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Abstract

Many modern machine learning algorithms, though successful, are still based on
heuristics. In a typical application, such heuristics may manifest in the choice of a
specific Neural Network structure, its number of parameters, or the learning rate
during training. Relying on these heuristics is not ideal from a computational per-
spective (often involving multiple runs of the algorithm), and can also lead to over-
fitting in some cases. This motivates the following question: for which machine
learning tasks/settings do there exist efficient algorithms that automatically adapt to
the best parameters? Characterizing the settings where this is the case and design-
ing corresponding (parameter-free) algorithms within the online learning framework
constitutes one of this thesis’ primary goals. Towards this end, we develop algorithms
for constrained and unconstrained online convex optimization that can automatically
adapt to various parameters of interest such as the Lipschitz constant, the curvature
of the sequence of losses, and the norm of the comparator. We also derive new per-
formance lower-bounds characterizing the limits of adaptivity for algorithms in these
settings. Part of systematizing the choice of machine learning methods also involves
having “certificates” for the performance of algorithms. In the statistical learning
setting, this translates to having (tight) generalization bounds. Adaptivity can mani-
fest here through data-dependent bounds that become small whenever the problem
is “easy”. In this thesis, we provide such data-dependent bounds for the expected
loss (the standard risk measure) and other risk measures. We also explore how such
bounds can be used in the context of risk-monotonicity.
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Chapter 1

Introduction

The goal of supervised machine learning is to build prediction models that generalize
well on unseen data. However, many current machine learning models require the
tuning of many parameters (e.g. step size) during the training phase, hindering their
generalization performance in some cases. For example, training a Neural Network
(NN) model using a gradient-based method typically involves tuning a “learning
rate” parameter, which is often done using heuristics. Such heuristic-based meth-
ods often lack theoretical guarantees and can sometimes lead to over-fitting on the
training data1 (and thus poor generalization performance) [Feurer and Hutter, 2019].
Therefore, it is desirable to have machine learning algorithms that do not require
such parameters in the first place and still perform competitively against models
whose parameters are tuned to their theoretical optimal values given the problem at
hand.

We have mentioned the learning rate as an example of a hyper-parameter needing
tuning when training an NN model. There are other vital choices a practitioner needs
to make in this case, such as the size and architecture of the NN. Choosing the best
“model” has to be done carefully to not over-fit the available data. Generalization
bounds, which control the deviation between the population and empirical error, can
be used to select a model after observing the data. However, generic generalization
bounds fail to account for key properties of candidate algorithms/models beyond
their empirical performance on the observed data [Dziugaite et al., 2020]. A crucial
property of algorithms known to be beneficial for generalization is stability [Bousquet
and Elisseeff, 2002]. So it is desirable to have data-dependent generalization bounds
that can automatically become small whenever an algorithm is stable. In this case, an
algorithm may be considered stable if the empirical losses of the hypothesis it picks
(after training) do not change much if a small number of data points are removed
during training2.

Perhaps the simplest framework under which one can study and characterize
algorithms that do not require any hyper-parameter tuning is the online learning
setting, which we discuss next.

1One can reduce the amount of overfitting using techniques such as cross-validation. However, such
approaches still lacks solid theoretical guarantees.

2Here, we do not want to restrict ourselves to the standard notion of algorithmic stability studied by
Bousquet and Elisseeff [2002].
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2 Introduction

1.1 Adaptivity in Online Learning

Due to its simple formulation, the online learning setting, where actions are taken se-
quentially, is an excellent starting point for studying adaptivity in machine learning.
Algorithms developed for this setting have many applications and are behind vari-
ous popular methods. A prominent application in machine learning is the stochastic
optimization of non-convex objectives (relevant for training deep NN models); the
well-known stochastic gradient descent is an example of an online learning algo-
rithm used for this purpose. In general, many online learning algorithms can be
used for stochastic optimization purposes via online-to-batch conversion techniques
[Cesa-Bianchi et al., 2004; Shalev-Shwartz, 2012; Cutkosky, 2019a]. Recently, new re-
ductions have been introduced that successfully leverage online learning algorithms
for other ML applications such as differential privacy [Van der Hoeven, 2019a; Jun
and Orabona, 2019b], online control [Agarwal et al., 2019b; Simchowitz, 2020; Fos-
ter and Simchowitz, 2020], and reinforcement learning [Cassel and Koren, 2020; Neu
et al., 2017]. One attractive aspect of such reductions is that they transfer the perfor-
mance and level of adaptivity of the online algorithms used. Thus, designing adap-
tive online learning algorithms has the potential to eliminate the need for heuristic
hyper-parameter tuning in many machine learning applications.

Online learning can be performed with either full information or partial informa-
tion (i.e. the bandit setting). In full information, the losses of all actions are revealed
to the learner (the algorithm) at every prediction round, whereas in partial infor-
mation, only the loss of the action played may be revealed. Many techniques have
recently been introduced that reduce partial feedback settings to full information
(see [Lykouris et al., 2018] for an overview). This thesis will be mainly concerned
with the latter setting. A popular assumption in full information is that the observed
losses are convex. This setting is known as Online Convex Optimization (OCO)
[Hazan, 2016a], which subsumes the well-known experts’ setting. Many machine
learning applications can be reduced to OCO [Neu et al., 2017; Van der Hoeven,
2019a; Agarwal et al., 2019c; Simchowitz, 2020]. The non-convex online learning
setting is naturally more challenging. Yet, techniques from the simpler OCO (or
the experts’ setting) have successfully been used to derive algorithms with provable
guarantees for the non-convex setting [Agarwal et al., 2019a; Suggala and Netrapalli,
2020; Héliou et al., 2020]. For example, Agarwal et al. [2019a] showed that it is possi-
ble to achieve a sub-linear regret (sub-linear in the number of rounds) in non-convex
online learning using Follow-the-Perturbed-Leader (an algorithm developed for the
experts’ setting [Kalai and Vempala, 2003]) and an offline optimization oracle. This
online non-convex setting is outside the scope of this thesis.

The first part of this thesis will focus on the OCO setting, where we study the
limits of adaptivity in both the bounded and unbounded cases.

Bounded online convex optimization. Bounded OCO is one of the most studied
settings in online learning [Cesa-Bianchi and Lugosi, 2006; Hazan, 2016b]. This is
a setting where at each round t, a learned (the algorithm) outputs a vector ŵt in
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some bounded convex set W , then the environment reveals a convex loss function
ft :W → R. The output ŵt can be any function on the past observed losses ( fs)s<t. A
prominent example is the online experts’ setting, where the constrained set is the sim-
plex. Many algorithms have been developed for bounded OCO, which achieve differ-
ent degrees of adaptivity [Gaillard and and, 2014; Luo and Schapire, 2015; Van Erven
and Koolen, 2016; Hazan et al., 2007]. The Online Gradient Descent (OGD) algo-
rithm [Zinkevich, 2003] is an example of a popular OCO algorithm. For Lipschitz
convex losses, OGD can achieve a sub-linear (in the number of rounds) regret; more
precisely, the outputs (ŵt) of the algorithm guarantee

RegretT(w) :=
T

∑
t=1

( ft(ŵt)− ft(w)) ≤ O(D
√

T), ∀w ∈ W , (1.1)

where D := supw,w′∈W ‖w −w′‖ is the “diameter” of the set W . It is known that
with proper tuning of the learning rate schedule of OGD, it is possible to achieve a
small (logarithmic in the number of rounds) regret when the loss functions ( ft) are
strongly convex [Hazan et al., 2007]. Online Newton Step (ONS) is another algorithm
that can achieve a small (logarithmic in T) regret when the losses are exp-concave (a
weaker condition than strong convexity) [Hazan et al., 2007]. Both OGD and ONS
follow the framework of Online Mirror Descent (MD)3—a prominent algorithm in
online learning—with different regularizers (see e.g. [Hazan, 2016b]). Interestingly,
all these algorithms, including most MD instantiations, can be viewed as instances of
the Exponential Weights Algorithm (EWA) with different priors and learning rates
[Van der Hoeven et al., 2018].

Studying adaptivity for the above algorithms has often involved looking at dif-
ferent learning rate schedules or choices of regularizers (in the case of MD). Here
adaptivity means achieving the smallest possible regret guarantee for the type of
losses observed; for curved (strongly convex or exp-concave) losses, one would like
to achieve a logarithmic regret (i.e. the best achievable regret for such losses). How-
ever, for algorithms such as OGD or ONS, the learning rate schedule must be set as a
function of the parameters of curvature of the losses to achieve a logarithmic regret—
these parameters may not be known in practice. Another parameter that one would
like to adapt to is the “Lipschitz constant”; the maximum norm of the losses’ gradi-
ents at the algorithm’s iterates. Many algorithms require this parameter as input and
may fail (not realize the desired regret) if the parameter is not a valid upper bound
on the norm of the gradients [Van Erven et al., 2021]. Having a single algorithm that
adapts to all these parameters (i.e. the Lipschitz constant and curvature parameters)
simultaneously while achieving the optimal regret guarantee for the given type of
losses is one of the contributions of this thesis (see Chapter 3).

In the experts’ setting (a special case of OCO), it is possible to achieve a constant
regret when the losses are mixable. This is achieved using the Aggregating Algo-

3Technically, the version of ONS presented in [Hazan et al., 2007] is framed as Follow-the-
Regularized-Leader (FTRL). However, FTRL and MD may be seen as equivalent—see e.g. [McMahan,
2011].
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rithm, which essentially outputs “exponential weights” using the observed losses
[Vovk, 1998]. It turns out that a larger family of algorithms—referred to as general-
ized aggregating algorithms—can also achieve a constant regret [Reid et al., 2015].
This family consists of mirror descent algorithms with specific regularizers whose
characterization is the subject of Chapter 2.

Unbounded online convex optimization. While the bounded OCO setting has by
now been studied in some depth, the unbounded OCO setting—where the output
set W may be unbounded—has only been explored relatively recently [McMahan
and Streeter, 2010; Mcmahan and Streeter, 2012; Orabona, 2013; McMahan and Aber-
nethy, 2013; Orabona, 2014a; McMahan and Orabona, 2014; Orabona and Pál, 2016a].
Optimal algorithms for this setting are known as parameter-free since they can com-
pete against unbounded comparators w without any learning rate tuning. The typ-
ical regret bound achieved by parameter-free algorithms such as those in [Orabona,
2014b; McMahan and Orabona, 2014; Foster et al., 2017] is as follows:

RegretT(w) =
T

∑
t=1

( ft(wt)− ft(w)) ≤ O
(
‖w‖

√
T ln(1 + ‖w‖T)

)
, ∀w ∈ W . (1.2)

Note that the parameter-free regret in (1.2) swaps the diameter D in the bounded case
(see (1.1)) for the norm of the comparator ‖w‖. This comes at the price of logarithmic
terms in w and T in the regret, which are unavoidable in the general unbounded case
[McMahan and Orabona, 2014].

