3,781 research outputs found

    Band selection and disentanglement using maximally-localized Wannier functions: the cases of Co impurities in bulk copper and the Cu (111) surface

    Get PDF
    We have adapted the maximally-localized Wannier function approach of [I. Souza, N. Marzari and D. Vanderbilt, Phys. Rev. B 65, 035109 (2002)] to the density functional theory based Siesta method [J. M. Soler et al., J. Phys.: Cond. Mat. 14, 2745 (2002)] and applied it to the study of Co substitutional impurities in bulk copper as well as to the Cu (111) surface. In the Co impurity case, we have reduced the problem to the Co d-electrons and the Cu sp-band, permitting us to obtain an Anderson-like Hamiltonian from well defined density functional parameters in a fully orthonormal basis set. In order to test the quality of the Wannier approach to surfaces, we have studied the electronic structure of the Cu (111) surface by again transforming the density functional problem into the Wannier representation. An excellent description of the Shockley surface state is attained, permitting us to be confident in the application of this method to future studies of magnetic adsorbates in the presence of an extended surface state

    High-Tech Urban Agriculture in Amsterdam : An Actor Network Analysis

    Get PDF
    The agriculture and horticulture sector in the Netherlands is one of the most productive in the world. Although the sector is one of the most advanced and intense agricultural production systems worldwide, it faces challenges, such as climate change and environmental and social unsustainability of industrial production. To overcome these challenges, alternative food production initiatives have emerged, especially in large cities such as Amsterdam. Some initiatives involve producing food in the urban environment, supported by new technologies and practices, so-called high-tech urban agriculture (HTUA). These initiatives make cultivation of plants inside and on top of buildings possible and increase green spaces in urban areas. The emerging agricultural technologies are creating new business environments that are shape d by technology developers (e.g., suppliers of horticultural light emitting diodes (LED) and control environment systems) and developers of alternative food production practices (e.g., HTUA start-ups). However, research shows that the uptake of these technological innovations in urban planning processes is problematic. Therefore, this research analyzes the barriers that local government planners and HTUA developers are facing in the embedding of HTUA in urban planning processes, using the city of Amsterdam as a case study. This study draws on actor-network theory (ANT) to analyze the interactions between planners, technologies, technology developers and developers of alternative food production practices. Several concepts of ANT are integrated into a multi-level perspective on sustainability transitions (MLP) to create a new theoretical framework that can explain how interactions between technologies and planning actors transform the incumbent social\u2013technical regime. The configuration of interactions between social and material entities in technology development and adoption processes in Amsterdam is analyzed through the lens of this theoretical framework. The data in this study were gathered by tracing actors and their connections by using ethnographic research methods. In the course of the integration of new technologies into urban planning practices, gaps between technologies, technology developers, and planning actors have been identified. The results of this study show a lacking connection between planning actors and technology developers, although planning actors do interact with developers of alternative food production practices. These interactions are influenced by agency of artefacts such as visualizations of the future projects. The paper concludes that for the utilization of emerging technologies for sustainability transition of cities, the existing gap between technology developers and planning actors needs to be bridged through the integration of technology development visions in urban agendas and planning processe

    Being While Doing: An Inductive Model of Mindfulness at Work

    Get PDF
    Mindfulness at work has drawn growing interest as empirical evidence increasingly supports its positive workplace impacts. Yet theory also suggests that mindfulness is a cognitive mode of “Being” that may be incompatible with the cognitive mode of “Doing” that undergirds workplace functioning. Therefore, mindfulness at work has been theorized as “being while doing,” but little is known regarding how people experience these two modes in combination, nor the influences or outcomes of this interaction. Drawing on a sample of 39 semi-structured interviews, this study explores how professionals experience being mindful at work. The relationship between Being and Doing modes demonstrated changing compatibility across individuals and experience, with two basic types of experiences and three types of transitions. We labeled experiences when informants were unable to activate Being mode while engaging Doing mode as Entanglement, and those when informants reported simultaneous co-activation of Being and Doing modes as Disentanglement. This combination was a valuable resource for offsetting important limitations of the typical reliance on the Doing cognitive mode. Overall our results have yielded an inductive model of mindfulness at work, with the core experience, outcomes, and antecedent factors unified into one system that may inform future research and practice. We did a full hour … of [mindfulness] training… My pager went off like three times. … He\u27s telling us to meditate, and everyone\u27s pager was just beeping. It was not very conducive to meditating. –medical residen

    Polymer-Mode-Coupling Theory of Finite-Size-Fluctuation Effects in Entangled Solutions, Melts and Gels. I. General Formulation and Predictions

    Full text link
    The transport coefficients of dense polymeric fluids are approximately calculated from the microscopic intermolecular forces. The following finite molecular weight effects are discussed within the Polymer-Mode-Coupling theory (PMC) and compared to the corresponding reptation/ tube ideas: constraint release mechanism, spatial inhomogeneity of the entanglement constraints, and tracer polymer shape fluctuations. The entanglement corrections to the single polymer Rouse dynamics are shown to depend on molecular weight via the ratio N/N_e, where the entanglement degree of polymerization, N_e, can be measured from the plateau shear modulus. Two microscopically defined non-universal parameters, an entanglement strength 1/alpha and a length scale ratio, delta= xi_rho/b, where xi_rho and b are the density screening and entanglement length respectively, are shown to determine the reduction of the entanglement effects relative to the reptation- -like asymptotes of PMC theory. Large finite size effects are predicted for reduced degrees of polymerization up to N/N_e\le10^3. Effective power law variations for intermediate N/N_e of the viscosity, eta\sim N^x, and the diffusion constant, D\sim N^{-y}, can be explained with exponents significantly exceeding the asymptotic, reptation-like values, x\ge 3 and y\ge2, respectively. Extensions of the theory to treat tracer dielectric relaxation, and polymer transport in gels and other amorphous systems, are also presented.Comment: Latex, figures and styles files included; Macromolecules, in press (1997

    Scalability of GHZ and random-state entanglement in the presence of decoherence

    Full text link
    We derive analytical upper bounds for the entanglement of generalized Greenberger-Horne-Zeilinger states coupled to locally depolarizing and dephasing environments, and for local thermal baths of arbitrary temperature. These bounds apply for any convex quantifier of entanglement, and exponential entanglement decay with the number of constituent particles is found. The bounds are tight for depolarizing and dephasing channels. We also show that randomly generated initial states tend to violate these bounds, and that this discrepancy grows with the number of particles.Comment: 9 pages, 3 figure

    On the Dynamics and Disentanglement in Thin and Two-Dimensional Polymer Films

    Full text link
    We present results from molecular dynamics simulations of strictly two-dimensional (2D) polymer melts and thin polymer films in a slit geometry of thickness of the order of the radius of gyration. We find that the dynamics of the 2D melt is qualitatively different from that of the films. The 2D monomer mean-square displacement shows a t8/15t^{8/15} power law at intermediate times instead of the t1/2t^{1/2} law expected from Rouse theory for nonentangled chains. In films of finite thickness, chain entanglements may occur. The impact of confinement on the entanglement length NeN_\mathrm{e} has been analyzed by a primitive path analysis. The analysis reveals that NeN_\mathrm{e} increases strongly with decreasing film thickness.Comment: 6 pages, 3 figures, proceedings 3rd International Workshop on Dynamics in Confinement (CONFIT 2006
    • …
    corecore