

{
1

νm
[ym(k)−hm(θm) sm(k)]H [ym(k)−hm(θm) sm(k)] +N log π + log νm

}

=

M∑

m=1

log fY m
(ym;ϑm) .

(3.8)

It is observed from Eqs. (3.7) and (3.8) that the independence of nm (k) results in the decom-

position of the log-likelihood of the augmented data into the sum of its components log fY m

that are associated with the individual signals. Therefore the parameter ϑm associated with

each signal can be optimized individually.

The conditional expectation of log fY (y;ϑ), Q
(
ϑ, ϑ̂

)
, is equivalent to the computation [76]

ŷ
(
k; ϑ̂

)
= E

Y |X=x;ϑ̂ {y (k)} .

Using standard properties of the joint Gaussian distribution [77] [78], one has

ŷ
(
k; ϑ̂

)
= ŝh

(
k; ϑ̂

)
+ ΛTH

(
TΛTH

)−1
[
x (k) − T ŝh

(
k; ϑ̂

)]
,

which yields

ŷm

(
k; ϑ̂

)
= hm

(
θ̂m

)
ŝm (k) +

νm

ν

[
x (k) −H

(
θ̂
)
ŝ (k)

]
.

Following the same technique for the derivation of Eq. (3.3), the maximization of Q
(
ϑ, ϑ̂

)
is

concentrated to

θ̂m = arg max
θm




hH

m (θm) R̂ŷm

(
θ̂
)
hm (θm)

‖hm (θm) ‖2



 m = 1, 2, . . . ,M,

where

R̂ŷm

(
ϑ̂
)

=
1

K

K∑

k=1

ŷm

(
k; ϑ̂

)
ŷH

m

(
k; ϑ̂

)
,
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and the signals are updated by

ŝm (k) =
1

‖hm

(
θ̂m

)
‖2
hH

m

(
θ̂m

)
ŷm

(
k; ϑ̂

)
k = 1, 2, . . . ,K, m = 1, 2, . . . ,M.

3.2.2 SAGE algorithm

Since the convergence rate of an EM-type algorithm is inversely related to the Fisher infor-

mation of its complete data space [74], it is desirable to devise less-informative complete data

spaces for accelerating the algorithm. In the standard EM algorithm, one M step updates all

the parameters, which leads to overly-informative complete data spaces and as a result the slow

convergence rate of the EM algorithm [73]. A general framework for accelerating the EM al-

gorithm is the SAGE algorithm. A SAGE algorithm sequentially updates small groups of the

parameters, which leads to less-informative complete data spaces and consequently fast con-

vergence rate [73]. As a variant of the classical EM algorithm, the SAGE algorithm not only

accelerates the EM algorithm under mild conditions [79], but also the maintains EM algorithm’s

property of monotonic increase of the likelihood function.

Specifically, let S denote a subset of the parameter vector ϑ’s index set {1, 2, . . . ,D}, and S̃
denote the complement of S intersected with {1, 2, . . . ,D}. Then let ϑS denote the sub-vector

indexed out by S from ϑ, and ϑS̃ the complementary sub-vector. For example, if D = 6 and

S = {1, 3}, then ϑS = [ϑ1, ϑ3]
T and ϑS̃ = [ϑ2, ϑ4, ϑ5, ϑ6]

T .

The random vectorZS associated with S is an admissible hidden data space with respect to ϑS

for fX(x;ϑ) if the joint density of ZS andX satisfies

fX (x,z;ϑ) = fX|Z=z

(
x|z;ϑS̃

)
fZ (z;ϑ) ,

where fZ (z;ϑ) is the probability density ofZS . In words, the conditional distribution fX|Z=z(
x|z;ϑS̃

)
must be independent of ϑS , or in other words Z

S must be a complete data space for

ϑS given that ϑS̃ is known.

Dividing the parameter vector ϑ into a sub-vector ϑS and its complementary sub-vector ϑS̃ ,
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the conditional expectation of the likelihood of the complete data ZS is calculated as

QS
(
ϑS ; ϑ̂

)
= QS

(
ϑS; ϑ̂S, ϑ̂S̃

)
, E

ZS |X=x;ϑ̂

{
log fZS

(
zS ;ϑS , ϑ̂S̃

)}

=

∫ [
log fZS

(
zS ;ϑS , ϑ̂S̃

)]
fZS

(
zS |X = x; ϑ̂

)
dzS .

(3.9)

The SAGE algorithm can be summarized as in Alg. 2.

Algorithm 2: SAGE algorithm

for i = 0, 1, . . . do1

Choose an index subset S = S[i]
2

Choose an admissible hidden data space ZS[i]
for ϑS[i]3

E-step: compute according to Eq. (3.9)4

QS[i]
(
ϑS[i]; ϑ̂

[i]
)

M-step:5

ϑ̂
[i+1]

S[i] = arg max
ϑ

S[i]

QS[i]
(
ϑS[i]; ϑ̂

[i]
)
,

ϑ̂
[i+1]

S̃[i]
= ϑ̂

[i]

S̃[i]

end6

The proof of monotonicity is given in [73]. In the following section a SAGE-based algorithm

for array shape self-calibration is constructed.

3.3 A SAGE-based algorithm for array shape self-calibration

First of all, as the parameter vector ϑ is divided into sub-vectors that are estimated sequentially,

it is useful to introduce an indexing system that involves a cycle in addition to an iteration [79]

[80]. A cycle consists of an E-step followed by an M-step, which will be followed immediately

by a new E-step. The new E-step is the beginning of the next cycle. An iteration consists of

one or more cycles.

A subset ϑc of all unknown parameters is updated at one cycle. All subsets are updated once

in one iteration. In the following, a SAGE based algorithm is derived which updates DOA
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parameters and perturbation parameters sequentially.

Let ϑ summarize all unknown parameters

ϑ =
[
ϑT

1 ,ϑ
T
2 , . . .ϑ

T
M ,ϑ

T
M+1,ϑ

T
M+2, . . . ,ϑ

T
M+N , ϑM+N+1

]T
,

where ϑc = [θc, sc (k) , k = 1, 2, . . . ,K]T , (c = 1, 2, . . . ,M) includes the DOA and signal

parameters associated with the cth source. The sensor perturbation parameters are divided into

N subsets with ϑM+n = [∆xn,∆yn]T , n = 1, 2, . . . ,N . The last subset ϑM+n+1 = ν

contains the noise parameter.

As mentioned previously, SAGE updates a subset of parameters at each cycle. It is natural

to choose different augmented data zc for each cycle. For DOA estimation, an augmentation

scheme similar to that in [79] is used:

zc (k) = hc (θc, δ) sc (k) + n (k) , c = 1, 2, . . . ,M. (3.10)

Under this augmentation scheme, the conditional expectation of zc is carried out as follows:

As

n ∼ G (0, νI) ,

it follows that

zc ∼ G (hc (θc, δ) sc, νI) .

The dependence on k has been suppressed for notational simplicity. The covariance matrix

between zc and x is

Cov
(
zcx

H
)

= E
(
nnH

)
= νI,

therefore 
 zc

x


 ∼ G




 hc (θc, δ) sc

H (θ, δ) s


 , ν


 I I

I I




 .

Using the property of joint Gaussian distribution in appendix A,

ẑc = E
Zc|X;ϑ̂ (zc)

= hc

(
θ̂c, δ̂

)
ŝc + νI (νI)−1

[
x−H

(
θ̂c, δ̂

)
ŝ
]

= hc

(
θ̂c, δ̂

)
ŝc +

[
x−H

(
θ̂c, δ̂

)
ŝ
]
.

(3.11)
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For sensor location and noise parameters, a straightforward data augmentation is chosen:

zc (k) = x (k) , c = M + 1,M + 2, . . . ,M +N + 1, (3.12)

or put in words, using the latest DOA estimate and the array observation, array calibration is

carried out sensor by sensor. The required initial DOA estimate can be attained by subspace

methods such as multiple signal classification (MUSIC) or the standard maximum likelihood

(ML) approach using nominal sensor locations.

Let ϑ̂
[i,c]
denote the estimate of the cth cycle and ith iteration, and ϑ̂

[i,0]
= ϑ̂

[i−1,M+N ]
. Given

an initial estimate ϑ̂
[0,0]
and the augmentation scheme Eqs. (3.10) and (3.12), the ith iteration

of the SAGE algorithm proceeds as follows.

I. Update DOA parameter

For c = 1, 2, . . . ,M

E-step: calculate the conditional expectation of the augmented log-likelihood function

Q
(
ϑc, ϑ̂

[i,c−1]
)

= E
Zc|X=x;ϑ̂

[i,c−1] [log fZc (zc;ϑc)] ,

which according to Eq. (3.11) is equivalent to calculating

ẑc

(
k;ϑ[i,c−1], δ[i−1]

)

= hc

(
ϑ[i,c−1]

c , δ[i−1]
)
s[i,c−1]
c (k) + x(k) −H

(
ϑ[i,c−1], δ[i−1]

)
s[i,c−1](k)

and

R̂ẑc

(
ϑ[i,c−1], δ[i−1]

)
=

1

K

K∑

k=1

ẑc

(
k;ϑ[i,c−1], δ[i−1]

)
ẑc

(
k;ϑ[i,c−1], δ[i−1]

)H

M-step: update ϑc = [ϑc, sc (k) , k = 1, 2, . . . ,K]T

θ[i,c]
c = arg max

θc

hH
c (θc, δ

[i−1])R̂bzc

(
ϑ[i,c−1], δ[i−1]

)
hc(θc, δ

[i−1])

‖hc(θc, δ
[i−1])‖2
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sc(k; θ
[i,c]
c , δ[i−1]) =

1

‖hc(θ
[i,c]
c , δ[i−1])‖2

hH
c (θ[i,c]

c , δ[i−1])ẑc

(
k;ϑ[i,c−1], δ[i−1]

)

where δ[i−1] represent the perturbation parameters from the previous iteration.

II. Update sensor location parameter

For c = M + 1,M + 2, . . . ,M +N

E-step:

Q
(
ϑc, ϑ̂

[i,c−1]
)

= E
X|X=x;ϑ̂

[i,c−1] [log fX (x;ϑc)] (3.13)

which is equivalent to calculating

R̂ =
1

K

K∑

k=1

x (k)xH (k) (3.14)

M-step: update ϑc = [∆xc−M ,∆yc−M ]T

[
∆x

[i,c]
c−M ,∆y

[i,c]
c−M

]T
= arg max

∆xc−M

∆yc−M

tr
[
P

H(θ[i,M],δ[i,c−1])R̂
]

(3.15)

The perturbation vector

δ[i,c−1] =
[
∆x

[i,c−1]
1 ,∆y

[i,c−1]
1 , . . . ,∆xc−M ,∆yc−M , . . . ,∆x

[i,c−1]
N ,∆y

[i,c−1]
N

]T

consists of the error parameters of the c − M th sensor ∆xc−M ,∆yc−M and other 2N − 2

parameters fixed at the latest estimates. The sample covariance matrix is given by Eq. (3.14).

Note that Eq. (3.15) is simply the concentrated log-likelihood function for array observations

x(k) with the DOA parameters fixed at current estimate θ[i,M ]. If the first sensor position is

assumed to be known, i.e. ∆x1 = ∆y1 = 0, the corresponding cycle can be skipped. The latest

estimate is simply replaced by the known value 0. For the known direction condition, ∆y2 = 0,

the perturbation parameter ∆x2 requires only a one dimensional search.

III. Update noise parameter

For c = M +N + 1
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The E-step is similar to Eq. (3.13). In the M-step, the noise parameter is updated by a closed

form expression as in standard ML estimation:

ν [i,c] =
tr
[
P

H(θ[i,M],δ[i,M+N])R̂
]

N

In summary, the SAGE algorithm decouples the DOA and perturbation parameters and updates

them alternately. The multi-dimensional search procedure is greatly simplified to one and two

dimensional search procedures at the expense of iterations.

3.4 CRB

In this section, the expression of CRB for self-calibration is given. The CRB defines the lowest

mean squared error (MSE) that any unbiased estimator can attain asymptotically. The covari-

ance matrix of the estimation errors is denoted by

C(ϑ) = E[(ϑ̂− ϑ)(ϑ̂− ϑ)T ]. (3.16)

The vector-parameter CRB states that

C(ϑ) > BCR(ϑ) , J−1,

for any unbiased estimate of ϑ. ThatC(ϑ) is greater than or equal to CRBBCR(ϑ)means that

C(ϑ) −BCR(ϑ) is a positive semi-definite matrix. The matrix J is commonly referred to as

Fisher’s information matrix (FIM).

The i, jth element of J is

Jij , E

[
∂LX(ϑ)

∂ϑi

∂LX(ϑ)

∂ϑj

]
= −E

[
∂2LX(ϑ)

∂ϑi∂ϑj

]
, (3.17)

where LX(ϑ) is the log-likelihood function of random variableX parameterized by ϑ, and ϑi

and ϑj are the ith and jth elements of ϑ, respectively.