There are many natural settings with unbounded domains W . One example is
the problem of online learning of linear models [Kotlowski, 2017; Kempka et al.,
2019a]. In this setting, it is impossible for OGD or other known classical algorithms
designed for the bounded setting to achieve the optimal regret bound in (1.2) as the
learning rate needs to be tuned as a function of the norm of the comparator w, which
is typically unknown in advance. On the other hand, parameter-free algorithms,
which are designed for the unbounded setting, can be used to achieve the optimal
regret in the case of online learning of linear models [Mhammedi and Koolen, 2020].
Parameter-free algorithms can confer benefits beyond the unbounded OCO case. For
instance, they are useful in applications involving local differential privacy [Jun and
Orabona, 2019a]. In this setting, a data provider presents a “sanitized” version of a
data set to a learning algorithm along with some desired privacy level. As pointed
out by Van der Hoeven [2019b], the desired privacy level may itself be considered
as a privacy-sensitive feature. Van der Hoeven [2019b] showed that parameter-free
algorithms can be used to achieve local differential privacy—in a way that standard
algorithms such as OGD cannot—without requiring the privacy level as input.

What is also surprising about parameter-free algorithms is that even though they
are designed for the unbounded setting, they can also be used in the bounded setting
and even yield improved regret guarantees. There exist techniques that reduce the
bounded OCO setting to the unbounded one, where the regret bound for the former
becomes that of the unbounded algorithm used (up to constant factors) [Cutkosky
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and Orabona, 2018; Cutkosky, 2020b]. What this means is that one can replace the
diameter D typically present in the regret bounds for the bounded case (see (1.1)) by
the norm of the comparator as in (1.2). This can be advantageous when the optimal
comparator w (the one that minimizes ∑T

t=1 ft(w)) has a small norm4. This fact has
already been leveraged to produce improved regret bounds in the experts’ setting—a
special case of bounded OCO. One prominent example is the setting where experts
have different loss ranges, and the goal is to achieve a regret bound against any given
expert i that scales with the loss range of that expert. The algorithm of Bubeck et al.
[2017] is the first to achieve this when the losses are positive. When the losses can
take negative values, the sought guarantee is achieved by the algorithm of Foster
et al. [2017]. However, this algorithm is inefficient as the per-round computational
complexity is super-linear in the number of experts. The reduction due to Cutkosky
and Orabona [2018] together with parameter-free algorithms lead to the first algo-
rithm that achieves the desired multi-scale regret (up to log factors) with a linear
run-time in the number of experts.

Parameter-free algorithms have other exciting applications. In stochastic opti-
mization, it was shown that parameter-free algorithms could guarantee asymptotic
convergence for Variationally Coherent Functions (VCFs) while automatically ensur-
ing a near-optimal convergence rate for convex functions [Orabona and Pál, 2021].
VCFs are functions that include convex and non-convex functions such as quasi-
convex, star-convex, and pseudo-convex functions.

It is worth noting one more useful property of parameter-free algorithms. As
mentioned earlier, the regret bounds of these algorithms scale with the norm of the
comparator as in (1.2) (instead of the diameter of the set in bounded OCO), which
implies that the regret against the origin is bounded by a constant. This property
in turn implies that one can aggregate the predictions of parameter-free algorithms
effectively and at a very low cost. Suppose A and B are two parameter-free online
algorithms that output vectors (ŵA

t ) and (ŵB
t ), respectively. Then, a third algorithm

C that aggregates the predictions of A and B by addition; i.e. ŵC
t := ŵA

t + ŵB
t , has a

regret that is at most the minimum regret of algorithms A and B up to lower-order
terms [Cutkosky, 2019b]. This aggregation property (which can be extended to more
than two base algorithms) is very useful and has been leveraged to achieve optimal
dynamic regret in OCO, where the comparator changes over time instead of being
fixed [Cutkosky, 2020b].

One of the contributions of this thesis (see Chapter 4) are two parameter-free
algorithms—FreeGrad and Matrix-FreeGrad—in OCO whose regret guarantees are

RegretFreeGradT (w) ≤ O
(
‖w‖

√
tr(VT) · ln(1 + ‖w‖ · tr(VT))

)
, (1.3)

RegretMatrix-FreeGrad
T (w) ≤ O

(√
w>VTw · ln(1 + w>VTw · det(VT))

)
, (1.4)

4We note, however, that the regret of parameter-free algorithms has a multiplicative logarithmic term
in the horizon under the square-root—see (1.2). Thus, any conferred benefit in the bounded setting may
eventually disappear as the horizon grows.
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for all w ∈ W and VT := I +∑T
t=1∇ ft(ŵt)∇ ft(ŵt)>, for the algorithms’ iterates (ŵt).

We note that the regret bound of FreeGrad in (1.3) is called adaptive as it replaces O(T)
in the generic parameter-free regret (1.2) by tr(VT) = ∑T

t=1 ‖∇ ft(ŵt)‖2 ≤ L2T, where
L := maxt∈[T] ‖∇ ft(ŵt)‖ is the Lipschitz constant. In many situations, tr(VT) can
be much smaller than L2T [Srebro et al., 2010], in which case the adaptive regret of
FreeGrad is superior to the generic one in (1.2).

Having the term tr(VT) in the regret bound instead of L2T (i.e. adaptive regret)
allows for different types of adaptivity in various settings. For example, Orabona
and Pál [2021] used parameter-free algorithms with an adaptive regret to guaran-
tee almost-sure convergence for Variationally Coherent Functions. An adaptive re-
gret can also be leveraged to achieve a logarithmic regret for strongly convex losses
through existing reductions [Cutkosky and Orabona, 2018]. Improved online-to-
batch conversion results for stochastic optimization are also enabled through adap-
tive regrets [Cutkosky, 2019a]. What is more, as we will see in Chapter 8, the guar-
antee of FreeGrad can be used beyond the online learning setting to prove a new
concentration inequality for martingale difference sequences. The new inequality
can be viewed as an empirical version of Freedman’s inequality [Freedman, 1975].

FreeGrad also has the advantage of being scale-free in the sense that multiplying the
losses by a constant c > 0 does not change the outputs of the algorithm—a desirable
property in general [Orabona and Pál, 2016b]. We note that the price of being scale-
free and parameter-free5 comes in the form of an additional term in the regret that
is independent of T and scales with ‖w‖3. This term is, unfortunately, unavoidable
in general if one insists on a O(

√
T) regret as we show via a new lower bound in

Chapter 4. This result complements the lower bound due to Cutkosky and Boahen
[2017] who showed that if one insists on a linear, up to log-factors, dependence in
the comparator norm ‖w‖, then the regret must essentially grow exponentially with
T. The parameter-free algorithm of Cutkosky and Orabona [2018] also achieves the
adaptive regret in (1.2). However, the constants involved are worse than those of
FreeGrad, and the algorithm is not scale-free.

Finally, we note that the regret bound of Matrix-FreeGrad can be interpreted as
enabling adaptivity to the “directional variance”. This type of regret has also recently
been achieved by Cutkosky [2020a] using a completely different approach than ours.
However, their algorithm is not scale-free, and the constants involved in the regret
bound are worse than those of Matrix-FreeGrad. The main term w>VTw in the bound
of Matrix-FreeGrad can be much smaller than the main term ‖w‖2tr(VT) in the regret
of FreeGrad [Cutkosky and Sarlós, 2019]. However, the regret bound of the former
has the term ln det(VT), which can be as large as d ln T, where d is the dimension of
W . For this reason, the bounds in (1.3) and (1.4) are not necessarily comparable in
general. It is worth mentioning here that because both FreeGrad and Matrix-FreeGrad
are parameter-free, it is possible (and very easy) to build a new algorithm based on
them that achieves the minimum of the two regrets in (1.3) and 1.4. This can be done
simply by adding the output vectors of the two algorithms and setting the resulting

5The existence of an algorithm that is simultaneously parameter-free and scale-free was posed as an
open problem in [Orabona and Pál, 2016b].



§1.2 Adaptivity in Statistical Learning 7

vector as the output of the new algorithm; this follows from the aggregation property
of parameter-free algorithms we mentioned earlier (see [Cutkosky, 2019b]).

In summary, for bounded OCO, we have developed an algorithm based on MetaGrad

that can automatically adapt to the Lipschitz constant, the parameters of curvature
of the loss functions, and the horizon while achieving the best possible regret guar-
antee (up to constant factors). In unbounded OCO, we have developed scale-free
and parameter-free algorithms with state-of-the-art regret guarantees useful in many
applications. We have also characterized the cost of being simultaneously scale-free
and parameter-free. We now move to the statistical learning setting.

1.2 Adaptivity in Statistical Learning

Another prominent setting in machine learning where adaptivity is crucial is statis-
tical learning. In contrast with the online setting, it is typical that the whole data
be available at once in statistical learning. The goal is to choose a hypothesis in
some set that optimizes the expectation of a loss function. Since the data-generating
distribution (over which the expectation of the loss is taken) is typically unknown,
one resorts to choosing a hypothesis that optimizes some performance measure on
empirical samples (e.g. minimizing the cumulative empirical loss). However, to as-
sess the generalization performance of the selected hypothesis beyond the observed
instances, one needs bounds on the expected loss over the unknown data-generating
distribution—also known as the population risk. Used for this purpose are bounds
on the difference between empirical and population risks, which are available for
various learning settings and come in different flavours [Reid, 2017].

Some of the most popular such bounds are those involving uniform convergence,
which, as the name suggests, bound the difference between empirical and population
risks for all hypotheses simultaneously [Bousquet et al., 2004]. Such bounds typically
involve the Rademacher complexity of the hypothesis set. They are looser than some
alternatives we discuss below since they do not account for the nature of the learning
algorithm that chooses the hypotheses. Examples of bounds that do take into account
the learning algorithm are those that rely on uniform stability [Bousquet and Elisse-
eff, 2002]; in this case, the bounds become smaller the more “stable” the algorithm is.
Uniform stability is known to hold in some simple settings where the hypothesis set
is typically embedded in an Euclidean space, and the loss is a convex function of the
hypotheses (see [Bousquet and Elisseeff, 2002]). However, relying on stability limits
the type of models and algorithms that one can use in practice. When considering
larger models such as Neural Networks trained with gradient-based methods, the
stability condition does not hold in general6.

Data-dependent generalization bounds. To circumvent the limitations of classical
uniform stability while still accounting for the nature of the algorithm that picks the

6There does exist techniques involving a careful choice of learning rate for gradient descent that
ensure some degree of stability, see e.g. [Hardt et al., 2016].



8 Introduction

hypothesis, one can aim for generalization bounds with data-dependent terms that
automatically make the bound small when the algorithm is stable. It is sometimes
also desirable to take advantage of any “easiness” of the statistical problem at hand.
For example, when the data generating distribution has some favorable structure, it
is desirable to have generalization bounds that adapt to this structure and become
small. One of this thesis’ contributions are such data-dependent bounds (see Chapter
5). These bounds are of PAC-Bayesian type and are known to be tighter than those
based on uniform convergence (see [Guedj, 2019] for an overview of PAC-Bayesian
bounds). The bounds we present in Chapter 5 automatically become small when the
algorithm is stable or when the learning problem is “easy” as characterized by the
Bernstein condition [Bartlett and Mendelson, 2006a].

