372 research outputs found

    Fast rates in statistical and online learning

    Get PDF
    The speed with which a learning algorithm converges as it is presented with more data is a central problem in machine learning --- a fast rate of convergence means less data is needed for the same level of performance. The pursuit of fast rates in online and statistical learning has led to the discovery of many conditions in learning theory under which fast learning is possible. We show that most of these conditions are special cases of a single, unifying condition, that comes in two forms: the central condition for 'proper' learning algorithms that always output a hypothesis in the given model, and stochastic mixability for online algorithms that may make predictions outside of the model. We show that under surprisingly weak assumptions both conditions are, in a certain sense, equivalent. The central condition has a re-interpretation in terms of convexity of a set of pseudoprobabilities, linking it to density estimation under misspecification. For bounded losses, we show how the central condition enables a direct proof of fast rates and we prove its equivalence to the Bernstein condition, itself a generalization of the Tsybakov margin condition, both of which have played a central role in obtaining fast rates in statistical learning. Yet, while the Bernstein condition is two-sided, the central condition is one-sided, making it more suitable to deal with unbounded losses. In its stochastic mixability form, our condition generalizes both a stochastic exp-concavity condition identified by Juditsky, Rigollet and Tsybakov and Vovk's notion of mixability. Our unifying conditions thus provide a substantial step towards a characterization of fast rates in statistical learning, similar to how classical mixability characterizes constant regret in the sequential prediction with expert advice setting.Comment: 69 pages, 3 figure

    Divergence Measures

    Get PDF
    Data science, information theory, probability theory, statistical learning and other related disciplines greatly benefit from non-negative measures of dissimilarity between pairs of probability measures. These are known as divergence measures, and exploring their mathematical foundations and diverse applications is of significant interest. The present Special Issue, entitled “Divergence Measures: Mathematical Foundations and Applications in Information-Theoretic and Statistical Problems”, includes eight original contributions, and it is focused on the study of the mathematical properties and applications of classical and generalized divergence measures from an information-theoretic perspective. It mainly deals with two key generalizations of the relative entropy: namely, the R_ényi divergence and the important class of f -divergences. It is our hope that the readers will find interest in this Special Issue, which will stimulate further research in the study of the mathematical foundations and applications of divergence measures

    Estimating labels from label proportions

    Get PDF
    Consider the following problem: given sets of unlabeled observations, each set with known label proportions, predict the labels of another set of observations, also with known label proportions. This problem appears in areas like e-commerce, spam filtering and improper content detection. We present consistent estimators which can reconstruct the correct labels with high probability in a uniform convergence sense. Experiments show that our method works well in practice.

    Distinguishing cause from effect using observational data: methods and benchmarks

    Get PDF
    The discovery of causal relationships from purely observational data is a fundamental problem in science. The most elementary form of such a causal discovery problem is to decide whether X causes Y or, alternatively, Y causes X, given joint observations of two variables X, Y. An example is to decide whether altitude causes temperature, or vice versa, given only joint measurements of both variables. Even under the simplifying assumptions of no confounding, no feedback loops, and no selection bias, such bivariate causal discovery problems are challenging. Nevertheless, several approaches for addressing those problems have been proposed in recent years. We review two families of such methods: Additive Noise Methods (ANM) and Information Geometric Causal Inference (IGCI). We present the benchmark CauseEffectPairs that consists of data for 100 different cause-effect pairs selected from 37 datasets from various domains (e.g., meteorology, biology, medicine, engineering, economy, etc.) and motivate our decisions regarding the "ground truth" causal directions of all pairs. We evaluate the performance of several bivariate causal discovery methods on these real-world benchmark data and in addition on artificially simulated data. Our empirical results on real-world data indicate that certain methods are indeed able to distinguish cause from effect using only purely observational data, although more benchmark data would be needed to obtain statistically significant conclusions. One of the best performing methods overall is the additive-noise method originally proposed by Hoyer et al. (2009), which obtains an accuracy of 63+-10 % and an AUC of 0.74+-0.05 on the real-world benchmark. As the main theoretical contribution of this work we prove the consistency of that method.Comment: 101 pages, second revision submitted to Journal of Machine Learning Researc

    Adaptivity in Online and Statistical Learning

    Get PDF
    Many modern machine learning algorithms, though successful, are still based on heuristics. In a typical application, such heuristics may manifest in the choice of a specific Neural Network structure, its number of parameters, or the learning rate during training. Relying on these heuristics is not ideal from a computational perspective (often involving multiple runs of the algorithm), and can also lead to over-fitting in some cases. This motivates the following question: for which machine learning tasks/settings do there exist efficient algorithms that automatically adapt to the best parameters? Characterizing the settings where this is the case and designing corresponding (parameter-free) algorithms within the online learning framework constitutes one of this thesis' primary goals. Towards this end, we develop algorithms for constrained and unconstrained online convex optimization that can automatically adapt to various parameters of interest such as the Lipschitz constant, the curvature of the sequence of losses, and the norm of the comparator. We also derive new performance lower-bounds characterizing the limits of adaptivity for algorithms in these settings. Part of systematizing the choice of machine learning methods also involves having ``certificates'' for the performance of algorithms. In the statistical learning setting, this translates to having (tight) generalization bounds. Adaptivity can manifest here through data-dependent bounds that become small whenever the problem is ``easy''. In this thesis, we provide such data-dependent bounds for the expected loss (the standard risk measure) and other risk measures. We also explore how such bounds can be used in the context of risk-monotonicity

    Dimension-reduction and discrimination of neuronal multi-channel signals

    Get PDF
    Dimensionsreduktion und Trennung neuronaler Multikanal-Signale
    • …
    corecore