Taking the second partial derivative and then an expectation on the log-likelihood function for
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a single snapshot k

LX(ϑ) = ln pX|ϑ(x(k))

= − ln det
[
πCX(ϑ)

]
−
[
xH(k) −mH(ϑ)

]
CX

−1(ϑ)
[
x(k) −m(ϑ)

]
,

where CX(ϑ) is the covariance matrix, x(k) the kth realization andm(ϑ) the mean ofX , by

definition (3.17) one has

Jij = −tr
[
∂C−1

X (ϑ)

∂ϑi

∂C−1
X (ϑ)

∂ϑj

]
+ 2Re

[
∂mH(ϑ)

∂ϑi
C−1

X (ϑ)
∂m(ϑ)

∂ϑj

]
. (3.18)

In some cases the mean is either zero or not a function of ϑ so that the second term of Eq.

(3.18) can be omitted, then

Jij = −tr
[
∂C−1

X (ϑ)

∂ϑi

∂C−1
X (ϑ)

∂ϑj

]
. (3.19)

The expression of Eq. (3.19) for self-calibration is given in [19] as

J =




DH
θ P

⊥
HDθ ⊙ Σ

T DH
θ P

⊥
H ⊙ (DxΣ)T DH

θ P
⊥
H ⊙ (DyΣ)T

(DxΣ) ⊙
(
DH

θ P
⊥
H

)T (
DxΣDH

x

)
⊙
(
P⊥

H

)T (
DxΣDH

y

)
⊙
(
P⊥

H

)T

(DyΣ) ⊙
(
DH

θ P
⊥
H

)T (
DyΣD

H
x

)
⊙
(
P⊥

H

)T (
DyΣD

H
y

)
⊙
(
P⊥

H

)T


 ,

(3.20)

in which

Σ = SHHR−1HS,

Dx =




∂h1
∂∆x1

∂h2
∂∆x2

...

∂hN

∂∆xN



,

where hn is the nth row ofH , and

Dy =




∂h1
∂∆y1

∂h2
∂∆y2

...

∂hN

∂∆yN



.

44



Far-field online calibration I

Dθ =
(

∂g1
∂θ1

∂g2
∂θ2

· · · ∂gM

∂θM

)
,

where gm is themth column ofH .

For the far-field self-calibration case,

Dθ =
∂H

∂θ
|δ=0 = jπH ⊙ (PΘ) |δ=0,

where

P =




x1 y1

x2 y2

...
...

xN yN



,

Θ =


 cos θ1 cos θ2 · · · cos θM

− sin θ1 − sin θ2 · · · − sin θM


 ,

Dx =
∂H

∂x

∣∣∣
δ=0

= jπH




sin θ1 0

sin θ2
. . .

0 sin θM




∣∣∣∣∣
δ=0

,

and

Dy =
∂H

∂y

∣∣∣
δ=0

= jπH




cos θ1 0

cos θ2
. . .

0 cos θM




∣∣∣∣∣
δ=0

.

Note that ∆x1,∆y1 and ∆y2 have been set to zero to fulfil the identifiability condition: as a

result the related elements in J should be deleted since they are not parameters any more. More

specifically, if Eq. (3.20) is notationally simplified as

J =




Jθθ Jθx Jθy

JH
θx Jxx Jxy

JH
θy JH

xy Jyy


 , (3.21)

where the nine sub-matrices in Eq. (3.21) correspond to the nine sub-matrices in Eq. (3.20),
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for example,

Jθθ = DH
θ P

⊥
HDθ ⊙ Σ

T .

Then the following should be deleted: the first column in Jθx and Jxx, the first and second

columns in Jθy,Jxy and Jyy; the first row in Jθx and Jxy, the first and second rows in Jyy.

3.5 Simulation results

In the simulation, a nominally uniform circular array of 6 sensors is considered. The inter-

sensor spacing is half a wavelength λ/2. The sensor’s nominal positions are perturbed by

a Gaussian random displacement with zero mean and a standard deviation σp. The random

displacement is generated once and kept fixed throughout each experiment. The random dis-

placements at σp = λ/2 are collected in Tab. 3.1. ∆x1, ∆y1 and ∆y2 are set to zero to fulfil

the identifiability condition.

n ∆xn (λ/2) ∆yn (λ/2)

1 0 0

2 −0.3775 0

3 −0.2959 0.9409

4 −1.4751 −0.9921

5 −0.2340 0.2120

6 0.1184 0.2379

Table 3.1: The random displacements at σp = λ/2.

3.5.1 An example of self-calibration

In this section, a typical self-calibration process is presented to illustrate the behavior of the

algorithm. In the self-calibration setup, the narrowband signals are emitted by three sources

of equal power located at θ0 = [−35◦, 0◦, 35◦]T . The standard deviation of sensor position

errors is σp = 0.25λ which corresponds to 50% inter-sensor spacing. The number of snapshots

K = 50. The signal-to-noise ratio (SNR), defined as 10 log[Ek[|sm(k)|2]/ν], is 12 dB. The

nominal sensor positions are used to initialize the algorithm, i.e. δ[0] = 0. The initial DOA

estimate is chosen as θ[0] = [−34◦, 4.1◦, 41.6◦]. The maximum number of iterations is 200.
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The algorithm is terminated if the relative change of parameters is less than 0.01% between two

consecutive iterations or the maximum number of iterations is reached.

Iteration θ̂1 (deg.) θ̂2 (deg.) θ̂3 (deg.) Iteration θ̂1 (deg.) θ̂2 (deg.) θ̂3 (deg.)

0 −34.80 4.10 41.60 11 −31.58 10.99 40.97
1 −31.01 7.83 40.85 13 −32.20 9.92 40.82
2 −26.44 13.80 40.03 15 −32.68 8.77 40.61
3 −26.26 13.81 39.93 17 −33.09 7.63 40.38
4 −26.39 13.45 40.17 19 −33.44 6.55 40.14
5 −27.25 13.12 40.48 21 −33.75 5.57 39.89
6 −28.34 12.86 40.73 23 −34.02 4.72 39.65
7 −29.30 12.58 40.89 25 −34.26 3.99 39.42
8 −30.08 12.26 40.98 79 −35.61 0.10 36.98
9 −30.69 11.89 41.02 80 −35.61 0.10 36.98

Table 3.2: Estimated DOA’s of selected iterations.

Figure 3.2: DOA errors vs. iteration number

Table 3.2 shows that the SAGE algorithm converged in 80 iterations, terminating when the

relative change of θ in the last two iterations is less than the threshold. The squared error (SE)

sum of DOA, ‖θ̂−θ0‖2, is reduced from 1.84× 10−2 rad2 at initialization to 0.13× 10−2 rad2

at termination, which is a 93% reduction. Fig. 3.2 shows the SE sum of DOA as a function

of iterations. It is observed that the first 3 iterations increased the DOA error, but increased

the objective function significantly as shown in Fig. 3.4. The monotonic increase of objective

function is guaranteed by the characteristic of the SAGE algorithm.
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Figure 3.3: Sensor location errors vs. iteration number.

The SE sum of sensor locations, ‖δ̂ − δ0‖2, is dramatically reduced by 99.7%, from 1.1115

λ2/4 of nominal sensor locations to 0.0033 λ2/4 of estimated sensor locations. Fig. 3.3 shows

it as a function of iterations. A fluctuation of sensor location error is also observed between the

second and the third iterations, corresponding to the fluctuation of DOA error as shown in Fig.

3.2. However the SE sum of sensor locations decreases monotonically after that.

3.5.2 Monte Carlo experiments

The purpose of the Monte Carlo (MC) experiments is twofold. Firstly, to compare the per-

formance of the proposed procedure with the existing procedures, i.e. the standard SAGE

algorithm [79] and the WF1 procedure. All three procedures optimize the same CML objective

function in Eq. (3.3). Secondly, to demonstrate the statistical efficiency of the proposed proce-

dure by comparing it with the CRB. The MC experiments are carried out in the following three

cases.

3.5.2.1 Well-separated sources

In the first case, the narrowband signals are generated by three widely separated sources of equal

power located at θ0 = [−35◦, 0◦, 35◦]. The deviation of sensor position errors is σp = 0.1λ

which corresponds to 20% intersensor spacing. The number of snapshots K = 50. The SNR
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Figure 3.4: Objective function value convergence.
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Figure 3.5: Mean ‖θ̂−θ0‖2 vs. SNR. True DOA parameters θ0 = [−35◦, 0◦, 35◦], σp = 0.1λ.
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ranges from 8 dB to 18 dB with a 2 dB step. For each SNR, 100 MC trials are performed.

The nominal sensor positions are used to initialize the algorithm, i.e. δ[0] = 0. For a fair

comparison, a fixed initial DOA estimate θ[0] = [−34◦, 4.1◦, 41.6◦] is chosen. The maximum

number of iterations is 200. The algorithm is terminated if the relative change of parameters

is less than 0.01% between two consecutive iterations or the maximum number of iterations is

reached.

Fig. 3.5 shows the MSE sum of DOA estimation obtained from averaging the distance between

the estimated and the true DOA parameters, ‖θ̂−θ0‖2 . One can easily observe that the standard

conditional maximum likelihood – space generalized expectation-maximization (CML-SAGE)

algorithm fails to provide any useful information. Both self-calibration techniques lead to sig-

nicant improvement in estimation accuracy. The SAGE algorithm and WF1 method perform

similarly over the entire SNR range, their MSE sums being close to the CRB.

3.5.2.2 Closely-located sources
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Figure 3.6: Mean ‖θ̂−θ0‖2 vs. SNR. True DOA parameters θ0 = [−35◦, 12◦, 30◦], σp = 0.1λ.

In the second case, closely located sources with θ0 = [−35◦, 12◦, 30◦]T are considered. The

initial value is given by θ[0] = [−29.8◦, 16.1◦, 33.6◦]. Other parameters are kept the same. The

MSE’s presented in Fig. 3.6 show that the SAGE algorithm has an overall higher estimation

accuracy than theWF1method in this more critical situation. TheMSE sum ofWF1 approaches

the CRB when SNR is greater than or equal to 10 dB. However, both methods require a higher
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SNR than in the first experiment to provide reasonable estimates. Similarly to Fig. 3.5, the

standard CML-SAGE approach fails totally when sensor positions deviate from the nominal

values.

3.5.2.3 Large sensor location errors
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Figure 3.7: Mean ‖θ̂−θ0‖2 vs. SNR. True DOA parameters θ0 = [−35◦, 0◦, 35◦], σp = 0.25λ.

In the third case, widely separated signals as in the first experiment are considered, i.e. θ0 =

[−35◦, 0◦, 35◦]. The standard deviation of sensor position error is increased to σp = 0.25λ

which corresponds to 50% of inter-sensor spacing. Fig. 3.7 shows that over the entire SNR

range, both the standard CML-SAGE and the WF1 algorithms fail to estimate DOA parameters,

whereas the SAGE-based self-calibration method still provides optimal results that approach

the CRB. This shows that the proposed algorithm has a much higher robustness against large

sensor position errors than the WF1 method and retains its optimal MSE performance at large

large sensor position errors.

3.5.2.4 Computational cost

Finally, the average numbers of iterations-to-converge for the three Monte Carlo (MC) cases

are illustrated against SNR in Fig. 3.8. The number of iterations is averaged over the 100 MC

trials at each SNR. As expected, the case of well-separated sources requires the least average
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Figure 3.8: Average number of iterations for convergence vs. SNR.

number of iterations to converge, whereas the more challenging cases of closely-located sources

and large errors require more average number of iterations to converge. In the more challenging

cases the case of closely-located sources demands the most average number of iterations.

The cases of well-separated sources and large errors feature a generally decreasing trend against

increasing SNR in average number of iterations to converge. Specifically, in the former case the

average number decreases from 77.9 at 6 dB to 67.7 at 18 dB, and in the latter case the average

number decreases from 96.0 at 6 dB to 80.5 at 18 dB. However in the case of closely-located

sources the average number of iterations to converge does not decrease as the SNR increases,

instead it fluctuates between the minimum of 143.8 at 12 dB and the maximum of 155.6 at 6

dB.

The reason why the number of iterations is the major concern is that simulations show that in

each iteration the computational cost is the virtually same. Using MUSIC for DOA estimation

as a reference, one may infer the absolute computational cost of SAGE self-calibration. For

example, for the case of large sensor location errors in section 3.5.2.3, the computation time for

each self-calibration process is 1.03 second at SNR = 12 dB, and the time for MUSIC DOA

estimation is 0.006 second at the same SNR.MUSIC uses the nominal array to localize the three

sources as in section 3.5.2.3, assuming no array perturbation. The experiments are conducted

with Matlab 7.8.0.347 (R2009a) on a PC with Intel Xeon CPU E5420 at 2.50 GHz (8 core), and
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8 GB RAM. It is noted that array shape self-calibration based on the MUSIC objective function

is also a nonlinear multidimensional optimization problem [2], which is computationally much

more costly than MUSIC DOA estimation, and the computational cost is dependent on the

optimization algorithm employed. Therefore, a thorough comparison of the computational

costs of the self-calibration techniques requires a dedicated work, which is out of the scope of

this thesis.