Generalization bounds for alternative measures of risk. So far, we have only con-
sidered the expected risk as a performance measure in statistical learning. However,
in many modern machine learning applications, the expected performance is not al-
ways the most suitable measure [Williamson and Menon, 2019; Chow et al., 2015;
Ahmadi et al., 2021]. This is the case for applications where there are low-probability
events that have severe consequences and are to be avoided. Take the medical field,
for example, where the task is to select a vaccine among a set of candidates. In this
case, the average efficacy and safety of the candidate vaccines is not an appropriate
measure; one of the priorities, in this case, is likely to be avoiding any occurrence of
severe side effects. However, if these side effects happen with a low enough proba-
bility, the average performance may not capture them effectively. Other applications
involving such a trade-off between event severity and probability of occurrence in-
clude autonomous driving, risk of exposure to toxic compounds, etc. Given this limi-
tation of the expected risk, alternative risk measures, such as Coherent Risk Measures
(CRMs), are garnering more and more interest in the machine learning community.
CRMs possess properties that make them desirable in many risk-sensitive applica-
tions (see e.g. [Lerasle et al., 2019; Agrawal et al., 2020a]). One prominent CRM is the
Conditional Value at Risk (CVaR). The CVaR with parameter α ∈ [0, 1] of a random
variable X is the expectation of X conditioned on it being greater than its (1− α)-
quantile [Rockafellar, 1997]. CVaR is in a way special as essentially all coherent risk
measures can be written in terms of it through the Kusuoka representation [Kusuoka,
2001].

In order to use CVaR in the context of learning and decision making, the abil-
ity to estimate the population CVaR from empirical samples is crucial. A starting
point for this is through concentration inequalities—just as in the standard setting
with the expectation. Concentration inequalities for CVaR have been developed and
improved over the past decade in the works of Brown [2007]; Wang and Gao [2010];
Prashanth and Ghavamzadeh [2013]; Thomas and Learned-Miller [2019a]; Kolla et al.
[2019a]. These inequalities can be used together with uniform convergence argu-
ments to produce generalization bounds for CVaR relevant in the statistical learning
setting. However, there are two shortcomings of proceeding in this fashion. As men-
tioned a few paragraphs earlier, uniform convergence bounds are typically not as
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tight as their PAC-Bayesian counterparts. What is more, simply applying the classi-
cal PAC-Bayesian analysis due to McAllester [2003] to existing concentration inequal-
ities for CVaR will also yield loose bounds; such bounds will be off by a “Jensen gap”
[Mhammedi et al., 2020b]. The second shortcoming is that existing concentration in-
equalities for CVaR have a sub-optimal dependence in the quantile level α in many
cases, making them loose in the first place. In this thesis, we will address the above
issues by simultaneously improving the dependence in the quantile level α in the
concentration bounds for CVaR—making the dependence optimal for many types of
distributions—and developing tight PAC-Bayesian bounds for CVaR (see Chapters 6
and 7). We achieve these results by reducing the task of estimating CVaR to that of
estimating a standard expectation from empirical means.

Risk monotonicity in statistical learning Risk monotonicity in statistical learning
is another machine learning topic that gained popularity in recent years [Viering
et al., 2019a,b; Viering and Loog, 2021]. Risk monotonicity is concerned with the
curve of the expected risk of a given hypothesis (expected loss over test samples) as
a function of the number of samples used to learn the hypothesis. It is tempting to
think that increasing the sample size by, say one, will result in an updated hypothesis
that decreases the risk in expectation. However, this does not seem to be true even
for the most natural hypothesis, such as the Empirical Risk Minimizer (ERM). In fact,
even though the risk of ERM typically converges to the minimum risk as the sam-
ple size grows, the intermediate behaviour can be somewhat arbitrary [Loog et al.,
2019]. Within the empirical community, the non-monotonic behaviour of the risk has
been witnessed through a phenomenon called double descent [Belkin et al., 2019; Mei
and Montanari, 2019; Nakkiran, 2019; Nakkiran et al., 2020a; Derezinski et al., 2020;
Chen et al., 2020; Nakkiran et al., 2020b], where the risk curve initially drops with
the number of samples, then goes up and peaks before decreasing again. The sam-
ple size at which this peak occurs typically indicates the cross-over point where the
model used switches from being over-parameterized to under-parameterized. How-
ever, over-parameterization versus under-parameterization is not the whole story. In
fact, other scenarios lead to non-monotonic behaviour, such as when selecting the
hypothesis based on a surrogate loss that is different from the one used for risk eval-
uation; doing this can lead to the dipping phenomenon [Loog and Duin, 2012; Loog,
2015], where the risk curve goes down to a minimum and increases after that, never
reaching the minimum again.

It turns out that the peaking (double descent) and dipping phenomena do not
fully characterize non-monotonic risk behaviour. Perhaps striking are the examples
suggested by Loog et al. [2019] who looked at simple linear regression settings in one
dimension with two instances and either square or absolute loss. They showed that
for the absolute loss the risk curve can oscillate in a perpetual fashion, highlight-
ing our current lack of understanding of generalization and confirming that non-
monotonic risk behaviour is not limited to only dipping or peaking. Viering et al.
[2019a] posed the open question of whether there exists a consistent algorithm that
always has a monotonic risk curve. In this thesis, we answer this question in the posi-
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tive by deriving the first risk monotonic algorithm in a general statistical learning set-
ting with bounded losses (see Chapter 8). Our analysis shows that risk-monotonicity
need not come at the price of a worse convergence rate to the optimal risk. In fact,
we show that under general conditions, the risk of the new algorithm converges to
the minimum risk at the standard Rademacher rate. One may also ask whether fast
rates are achievable when the learning problem is “easy” as characterized by the
Bernstein condition. By taking advantage of existing data-dependent bounds and
analyses developed in Chapter 5, we show that optimal fast rates are achievable un-
der the Bernstein condition while maintaining risk monotonicity. Finally, we study a
stronger notion of monotonicity for martingale difference sequences. To develop an
algorithm for this case, we derive a new data-dependent concentration inequality for
martingales difference sequence. This new inequality can be viewed as an empiri-
cal version of Freedman’s inequality [Freedman, 1975], or a version of the empirical
Bernstein bound [Maurer and Pontil, 2009] that holds for martingale difference se-
quences. We derive this concentration inequality by building a new supermartingale
based on the potential function of FreeGrad from Chapter 4.

1.3 Thesis Structure

This thesis is structured as a compilation of five published articles and an additional
two manuscripts under review. Chapters 2, 3, and 4 are on adaptivity in online
learning, and are based on the following publications:

• Chapter 2: Constant Regret, Generalized Mixability, and Mirror Descent.
Mhammedi, Z., Williamson, R. C. (2018). NeurIPS’18.

• Chapter 3: Lipschitz Adaptivity with Multiple Learning Rates in Online Learning.
Mhammedi, Z., Koolen, W. M., Van Erven, T. (2019). COLT’19.

• Chapter 4: Lipschitz and Comparator Norm Adaptivity in Online Learning.
Mhammedi, Z., Koolen, W. M. (2020). In COLT’20.

Chapters 5, 6, 7, and 8 are on adaptivity in statistical learning, and are based on the
following articles:

• Chapter 5: PAC-Bayes Un-Expected Bernstein Inequality.
Mhammedi, Z., Grunwald, P. D., Guedj, B. (2019). NeurIPS’19.

• Chapter 6: PAC-Bayesian Bound for the Conditional Value at Risk.
Mhammedi, Z., Guedj, B., and Williamson, R. C. (2020). NeurIPS’20

• Chapter 7: Concentration Inequalities for CVaR with Near-optimal Quantile Level
Dependence.
Mhammedi, Z., Koolen, W. M. (2021). Under review.

• Chapter 8: Risk-Monotonicity in Statistical Learning.
Mhammedi, Z., Husain, H. (2021). Under review.

In Chapter 9, we conclude and point to some exciting future research directions.



Chapter 2

Constant Regret, Generalized
Mixability, and Mirror Descent

This chapter considers the experts’ setting (a special case of OCO), where we study
achievable regret bounds for mixable losses. For such losses, it is a classical result
that the aggregating algorithm achieves a constant regret against any given expert
[Vovk, 1998]. Reid et al. [2015] introduced a generalized notion of mixability along
with a generalized version of the classical aggregating algorithm. This generalized
algorithm turns out to be mirror descent on the vector of experts’ losses for a given
choice of regularizer Φ. It was shown that when a loss is Φ-mixable (the general-
ized notion of mixability), a constant regret is achievable. However, characterizing
when losses are mixable in this generalized sense was left as an open problem by
Reid et al. [2015]. In this chapter, we give a complete characterization of the no-
tion of generalized mixability. Surprisingly, we show that the Shannon entropy S is
fundamental in the sense that if a loss is Φ-mixable for any entropy Φ, it must nec-
essarily be S-mixable. What is more, the algorithm induced by the Shannon entropy
(the aggregating algorithm) leads to the smallest worst-case regret among any other
generalized aggregating algorithm.
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Abstract

We consider the setting of prediction with expert advice; a learner makes predictions
by aggregating those of a group of experts. Under this setting, and for the right
choice of loss function and “mixing” algorithm, it is possible for the learner to
achieve a constant regret regardless of the number of prediction rounds. For
example, a constant regret can be achieved for mixable losses using the aggregating
algorithm. The Generalized Aggregating Algorithm (GAA) is a name for a family
of algorithms parameterized by convex functions on simplices (entropies), which
reduce to the aggregating algorithm when using the Shannon entropy S. For a given
entropy Φ, losses for which a constant regret is possible using the GAA are called
Φ-mixable. Which losses are Φ-mixable was previously left as an open question.
We fully characterize Φ-mixability and answer other open questions posed by [13].
We show that the Shannon entropy S is fundamental in nature when it comes to
mixability; any Φ-mixable loss is necessarily S-mixable, and the lowest worst-case
regret of the GAA is achieved using the Shannon entropy. Finally, by leveraging
the connection between the mirror descent algorithm and the update step of the
GAA, we suggest a new adaptive generalized aggregating algorithm and analyze
its performance in terms of the regret bound.

1 Introduction

Two fundamental problems in learning are how to aggregate information and under what circum-
stances can one learn fast. In this paper, we consider the problems jointly, extending the understanding
and characterization of exponential mixing due to [20], who showed that not only does the “aggregat-
ing algorithm” learn quickly when the loss is suitably chosen, but that it is in fact a generalization of
classical Bayesian updating, to which it reduces when the loss is log-loss [22]. We consider a general
class of aggregating schemes, going beyond Vovk’s exponential mixing, and provide a complete
characterization of the mixing behavior for general losses and general mixing schemes parameterized
by an arbitrary entropy function.

