1,051 research outputs found

    Handwritten Digit Recognition and Classification Using Machine Learning

    Get PDF
    In this paper, multiple learning techniques based on Optical character recognition (OCR) for the handwritten digit recognition are examined, and a new accuracy level for recognition of the MNIST dataset is reported. The proposed framework involves three primary parts, image pre-processing, feature extraction and classification. This study strives to improve the recognition accuracy by more than 99% in handwritten digit recognition. As will be seen, pre-processing and feature extraction play crucial roles in this experiment to reach the highest accuracy

    Using generative models for handwritten digit recognition

    Get PDF
    We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian ``ink generators'' spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the Expectation Maximization (EM) algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages. (1) After identifying the model most likely to have generated the data, the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style. (2) During the process of explaining the image, generative models can perform recognition driven segmentation. (3) The method involves a relatively small number of parameters and hence training is relatively easy and fast. (4) Unlike many other recognition schemes it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is it requires much more computation than more standard OCR techniques

    Automated framework for robust content-based verification of print-scan degraded text documents

    Get PDF
    Fraudulent documents frequently cause severe financial damages and impose security breaches to civil and government organizations. The rapid advances in technology and the widespread availability of personal computers has not reduced the use of printed documents. While digital documents can be verified by many robust and secure methods such as digital signatures and digital watermarks, verification of printed documents still relies on manual inspection of embedded physical security mechanisms.The objective of this thesis is to propose an efficient automated framework for robust content-based verification of printed documents. The principal issue is to achieve robustness with respect to the degradations and increased levels of noise that occur from multiple cycles of printing and scanning. It is shown that classic OCR systems fail under such conditions, moreover OCR systems typically rely heavily on the use of high level linguistic structures to improve recognition rates. However inferring knowledge about the contents of the document image from a-priori statistics is contrary to the nature of document verification. Instead a system is proposed that utilizes specific knowledge of the document to perform highly accurate content verification based on a Print-Scan degradation model and character shape recognition. Such specific knowledge of the document is a reasonable choice for the verification domain since the document contents are already known in order to verify them.The system analyses digital multi font PDF documents to generate a descriptive summary of the document, referred to as \Document Description Map" (DDM). The DDM is later used for verifying the content of printed and scanned copies of the original documents. The system utilizes 2-D Discrete Cosine Transform based features and an adaptive hierarchical classifier trained with synthetic data generated by a Print-Scan degradation model. The system is tested with varying degrees of Print-Scan Channel corruption on a variety of documents with corruption produced by repetitive printing and scanning of the test documents. Results show the approach achieves excellent accuracy and robustness despite the high level of noise

    Document analysis at DFKI. - Part 1: Image analysis and text recognition

    Get PDF
    Document analysis is responsible for an essential progress in office automation. This paper is part of an overview about the combined research efforts in document analysis at the DFKI. Common to all document analysis projects is the global goal of providing a high level electronic representation of documents in terms of iconic, structural, textual, and semantic information. These symbolic document descriptions enable an "intelligent\u27; access to a document database. Currently there are three ongoing document analysis projects at DFKI: INCA, OMEGA, and PASCAL2000/PASCAL+. Though the projects pursue different goals in different application domains, they all share the same problems which have to be resolved with similar techniques. For that reason the activities in these projects are bundled to avoid redundant work. At DFKI we have divided the problem of document analysis into two main tasks, text recognition and text analysis, which themselves are divided into a set of subtasks. In a series of three research reports the work of the document analysis and office automation department at DFKI is presented. The first report discusses the problem of text recognition, the second that of text analysis. In a third report we describe our concept for a specialized document analysis knowledge representation language. The report in hand describes the activities dealing with the text recognition task. Text recognition covers the phase starting with capturing a document image up to identifying the written words. This comprises the following subtasks: preprocessing the pictorial information, segmenting into blocks, lines, words, and characters, classifying characters, and identifying the input words. For each subtask several competing solution algorithms, called specialists or knowledge sources, may exist. To efficiently control and organize these specialists an intelligent situation-based planning component is necessary, which is also described in this report. It should be mentioned that the planning component is also responsible to control the overall document analysis system instead of the text recognition phase onl

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    Off-line Arabic Handwriting Recognition System Using Fast Wavelet Transform

    Get PDF
    In this research, off-line handwriting recognition system for Arabic alphabet is introduced. The system contains three main stages: preprocessing, segmentation and recognition stage. In the preprocessing stage, Radon transform was used in the design of algorithms for page, line and word skew correction as well as for word slant correction. In the segmentation stage, Hough transform approach was used for line extraction. For line to words and word to characters segmentation, a statistical method using mathematic representation of the lines and words binary image was used. Unlike most of current handwriting recognition system, our system simulates the human mechanism for image recognition, where images are encoded and saved in memory as groups according to their similarity to each other. Characters are decomposed into a coefficient vectors, using fast wavelet transform, then, vectors, that represent a character in different possible shapes, are saved as groups with one representative for each group. The recognition is achieved by comparing a vector of the character to be recognized with group representatives. Experiments showed that the proposed system is able to achieve the recognition task with 90.26% of accuracy. The system needs only 3.41 seconds a most to recognize a single character in a text of 15 lines where each line has 10 words on average

    An Integrated architecture for recognition of totally unconstrained handwritten numerals

    Get PDF
    Reprint. Reprinted from the International journal of pattern recognition and artificial intelligence. Vol. 7, no. 4 (1993) "January 1993."Includes bibliographical references (p. 127-128).Supported by the Productivity From Information Technology (PROFIT) Research Initiative at MIT.Amar Gupta ... [et al.
    corecore