3.6 Conclusion

A SAGE algorithm based self-calibration procedure is derived for arrays with sensor position

uncertainties. Through data augmentation, DOA estimation and array calibration can be car-

ried out by a computationally simple search procedure. Numerical experiments show that the

proposed method outperforms the existing method for closely located signal sources and is

robust to large sensor errors. Moreover, the accuracy of the proposed procedure approaches

the CRB. Therefore, the SAGE-based procedure provides an attractive alternative to current

self-calibration techniques.
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In this chapter, the same far-field self-calibration problem as that of Chapter 3 is dealt with

by another novel formulation. First, an unconditional maximum likelihood (UML) estimator,

rather than the conditional maximum likelihood (CML) estimator1 in Chapter 3, is used for

jointly estimating the source directions of arrival (DOA’s) and sensor locations. Although the

UML estimator is a standard estimator for direction finding (DF), it has not yet been used

for array-shape self-calibration, due to its complicated objective function that requires much

optimization effort. The optimization complexity is overcome by particle swarm optimization

(PSO) with decaying diagonal loading (DDL), which is the second novelty of the formulation.

In the particle swarm optimization – decaying diagonal loading (PSO-DDL) paradigm, the

PSO is a recently-developed stochastic global optimization algorithm, inspired by social in-

telligence in biology. Being “global”, PSO does not need accurate initialization, which is a

common problem for all local optimization algorithms. As no approximation is involved, the

self-calibration is applicable to large error and the result is statistically efficient. DDL is de-

veloped to take advantage of the unexpected behavior that the UML objective function is more

difficult to globally optimize at high signal-to-noise ratio (SNR) than at low SNR. The reason is

that the global minimum of the UML cost function is more prominent at low SNR than at high

SNR. An exponentially decaying diagonal loading (DL) is introduced, to temporarily lower the

SNR for exploitation of the global minimum prominence. DDL is coupled with the progress

of PSO to guide the optimization algorithm towards the target, and in the end is reduced to

zero to preserve the quality of the UML estimator. The DDL enhances the PSO’s search ability

without sacrificing the estimator’s performance, and requires negligible computation. Since its

effect is on the objective function, DDL can be coupled with any global optimizer for perfor-

mance enhancement, which is supported by simulation results of the differential evolution (DE)

algorithm.

1A comparison between the CML-SAGE in Chapter 3 and the UML-PSO in Chapter 4 seems infeasible because

1) both the estimators and the optimizers are different, and 2) SAGE is a local optimizer whereas PSO is a global

optimizer. Fair comparisons are feasible if CML-PSO and UML-SAGE procedures for array shape calibration are

developed in the future.
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In summary, the novel formulation of UML optimized by PSO-DDL provides a practicable

solution for array shape self-calibration. It is free of the initialization problem, applicable to

large sensor location errors, with optimal accuracy, and computationally feasible. Moreover,

the application of DDL presents a new perspective of the UML objective function: contrary to

the intuition that high SNR is better than low SNR, the shape of the cost function is easier for

a global optimizer at low SNR than at high SNR. In other words, the prominence of the global

minimum is different from its precision.

This chapter starts with formulating the UML objective function in section 4.1, followed by

introducing PSO and DDL in sections 4.2 and 4.3, respectively, and ends with presenting sim-

ulation results in section 4.4. The simulation results include PSO-DDL results and differential

evolution – decaying diagonal loading (DE-DDL) results.

4.1 Problem formulation

The physical scenario considered is the same as that in chapter 3. Following [19], the UML

estimator for θ and δ can be expressed as

(θ̂, δ̂) = arg min
(θ,δ)

{
det
[
PHR̂PH +

tr(P⊥
HR̂)P⊥

H

N −M

]}

︸ ︷︷ ︸
F (θ,δ)

, (4.1)

where R̂ = 1
K

∑K
k=1 x(k)xH(k) is the sample covariance matrix, PH = H(HHH)−1HH

is the projection matrix ofH , and P⊥
H = I − PH is its orthogonal complement. The depen-

dence ofH on θ and δ is suppressed for notational simplicity, and F (θ, δ) denotes the UML

objective function.

4.2 PSO

The UML objective function in Eq. (2.24) is multi-modal, multi-variate and non-linear, which

poses a challenge to optimization. Local optimization techniques such as the various gradi-

ent algorithms, the expectation-maximization (EM)/space-alternating generalized expectation-

maximization (SAGE) algorithm and the simplex algorithm can be applied to conduct the op-

timization, however the initialization problem remains, as common to all local optimization
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techniques. An alternative is to apply global optimization techniques, such as the numerous

stochastic optimization algorithms including genetic algorithm (GA), simulated annealing (SA)

etc., to conduct the optimization. One of the stochastic optimization algorithms is PSO, whose

good performance, simple implementation and robust control parameters distinguish it from

others that are also potentially applicable to the problem.

4.2.1 PSO introduction

PSO [81] is a stochastic global optimisation technique that is simple in kernel and robust in its

control parameters. It is reported that PSO is computationally less intensive than the genetic

algorithm (GA) for a number of array processing and other problems [82]. A relatively simple

version of PSO is introduced, which is adequate for the current problem. Other PSO variants

that are also applicable can be found in the relevant literature such as [83]. Firstly the problem-

independent PSO kernel is described, then the problem-specific designs follow.

The problem-independent PSO kernel is a constriction PSO [84]. In it, a swarm particle is a

point in the D-dimensional solution space of the optimisation problem, whose coordinate is

ξi ∈ R
D, where i denotes the ith particle, i = 1, 2, . . . , P . The P particles constitute a swarm,

wherein each particle is propelled by random movement in the solution space but is guided

towards the global optimum of the objective function by swarm intelligence – the processing of

shared information of the objective function.

At the tth time step, the velocity of the ith particle is updated according to

ψi (t+ 1) = χ
{
ψi (t) + ϕ1r1 ⊙ [pi (t) − ξi (t)] + ϕ2r2 ⊙ [gi (t) − ξi (t)]

}
, i = 1, . . . , P,

(4.2)

where ⊙ is the element-wise product operator. The three terms in the brackets of Eq. (4.2)
account for inertia, individual experience and group information, sequentially. Specifically,

r1 and r2 are random vectors uniformly distributed in [0, 1] that propel the particles, pi(t)

is the particle best location of its own experience from time step 1 to t, gi(t) is the group

best location at current time step t. “Best” is in the sense of the lowest value of the cost

function to be minimized. The scalar χ = 2/|2−ϕ−
√
ϕ2 − 4ϕ| is the constriction factor that

progressively constricts the harmful particle oscillation resulting from the random movement.

Here ϕ = ϕ1+ϕ2, in which ϕ1 is the acceleration constant toward the particle best location and

thus a large value of it encourages exploration of the solution space; and ϕ2 is the acceleration
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constant toward the group best location and thus a large value of it encourages exploitation of

potential districts of global optimum. The value of ϕ should be greater than 4 to prevent particle

oscillation [84], and in practice ϕ = 4.1 is a viable value [83].

For a unit time step, the position of the ith particle is updated as

ξi (t+ 1) = ξi (t) +ψi (t+ 1) , i = 1, . . . , P. (4.3)

In order to prevent the particle from flying too fast and thus overshooting the target or exceeding

the boundary, the particle velocity is limited by a maximum velocity Ψ . If the velocity in any

dimension d exceeds Ψ , it is clamped by

ψd(t+ 1) = Ψ
ψd (t)

|ψd (t)| , d = 1 , . . . ,D , (4.4)

where ψd is the dth component of ψi, and i has been suppressed for notational convenience.

If a particle flies out of the boundary of the solution space in any dimension, it is reset to

a random position in that dimension. In the case that the parameters to be optimised have

different boundaries, one may map the feasible ranges into [0, 1]. As a result the velocity can

be updated uniformly, and Ψ is the same for all the dimensions.
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Figure 4.1: Illustration of PSO progressive behavior. The blue crosses represent the 20 par-
ticles. (a) t = 1, (b) t = 15, (c) t = 45. The objective function minimized is
F (θ1, θ2)|δ=0,M = 2 far-field sources reside at [θ1, θ2]0 = [−35 35]◦. The array
is an N = 6 sensor uniform circular array (UCA), a = λ/2. K = 256 snap-
shots. To reveal the shape of the objective function, log(F ) is contoured as the
background with linear color map.

An example of the progressive behavior of PSO is illustrated in Fig. 4.1. In this illustration,

the PSO is employed to optimize the objective function of a DOA estimation problem. In the

57



Far-field online calibration II

beginning, Fig. 4.1(a), the particles are initialized to random positions in the solution space,

uniformly occupying the plane. Fig. 4.1(b) shows that at the 15th PSO iteration the particles

have largely concentrated towards the target which lies at [−35 35]◦. In the end, Fig. 4.1(c), all

the particles arrive at the target, and the optimization is completed.

4.2.2 DOA collision avoidance and string topology in PSO

When PSO is applied to the objective function in Eq. (2.24), two features of the optimization

problem have to be considered. The first arises from the structure of F , which involves matrix

inversion. If H is rank-deficient, then HHH is singular and not invertible, which happens

when two DOA’s are identical. In practice, when two DOA parameters are too close together

(“collision”) during the PSO iterations, numerical instability emerges and as a result PSO is not

able to separate the collided DOA parameters. The second lies in the aim of the optimization.

For some optimization problems where the final aim is to reduce the cost indexed by the objec-

tive function for example, a local minimum is acceptable if it is not too much higher than the

global minimum. However, for an estimation problem where the final aim is to find the global

minimum that is associated with the parameter estimate, a local minimum is not acceptable

if the associated parameter value is far from that associated with the global minimum, even

if the objective function value of the local minimum is very close to that of the global mini-

mum. Therefore for the estimation problem it is desirable to recruit an optimizer that reaches

the global minimum of F with as high probability as possible, yielding accurate estimates. The

solutions to the two problems are given below.

The first strategy deals with identical DOA’s. As the entries of ξi(t) are randomly and indepen-

dently updated, there is a possibility that two or more DOA entries are adjusted to an identical

value. This renders the array manifold H rank-deficient and consequently makes (HHH)−1

non-existent in Eq. (2.24), which causes numerical instability. In practice, if two or more DOA

parameters are close to each other, PSO would be trapped in these false values and often cannot

escape despite the random particle position update. A simple and effective solution is to assign

a random value to one of the parameters if at any PSO iteration t, two DOA parameters hap-

pen to be closer than a pre-specified value δ [82]. If δ is smaller than the the sources’ angular

separation, it does not affect the self-calibration.

The second strategy deals with swarm topology. The swarm topology determines the neigh-

bourhood of a swarm particle, from which the group best location gi(t) in Eq. (4.2) is chosen:

58



Far-field online calibration II

the ith particle compares the objective function value at its own location with those at its neigh-

bours’ in its group. The location associated with the best objective function value is chosen

as gi(t). If every particle’s neighbours are defined as all the other particles in the swarm, the

swarm is said to have a “global best” topology; if a particle’s neighbours are defined as part of

the other particles in the swarm, the swarm is said to have a “local best” topology. A general

trend is that swarm topologies with more connections between the particles tend to converge

faster, but have a lower success probability of reaching the global optimum, and vice versa [85].

This tendency is also observed in the trials of topologies for the self-calibration problem con-

sidered in this work. For the parameter estimation problem it is desirable to maximize PSO’s

ability of reaching the global optimum, therefore a “string” topology with least connection

between the particles is defined for the PSO:

Particles of the ith group





i, i+ 1 i = 1

i− 1, i, i + 1 i = 2, . . . , P − 1

i− 1, i i = P.

4.2.3 PSO performance
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Figure 4.2: A successful self-calibration performed by PSO. (a) The calibrated (estimated)

array shape compared with the actual and nominal array shapes. (b) The conver-

gence pattern of the objective function value as optimized by PSO.

Equipped with the strategies in section 4.2.2, PSO is applied to optimize F . The nominal

array is a 5-sensor UCA with inter-sensor spacing a = λ/2, perturbed to actual array shape

by uniformly distributed random displacements with boundary b = 0.2a. Three sources of

opportunity reside at DOA θ = [−35◦ 0◦ 35◦]T , which are unknown a priori to the estimator.
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parameter true estimated parameter true estimated

θ1 (rad) −0.6109 −0.6143 x4 (λ/2) 0.3508 0.3466
θ2 (rad) 0.0000 −0.0031 x5 (λ/2) −0.1437 −0.1461
θ3 (rad) 0.6109 0.6125 y3 (λ/2) 1.004 1.007
x2 (λ/2) 1.1259 1.1227 y4 (λ/2) 1.3779 1.3783
x3 (λ/2) 1.4713 1.4660 y5 (λ/2) 0.8625 0.8626

Table 4.1: Estimated parameters compared with true values.

SNR= 22 dB. The PSO is configured by the same PSO parameters as that in Tab. 4.3. A typical

successful PSO operation on the array self-calibration problem is shown in Fig. 4.2. It is seen

from Fig. 4.2(a) that the calibrated array shape is close to the actual shape, and from Tab. 4.1

that the DOA estimate is close to the true DOA. The calibrated and actual sensor coordinates

are also in Tab. 4.1.