In the game of prediction with expert advice a learner predicts the outcome of a random variable
(outcome of the environment) by aggregating the predictions of a pool of experts. At the end of
each prediction round, the outcome of the environment is announced and the learner and experts
suffer losses based on their predictions. We are interested in algorithms that the learner can use to
“aggregate” the experts’ predictions and minimize the regret at the end of the game. In this case,
the regret is defined as the difference between the cumulative loss of the learner and that of the best
expert in hindsight after T rounds.

The Aggregating Algorithm (AA) [20] achieves a constant regret — a precise notion of fast learning
— for mixable losses; that is, the regret is bounded from above by a constant R` which depends only
on the loss function ` and not on the number of rounds T . It is worth mentioning that mixability

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



is a weaker condition than exp-concavity, and contrary to the latter, mixability is an intrinsic,
parametrization-independent notion [10].

Reid et al. [13] introduced the Generalized Aggregating Algorithm (GAA), going beyond the AA. The
GAA is parameterized by the choice of a convex function Φ on the simplex (entropy) and reduces to
the AA when Φ is the Shannon entropy. The GAA can achieve a constant regret for losses satisfying
a certain condition called Φ-mixability (characterizing when losses are Φ-mixable was left as an open
problem). This regret depends jointly on the generalized mixability constant ηΦ

` — essentially the
largest η such that ` is ( 1

ηΦ)-mixable — and the divergence DΦ(eθ, q), where q ∈ ∆k is a prior
distribution over k experts and eθ is the θth standard basis element of Rk [13]. At each prediction
round, the GAA can be divided into two steps; a substitution step where the learner picks a prediction
from a set specified by the Φ-mixability condition; and an update step where a new distribution q
over experts is computed depending on their performance. Interestingly, this update step is exactly
the mirror descent algorithm [17, 12] which minimizes the weighted loss of experts.

Contributions. We introduce the notion of a support loss; given a loss ` defined on any action
space, there exists a proper loss ` which shares the same Bayes risk as `. When a loss is mixable,
one can essentially work with a proper (support) loss instead — this will be the first stepping stone
towards a characterization of (generalized) mixability.

The notion of Φ-mixable and the GAA were previously restricted to finite losses. We extend these to
allow for the use of losses which can take infinite values (such as the log-loss), and we show in this
case that under the Φ-mixability condition a constant regret is achievable using the GAA.

For an entropy Φ and a loss `, we derive a necessary and sufficient condition (Theorems 13 and
14) for ` to be Φ-mixable. In particular, if ` and Φ satisfy some regularity conditions, then ` is
Φ-mixable if and only if η`Φ− S is convex on the simplex, where S is the Shannon entropy and η`
is essentially the largest η such that ` is η-mixable [20, 19]. This implies that a loss ` is Φ-mixable
only if it is η-mixable for some η > 0. This, combined with the fact that η-mixability is equivalently
( 1
η S)-mixability (Theorem 12), reflects one fundamental aspect of the Shannon entropy.

Then, we derive an explicit expression for the generalized mixability constant ηΦ
` (Corollary 17), and

thus for the regret bound of the GAA. This allows us to compare the regret bound RΦ
` of any entropy

Φ with that of the Shannon entropy S. In this case, we show (Theorem 18) that RS
` ≤ RΦ

` ; that is, the
GAA achieves the lowest worst-case regret when using the Shannon entropy — another result which
reflects the fundamental nature of the Shannon entropy.

Finally, by leveraging the connection between the GAA and the mirror descent algorithm, we present
a new algorithm — the Adaptive Generalized Aggregating Algorithm (AGAA). This algorithm
consists of changing the entropy function at each prediction round similar to the adaptive mirror
descent algorithm [17]. We analyze the performance of this algorithm in terms of its regret bound.

Layout. In §2, we give some background on loss functions and present new results (Theorem 4 and
5) based on the new notion of a proper support loss; we show that, as far as mixability is concerned,
one can always work with a proper (support) loss instead of the original loss (which can be defined on
an arbitrary action space). In §3, we introduce the notions of classical and generalized mixability and
derive a characterization of Φ-mixability (Theorems 13 and 14). We then introduce our new algorithm
— the AGAA — and analyze its performance. We conclude the paper by a general discussion and
direction for future work. All proofs, except for that of Theorem 16, are deferred to Appendix C.

Notation. Let m ∈ N. We denote [m] := {1, . . . ,m} and m̃ := m − 1. We write 〈·, ·〉 for the
standard inner product in Euclidean space. Let ∆m := {p ∈ [0,+∞[m : 〈p,1m〉 = 1} be the
probability simplex in Rm, and let ∆̃m := {p̃ ∈ [0,+∞[m̃ : 〈p̃,1m̃〉 ≤ 1}. We will extensively
make use of the affine map qm : Rm̃ → Rm defined by

qm(u) := [u1, . . . , um̃, 1− 〈u,1m̃〉]T. (1)

We denote int C, ri C, and rbd C the interior, relative interior, and relative boundary of a set C ∈ Rm,
respectively [8]. The sub-differential of a function f : Rm → R ∪ {+∞} at u ∈ Rm such that
f(u) < +∞ is defined by ([8])

∂f(u) := {s∗ ∈ Rm : f(v) ≥ f(u) + 〈s∗,v − u〉 ,∀v ∈ Rm}. (2)
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Table 1 on page 9 provides a list of the main symbols used in this paper.

2 Loss Functions

In general, a loss function is a map ` : X × A → [0,+∞] where X is an outcome set and A is an
action set. In this paper, we only consider the case X = [n], i.e. finite outcome space. Overloading
notation slightly, we define the mapping ` : A → [0,+∞]n by [`(a)]x = `(x,a),∀x ∈ [n] and
denote `x(·) := [`(·)]x. We further extend the new definition of ` to the set

⋃
k≥1Ak such that for

x ∈ [n] and A := [aθ]
T
1≤θ≤k ∈ Ak, `x(A) := [`x(aθ)]

T
1≤θ≤k ∈ [0,+∞]k. We define the effective

domain of ` by dom ` := {a ∈ A : `(a) ∈ [0,+∞[n}, and the loss surface by S` := {`(a) : a ∈
dom `}. We say that ` is closed if S` is closed in Rn. The superprediction set of ` is defined by
S∞` := {`(a) + d : (a,d) ∈ A× [0,+∞[n}. Let S` := S∞` ∩ [0,+∞[n be its finite part.

Let a0,a1 ∈ A. The prediction a0 is said to be better than a1 if the component-wise inequality
`(a0) ≤ `(a1) holds and there exists some x ∈ [n] such that `x(a0) < `x(a1) [24]. A loss ` is
admissible if for any a ∈ A there are no better predictions.

For the rest of this paper (except for Theorem 4), we make the following assumption on losses;

Assumption 1. ` is a closed, admissible loss such that dom ` 6= ∅.

It is clear that there is no loss of generality in considering only admissible losses. The condition that `
is closed is a weaker version of the more common assumption thatA is compact and that a 7→ `(x,a)
is continuous with respect to the extended topology of [0,+∞] for all x ∈ [n] [9, 6]. In fact, we do
not make any explicit topological assumptions on the set A (A is allowed to be open in our case).
Our condition simply says that if a sequence of points on the loss surface converges in [0,+∞[n,
then there exists an action in A whose image through the loss is equal to the limit. For example the
0-1 loss `0-1 is closed, yet the map p 7→ `0-1(x,p) is not continuous on ∆2, for x ∈ {0, 1}.
In this paragraph letA be the n-simplex, i.e. A = ∆n. We define the conditional risk L` : ∆n×∆n →
R by L`(p, q) = Ex∼p[`x(q)] = 〈p, `(q)〉 and the Bayes risk by L`(p) := infq∈∆n

L`(p, q). In
this case, the loss ` is proper if L`(p) = 〈p, `(p)〉 ≤ 〈p, `(q)〉 for all p 6= q in ∆n (and strictly
proper if the inequality is strict). For example, the log-loss `log : ∆n → [0,+∞]n is defined by
`log(p) = − log p, where the ‘log’ of a vector applies component-wise. One can easily check that
`log is strictly proper. We denote Llog its Bayes risk.

The above definition of the Bayes risk is restricted to losses defined on the simplex. For a general
loss ` : A → [0,+∞]n, we use the following definition;

Definition 2 (Bayes Risk). Let ` : A → [0,+∞]n be a loss such that dom ` 6= ∅. The Bayes risk
L` : Rn → R ∪ {−∞} is defined by

∀u ∈ Rn, L`(u) := inf
z∈S`

〈u, z〉 . (3)

The support function of a set C ⊆ Rn is defined by σC(u) := supz∈C〈u, z〉, u ∈ Rn, and thus it is
easy to see that one can express the Bayes risk as L`(u) = −σS`

(−u). Our definition of the Bayes
risk is slightly different from previous ones ([9, 19, 6]) in two ways; 1) the Bayes risk is defined on
all Rn instead of [0,+∞[n; and 2) the infimum is taken over the finite part of the superprediction set
S∞` . The first point is a mere mathematical convenience and makes no practical difference since
L`(p) = −∞ for all p /∈ [0,+∞[n. For the second point, swapping S` for S∞` in (3) does not
change the value of L` for mixable losses (see Appendix D). However, we chose to work with S` —
a subset of Rn — as it allows us to directly apply techniques from convex analysis.

Definition 3 (Support Loss). We call a map ` : ∆n → [0,+∞]n a support loss of ` if

∀p ∈ ri ∆n, `(p) ∈ ∂σS`
(−p);

∀p ∈ rbd ∆n,∃(pm) ⊂ ri ∆n, pm
m→∞→ p and `(pm)

m→∞→ `(p) component-wise,

where ∂σS`
(see (2)) is the sub-differential of the support function — σS`

— of the set S`.

Theorem 4. Any loss ` : A → [0,+∞]n such that dom ` 6= ∅, has a proper support loss ` with the
same Bayes risk, L`, as `.
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Theorem 4 shows that regardless of the action space on which the loss is defined, there always exists
a proper loss whose Bayes risk coincides with that of the original loss. This fact is useful in situations
where the Bayes risk contains all the information one needs — such is the case for mixability. The
next Theorem shows a stronger relationship between a loss and its corresponding support loss.
Theorem 5. Let ` : A → [0,+∞]n be a loss and ` be a proper support loss of `. If the Bayes risk L`
is differentiable on ]0,+∞[n, then ` is uniquely defined on ri ∆n and

∀p ∈ dom `, ∃a∗ ∈ dom `, `(a∗) = `(p),

∀a ∈ dom `, ∃(pm) ⊂ ri ∆n, `(pm)
m→∞→ `(a) component-wise.

Theorem 5 shows that when the Bayes risk is differentiable (a necessary condition for mixability —
Theorem 12), the support loss is almost a reparametrization of the original loss, and in practice, it is
enough to work with support losses instead. This will be crucial for characterizing Φ-mixability.