Surprisingly, however, when applied over a range of SNR values, PSO starts to fail when the

SNR is higher than a certain threshhold, and the proportion of failure increases as the SNR

increases. An example of the threshold and failure increase is shown in Fig. 4.3. The left hand

column shows the F convergence of the cost function F over 200 trial runs at 4 values of SNR.

The right hand column shows the final converged value of the angle estimates for each of the

trials. It can be seen that at SNR = 10 dB all the 200 DOA estimates are close to the true

value, but from SNR = 14 dB on, spiky estimates appear indicating that some runs produce

poor estimates. The number of spikes increases as the SNR increases.

The PSO performance at SNR = 26 dB is shown in Fig. 4.4 with more detail. Fig. 4.4(b)

shows that a significant portion of the optimizations failed to reach the global minimum of F ,

yielding erroneous array-shape estimates, the first of which is shown Fig. 4.4(a) as an example;

and irrelevant DOA estimates, shown in Fig. 4.4(c). In addition, the optimized value of F in

Fig. 4.4(b) shows an apparent separation between success and failure. Using F = 10−3 as

a criterion, 32 out of the 200 optimizations failed to reach the global minimum. The error of

the corresponding DOA estimates shows a similar separation. This separation suggests that the

failures are caused by the PSO being trapped in local minima.

It is noted that even a few spiky estimates can result in a mean squared error (MSE) of the 200

trials much higher than the optimal, and worse is that a threshhold at 10 dB poses a serious

problem in applications where SNR is traded for calibration accuracy. These are shown by the

MSE of PSO in Fig. 4.11 to avoid duplication.
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Figure 4.3: PSO performance at critical SNR’s. In the left column are the F convergence over
200 MC trials at 4 values of SNR. In the right column are the final converged value
of the DOA estimates for each of the trials.
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Figure 4.4: The failure of PSO at SNR = 26 dB. (a) The first failed array shape estimation
compared with nominal and actual shapes. The thin-line black squares and line

segment indicate the perturbation boundaries. (b) The pattern of F in the process
of 200 optimizations. (c) The 200 DOA estimates.

4.3 DDL

In this section the reason for PSO’s failure at high SNR is analyzed, and then by noticing that

reducing SNR is asymptotically equivalent to diagonal loading, a DDL technique is proposed

to solve the problem at high SNR.

4.3.1 DL effect on F

The reason for PSO’s failure at high SNR is that the global minimum of F is less prominent

at higher SNR than at lower SNR. In the following this phenomenon is firstly demonstrated by

visualisation of F and then further explained by using the first derivative of F .

To begin with, the asymptotic equivalence between DL and SNR reduction is established, and

the parameters involved are defined. Asymptotically (K → ∞), lowering the SNR is equivalent
to diagonally loading the covariance matrix R. Suppose additional noise nl is loaded to the

array output,

x̃(k) = Hs (k) + n (k) + nl (k) , k = 1, . . . ,K, (4.5)

where nl(k) is independent, identically complex normally distributed with zero mean and co-

variance matrix νlI , and νl is the power of the loaded noise, then asymptotically

R̃ = R+ νlI, (4.6)
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Figure 4.5: The negative objective function before (a) and after (b) diagonal loading. 5-sensor

uniform circular array, inter-sensor spacing λ
2 ; 2 signals at [−35 35]◦,K = 1000;

SNR= 14 dB, SNRa = −10 dB.

where R̃ = limK→∞
1
K

∑K
k=1 x̃(k)x̃H(k) and R = limK→∞ R̂ with probability 1. The

additional noise appears in the covariance matrix as diagonal loading.

Assuming normalised signal power, the original signal-to-noise ratio can be expressed as SNR =

−10 log ν. The effective signal-to-noise ratio after DL is defined as

SNRa = −10 log (ν + νl) , (4.7)

and consequently the loaded signal-to-noise ratio is SNRl = SNRa − SNR.

Since it is impossible to visualize the high-dimensional objective function of the self-calibration

problem, the effect of DL has to be demonstrated by a corresponding two-dimensional DOA

estimation problem, which is visualised in Fig. 4.5. The objective function is the degenerated

F by setting δ = 0. Comparing Fig. 4.5(a) and Fig. 4.5(b) it is seen that diagonal loading

of the sample covariance matrix R̂, which is asymptotically equivalent to reducing the SNR,

makes prominent the global minimum of the objective function, therefore eases the searching

of it for a global optimiser. The objective function by directly adding noise, Eq. (4.5), closely

resembles that by DL, Fig. 4.5(b), therefore is not shown. This phenomenon is observed

independently from the number of sensors for the DOA estimation problem, and is confirmed

by the simulations in section 4.4.1 for the self-calibration problem.
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The fact that F at higher SNR is more difficult to optimise might seem counter-intuitive at first

sight, however it is worth pointing out that the precise global minimum at high SNR is not nec-

essarily prominent at the same time, as shown by Fig. 4.5(a). The reason that the prominence of

the global minimum of an objective function received little attention in the existing array pro-

cessing literature is that, a local optimization algorithm descends to the nearest minimum, and

if it is initialised in the basin of the global minimum it reaches the global minimum whether it is

prominent or not; whereas for a global optimization algorithm that searches the entire parame-

ter space without an accurate initialisation, the prominence of the global minimum is important,

particularly at the early stages when the individual particles have not gathered around the global

minimum.

The analytical explanation of the DL effect on F is carried out as follows. Jacobi’s formula

[86] (Part Three, Section 8.3) states that

(detX)′ = (detX) · tr
(
X−1X ′

)
, (4.8)

whereX is an invertible matrix.

Let

X = PHR̂PH +
tr(P⊥

HR̂)P⊥
H

N −M
(4.9)

and use (B.3) and (B.15) in [21], it follows that

tr
(
X−1X ′

)
= 2Re

(
tr

{[(
HHR̂H

)−1
− 1

ν̂

(
HHH

)−1
]
HHR̂P⊥

HH
′

})
, (4.10)

where

ν̂ =
tr(P⊥

HR̂)

N −M
. (4.11)

Inserting (4.9) and (4.10) into (4.8) , the first derivative of F is obtained as

F ′ = 2det
[
PHR̂PH + ν̂P⊥

H

]
×

Re

(
tr

{[(
HHR̂H

)−1
− 1

ν̂

(
HHH

)−1
]
HHR̂P⊥

HH
′

})
. (4.12)

Replace R̂ with R̂+ νlI in (4.11) and (4.12), note that tr
(
P⊥

H

)
= N −M andHHP⊥

H = 0,

then the first derivative after diagonal loading, F ′
l , is given by
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F ′
l = 2 det

[
PH

(
R̂+ νlI

)
PH + (ν̂ + νl)P

⊥
H

]

︸ ︷︷ ︸
α(νl)

×

Re

(
tr

{[(
HH

(
R̂+ νlI

)
H
)−1

− 1

ν̂ + νl

(
HHH

)−1
]
HHR̂P⊥

HH
′

})

︸ ︷︷ ︸
β(νl)

. (4.13)

Two asymptotic (K → ∞) properties of the DL can be derived from (4.12) and (4.13):

1) An extremum of F remains at θ0, δ0 after DL.

Proof. At the true parameters θ = θ0 and δ = δ0,

R = H0SH
H
0 + νI,

where H0 stands for H(θ0, δ0) and S the signal covariance matrix E
(
ssH

)
. The factor

HHRP⊥
H in (4.12) and (4.13) satisfies

HH
0 RP

⊥
H0

= HH
0

(
H0SH

H
0 + νI

)
P⊥

H0
= 0.

Therefore F ′
l |θ0,δ0 = F ′|θ0,δ0 = 0, an extremum remains at θ0, δ0 after DL.

2) |F ′
l | > |F ′| when νl is large.

Proof. When νl is large, PHRPH + ν̂P⊥
H + νlI ≈ νlI, therefore

det
[
PHRPH + ν̂P⊥

H + νlI
]
≈ νN

l ;

and

[
HH (R+ νlI)H

]−1
=
(
ν−1

l − νν−2
l

) (
HHH

)−1 − ν−2
l H†H0SH0

HH†H +O
(
ν−3

l

)
,

where

H† =
(
HHH

)−1
HH

65



Far-field online calibration II

θ (rad) (1.3536; 0.0709) (−1.8344; 1.5837) (−2.3799;−2.7661)

F ′ 1.4486 31.8563 10.0029
∆F/∆θ1 1.4482 31.8549 10.0029

F ′
l 1.1520 × 105 2.0535 × 104 6.9100 × 104

∆Fl/∆θ1 1.1520 × 105 2.0530 × 104 6.9101 × 104

Table 4.2: Comparison of the first derivatives calculated by Eq. (4.12) and numerical differ-

ence at random points on F .

is the Moore-Penrose pseudoinverse ofH . Therefore

(
HH (R+ νlI)H

)−1 − 1

ν̂ + νl

(
HHH

)−1
≈ −ν−2

l H†H0SH0
HH†H .

As a result

F ′
l = O

(
νN−2

l

)
.

Because F ′ is independent of νl, |F ′
l | > |F ′| when νl is large.

Assuming F is sufficiently smooth in the vicinity of the global minimum, properties 1) and 2)

show that DL makes F more pointed when νl is large, which suggests that the global minimum

is made more prominent. A complete proof of the prominence of the global minimum requires

analytical information on the local minima of F , and remains an open problem.

It is remarked that DL takes effect on the objective function, thus its effect is independent of

the specific global optimizer, and during the derivation no assumption was made on the array-

source geometry or the types of parameter, thus the effect is independent of them, too.

The validity of Eq. (4.12) is verified in Tab. 4.2. The first derivative is calculated by both Eq.

(4.12) and numerical difference at random values of θ, and Tab. 4.2 shows three of them. In

the latter case the first derivative is calculated as

∆F

∆θ1
=
F (θ1 + ∆θ, θ2) − F (θ1 − ∆θ, θ2)

2∆θ
,

in which ∆θ = 0.1◦. The array-source geometry is: 5-sensor circular array (CA), half-

wavelength intersensor spacing, two signals at [−35 35]◦; SNR= 20 dB, SNRa = −15 dB,

K = 2× 105. It is seen from Tab. 4.2 that the results of the numerical difference are very close

to those of Eq. (4.12).
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Figure 4.6: The objective function in the vicinity of the true parameter. The objective function

is for 5-sensor UCA with λ/2 inter-sensor spacing, 2 sources at θ = [−35◦ 35◦]T ,
K = 1000. (a) SNR = 30 dB, (b) SNRa = −40 dB.

To verify property 1), the objective function in the vicinity of the true parameter is illustrated

in Fig. 4.6. It is seen from Fig. 4.6(a) and (b) that the increased noise power only increases the

ellipticity of the contour but keeps the global minimum of F on the true parameter.

Property 1) is also suggested by the Cramér-Rao bound (CRB) expression [21] [87]:

BCR =
ν

2K
{·} .

In reality the noise power ν is finite, therefore BCR → 0 asymptotically (K → ∞), which
suggests that when K → ∞ the global minimum of F resides on the true parameter no matter
what the finite value of ν is. This translates into that DL does not shift away the global minimum

whenK → ∞.

To verify property 2), F ′
l (νl) and its two factors α(νl) and β(νl) in Eq. (4.13) are plotted in

Fig. 4.7. The derivative of F ′
l is with respect to θ1. Derivatives with respect to other parameters

behave in the same fashion. It is seen that as νl increases, β(νl) increases much faster than

α(νl) decreases, as a result F
′
l (νl) increases as νl increases.

4.3.2 The DDL design

Inspired by the above effect a DDL technique is devised. In this, the amount of DL is suffi-

ciently large in the beginning to make the global minimum prominent and thus guides the PSO.
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Figure 4.7: Verification of the expressions of F ′
l and its two factors in Eq. (4.13) at θ =

[−34.5◦,−35◦]T as functions of νl. (a) α(νl), (b) β(νl), (c) F
′
l = 2α(νl)β(νl).

The array-source geometry is 5-sensor CA, half-wavelength intersensor spacing,

two signals at [−35 35]◦. SNR= 20 dB. νl varies from 100 to 1000, which is

approximately SNRa from −20 to −30 dB.

It reduces to zero in the end and thus completely recovers the original F . DDL differs from

existing DL techniques for improving performance in that it does not permanently alter the ob-

jective function. The objective function eventually optimized is the original one, therefore the

precision of the original is preserved.

The decaying DL schedule is coupled to the progress of PSO: initially the prominent global

minimum made by diagonal loading attracts the particles; then as the PSO iterates, the global

minimum becomes less and less prominent, but meanwhile the swarm has largely concentrated

in the global minimum area thanks to the constriction factor; eventually the loading reduces to

zero and the original objective function gives out the precise location of the global minimum to

the swarm.

The decaying loading schedule is defined as follows. The amount of loading is exponentially

reduced from SNRl to zero during PSO iterations t = 1 to t = [rlT ] + 1, where rl ∈ (0, 1) is

the ratio of loaded iteration and T is the maximum iteration. Here [·] stands for the rounding
operator.

νl (t) =





10−
SNR
10

{
10

−
SNRl
10

„
1− t−1

[rlT ]

«

− 1

}
, t = 1, . . . , [rlT ]

0, t = [rlT ] + 1, . . . , T

. (4.14)
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Figure 4.8: Plot of νl (t) in loaded iterations. rl = 0.1, T = 8000, SNR = 22 dB, SNRa = −15
dB.

An illustration of Eq. (4.14) is given in Fig. 4.8. The loaded sample covariance
˜̂
R(t), fed to

Eq. (4.1) for objective function evaluation, is then

˜̂
R(t) = R̂+ νl (t) I. (4.15)

It is noted that defining an initial effective signal-to-noise ratio SNRa, Eq. (4.7), assumes a

known original SNR, which may pose a problem if the original SNR is unknown. However,

simulation indicates that the PSO-DDL is not sensitive to the amount of loading, therefore in

the case that the original SNR is unknown, one may loadR by a large amount without affecting

the results.

There also exist other transformations of objective function to enhance optimization results,

such as eliminating local minima to make the global minimum prominent [88], and partially

convexifying the objective function [89], which differ from DDL in terms of technique and ef-

fect on the objective function. In addition, they both permanently change the objective function.

To conclude sections 4.2 and 4.3, the PSO-DDL technique is summarised in Alg. 3.

4.4 Self-calibration results

In this section, the PSO-DDL technique is applied to self-calibration. Its performance is com-

pared with existing techniques. For comparison, the array-source is the same as that in section
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Algorithm 3: PSO-DDL

Input: PSO and DDL parameters, objective function, solution space definition

Output: DOA and sensor perturbation estimates

Swarm initialisation: random normalised locations and random velocities;1

for each iteration do2

Load diagonally the sample covariance matrix according to Eqs. (4.14) and (4.15);3

for each particle do4

Map particle location to solution vector in solution space;5

Evaluate the objective function of current iteration according to Eq. (2.24) with
˜̂
R(t)6

in Eq. (4.15);

Update particle best location pi and group best location gi;7

Update particle velocity according to Eq. (4.2);8

if velocity exceeds maximum then9

Clamp particle velocity according to Eq. (4.4);10

end11

Update particle location according to Eq. (4.3);12

if particle location out of boundary or collision at DOA dimensions then13

Set random location;14

end15

end16

Check termination criterion;17

end18

return final global best location;19

4.2 where PSO alone is applied. Two sets of simulation cases are presented in subsection 4.4.1,

the large number of snapshots K and small K; and in each set both large and small perturba-

tions are considered. The simulation results are also compared with the CRB, whose expression

is given in subsection 3.4. Finally the DE algorithm and its results are briefly presented in sub-

section 4.4.2 to demonstrate the generality of DDL.

4.4.1 Simulation cases

A 5-sensor 3-signal geometry is considered. The nominal array is a uniform circular array with

inter-sensor spacing a = λ
2 , whose sensor locations are perturbed by ∆xn and ∆yn that are

independently, uniformly distributed in [−b, b], in which b is the sensor location tolerance. The
three sources reside at θ0 = [−35 0 35]◦, emitting equi-power, uncorrelated signals. For each

observation 1000 snapshots are taken. The SNR simulated ranges from −18 dB to 38 dB with

4 dB step size, and 200 Monte Carlo trials are performed for each SNR. The array shape is the

same for the entire SNR range but is different in each Monte Carlo trial. The error measurement
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PSO parameters DDL parameters

ϕ1 ϕ2 δ P Ψ T SNRa rl
2.4 1.7 10−4 rad 30 0.5 3000 −15 dB 0.13

Table 4.3: PSO and DDL control parameters

is the sum of squared error of the three signals ‖θ̂ − θ0‖2 averaged over the 200 Monte Carlo

trials.

According to [6], for the far-field case a nominally circular array shape can be calibrated if

i) there are at least three sources and ii) one sensor location and its direction to a second are

known. Therefore ∆x1,∆y1 and ∆y2 are set to zero, fulfilling the identifiability condition. In

consequence the dimension of the solution space is D = 10.
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Figure 4.9: The success of PSO-DDL at SNR = 26 dB. (a) The array shape estimation com-

pared with nominal and actual shapes. The thin-line black squares and line seg-

ment indicate the perturbation boundaries. (b) The pattern of F in the process of
200 optimizations. (c) The 200 DOA estimates.

First of all, the same experiment as that in Fig. 4.4 is performed by PSO-DDL. The control

parameters of PSO and DDL are specified in Tab. 4.3. PSO is terminated after the maximum

number of iterations T is reached, which amounts to PT objective function evaluations per

optimisation. The result is shown in Fig. 4.9. Compared with Fig. 4.4, Fig. 4.9(a) shows as

an example that the array shape which cannot be calibrated by PSO alone is now calibrated by

PSO-DDL; Fig. 4.9(b) shows that the optimized values of F are well grouped in one region

instead of separated in two bundles. In addition, for the first 800 PSO iterations, which are

diagonal loaded ones, the optimized F value follows an approximately exponential decline

that expresses the effect of DDL; Fig. 4.9(c) shows that all the calibrated DOA estimates are

close to true values rather than many an outlier in Fig. 4.4(c) straying far away. The statistical
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performance is then presented as follows.

The result of PSO-DDL is compared with WF1 and WF2 algorithms and the CRB which is

based on the stochastic signal assumption (section 8.11.2 of [19]). The Flanagan algorithm

[90] is not compared with as its final step is WF2; the algorithm in [91] is not compared to as

it lacks the initialization step. Although the coarse calibration steps of [90] can be applied to

PSO-DDL for larger b, and existing DOA estimation algorithms can be used to initialise [91],

a thorough investigation is outwith the scope of this work as initializers differ in sensitivity to

array shape perturbation and consequently affect the self-calibration result.

Figure 4.10: Comparison of calibration accuracy under small sensor location errors, b =
0.05a. K = 1000.

In the first experiment the perturbation boundary b = 0.05a is considered. The DOA ranges

from −180◦ to 180◦. One observes from Fig. 4.10 that both WF1 and WF2 succeed in calibrat-

ing the array shape at SNR’s higher than 22 dB, with a similar MSE sum. Due to the fact that

WF2 is based on the eigen-structure objective function, it shows a threshold at 22 dB, below

which SNR the MSE sum increases dramatically, whereas WF1 shows a much lower thresh-

old at −2 dB, due to its CML objective function. Nevertheless neither of the two algorithms

approaches the CRB at SNR’s higher than their thresholds as a result of the Taylor approxima-

tion that renders the bias the same order of magnitude as the standard deviation (STD), making

the MSE considerably higher than the CRB despite the fact that the STD approaches the CRB

[1, 2, 90]. PSO-DDL shows a threshold at −6 dB that is lower than both WF1 and WF2, and
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above that SNR its MSE sum approaches the CRB. This MSE sum is apparently lower than that

of both WF1 and WF2. This experiment shows that under small perturbations PSO-DDL has

an optimal accuracy that is lower than WF1 and WF2 and it has a lower threshold SNR.

Figure 4.11: Comparison of calibration accuracy under large sensor location errors, b = 0.2a.
K = 1000.

In the second experiment the perturbation boundary b is enlarged to 0.2a. Two of the PSO and

DDL parameters are adjusted to T = 8000 and rl = 0.1 for the more challenging case. Other

settings are the same as in the first experiment. It is observed from Fig. 4.11 that PSO-DDL

succeeds in calibrating the array with a CRB-approaching MSE sum of DOA parameters at

SNR’s greater than 2 dB, whereas both WF1 and WF2 fail with estimation errors much higher

than PSO-DDL and the CRB, and the errors of WF1 and WF2 do not decrease as the SNR

increases. We also note that without DDL, PSO alone would fail with large estimation errors,

comparable to WF1 and WF2 when the SNR is greater than 18 dB. This experiment shows that

PSO-DDL has much higher robustness against large sensor location errors than both WF1 and

WF2, and it retains optimal accuracy at large perturbations.

In the third and fourth experiments the self-calibration is performed at K = 20. Figs. 4.12

and 4.13 show the results at small and large perturbations, respectively. The other array-source

settings are the same as the K = 1000 case. PSO and WF1 are the same, too, except that

WF2 is now initialized by the multiple signal classification (MUSIC) algorithm, which is the

initialization in the original literature.
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Figure 4.12: Comparison of calibration accuracy under small sensor location errors, b =
0.05a. K = 20.

It is seen again that PSO-DDL outperforms WF1 and WF2 in terms of robustness and accuracy.

Fig. 4.12 shows that under small perturbations, PSO-DDL calibrates the arrays with CRB-

approaching accuracy at SNR greater than 6 dB. WF1 performs the self-calibration with an

MSE slightly higher than PSO-DDL, and a threshold SNR at 10 dB, which is higher than PSO-

DDL. WF2 failed to calibrate the arrays for the entire SNR range due to the low snapshot

number. Fig. 4.13 shows that under large perturbations, both WF1 and WF2 failed, but PSO-

DDL succeeded with CRB-approaching accuracy at SNR greater than 10 dB. In addition, it

also shows that without DDL, PSO alone failed with a large error that never approached the

CRB. Compared with the large number of snapshots, the small number of snapshots affects

PSO-DDL only in that the threshold SNR is higher. It affects WF1 in the same manner, but

affects WF2 more seriously.

The third and fourth experiments indicate that although the analysis of DL is carried out asymp-

totically, the DL still takes effect at very small number of snapshots, and the PSO-DDL tech-

nique performs well, too.
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Figure 4.13: Comparison of calibration accuracy under large sensor location errors, b = 0.2a.
K = 20.

4.4.2 DE results

In support of the remark that DDL is a universal technique that can be coupled with other

algorithms to improve performance, a different stochastic global optimization algorithm, DE

[92] has also been employed to optimize F . In the following, firstly the algorithm and its

coupling to DDL are introduced, and then its performances with and without the aid of DDL

are compared. However the comparison of PSO-DDL and DE-DDL is beyond the scope of this

study.

DE is a stochastic algorithm method that updates its population in each generation by differ-

ential perturbation and evolutionary crossover. The population consists of P members, each

of which, x(p), is a parameter vector in the D-dimensional solution space. For an estimation

problem, D is the number of the parameters to be estimated.

The pth member of the population, x(p), in the (g + 1)st generation is updated from the gth

generation by the following two operations:

1) Difference: Three members of the gth generation are randomly chosen, their indices r1,

r2 and r3 being generated by a random number generator with uniform distribution, and are

mutually different and different from p. The weighted difference between x(r2,g) and x(r3,g) is
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added to x(r1,g) to form a new parameter vector v(p,g):

v(p,g) = x(r1,g) + w
[
x(r2,g) − x(r3,g)

]
,

where w ∈ [0, 2] is the weight of the added difference.

2) Evolution: The new parameter vector v(p,g) is then randomly crossed over with x(p,g) to

form another new parameter vector u(p,g). If u(p,g) is written out in full form as,

u(p,g) =
[
u

(p,g)
1 , · · · , u(p,g)

d , · · · , u(p,g)
D

]T
,

then the random crossover can be expressed as

u
(p,g)
d =




v
(p,g)
d d = 〈r〉D, 〈r + 1〉D, · · · 〈r +R− 1〉D

x
(p,g)
d other d

for d = 1, 2, · · · ,D, where 〈〉D stands for the modulo operation with modulusD, r is a random
integer uniformly drawn from the interval [1,D] andR is a random number generated as in Alg.

4 so that P (R > NL) = PNL−1
c ,NL > 0. Here Pc is the crossover probability, and is a control

parameter to be set. In Alg. 4, rand() generates a random number in [0, 1).

Algorithm 4: R-gen

Input: Pc

Output: R

Initialization: R = 11

while rand()< Pc and R < D do2

R = R+ 13

end4

return R5

Finally u(p,g) is compared with x(p,g) in terms of the objective function value, and subsequently

the pth member in the g + 1th generation x(p,g+1) is updated as

x(p,g+1) =




u(p,g) F

(
u(p,g)

)
< F

(
x(p,g)

)

x(p,g) otherwise

.

The operations of 1) difference and 2) evolution are repeated for p = 1, 2, · · · , P .

76



Far-field online calibration II

In addition to the basic DE algorithm, the boundary control, parameter mapping and DOA

parameter collision avoidance are also needed for the array shape self-calibration problem.

The same techniques used for PSO are employed. As will be shown later, the problem of

obscure global minimum hinders DE the same way as PSO, and once again the DDL guides the

optimization algorithm through. To sum up, the DE-DDL is tabulated in Alg. 5.

Algorithm 5: DE-DDL

Input: DE and DDL parameters, objective function, solution space definition

Output: DOA and sensor perturbation estimates

Population initialization: random normalized locations;1

for each generation do2

Load diagonally the sample covariance matrix according to Eqs. (4.14) and (4.15);3

for each member do4

Evaluate the objective function of current generation according to Eq. (2.24) with5

˜̂
R(t) in Eq. (4.15);
Update particle location according to 1) difference and 2) evolution;6

if member location out of boundary or collision at DOA dimensions then7

Set random location;8

end9

end10

Check termination criterion;11

end12

return final best member’s location;13
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Figure 4.14: DE performance at SNR = 22 dB. Far-field self-calibration.