3 Mixability in the Game of Prediction with Expert Advice

We consider the setting of prediction with expert advice [20]; there a is pool of k experts, parame-
terized by θ ∈ [k], which make predictions atθ ∈ A at each round t. In the same round, the learner
predicts atM := M (at1:k, (x

s,as1:k)1≤s<t) ∈ A, where a·1:k := [a·θ]1≤θ≤k, (xs) ⊂ [n] are outcomes
of the environment, and M : Ak × ([n] × Ak)∗ → A is a merging strategy [19]. At the end of
round t, xt is announced and each expert θ [resp. learner] suffers a loss `xt(aθ) [resp. `xt(atM)],
where ` : A → [0,+∞]n. After T > 0 rounds, the cumulative loss of each expert θ [resp. learner] is
given by Loss`θ(T ) :=

∑T
t=1 `xt(a

t
θ) [resp. Loss`M(T ) :=

∑T
t=1 `xt(a

t
M)]. We say that M achieves

a constant regret if ∃R > 0,∀T > 0,∀θ ∈ [k],Loss`M(T ) ≤ Loss`θ(T ) + R. In what follows, this
game setting will be referred to by Gn` (A, k) and we only consider the case where k ≥ 2.

3.1 The Aggregating Algorithm and η-mixability

Definition 6 (η-mixability). For η > 0, a loss ` : A → [0,+∞]n is said to be η-mixable, if ∀q ∈ ∆k,

∀a1:k ∈ Ak,∃a∗ ∈ A,∀x ∈ [n], `x(a∗) ≤ −η−1 log 〈q, exp(−η`x(a1:k))〉 , (4)
where the exp applies component-wise. Letting H` := {η > 0: ` is η-mixable}, we define the
mixability constant of ` by η` := supH` if H` 6= ∅; and 0 otherwise. ` is said to be mixable if
η` > 0.

If a loss ` is η-mixable for η > 0, the AA (Algorithm 1) achieves a constant regret in the Gn` (A, k)
game[20]. In Algorithm 1, the map S` : S∞` → A is a substitution function of the loss ` [20, 10];
that is, S` satisfies the component-wise inequality `(G`(s)) ≤ s, for all s ∈ S∞` .

It was shown by Chernov et al. [6] that the η-mixability condition (4) is equivalent to the convexity
of the η-exponentiated superprediction set of ` defined by exp(−ηS∞` ) := {exp(−ηs) : s ∈ S∞` }.
Using this fact, van Erven et al. [19] showed that the mixability constant η` of a strictly proper loss
` : ∆n → [0,+∞[n, whose Bayes risk is twice continuously differentiable on ]0,+∞[n, is equal to

η` := inf
p̃∈int ∆̃n

(λmax([HL̃log(p̃)]−1HL̃`(p̃)))−1, (5)

where H is the Hessian operator and L̃· := L· ◦qn (qn was defined in (1)). The next theorem extends
this result by showing that the mixability constant η` of any loss ` is lower bounded by η` in (5), as
long as ` satisfies Assumption 1 and its Bayes risk is twice differentiable.
Theorem 7. Let η > 0 and ` : A → [0,+∞]n be a loss. Suppose that dom ` = A and that L` is
twice differentiable on ]0,+∞[n. If η` > 0 then ` is η`-mixable. In particular, η` ≥ η`.
We later show that, under the same conditions as Theorem 7, we actually have η` = η` (Theorem 16)
which indicates that the Bayes risk contains all the information necessary to characterize mixability.
Remark 8. In practice, the requirement ‘dom ` = A’ is not necessarily a strict restriction to finite
losses; it is often the case that a loss ¯̀ : Ā → [0,+∞]n only takes infinite values on the relative
boundary of Ā (such is the case for the log-loss defined on the simplex), and thus the restriction
` := ¯̀|A, where A = ri Ā, satisfies dom ` = A. It follows trivially from the definition of mixability
(4) that if ` is η-mixable and ¯̀ is continuous with respect to the extended topology of [0,+∞]n — a
condition often satisfied — then ¯̀ is also η-mixable.
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3.2 The Generalized Aggregating Algorithm and (η,Φ)−mixability

A function Φ: Rk → R∪{+∞} is an entropy if it is convex, its epigraph epi Φ := {(u, h) : Φ(u) ≤
h} is closed in Rk × R, and ∆k ⊆ dom Φ := {u ∈ Rk : Φ(u) < +∞}. For example, the Shannon
entropy is defined by S(q) = +∞ if q /∈ [0,+∞[k, and

∀q ∈ [0,+∞[k, S(q) =
∑

i∈[k] : qi 6=0

qi log qi, (6)

The divergence generated by an entropy Φ is the map DΦ : Rn × dom Φ→ [0,+∞] defined by

DΦ(v,u) :=

{
Φ(v)− Φ(u)− Φ′(u;v − u), if v ∈ dom Φ;
+∞, otherwise. (7)

where Φ′(u;v−u) := limλ↓0[Φ(u+λ(v−u))−Φ(u)]/λ (the limit exists since Φ is convex [15]).

Definition 9 (Φ-mixability). Let Φ: Rk → R ∪ {+∞} be an entropy. A loss ` : A → [0,+∞]n is
(η,Φ)-mixable for η > 0 if ∀q ∈ ∆k, ∀a1:k ∈ Ak, ∃a∗ ∈ A, such that

∀x ∈ [n], `x(a∗) ≤ MixηΦ(`x(a1:k), q) := inf
q̂∈∆k

〈q̂, `x(a1:k)〉+ η−1DΦ(q̂, q). (8)

When η = 1, we simply say that ` is Φ-mixable and we denote MixΦ := Mix1
Φ. Letting HΦ

` := {η >
0: ` is (η,Φ)-mixable}, we define the generalized mixability constant of (`,Φ) by ηΦ

` := supHΦ
` , if

HΦ
` 6= ∅; and 0 otherwise.

Reid et al. [13] introduced the GAA (see Algorithm 2) which uses an entropy function Φ: Rk →
R ∪ {+∞} and a substitution function S` (see previous section) to specify the learner’s merging
strategy M. It was shown that the GAA reduces to the AA when Φ is the Shannon entropy S. It was
also shown that under some regularity conditions on Φ, the GAA achieves a constant regret in the
Gn` (A, k) game for any finite, (η,Φ)-mixable loss.

Our definition of Φ-mixability differs slightly from that of Reid et al. [13] — we use directional
derivatives to define the divergenceDΦ. This distinction makes it possible to extend the GAA to losses
which can take infinite values (such as the log-loss defined on the simplex). We show, in this case,
that a constant regret is still achievable under the (η,Φ)-mixability condition. Before presenting this
result, we define the notion of ∆-differentiability; for l ⊆ [k], let ∆l := {q ∈ ∆k : qθ = 0,∀θ /∈ l}.
We say that an entropy Φ is ∆-differentiable if ∀l ⊆ [k], ∀u,u0 ∈ ri ∆l, the map z 7→ Φ′(u; z) is
linear on L0

l := {λ(v − u0) : (λ,v) ∈ R×∆l}.
Theorem 10. Let Φ: Rk → R ∪ {+∞} be a ∆-differentiable entropy. Let ` : A → [0,+∞]n be a
loss (not necessarily finite) such that L` is twice differentiable on ]0,+∞[n. If ` is (η,Φ)-mixable
then the GAA achieves a constant regret in the Gn` (A, k) game; for any sequence (xt,at1:k)Tt=1,

Loss`GAA(T )− min
θ∈[k]

Loss`θ(T ) ≤ RΦ
` := inf

q∈∆k

max
θ∈[k]

DΦ(eθ, q)/ηΦ
` , (9)

for initial distribution over experts q0 = argminq∈∆k
maxθ∈[k]DΦ(eθ, q), where eθ is the θth basis

element of Rk, and any substitution function S`.

Looking at Algorithm 2, it is clear that the GAA is divided into two steps; 1) a substitution step which
consists of finding a prediction a∗ ∈ A satisfying the mixability condition (8) using a substitution
function S`; and 2) an update step where a new distribution over experts is computed. Except for the
case of the AA with the log-loss (which reduces to Bayesian updating [22]), there is not a unique
choice of substitution function in general. An example of substitution function S` is the inverse loss
[23]. Kamalaruban et al. [10] discuss other alternatives depending on the curvature of the Bayes risk.
Although the choice of S` can affect the performance of the algorithm to some extent [10], the regret
bound in (9) remains unchanged regardless of S`. On the other hand, the update step is well defined
and corresponds to a mirror descent step [13] (we later use this fact to suggest a new algorithm).
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Algorithm 1: Aggregating Algorithm

input :q0 ∈ ∆k; η > 0; A η-mixable loss
` : A → [0,+∞]n; A substitution
function S`.

output :Learner’s predictions (at∗)

for t = 1 to T do
Observe At = at1:k ∈ Ak;
at∗ ←
S`

(
− 1
η log

∑
θ∈[k] q

t−1
θ e−η`(a

t
θ)
)

;

Observe outcome xt ∈ [n];

qtθ ←
qt−1
θ exp(−η`xt(atθ))

〈qt−1, exp(−η`xt(At))〉
,∀θ ∈ [k];

end

Algorithm 2: Generalized Aggregating Algo-
rithm
input :q0 ∈ ∆k; A ∆-differentiable entropy

Φ: Rk → R ∪ {+∞}; η > 0; A
(η,Φ)-mixable loss
` : A → [0,+∞]n; A substitution
function S`.

output :Learner’s predictions (at∗)

for t = 1 to T do
Observe At = at1:k ∈ Ak;
at∗ ←
S`

([
MixηΦ(`x(At), qt−1)

]T
1≤x≤n

)
;

Observe outcome xt ∈ [n];
qt ←
argmin
µ∈∆k

〈µ, `xt(At)〉+ 1
ηDΦ(µ, qt−1);

end

We conclude this subsection with two new and important results which will lead to a characterization
of Φ-mixability. The first result shows that (η,S)-mixability is equivalent to η-mixability, and the
second rules out losses and entropies for which Φ-mixability is not possible.

Theorem 11. Let η > 0. A loss ` : A → [0,+∞]n is η-mixable if and only if ` is (η,S)-mixable.

Proposition 12. Let Φ: Rk → R ∪ {+∞} be an entropy and ` : A → [0,+∞]n. If ` is Φ-mixable,
then the Bayes risk satisfies L` ∈ C1(]0,+∞[n). If, additionally, L` is twice differentiable on
]0,+∞[n, then Φ must be strictly convex on ∆k.

It should be noted that since the Bayes risk of a loss ` must be differentiable for it to be Φ-mixable
for some entropy Φ, Theorem 5 says that we can essentially work with a proper support loss ` of `.
This will be crucial in the proof of the sufficient condition of Φ-mixability (Theorem 14).

3.3 A Characterization of Φ-Mixability

In this subsection, we first show that given an entropy Φ: Rk → R ∪ {+∞} and a loss ` : A →
[0,+∞]n satisfying certain regularity conditions, ` is Φ-mixable if and only if

η`Φ− S is convex on ∆k. (10)

Theorem 13. Let η > 0, ` : A → [0,+∞]n a η-mixable loss, and Φ: Rk → R ∪ {+∞} an entropy.
If ηΦ− S is convex on ∆k, then ` is Φ-mixable.