Figs. 4.14 and 4.15 show the simulation results of the same DE with and without DDL. The

array-source settings are exactly the same as that in the second experiment of section 4.4.1, or

in other words F is the same. The SNR shown is 22 dB. Fig. 4.14(a) shows that a significant
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Figure 4.15: DE-DDL performance at SNR = 22 dB. Far-field self-calibration.

proportion of the 200MC trials performed by DE alone are trapped in local minima, ending up

with optimized F values grouped higher than the global minimum bundle, and correspondingly

Fig. 4.14(b) shows a large proportion of spiky false DOA estimates. In contrast, Fig. 4.15(a)

shows that DE-DDL optimizes F all to the global minimum, the straight slope between the

1st and the 400th DE iterations reflecting the effect of DDL, and correspondingly Fig. 4.15(b)

shows that all the DOA estimates are close to the true values. Note that this is achieved in one

tenth of the number of iterations of lone DE.

4.5 Conclusion

In this chapter, the PSO-DDL paradigm is proposed to optimize the UML objective function

for the array shape self-calibration problem. Compared with the existing WF1 and WF2 algo-

rithms, the proposed method is more robust to large shape perturbation and has lower calibration

error due to the direct optimization on the UML objective function. Its accuracy approaches

the CRB at an SNR higher than the threshold, and the threshold is lower than that of WF1 and

WF2. The CRB-approaching accuracy is retained even for large perturbations.

Furthermore, PSO does not need initialization close to the true parameters. The DDL technique

is of general value in its transformation of the objective function and thus can be coupled with

other global optimization algorithms to improve performance. This is supported by simulation

results of the DE algorithm. The PSO-DDL method is simple to implement and computation-

ally feasible.
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Chapter 5

Near-field offline calibration

5.1 Introduction

The scenario considered in chapters 3 and 4 is far field. Another important scenario is near

field. As shown in section 2.1.1 of chapter 2, the fundamental difference between near field

and far field is that the first-order Taylor approximation in the far field is invalid in the near

field, rendering the steering vector more complicated. Naturally, a second-order Taylor ap-

proximation, namely the Fresnel approximation, accommodates sources closer to the array, and

indeed this approximation has been adopted by a large number of papers in the literature on the

problem of near-field source localization, see [93–100] for example. Even a third-order Taylor

approximation has been proposed for near-field source localization [101]. However, the Taylor

approximations introduce errors that grow as the source comes closer to the array, and thus are

not applicable to the entire near field region [93]. There are also near-field source localization

methods that are independent of the Taylor approximation, where an alternate gradient search

is involved for optimization [102–104], or the constraint of uniform distribution of the sensors

is imposed for the application of a rooting technique [105]. For the calibration problem, He et

al. [35] recently proposed a non-parametric approach for near-field offline calibration, based on

calibration matrix interpolation, however it requires a single source at a large number of known

positions that form a two-dimensional grid.

In this chapter, the near-field calibration is carried out using the method of the unconditional

maximum likelihood (UML) estimator optimized by the particle swarm optimization – decay-

ing diagonal loading (PSO-DDL) technique. Specifically, array shape offline calibration is car-

ried out using narrowband near-field sources at known positions. The unknown sensor locations

are estimated by a UML estimator whose objective function is optimized by PSO-DDL. To the

best of the author’s knowledge, the UML estimator has not been applied in near-field source

localization or near-field array calibration before, due to the complexity of the cost function

optimization. Nevertheless PSO-DDL is suited for the optimization of the UML cost function

because it does not rely on the structure of the cost function as do other local optimization
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algorithms. In addition, it does not need accurate initialization as required by the local opti-

mization algorithms. Since the UML estimator is employed, and no approximation is involved,

the method is applicable to the entire near field region and the calibration result is optimal,

approaching the Cramér-Rao bound (CRB). Compared with the non-parametric approach in

[35] that requires data from a large number of known source positions, the proposed method

needs as few as 2 sources at known positions to calibrate an array. The structure of this chapter

is as follows. It starts with formulating the UML objective function in section 5.2, followed

by configuring PSO-DDL in section 5.3. The simulation results are presented in section 5.4,

including the differential evolution (DE) results. Finally, section 5.5 concludes the chapter.

5.2 Problem formulation

Figure 5.1: The array-source geometry of near-field case.

For the near-field case, the n,mth element of the array manifoldH (θ,ρ, δ) is given by

Hnm (θm, ρm,∆xn,∆yn) =
1

dnm
exp

{
j
2π

λ
(ρm − dnm)

}
,

n = 1, . . . , N, m = 1, . . . ,M,

(5.1)

where θm is the DOA of themth source and ρm its range.

dnm =

√
[ρm sin θm − (xn + ∆xn)]2 + [ρm cos θm − (yn + ∆yn)]2
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is the distance between the nth sensor and the mth source. Without loss of generality, the

reference point of zero phase is chosen as the origin of the coordinates.

The Hnm for near-field, Eq. (5.1), differs from that for far-field, Eq. (3.2) in two aspects: 1)

The magnitude factor 1
dnm
, which represents the signal strength loss in free space. 2) The phase

factor 2π
λ (ρm − dnm) which denotes the phase delay from the source to the sensor. They are

both functions of source bearing and range, resulting from the proximity of the source to the

array.

Following [19], the UML estimator for δ can be expressed as

δ̂ = arg min
δ

{
det
[
PHR̂PH +

tr(P⊥
HR̂)P⊥

H

N −M

]}

︸ ︷︷ ︸
F (δ)

, (5.2)

where R̂ = 1
K

∑K
k=1 x(k)xH(k) is the sample covariance matrix, PH = H(HHH)−1HH

is the projection matrix ofH , and P⊥
H = I − PH is its orthogonal complement. The depen-

dence ofH on θ and δ is suppressed for notational simplicity, and F (δ) denotes the objective

function.

5.3 PSO-DDL

5.3.1 PSO

The PSO detailed in section 4.2 is employed to optimize the objective function F (δ) in Eq.

(5.2). Its control parameters are given in Tab. 5.1. Compared with the parameters for far-

field self-calibration in Tab. 4.3, the acceleration constants ϕ1 and ϕ2 are adjusted towards

more exploration ability, while their sum is kept as 4.1 to balance the oscillation avoidance

and convergence speed [83]. The number of particles P is increased to 100 and the maximum

velocity Ψ is reduced to 0.01 to facilitate a finer search of the solution space. Accordingly the

maximum number of PSO iterations is increased to 16000 for more search time. Overall the

PSO is enhanced in search ability to accommodate the solution space of higher dimensions and

a larger range in each dimension, at the cost of more computation load which is proportional

to PT . The storage space needed is proportional to P , which is a minor concern since the

parameter of each particle is simple and thus requires little storage space.
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Figure 5.2: PSO performance at critical SNR’s. In the left column are the F convergence over
200 MC trials at 5 values of SNR. In the right column are the squared error (SE)
sum of the final converged value of the perturbation estimates for each of the trials.

The simulation environment is the same as that in section 5.4.1.
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ϕ1 ϕ2 P Ψ T

2.7 1.4 100 0.01 16000

Table 5.1: PSO control parameters

PSO encounters the same problem as the far-field self-calibration case in section 4.2: although

it performs well when the signal-to-noise ratio (SNR) is low, it starts to fail when the SNR

grows high. Fig. 5.2 demonstrates the failing process as SNR grows. The left column shows

the F convergence over 200 MC trials at 5 values of SNR, and the right column shows the SE

sum, defined as ‖δ̂− δ0‖, of the final converged value of the perturbation estimates for each of
the trials. The simulation scenario is described in section 5.4.1 to avoid duplication.

Figs. 5.2(1) and (2) show the highest SNR simulated where PSO succeeded in all the 200 Monte

Carlo (MC) trials. Fig. 5.2(1) shows that all the optimized F values are of the same order

of magnitude, the difference resulting from the finite number of snapshots for the estimator.

Accordingly the SE sums of sensor location estimates are similar to each other, as shown in

Fig. 5.2(2). The concentration of optimized F values and SE sums indicate that all 200 PSO

operations arrived at the global minimum of F .

Figs. 5.2(3) and (4) show that at the next higher SNR simulated, 24 dB, 3 out of the 200 PSO

operations failed. Fig. 5.2(3) shows that although the majority of the optimized F values group

about 10−41, two float up around 10−36, and one around 10−21. In Fig. 5.2(4), 3 spiky SE

sums show up, corresponding to the 3 high optimized F values previously mentioned. The

extraordinarily high final optimized F values and SE sums indicate that PSO failed to reach the

global minimum of F in the 3 operations.

In the following rows of Fig. 5.2, the proportion of failed PSO increases as the SNR increases,

from 5 failures out of 200 at 28 dB to 15 failures at 32 dB and 26 failures at 36 dB. The entire

Fig. 5.2 shows that PSO encounters a threshold SNR between 20 dB and 24 dB, greater than

which PSO starts to fail in achieving the global minimum of F .

An example of the failure of a single PSO operation is shown in Fig. 5.3. It is one of the MC

trials at SNR = 36 dB, i.e. the highest SNR shown in Fig. 5.2. Fig. 5.3(a) shows a substantial

difference between the estimated array shape and the actual one. The perturbation area enclosed

by the dashed orange square of the sensor in the upper-left corner in Fig. 5.3(a) is magnified in

Fig. 5.3(b) to show the trace of the stray PSO over its iterations for this sensor.
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Figure 5.3: Failure of PSO at SNR = 36 dB. (a) The calibrated array shape compared with the
nominal and actual shapes. The dotted/dashed squares represent the error bound-

ary. (b) A magnified portion of (a), encompassed by the yellow dashed square,

showing the estimation process of one sensor position.

5.3.2 DL effect on F

The cause of PSO failure at high SNR is again attributed to F ’s lack of a prominent global min-

imum at high SNR, as indicated by the mathematical analysis in section 4.3.1, and visualized

in Fig. 5.4 for an example. In Fig. 5.4(a) F is degenerated to a function of the location of the

first sensor, while all the other sensor locations are set at the actual ones. More specifically,

(δx1, δy1) is the deviation from the actual sensor location (x1 + ∆x1, y1 + ∆y1). The same

applies to Fl. Comparing Figs. 5.4(a) and (b) one finds that diagonal loading (DL) makes the

global minimum, which lies at (δx1, δy1) = (0, 0), more prominent.

At this stage it is clear that F in the case of near-field off-line calibration behaves in the same

fashion as that in the case of far-field on-line calibration, in terms of the prominence of the

global minimum at various SNR. Indeed, the analysis in section 4.3.1 is independent of the

specific array manifold. Thus DDL again can be adopted to ease the search of the global

minimum for PSO. The DDL control parameters for this case are in Tab.5.2. The larger rl

provides a slower reduction of the DL amount, which is in accordance with the lower maximum

velocity Ψ in Tab. 5.1.
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Figure 5.4: Comparison of F before and after DL. The F is for: 6-sensor UCA with a = λ/2
inter-sensor spacing, perturbed by uniform random displacements with boundary

b = 0.1a. 3 sources at bearings −120◦, 0◦ and 120◦, all with the same range
r = 2a relative to the center of the nominal array. SNR = 14 dB, SNRa = −5 dB.

5.4 Calibration results

A large number of experiments for various numbers of sensors and sources have been carried

out. Three representative cases are presented in sections 5.4.1, 5.4.3 and 5.4.4, respectively. The

first one is a 20-sensor circular array (CA), with 40 parameters to be simultaneously optimized,

which demonstrates PSO-DDL’s ability to handle high-dimensional parameter spaces. The

second one is a 20-sensor linear array (LA), which demonstrates PSO-DDL’s versatility when

dealing with different array geometries. The third one is a 2-source geometry which highlights

the advantage of near-field calibration that needs fewer sources than far-field calibration does.

To demonstrate that the PSO-DDL can be combined with efficient local optimization algorithms

after diagonal-loaded iterations for computation reduction, an example of the simplex algorithm

succeeding PSO-DDL for the same simulation case in section 5.4.1 is presented in section 5.4.2.

In support of the remark that the DL effect is independent of the specific global optimizer, DDL

is also coupled with the DE algorithm to perform the same calibration task in section 5.4.1, the

simulation results of which are presented in section 5.4.5.
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SNRa rl

−15 dB 0.4

Table 5.2: DDL control parameters

5.4.1 Calibration of a 20-sensor circular array

The case considered is the calibration of a 20-sensor array using 3 near-field sources. Specifi-

cally, the nominal array is a 20-sensor uniform circular array (UCA) with a = λ/2 inter-sensor

spacing, perturbed by random displacements uniformly distributed in [−b, b], where b = 0.65a.

3 sources are located at bearings −120◦, 0◦ and 120◦, all with the same range 5a relative to

the center of the nominal array. The geometry of the nominal array, actual array and sources is

shown in Fig. 5.6(a), among calibration results. The identifiability condition is given in [50],

and is satisfied here. The near field [14] is defined as range ρ < 2D2
a/λ, where Da is the

dimension of the array. In this case Da = 3.20λ is the diameter of the array, hence ρ < 20.43λ

is the near field. The Fresnel region [14] is defined as 0.62
√
D3

a/λ < ρ < 2D2
a/λ, which is

3.54λ < ρ < 20.43λ in this case. The range of the sources ρm = 2.5λ falls in the inner part

of the near field, beyond the Fresnel region. The sources are emitting equi-power, independent

random signals, the additive Gaussian random noise are independent from sensor to sensor and

independent from the signals. The PSO parameters are the same as those of Tab. 5.1, and the

DL parameters are specified in Tab. 5.2.
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Figure 5.5: PSO-DDL performance at SNR = 36 dB. (a) The F convergence pattern in the
200 MC trials. (b) The SE sum in the 200 MC trials.

Fig. 5.5 illustrates the PSO-DDL in 200 MC trials at SNR = 36 dB. It is observed from Fig.
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5.5(a) that all the optimized F values are so close to each other that the 200 curves overlap to

the extent that only one can be seen. Correspondingly Fig. 5.5(b) shows that the calibration

errors are all of the same order of magnitude. Compared with the PSO performance for the

same task that is illustrated in plots (9) and (10) in Fig. 5.2, DDL helps PSO overcome the

trap of local minima; as a result all the 200 optimizations arrive at the global minimum of F ,

yielding accurate estimates.
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Figure 5.6: A typical PSO-DDL operation at SNR = 36 dB. (a) The calibrated array shape
compared with the nominal and actual shapes. The dotted/dashed squares repre-

sent the error boundary. (b) A magnified portion of (a), encompassed by the yellow

dashed square, showing the estimation process of one sensor position. The arrow

indicates the direction of PSO estimation progress.

Fig. 5.6 depicts a typical calibration process at SNR = 36 dB, in which (b) is a magnified

portion of (a). In Fig. 5.6(a), the dashed squares denote the boundaries of displacements. It

is seen that the calibrated array shape, whose sensor positions are denoted by the blue circles,

coincides with the actual one.

Fig. 5.6(b) depicts the calibration process of one sensor. The initial estimate of sensor position

is a random guess within the perturbation boundary. As PSO iterates on, the intermediate

estimates denoted by the blue dots, progress towards the actual sensor position. Every two

consecutive dots are separated by 20 PSO iterations in the optimization. It is remarkable that

although there appears to be a certain degree of random movements, the overall trajectory of

the intermediate estimates aims for the actual sensor position in a straightforward pattern. This
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pattern can also be found in Fig. 5.6(a) for other sensors, which reflects the effect of swarm

intelligence.

It is also noted that the majority of the journey towards the actual position is accomplished in the

initial PSO iterations, and most of the PSO iterations are spent on later estimate refinement for

achieving the maximal accuracy. There are 799 dots evenly dividing the 16000 PSO iterations,

while only about two dozen of them can be seen outside the circle that represent the terminal

estimate in Fig. 5.6(b). This slow convergence of PSO at later stages is further addressed in

section 5.4.2.
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Figure 5.7: The comparison of PSO and PSO-DDL’s MSE’s and the CRB. Circular array cal-

ibration.

The calibration results are summarized in 5.7. The mean squared errors (MSE’s) of PSO and

PSO-DDL are compared to each other and to the CRB. The CRB expression can be found in

Appendix B. For SNR equal to or lower than 20 dB, PSO yields accurate results that approach

the CRB. The MSE of PSO results shows a threshold at SNR = 20 dB; above that SNR the

MSE increases and eventually levels off at a high value that is comparable to that of SNR = −4

dB. This threshold has also been seen in Fig. 5.2. From Figs. 5.2 and 5.7 it is clear that even

a few failures can significantly increase the MSE, because the local minima are far away from

the global minimum. In contrast, the MSE of PSO-DDL results approaches the CRB in the

entire SNR range simulated. Its level-off in −12 to −20 dB is caused by the assumption that
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Figure 5.8: The MSE sum surface of (1) PSO-DDL and (2) PSO-DDL-simplex compared with

(3) the CRB.

the sensor location error is bounded. Another observation is that the MSE’s of neither PSO

nor PSO-DDL show a threshold at low SNR, typically about 0 dB, where the MSE of DOA

estimation and self-calibration usually abruptly jumps above the CRB.

5.4.2 The efficiency of local optimization algorithm for refinement

The slow convergence of PSO has been pointed out in section 5.4.1 by an example of a single

calibration process. In the following, this issue is further investigated by an MC experiment

in order to gain an averaged perspective. Then a local optimization technique is introduced to

significantly reduce the computational burden incurred by the slow convergence.

The MC experiment is a detailed investigation of the slow convergence problem pointed out in

section 5.4.1. In particular, the optimization results of every 10 PSO iterations are recorded to
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produce the MSE reduction as a function of increasing PSO iterations. The result is presented

by surface (1) of Fig. 5.8. The PSO results at the recorded iterations are then used to initiate

the simplex algorithm, whose final optimization results are used to produce surface (2) of Fig.

5.8.

From surface (1) of Fig. 5.8 one observes that for a fixed SNR, initially the MSE decreases

exponentially as t increases linearly, then the MSE gradually levels off. This is more evident

when the SNR is large; the higher the SNR, the more PSO iterations are needed to approach the

CRB. As the termination criterion of PSO is set as a fixed maximal number of iterations, the

number has to be sufficiently large for PSO to set on the global minimum of the highest SNR.

As a result many of the PSO iterations at lower SNR are wasted after the CRB has already been

achieved.

Another observation is that the local minima are considerably higher than the global minimum,

as shown by the left column of Fig. 5.2. The difference is more than several orders of magnitude

for the SNR range illustrated. If the PSO can escape the trap of the local minima, it plunges

to the basin of the global minimum quickly, and the rest of the iterations are spent on the

refinement of the estimate, in a slow exponential fashion as shown in Fig. 5.8, while the values

of F hardly change during this process, as shown by the left column of Fig. 5.2. To the contrary,

in Fig. 5.5 the F values optimized by PSO-DDL follow the exponential decrease induced by

the exponential DL schedule, and after the diagonal loaded iterations the F values arrive at

the order of magnitude of the global minimum. A reasonable inference follows that after the

diagonal loaded iterations, PSO has arrived at the basin of the global minimum that contains no

local minima. Therefore a local optimization algorithm is applicable immediately after or even

before the end of the diagonal loaded PSO iterations to save the large number of PSO iterations

after DL for estimate refinement.

The simplex algorithm is used as an example to demonstrate the applicability and efficiency

of the local optimization algorithm. [106] is referred to for more details of the algorithm. It

succeeds PSO-DDL to perform the local optimization. The succession point are PSO iterations

No. 1, 1000, 2000, · · · , 16000. The PSO iteration No. 1 is in fact the random initialization

step, hence it serves as the random initialization of simplex for comparison with other PSO

initializations.

Surface (2) of Fig. 5.8 shows the simplex performance at varied succession point t. Take the
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curve of SNR = 60 dB for example: the later the succession point, the lower the MSE of sim-

plex optimization results, which indicates that the more PSO iterations taken, the more PSO’s

of the 200 trials have entered the global minimum basin. It can be seen that 5000 PSO itera-

tions with the aid of DDL guarantees entrance to the global minimum basin and consequently

the MSE of simplex results approaches the CRB. It is suggested by surface (1) that the lower

the SNR, the fewer iterations are needed to arrive at the global minimum basin, and this is evi-

denced by surface (2): for SNR = 52 dB, 4000 PSO iterations suffice for simplex to approach

the CRB; for SNR = 44 dB, 3000 suffice and the trend goes on. Even if the succession point is

fixed as the maximum needed, 5000 PSO iterations, and the PSO-DDL is terminated at 12000

iterations which is shown by surface (1) to be the minimum for CRB approach, simplex saves

58.3% of the PSO iterations while its own computational cost is extremely small.

5.4.3 Linear array calibration using near-field sources

Besides the circular array (CA), another practically important array geometry is the linear array

(LA). Unlike the case of far-field self-calibration, the LA can be calibrated with near-field

sources [50]. In this sub-section the LA calibration is carried out using the same PSO-DDL

as that in section 5.4.1 to show PSO-DDL’s versatility in dealing with different array shapes.

The calibration again supports the remark that the DL effect is independent of the specific array

manifold.

In the simulation, apart from the array geometry and the SNR range, all settings of the LA

calibration are exactly the same as those of the CA calibration in section 5.4.1. The array is

the CA in Fig. 5.6(a) “linearized”, as shown in Fig. 5.9. The nominal LA has 20 sensors, with

half-wavelength inter-sensor spacing. It lies on the x-axis of the Cartesian coordinates and its

centroid coincides with the origin. The sensor locations are displaced to the actual locations

by the same perturbation as for the CA in section 5.4.1. All the other simulation settings, such

as calibration source placement, signal and noise environment, are also the same as those of

section 5.4.1.

The calibration result is illustrated in Fig. 5.10. The MSE sums of PSO and PSO-DDL are

compared with each other and with the CRB. The SNR simulated varies from −20 dB to 40

dB with 4 dB step size. For SNR 6 16 dB, PSO yields accurate results that approach the CRB.

However it shows a threshold at SNR = 16 dB; above that SNR the MSE sum increases and

eventually levels off at a high value that is comparable to that of SNR = −4 dB. In contrast,
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the MSE sum of PSO-DDL result approaches the CRB in the entire SNR range simulated. Its

level-off in −8 to −20 dB is a result of the assumption that the sensor location error is limited

to [−0.65a, 0.65a]. As the CRB goes to∞ when the SNR falls to −∞, the MSE sum is bound
to be lower than the CRB at low SNR. Another observation is that the MSE sums of neither

PSO nor PSO-DDL demonstrate a threshold at low SNR, typically about 0 dB, where usually

the MSE of DOA estimation and self-calibration sharply rises above the CRB.

Compared with the CA calibration in section 5.4.1, PSO for LA calibration shows a threshold 4

dB lower than that for CA, and the start of the level-off at low SNR for both PSO and PSO-DDL

is 4 dB higher for LA calibration than CA calibration. These indicate that the calibration of LA

is slightly more difficult than CA in this configuration.

5.4.4 Two-source calibration

In a calibration process, it is an advantage to use the least number of sources to calibrate the

most sensors. The significance of two-source calibration lies in that two near-field sources are

able to calibrate an array but two far-field sources are not. Levi and Messer [50] conducted a

geometrical analysis of the sufficient conditions obtained by statistical and numerical means for

array shape calibration using near or far field sources or both in known or unknown positions

or both. The result of the geometrical analysis is in accordance with the numerical results of

the simulation and CRB evaluation in sections 5.4.4.1 and 5.4.4.2 that two far-field sources are

incapable of eliminating the translational residual. The numerical results also suggest that the

sufficient condition obtained from geometrical analysis for two far-field sources calibration is

also the necessary condition, in agreement with the claim “array position calibration cannot

be obtained under any circumstances” (for far-field calibrating sources) in [50]. However, the

capability of two far-field sources in fully calibrating an array demonstrates that the sufficient

condition obtained from geometrical analysis in [50] is not the necessary condition. In particu-

lar, the extra near-field source other than the two calibrating sources (case 13, Table 2 in [50])

is not necessary for a full array shape calibration.

5.4.4.1 The advantage of near-field calibration over far-field calibration

First of all, a simulation case is used to show the difference between near-field and far-field

calibration, and then a numerical evaluation of the CRB is used to provide more information

93



Near-field offline calibration

PSO parameters DDL parameters

ϕ1 ϕ2 P Ψ T SNRa rl
2.7 1.4 100 0.01 2000 −15 dB 0.7

Table 5.3: PSO and DDL control parameters

from another perspective.

In the simulation, the nominal array is a 6-sensor UCA with a = λ/2 inter-sensor spacing,

perturbed by random displacements uniformly distributed in [−b, b], where b = 0.4a. For the

near-field case, the 2 sources are positioned at bearings 0◦ and 90◦, both with the same range

2a relative to the center of the nominal array. For the far-field case, the 2 sources are located

at bearings 0◦ and 90◦. The sources are emitting equi-power, independent random signals, the

additive Gaussian random noise are independent from sensor to sensor and independent from

the signals.

The objective function is the UML of Eq. (5.2). It is first coarsely optimized by PSO-DDL and

then refined by simplex. The control parameters of PSO and DDL are tabulated in Tab. 5.3. The

major change is that the number of PSO iterations is dramatically reduced to 2000 compared

with 16000 in Tab. 5.1, because here PSO-DDL only serves as an initializer for simplex. In the

mean time rl is increased to 0.7 so that the majority of the PSO iterations are diagonal loaded

iterations to reserve PSO-DDL’s ability of arriving at the global minimum basin. The bulk of

PSO iterations for estimate refinement is replaced by simplex.

The calibration result is shown by the MSE comparison in Fig. 5.11. It is clearly seen that

the MSE of 2-source near-field calibration approaches the CRB, whereas far-field MSE is ex-

tremely high. The simplex refinement effect is shown by the contrast between the MSE of

PSO-DDL with and without simplex in the near-field case, whereas for the far-field case the

optimization of PSO-DDL is so erroneous that the simplex is unable to make any improve-

ment. In the following the cause of the error of far-field calibration is found to be the far-field

geometry rather than the UML estimator or the optimization technique.