The converse of Theorem 13 also holds under additional smoothness conditions on Φ and `;

Theorem 14. Let ` : A → [0,+∞]n be a loss such that L` is twice differentiable on ]0,+∞[n, and
Φ: Rk → R ∪ {+∞} an entropy such that Φ̃ := Φ ◦ qk is twice differentiable on int ∆̃k. Then ` is
Φ-mixable only if η`Φ− S is convex on ∆k.

As consequence of Theorem 14, if a loss ` is not classically mixable, i.e. η` = 0, it cannot be
Φ-mixable for any entropy Φ. This is because η`Φ − S

∗
= η`Φ − S = −S is not convex (where

equality ‘*’ is due to Theorem 7).

We need one more result before arriving at (10); Recall that the mixability constant η` is defined as
the supremum of the set H` := {η ≥ 0: ` is η-mixable}. The next lemma essentially gives a sufficient
condition for this supremum to be attained when H` is non-empty — in this case, ` is η`-mixable.

Lemma 15. Let ` : A → [0,+∞]n be a loss. If dom ` = A, then either H` = ∅ or η` ∈ H`.

Theorem 16. Let ` and Φ be as in Theorem 14 with dom ` = A. Then η` = η`. Furthermore, ` is
Φ-mixable if and only if η`Φ− S is convex on ∆k.

6



Proof. Suppose now that ` is mixable. By Lemma 15, it follows that ` is η`-mixable, and from
Theorem 11, ` is (η−1

` S)-mixable. Substituting Φ for η−1
` S in Theorem 14 implies that (η`/η`−1) S

is convex on ri ∆k. Thus, η` ≤ η`, and since from Theorem 7 η` ≤ η`, we conclude that η` = η`.

From Theorem 14, if ` is Φ-mixable then η`Φ− S is convex on ∆k. Now suppose that η`Φ− S is
convex on ∆k. This implies that η` > 0, and thus from Theorem 7, ` is η`-mixable. Now since ` is
η`-mixable and η`Φ− S is convex on ∆k, Theorem 13 implies that ` is Φ-mixable.

Note that the condition ‘dom ` = A’ is in practice not a restriction to finite losses — see Remark
8. Theorem 16 implies that under the regularity conditions of Theorem 14, the Bayes risk L` [resp.
(L`,Φ)] contains all necessary information to characterize classical [resp. generalized] mixability.

Corollary 17 (The Generalized Mixability Constant). Let ` and Φ be as in Theorem 16. Then the
generalized mixability constant (see Definition 9) is given by

ηΦ
` = η` inf

q̃∈int ∆̃k

λmin(HΦ̃(q̃)(HS̃(q̃))−1), (11)

where Φ̃ := Φ ◦ qk, S̃ = S ◦qk, and qk is defined in (1).

Observe that when Φ = S, (11) reduces to ηS
` = η` as expected from Theorem 11 and Theorem 16.

3.4 The (In)dependence Between ` and Φ and the Fundamental Nature of S

So far, we showed that the Φ-mixability of losses satisfying Assumption 1 is characterized by the
convexity of ηΦ−S, where η ∈]0, η`] (see Theorems 13 and 14). As a result, and contrary to what was
conjectured previously [13], the generalized mixability condition does not induce a correspondence
between losses and entropies; for a given loss `, there is no particular entropy Φ` — specific to the
choice of ` — which minimizes the regret of the GAA. Rather, the Shannon entropy S minimizes the
regret regardless of the choice of ` (see Theorem 18 below). This reflects one fundamental aspect of
the Shannon entropy.

Nevertheless, given a loss ` and entropy Φ, the curvature of the loss surface S` determines the
maximum ‘learning rate’ ηΦ

` of the GAA; the curvature of S` is linked to η` through the Hessian of
the Bayes risk (see Theorem 49 in Appendix H.2), which is in turn linked to ηΦ

` through (11).

Given a loss `, we now use the expression of ηΦ
` in (11) to explicitly compare the regret bounds RΦ

`

and RS
` achieved with the GAA (see (9)) using entropy Φ and the Shannon entropy S, respectively.

Theorem 18. Let S,Φ: Rk → R ∪ {+∞}, where S is the Shannon entropy and Φ is an entropy
such that Φ̃ := Φ ◦ qk is twice differentiable on int ∆̃k. A loss ` : A → [0,+∞[n with L` twice
differentiable on ]0,+∞[n, is Φ-mixable only if RS

` ≤ RΦ
` .

Theorem 18 is consistent with Vovk’s result [20, §5] which essentially states that the regret bound
RS
` = η−1

` log k is in general tight for η-mixable losses.

4 Adaptive Generalized Aggregating Algorithm

In this section, we take advantage of the similarity between the GAA’s update step and the mirror
descent algorithm (see Appendix E) to devise a modification to the GAA leading to improved
regret bounds in certain cases. The GAA can be modified in (at least) two immediate ways; 1)
changing the learning rate at each time step to speed-up convergence; and 2) changing the entropy,
i.e. the regularizer Φ, at each time step — similar to the adaptive mirror descent algorithm [17, 12].
In the former case, one can use Corollary 17 to calculate the maximum ‘learning rate’ under the
Φ-mixability constraint. Here, we focus on the second method; changing the entropy at each round.
Algorithm 3 displays the modified GAA — which we call the Adaptive Generalized Aggregating
Algorithm (AGAA) — in its most general form. In Algorithm 3, Φ?(z) := supq∈∆k

〈q, z〉 − Φ(q) is
the entropic dual of Φ.
Given a (η,Φ)-mixable loss `, we verify that Algorithm 3 is well defined; for simplicity, assume that
dom ` = A and L` is twice differentiable on ]0,+∞[n. From the definition of an entropy, |Φ| < +∞
on ∆k, and thus the entropic dual Φ?t is defined and finite on all Rk (in particular at θt). On the
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Algorithm 3: Adaptive Generalized Aggregating Algorithm (AGAA)

input :θ1 = 0 ∈ Rk; A ∆-differentiable entropy Φ: Rk → R ∪ {+∞}; η > 0; A
(η,Φ)-mixable loss ` : A → [0,+∞[n; A substitution function S`; A protocol of
choosing βt at round t.

output :Learner’s predictions (at∗)

for t = 1 to T do
Let Φt(w) := Φ(w)− 〈w,βt − θt〉; // New entropy
Observe At := at1:k ∈ Ak ; // Experts’ predictions

at∗ ← S`

([
MixηΦt(`x(At),∇Φ?t (θ

t))
]T
1≤x≤n

)
; // Learner’s prediction

Observe xt ∈ [n] and pick some vt ∈ Rk;
θt+1 ← θt − η`xt(At);

end

other hand, from Proposition 12, Φ is strictly convex on ∆k which implies that Φ? (and thus Φ?t ) is
differentiable on Rk (see e.g. [8, Thm. E.4.1.1]). It remains to check that ` is (η,Φt)-mixable. Since
for η > 0, (η,Φt)-mixability is equivalent to ( 1

ηΦt)-mixability (by definition), Theorem 16 implies
that ` is (η,Φt)-mixable if and only if η`η−1Φt − S is convex on ∆k. This is in fact the case since
Φt is an affine transformation of Φ, and we have assumed that ` is (η,Φ)-mixable.

In what follows, we focus on a particular instantiation of Algorithm 3 where we choose βt :=

−η∑t−1
s=1(`xs(A

s)+vs), for some (arbitrary for now) (vs) ⊂ Rk. The (vt) vectors act as correction
terms in the update step of the AGAA. Using standard duality properties (see Appendix A), it is easy
to show that the AGAA reduces to the GAA except for the update step where the new distribution
over experts at round t ∈ [T ] is now given by

qt = ∇Φ?(∇Φ(qt−1)− η`xt(At)− ηvt).
Theorem 19. Let Φ: Rk → R ∪ {+∞} be a ∆-differentiable entropy. Let ` : A → [0,+∞]n

be a loss such that L` is twice differentiable on ]0,+∞[n. Let βt = −η∑t−1
s=1(`xs(A

s) + vs),
where vs ∈ Rk and As := as1:k ∈ Ak. If ` is (η,Φ)-mixable then for initial distribution q0 =
argminq∈∆k

maxθ∈[k]DΦ(eθ, q) and any sequence (xt,at1:k)Tt=1, the AGAA achieves the regret

∀θ ∈ [k], Loss`AGAA(T )− Loss`θ(T ) ≤ RΦ
` + ∆Rθ(T ), (12)

where ∆Rθ(T ) :=
∑T−1
t=1 (vtθ − 〈vt, qt〉).

Theorem 19 implies that if the sequence (vt) is chosen such that ∆Rθ∗(T ) is negative for the best
expert θ∗ (in hindsight), then the regret bound ‘RΦ

` + ∆Rθ∗(T )’ of the AGAA is lower than that of
the GAA (see (9)), and ultimately that of the AA (when Φ = S). Unfortunately, due to Vovk’s result
[20, §5] there is no “universal” choice of (vt) which guarantees that ∆Rθ∗(T ) is always negative.
However, there are cases where this term is expected to be negative.

Consider a dataset where it is typical for the best experts (i.e., the θ∗’s) to perform poorly at some
point during the game, as measured by their average loss, for example. Under such an assumption,
choosing the correction vectors vt to be negatively proportional to the average losses of experts, i.e.
vt := −αt

∑t
s=1 `xs(A

s) (for small enough α > 0), would be consistent with the idea of making
∆Rθ∗(T ) negative. To see this, suppose expert θ∗ is performing poorly during the game (say at
t < T ), as measured by its instantaneous and average loss. At that point the distribution qt would put
more weight on experts performing better than θ∗, i.e. having a lower average loss. And since vtθ is
negatively proportional to the average loss of expert θ, the quantity vtθ∗ − 〈vt, qt〉 would be negative
— consistent with making ∆Rθ∗(T ) < 0. On the other hand, if expert θ∗ performs well during the
game (say close to the best) then vtθ∗ −〈vt, qt〉 ' 0, since qt would put comparable weights between
θ∗ and other experts (if any) with similar performance.
Example 1. (A Negative Regret). One can construct an example that illustrates the idea above. Con-
sider the Brier game G2

`Brier
(∆2, 2); a probability game with 2 experts {θ1, θ2}, 2 outcomes {0, 1},

and where the loss `Brier is the Brier loss [21] (which is 1-mixable). Assume that; expert θ1 consis-
tently predicts Pr(x = 0) = 1/2; expert θ2 predicts Pr(x = 0) = 1/4 during the first 50 rounds, then
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switches to predicting Pr(x = 0) = 3/4 thereafter; the outcome is always x = 0. A straightforward
simulation using the AGAA with the Shannon entropy, Vovk’s substitution function for the Brier loss
[21], βt as in Theorem 19 with vt := − 1

8t

∑t
s=1 `Brier(x

s, As), yields RΦ
`Brier

+ ∆Rθ∗(T ) ' −5,
∀T ≥ 150, where in this case θ∗ = θ2 is the best expert for T ≥ 150. The learner then does better than
the best expert. If we use the AA instead, the learner does worse than θ2 by ' RS

`Brier
= log 2.