Fig. 5.12(a) shows the far-field calibration result by the comparison of array shapes. The

simplex-refined result is visually the same as PSO-DDL’s therefore the former is not shown. It

is seen that the estimated array shape is visually identical to the actual one, but a translational

error displaces it. If the translational error is subtracted from the the estimated sensor position,
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Figure 5.12: Array shape calibrated by 2 far-field sources. (a) Before translational error re-

moval. (b) After translational error removal.
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the estimated array coincides with the actual one, as shown in Fig. 5.12(b).

Enlightened by the above observation the removal of the translational error is applied to the

entire simulation of the far-field case. This is to show that the translational error is the only

residual. There are two ways of removing this error. The first is imposing a restriction on the

optimization algorithm, that is, assuming the location of one sensor is known and command-

ing PSO to only optimize the other sensor locations. The second is optimizing all the sensor

locations first, and afterwards using the assumed known sensor location to calculate the trans-

lational error and remove it from all the sensors, as done in Fig. 5.12(b). The second approach

is adopted since the existing all-sensor calibration results can be readily used.
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Figure 5.13: MSE sum of 2 far-field source calibration after removal of translational error.

Without loss of generality the first sensor in the lower left in Fig. 5.12(a) is chosen as the

anchor. Its displacement is calculated from the actual sensor location, then the displacement

is subtracted from every sensor. The MSE is then calculated from the aligned shape estimates.

Fig. 5.13 illustrates its comparison with the CRB. It can be seen that after the removal of the

translational error the MSE of 2-source far-field calibration approaches the CRB. Note that the

CRB is for 5-sensor calibration since one sensor position is assumed known.

5.4.4.2 Indications from CRB

It has been shown by simulations in section 5.4.4.1 that 2 near-field sources are able to calibrate

an array but 2 far-field are not. This is because the far-field calibration produces a translational
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error that can only be removed by providing an anchor sensor’s accurate position. This geo-

metrical problem is also manifested by the comparison of the CRB’s for far-field and near-field

calibration.

In particular, the CRB for 2 far-field source calibration does not exist for any of the DOA’s

evaluated, for the Fisher information matrix Eq. (B.1) is singular as indicated by numerical

evaluations. And as shown in Fig. 5.13, after providing a sensor position the CRB for the far-

field case approaches zero as SNR increases, which means that the removal of the translational

error renders the array calibratable. In contrast, Fig. 5.14 shows that 2 near-field sources

calibrate an array, despite the fact that the specific CRB varies with the source position. Fig.

5.14(a) shows the CRB over a range of SNR at 4 DOA pairs. Although there are differences

among the CRB’s of different DOA’s, all the CRB’s approach zero for high SNR. Fig. 5.14(b)

shows that at a fixed SNR the CRB is a function of source bearing with multiple local minima.
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Figure 5.14: CRB as a function of source position. (a) CRB over a range of SNR for 4 pairs of

θ1, θ2. (b) CRB as a function of θ2 at SNR = 20 dB, θ1 = 0◦.

5.4.5 DE results

In support of the remark that DDL is a general technique that can be coupled with other al-

gorithms to improve performance, DE [92] has also been employed to optimize the F for the

near-field case. However the comparison of PSO-DDL and DE-DDL is beyond the scope of

this study.

Figs. 5.15 and 5.16 show the simulation results of the same DE with and without DDL. The
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Figure 5.15: DE performance at SNR = 22 dB. Near-field calibration.
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Figure 5.16: DE-DDL performance at SNR = 22 dB. Near-field calibration.

98



Near-field offline calibration

array-source settings are exactly the same as those of section 5.4.1, or in other words F is the

same. The SNR shown is 26 dB. Fig. 5.15(a) shows that a significant proportion of the 200MC

trials performed by DE alone are trapped in local minima, ending up with optimized F values

grouped higher than the global minimum bundle, and correspondingly Fig. 5.15(b) shows a

large proportion of spiky false DOA estimates. In contrast, Fig. 5.16(a) shows that DE-DDL

optimizes F all to the global minimum, the slope between the 1st and the 400th DE iterations

reflecting the effect of DDL, and correspondingly Fig. 5.16(b) shows that all the DOA estimates

are close to the true values. Note that this is achieved in one tenth of the number of iterations

of DE alone.

5.5 Conclusion

This chapter is primarily concerned with the application of the PSO-DDL technique for op-

timization of the UML objective function to the near-field off-line calibration, which is more

complicated than the corresponding far-field case due to the range effect. The simulation results

show that the method is applicable to the entire near field region, free of the initialization prob-

lem and capable of achieving the optimal accuracy that approaches the CRB. Equipped with

the UML-PSO-DDL method, it is found by simulation that two near-field sources are capable

of calibrating an array, relaxing the requirement of the sufficient condition in [50].

As for the optimization technique PSO-DDL, the 20-sensor calibrations show PSO’s ability to

handle a large number of parameters. The simulation of simplex succeeding PSO-DDL shows

that the problem of slow convergence of PSO can be resolved by the succession of efficient

local optimization algorithms, at the expense of implementation complexity. The application of

DDL to the near-field case supports the remark that the DL effect is independent of the specific

array manifold; the simulation results of DE coupled with DDL support the remark that the DL

effect is independent of the specific optimization algorithm.
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Chapter 6
Conclusions and suggestions for future

work

6.1 Conclusions

In this thesis, calibration methods have been proposed to combat the performance degradation

of array processing incurred by array shape errors. Calibration methods can be classified as

online and offline methods, dependent on whether calibration sources are at known or unknown

positions. The field region of an array can be divided into far field and near field, based on

the distance from it. Two physical cases are considered, the online calibration (self-calibration)

using far-field sources and the offline calibration using near-field sources. The calibration em-

ploys parametric methods. Specifically, the maximum likelihood (ML) estimators have been

employed to estimate the errors, for their superior performance over subspace estimators. How-

ever, the well-known computational complexities in optimizing the objective functions of the

ML estimators demands effective and efficient optimization algorithms. Rather than the Taylor

expansions that induce approximation errors, the space-alternating generalized expectation-

maximization (SAGE) algorithm and particle swarm optimization (PSO) algorithm have been

recruited to optimize objective functions of the conditional maximum likelihood (CML) and

unconditional maximum likelihood (UML) estimators, respectively.

In chapter 3, the far-field online calibration is carried out using CML estimator with a SAGE-

based optimization. Through data augmentation, joint direction of arrival (DOA) estimation and

array calibration can be carried out by a computationally simple search procedure. Numerical

experiments show that the proposed method outperforms the existing method for closely located

signal sources and is robust to large sensor errors. Moreover, the accuracy of the proposed

procedure approaches the Cramér-Rao bound (CRB). Therefore, the SAGE-based procedure

provides an attractive alternative to current self-calibration techniques.

In chapter 4, the same calibration as in chapter 3 is conducted using UML estimator optimized

by PSO. A new technique, decaying diagonal loading (DDL) is developed to enhance the per-

formance of PSO at high signal-to-noise ratio (SNR) by dynamically lowering it. Compared

100



Conclusions and suggestions for future work

with the existing WF1 and WF2 algorithms, the proposed method is more robust to large shape

perturbation and has lower calibration error due to its direct optimization on the UML objec-

tive function without approximation. Its accuracy approaches the CRB at an SNR higher than

the threshold, and the threshold is lower than that of WF1 and WF2. The CRB-approaching

accuracy is retained even at large perturbations. Furthermore, PSO does not need initialization

close to the true parameters. The DDL technique is of general value in its transformation of

the objective function and thus can be coupled with other global optimization algorithms to

improve performance. This is supported by simulation results of the differential evolution (DE)

algorithm. The PSO-DDL method is simple to implement and computationally feasible.

In chapter 5, the near-field offline calibration is performed by the UML estimator optimized by

PSO-DDL. The method is free of the initialization problem, applicable to the entire near-field

region, and the calibration accuracy approaches the CRB. Numerical simulations show that the

method can calibrate an array of 20 sensors perturbed by large shape errors with only 3 sources.

Furthermore, the development process of the DDL technique introduces the “prominence” con-

cept of the global optimum. This is different from the precision of it, which improves as the

SNR increases. The counter-intuitive behavior of the UML objective function that its global

optimum stands more prominent at lower SNR is harnessed by the DDL to enhance the perfor-

mance of the stochastic global optimization algorithms.

6.2 Suggestions for future work

• For the SAGE-based algorithm, its convergence acceleration reduces the computational
load. In addition, it should be also applicable to the UML estimator for the calibration

problem.

• For the DDL technique, a complete analysis would elucidate the diagonal loading (DL)
effect on the shape of the UML objective function. It would also be interesting to investi-

gate the DL effect on other objective functions, such as the CML and sub-space objective

functions. Thirdly, what is the DL effect on the location of the global optimum in the

finite-sample case? Fourthly, is there an optimal DDL schedule? If so, how to design it?

• It has been shown that when the global optimizer converges very slowly in the later
stages, it is beneficial to succeed it with an efficient local optimization algorithm. A

SAGE-based algorithm is a possible choice to succeed PSO-DDL for computation re-
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duction.

• Although the calibration methods are developed in the context of array shape error in this
thesis, they are equally applicable to other types of array response errors such as sensor

gain and phase errors, and mutual coupling.
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Appendix A

Conditional expectation for joint

Gaussian distribution

ForX ∼ G (µ,Σ), partitionX into

X =


 X1

X2


 ,

and correspondingly

µ =


 µ1

µ2


 , (A.1)

Σ =


 Σ11 Σ12

Σ21 Σ22


 , (A.2)

the conditional distribution of X1 given X2 = x2 is [77][78] Gaussian with mean µ1 +

Σ12Σ
−1
22 (x2 − µ2) and covariance matrix Σ11 − Σ12Σ

−1
22 Σ21.
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Appendix B

The CRB for near-field offline

calibration

The CRB for near-field offline calibration is a degenerate form of (8.686) in [19]. The Fisher

information matrix J(δ), which is the inverse of the CRB, is given by

J(δ) =



(
DxΣDH

x

)
⊙
(
P⊥

H

)T (
DxΣDH

y

)
⊙
(
P⊥

H

)T
(
DyΣD

H
x

)
⊙
(
P⊥

H

)T (
DyΣD

H
y

)
⊙
(
P⊥

H

)T


 . (B.1)

The notation is the same as that of section 3.4.

For the near-field case,

∂Hnm

∂∆xn
= d−1

nm

(
d−1

nm + jπ
)
[rm sin θm − (xn + ∆xn)]Hnm,

and
∂Hnm

∂∆yn
= d−1

nm

(
d−1

nm + jπ
)
[rm cos θm − (yn + ∆yn)]Hnm

in λ/2 unit.
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Appendix C

Publications

C.1 Conference papers

1. P.-J. Chung and S. Wan, “Array self-calibration using sage algorithm,” in proc. 5th IEEE

Sensor Array and Multichannel Signal Processing Workshop, SAM 2008, Darmstadt,

Germany, July 2008, pp. 165 – 169.

2. S. Wan, P.-J. Chung, and B. Mulgrew, “Array shape self-calibration using particle swarm

optimization and decaying diagonal loading,” in Proc. Sensor Signal Process. for De-

fence, London, UK, 2010, in press.

3. S. Wan, P.-J. Chung, and B. Mulgrew, “Near-field array shape calibration,” ICASSP 2011,

accepted.

C.2 Journal paper

S. Wan, P.-J. Chung, and B. Mulgrew, “Maximum likelihood array calibration using particle

swarm optimization,” to be submitted to IET Signal Processing, 2011, invited paper.

105



Publications

106



Publications

107



Publications

108



Publications

109



Publications

110



Publications

111



Publications

112



Publications

113



Publications

114



Publications

115



Bibliography

[1] A. J. Weiss and B. Friedlander, “Array shape calibration using sources in unknown

locations - a maximum likelihood approach,” IEEE Transactions on Acoustics, Speech,

and Signal Processing, vol. 37, no. 12, pp. 1958–1966, Dec. 1989.

[2] A. J. Weiss and B. Friedlander, “Array shape calibration using eigenstructure methods,”

Signal Processing, vol. 22, no. 3, pp. 251–258, Mar. 1991.

[3] M. J. Hinich and W. Rule, “Bearing estimation using a large towed array,” The Journal

of the Acoustical Society of America, vol. 58, no. 5, pp. 1023–1029, 1975.

[4] O. Besson, AA Monakov, and C. Chalus, “Signal waveform estimation in the presence

of uncertainties about the steering vector,” IEEE Transactions on Signal Processing, vol.

52, no. 9, pp. 2432–2440, 2004.

[5] B. Porat and B. Friedlander, “Accuracy requirements in off-line array calibration,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 33, pp. 545–556, Apr. 1997.

[6] Y. Rockah and P. Schultheiss, “Array shape calibration using sources in unknown

locations–part I: Far-field sources,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 35, no. 3, pp. 286–299, Mar. 1987.

[7] H. Krim and M. Viberg, “Two decades of array signal processing research: the para-

metricapproach,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67–94, July

1996.
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