In real data, the situation described above — where the best expert does not necessarily perform
optimally during the game — is typical, especially when the number of rounds T is large. We have
tested the aggregating algorithms on real data as studied by Vovk [21]. We compared the performance
of the AA with the AGAA, and found that the AGAA outperforms the AA, and in fact achieved a
negative regret on two data sets. Details of the experiments are in Appendix J.

As pointed out earlier, there are situations where ∆Rθ∗(T ) ≥ 0 even for the choice of (vt) in
Example 1, and this could potentially lead to a large positive regret for the AGAA. There is an easy
way to remove this risk at a small price; the outputs of the AGAA and the AA can themselves be
considered as expert predictions. These predictions can in turn be passed to a new instance of the
AA to yield a meta prediction. The resulting worst case regret is guaranteed not to exceed that of the
original AA instance by more than η−1 log 2 for an η-mixable loss. We test this idea in Appendix J.

5 Discussion and Future Work

In this work, we derived a characterization of Φ-mixability, which enables a better understanding of
when a constant regret is achievable in the game of prediction with expert advice. Then, borrowing
techniques from mirror descent, we proposed a new “adaptive” version of the generalized aggregating
algorithm. We derived a regret bound for a specific instantiation of this algorithm and discussed
certain situations where the algorithm is expected to perform well. We empirically demonstrated the
performance of this algorithm on football game predictions (see Appendix J).

Vovk [20, §5] essentially showed that given an η-mixable loss there is no algorithm that can achieve
a lower regret bound than η−1 log k on all sequences of outcomes. There is no contradiction in trying
to design algorithms which perform well in expectation (maybe better than the AA) on “typical” data
while keeping the worst case regret close to η−1 log k. This was the motivation behind the AGAA.
In future work, we will explore other choices for the correction vector vt with the goal of lowering
the (expected) bound in (12). In the present work, we did not study the possibility of varying the
learning rate η. One might obtain better regret bounds using an adaptive learning rate as is the case
with the mirror descent algorithm. Our Corollary 17 is useful in that it gives an upper bound on the
maximal learning rate under the Φ-mixability constraint. Finally, although our Theorem 18 states that
worst-case regret of the GAA is minimized when using the Shannon entropy, it would be interesting
to study the dynamics of the AGAA with other entropies.

Table 1: A short list of the main symbols used in the paper

Symbol Description

` A loss function defined on a set A and taking values in [0,+∞]n (see Sec. 2)
S` The finite part of the superprediction set of a loss ` (see Sec. 2)
` The support loss of a loss ` (see Def. 3)
L` The Bayes risk corresponding to a loss ` (see Definition 2)
L̃` The composition of the Bayes risk with an affine function; L̃` := L` ◦ qn (see (1))
S The Shannon Entropy (see (6))
η` The mixability constant of ` (see Def. 6) ; essentially the largest η s.t. ` is η-mixable.
η` Essentially the largest η such that ηL` − Llog is convex (see (5) and [19])
ηΦ
` The generalized mixability constant (see Def. 9); the largest η s.t. ` is (η,Φ)-mixable.
S` A substitution function of a loss ` (see Sec. 3.1)
RΦ
` The regret achieved by the GAA using entropy Φ (see (9) and Algorithm 2)
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A Notation and Preliminaries

For n ∈ N, we define ñ = n− 1. We denote [n] := {1, . . . , n} the set of integers between 1 and n.
Let 〈·, ·〉 denote the standard inner product in Rn and ‖·‖ the corresponding norm. Let In and 1n
denote the n× n identity matrix and the vector of all ones in Rn. Let e1, . . . , en denote the standard
basis for Rn. For a set l ( N and r1, . . . , rn ∈ Rk, we denote [ri]i∈l := [ri1 , . . . , rik ] ∈ Rn×k,
where l = {i1, . . . , ik} and i1 < · · · < ik. We denote its transpose by [ri]

T
i∈l ∈ Rk×n. For two

vectors p, q ∈ Rn, we write p ≤ q [resp. p < q], if ∀i ∈ [n], pi ≤ qi [resp. pi < qi]. We also
denote p � q = [piqi]

T
1≤i≤n ∈ Rn the Hadamard product of p and q. If (ck) is a sequence of

vectors in C ⊆ Rn, we simply write (ck) ⊂ C. For a sequence (vm) ⊂ Rn, we write vm
m→∞→ v

or limm→∞ vm = v, if ∀i ∈ [n], limm→∞[vm]i = vi. For a square matrix A ∈ Rn×n, λmin(A)
[resp. λmax(A)] denotes its minimum [resp. maximum] eigenvalue. For k ≥ 1, u ∈ [0,+∞[k and
w ∈ Rk, we define logu := [log ui]

T
1≤i≤k ∈ Rk and expw := [expwi]

T
1≤i≤k ∈ Rk.

Let ∆n := {p ∈ [0, 1]n : 〈p,1n〉 = 1} be the probability simplex in Rn. We also define ∆̃n :=

{p̃ ∈ [0,+∞[ñ: 〈p̃,1ñ〉 ≤ 1}. We will use the notations ∆k
n := (∆n)k and ∆̃k

n := (∆̃n)k. For
l ⊆ [n], the set ∆l = {q ∈ ∆n : qi = 0,∀i ∈ [n] \ l} is a |l|-face of ∆n. We denote Πn

l : Rn → R|l|
the linear projection operator satisfying Πn

l u = [ui]
T
i∈l. If there is no ambiguity from the context,

we may simply write Πl instead of Πn
l . It is easy to verify that ΠlΠ

T
l = I|l| and that q 7→ Πlq is

a bijection from ∆l ⊆ ∆n to ∆|l|. In the special case where l = [ñ], we write Πn := Πn
[ñ] and we

define the affine operator qn : Rñ → Rn by qn(u) := [u1, . . . , uñ, 1 − 〈u,1ñ〉]T = Jnu + en,
where Jn :=

[
Iñ
−1T

ñ

]
∈ Rn×ñ.

For u ∈ Rn and c ∈ R, we denote Hu,c := {y ∈ Rn : 〈y,u〉 ≤ c} and B(u, c) := {v ∈ Rn :
‖u− v‖ ≤ c}. Hu,c is a closed half space and B(u, c) is the c-ball in Rn centered at u. Let C ⊆ Rn
be a non-empty set. We denote int C, ri C, bd C, and rbd C the interior, relative interior, boundary,
and relative boundary of a set C ∈ Rn, respectively [8]. We denote the indicator function of C by ιC ,
where for u ∈ C, ιC(u) = 0, otherwise ιC(u) = +∞. The support function of C is defined by

σC(u) := sup
s∈C
〈u, s〉 , u ∈ Rn.

Let f : Rn → R ∪ {+∞}. We denote dom f := {u ∈ Rn : f(u) < +∞} the effective domain
of f . The function f is proper if dom f 6= ∅. The function f is convex if ∀(u,v) ∈ Rn and
λ ∈]0, 1[, f(λu + (1 − λ)v) ≤ λf(u) + (1 − λ)f(v). When the latter inequality is strict for
all u 6= v, f is strictly convex. When f is convex, it is closed if it is lower semi-continuous;
that is, for all u ∈ Rn, lim infv→u f(v) ≥ f(u). The function f is said to be 1-homogeneous
if ∀(u, α) ∈ Rn×]0,+∞[, f(αu) = αf(u), and it is said to be 1-coercive if f(u)

‖u‖ → +∞ as
‖u‖ → ∞. Let f be proper. The sub-differential of f is defined by

∂f(u) := {s∗ ∈ Rn : f(v) ≥ f(u) + 〈s∗,v − u〉 ,∀v ∈ Rn}.
Any element s ∈ ∂f(u) is called a sub-gradient of f at u. We say that f is directionally differentiable
if for all (u,v) ∈ dom f × Rn the limit limt↓0

f(u+tv)−f(u)
t exists in [−∞,+∞]. In this case, we

denote the limit by f ′(u;v). When f is convex, it is directionally differentiable [15]. Let f be proper
and directionally differentiable. The divergence generated by f is the map Df : Rn × dom f →
[0,+∞] defined by

Df (v,u) :=

{
f(v)− f(u)− f ′(u;v − u), if v ∈ dom f ;
+∞, otherwise.

For l ⊂ [n] and fl := f◦ΠT
l , it is easy to verify that f ′l (Πlp; Πlq−Πlp) = f ′(p; q−p),∀(p, q) ∈ ∆l.

In this case, it holds thatDf (q,p) = Dfl(Πlq,Πlp). If f is differentiable [resp. twice differentiable]
at u ∈ int dom f , we denote∇f(u) ∈ Rn [resp. Hf(u) ∈ Rn×n] its gradient vector [resp. Hessian
matrix] at u. A vector-valued function g : Rn → Rm is differentiable at u if for all i ∈ [m], gi is
differentiable at u. In this case, the differential of g at u is the linear operator Dg(u) : Rn → Rm
defined by Dg(u) := [∇gi(u)]T1≤i≤m. If f has k continuous derivatives on a set Ω ⊂ Rk, we write
f ∈ Ck(Ω).
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We define f̃ : Rñ → R ∪ {+∞} by f̃ := f ◦ qn + ι∆̃n
. That is,

f̃(ũ) :=

{
f(Jnũ+ en), for ũ ∈ ∆̃n;
+∞, for ũ ∈ Rn−1 \ ∆̃n.

(13)

If f̃ is directionally differentiable, then f ′(p, q − p) = f̃ ′(p̃, q̃ − p̃), for p, q ∈ ∆n. If f̃ is
differentiable at p̃ = Πn(p), then f̃ ′(p̃, q̃− p̃) = 〈∇f̃(p̃), q̃− p̃〉. If, additionally, f is differentiable
at p ∈ ri ∆k, the chain rule yields∇f̃(p̃) = JT

n∇f(p). Since Jn(p̃− q̃) = qn(p̃− q̃) = p− q, it
also follows that 〈p̃− q̃,∇f̃(p̃)〉 = 〈p− q,∇f(p)〉.
The Fenchel dual of a (proper) function f is defined by f∗(v) := supu∈dom f 〈u,v〉 − f(u), and it
is a closed, convex function on Rn [8]. The following proposition gives some useful properties of the
Fenchel dual which will be used in several proofs.

Proposition 20 ([8]). Let f, h : Rn → R ∪ {+∞}. If f and h are proper and there are affine
functions minorizing them on Rn, then for all v0 ∈ Rn

(i) g(u) = f(u) + r, ∀u =⇒ g∗(v) = f∗(v)− r, ∀v
(ii) g(u) = f(u) + 〈v0,u〉, ∀u =⇒ g∗(v) = f∗(v − v0), ∀v
(iii) f ≤ h =⇒ f∗ ≥ h∗,
(iv) s ∈ ∂f∗(v),v ∈ Rn =⇒ f∗(v) = 〈v, s〉 − f(s),
(v) g(u) = f(tu), t > 0,∀u =⇒ g∗(v) = f∗(v/t),

A function Φ: Rk → R ∪ {+∞} is an entropy if it is closed, convex, and ∆k ⊆ dom Φ. Its entropic
dual Φ? : Rk → R ∪ {+∞} is defined by Φ?(z) := supq∈∆k

〈q, z〉 − Φ(q), z ∈ Rk. For the
remainder of this paper, we consider entropies defined on Rk, where k ≥ 2.

Let Φ: Rk → R ∪ {+∞} be an entropy and Φ∆ := Φ + ι∆k
. In this case, Φ? = Φ∗∆. It is clear that

Φ∆ is 1-coercive, and therefore, dom Φ? = dom Φ∗∆ = Rk [8, Prop. E.1.3.8]. The entropic dual of
Φ can also be expressed using the Fenchel dual of Φ̃ : Rk−1 → R ∪ {+∞} defined by (13) after
substituting f by Φ and n by k. In fact,

Φ?(z) = sup
q̃∈∆̃k

〈Jkq̃ + ek, z〉 − Φ(Jkq̃ + ek),

= 〈ek, z〉+ sup
q̃∈∆̃k

〈
q̃, JT

k z
〉
− Φ̃(q̃),

= 〈ek, z〉+ Φ̃∗(JT
k z), (14)

where (14) follows from the fact that dom Φ̃ = ∆̃k. Note that when Φ is an entropy, Φ̃ is a closed
convex function on Rk−1. Hence, it holds that Φ̃∗∗ = Φ̃ [15].

The Shannon entropy by S(q) :=
∑
i∈[k]:qi 6=0 qi log qi,1 if q ∈ [0,+∞[k; and +∞ otherwise.

We will also make use of the following lemma.

Lemma 21 ([4]). ∀m ≥ 1,∀A,B ∈ Rm×m, λmax(AB) = λmax(BA) and λmin(AB) =
λmin(BA).

B Technical Lemmas

This appendix presents technical lemmas which will be needed in various proofs of results from the
main body of the paper.

For an open convex set Ω in Rn and α > 0, a function φ : Ω→ R is said to be α-strongly convex if
u 7→ φ(u)− α ‖u‖2 is convex on Ω [11]. The next lemma is a characterization of a generalization
of α-strong convexity, where u 7→ ‖u‖2 is replaced by any strictly convex function.

Lemma 22. Let Ω ⊆ Rn be an open convex set. Let φ, ψ : Ω→ R be twice differentiable.

1The Shannon entropy is usually defined with a minus sign. However, it will be more convenient for us to
work without it.
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If ψ is strictly convex, then ∀u ∈ Ω, Hψ(u) is invertible, and for any α > 0

∀u ∈ Ω, λmin(Hφ(u)(Hψ(u))−1) ≥ α ⇐⇒ φ− αψ is convex, (15)

Furthermore, if α > 1, then the left hand side of (15) implies that φ− ψ is strictly convex.

Proof. Suppose that infu∈Ω λmin(Hφ(u)(Hψ(u))−1) ≥ α. Since g is strictly convex and twice
differentiable on Ω, Hψ(u) is symmetric positive definite, and thus invertible. Therefore, there exists
a symmetric positive definite matrix G ∈ Rn×n such that GG = Hψ(u). Lemma 21 implies

infu∈Ω λmin(Hφ(u)(Hψ(u))−1) ≥ α,
⇐⇒ infu∈Ω λmin(G−1Hφ(u)G−1) ≥ α,
⇐⇒ ∀u ∈ Ω,∀v ∈ Rn \ {0}, v

TG−1(Hφ(u))G−1v
vTv

≥ α,
⇐⇒ ∀u ∈ Ω,∀w ∈ Rn \ {0},wT(Hφ(u))w ≥ αwTGGw = wT(αHψ(u))w,

⇐⇒ ∀u ∈ Ω,Hφ(u) � αHψ(u),

⇐⇒ ∀u ∈ Ω,H(φ− αψ)(u) � 0,

where in the third and fifth lines we used the definition of minimum eigenvalue and performed the
change of variable w = G−1v, respectively. To conclude the proof of (15), note that the positive
semi-definiteness of H(φ− αψ) is equivalent to the convexity of φ− αψ [8, Thm B.4.3.1].

Finally, note that the equivalences established above still hold if we replace α, “≥”, and “� ” by 1,
“>”, and “�” , respectively. The strict convexity of φ− ψ then follows from the positive definiteness
of H(φ− ψ) (ibid.).

The following result due to [6] will be crucial to prove the convexity of the superprediction set
(Theorem 48).
Lemma 23 ([6]). Let ∆(Ω) be the set of distributions over some set Ω ⊆ R. Let a function
Q : ∆(Ω)× Ω→ R be such that Q(·, ω) is continuous for all ω ∈ Ω. If for all π ∈ ∆(Ω) it holds
that Eω∼πQ(π, ω) ≤ r, where r ∈ R is some constant, then

∃π ∈ ∆(Ω),∀ω ∈ Ω, Q(π, ω) ≤ r.

Note that when Ω in the lemma above is [n], ∆([n]) ≡ ∆n.

The next crucial lemma is a slight modification of a result due to [6].
Lemma 24. Let f : ri ∆n × [n]→ R be a continuous function in the first argument and such that
∀(q, x) ∈ ri ∆n × [n],−∞ < f(q, x). Suppose that ∀p ∈ ri ∆n,Ex∼p[f(p, x)] ≤ 0, then

∀ε > 0,∃pε ∈ ri ∆n,∀x ∈ [n], f(pε, x) ≤ ε.

Proof. Pick any δ > 0 such that δ(n − 1) < 1, and c0 < 0 such that ∀(q, x) ∈ ri ∆n × [n], c0 ≤
f(q, x). We define ∆δ

n := {p ∈ ∆n : ∀x ∈ [n], px ≥ δ} and g(q,p) := Ex∼q[f(p, x)]. For a fixed
q, p 7→ g(q,p) is continuous, since f is continuous in the first argument. For a fixed p, q 7→ g(q,p)
is linear, and thus concave. Since ∆δ

n is convex and compact, g satisfies Ky Fan’s minimax Theorem
[1, Thm. 11.4], and therefore, there exists pδ ∈ ∆δ

n such that

∀q ∈ ∆δ
n, Ex∼q[f(pδ, x)] = g(q,pδ) ≤ sup

µ∈∆δ
n

g(µ,µ) = sup
µ∈∆δ

n

Ex∼µ[f(µ, x)] ≤ 0. (16)

For x0 ∈ [n], let q̂ ∈ ∆δ
n be such that q̂x0

= 1− δ(n− 1) and q̂x = δ for x 6= x0 (this is a legitimate
distribution since δ(n− 1) < 1 by construction). Substituting q̂ for q in (16) gives

(1− δ(n− 1))f(pδ, x0) + δ
∑
x 6=x0

f(pδ, x) ≤ 0,

=⇒ (1− δ(n− 1))f(pδ, x0) ≤ −c0δ(n− 1),
=⇒ f(pδ, x0) ≤ [−c0δ(n− 1)]/[1− δ(n− 1)].

Choosing δ∗ := ε/[(−c0 + ε)(n− 1)], and pε := pδ
∗

gives the desired result.
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Lemma 25. Let f, g : I → Rn, where I ⊆ R is an open interval containing 0. Suppose g [resp. f]
is continuous [resp. differentiable] at 0. Then t 7→ 〈f(t), g(t)〉 is differentiable at 0 if and only if
t 7→ 〈f(0), g(t)〉 is differentiable at 0, and we have

d

dt
〈f(t), g(t)〉

∣∣∣∣
t=0

=

〈
d

dt
f(t)

∣∣∣∣
t=0

, g(0)

〉
+

d

dt
〈f(0), g(t)〉

∣∣∣∣
t=0

.

Proof. We have
〈f(t), g(t)〉 − 〈f(0), g(0)〉

t
=
〈f(t), g(t)〉 − 〈f(0), g(t)〉

t
+
〈f(0), g(t)〉 − 〈f(0), g(0)〉

t
,

=

〈
f(t)− f(0)

t
, g(t)

〉
+
〈f(0), g(t)〉 − 〈f(0), g(0)〉

t
.

But since g [resp. f ] is continuous [resp. differentiable] at 0, the first term on the right hand side of the
above equation converges to 〈 ddtf(t)

∣∣
t=0

, g(0)〉 as t→ 0. Therefore, 1
t (〈f(0), g(t)〉 − 〈f(0), g(0)〉)

admits a limit when t→ 0 if and only if 1
t (〈f(t), g(t)〉 − 〈f(0), g(0)〉) admits a limit when t→ 0.

This shows that t 7→ 〈f(0), g(t)〉 is differentiable at 0 if an only if t 7→ 〈f(t), g(t)〉 is differentiable
at 0, and in this case the above equation yields

d

dt
〈f(t), g(t)〉

∣∣∣∣
t=0

= lim
t→0

〈f(t), g(t)〉 − 〈f(0), g(0)〉
t

,

= lim
t→0

(〈
f(t)− f(0)

t
, g(t)

〉
+
〈f(0), g(t)〉 − 〈f(0), g(0)〉

t

)
,

=

〈
d

dt
f(t)

∣∣∣∣
t=0

, g(0)

〉
+

d

dt
〈f(0), g(t)〉

∣∣∣∣
t=0

.

Note that the differentiability of t 7→ 〈f(0), g(t)〉 at 0 does not necessarily imply the differentiability
of g at 0. Take for example n = 3, f(t) = 1/3 for t ∈]− 1, 1[, and

g(t) =

{
−te1 + t13 , if t ∈]− 1, 0[;
−t13 + te2, if t ∈ [0, 1[.

Thus, the function t 7→ 〈f(0), g(t)〉 = 0 is differentiable at 0 but g is not. The preceding Lemma
will be particularly useful in settings where it is desired to compute the derivative d

dt 〈f(0), g(t)〉|t=0

without any explicit assumptions on the differentiability of g(t) at 0. For example, this will come
up when computing d

dt 〈p, D ˜̀(α̃t)v〉|t=0, where v ∈ Rn−1 and t 7→ α̃t is smooth curve on int ∆̃n,
with the only assumption that L̃` is twice differentiable at α̃0 ∈ int ∆̃n.
Lemma 26. Let ` : ∆n → [0,+∞]n be a proper loss. For any p ∈ ri ∆n, it holds that

` is continuous at p
(i)⇐⇒ L` is differentiable at p

(ii)⇐⇒ ∂[−L`](p) = {∇L`(p)} = {`(p)}.

(i)⇐⇒ . This equivalence has been shown before by [24].

[
(ii)⇐⇒ ] Since L`(p) = −σS`

(−p), for all p ∈ ri ∆n, it follows that L` is differentiable at p if
and only if ∂[−L`](p) = ∂σS`

(−p) = {−∇σS`
(−p)} = {∇L`(p)} [8, Cor. D.2.1.4]. It remains

to show that ∇L`(r) = `(r) when L` is differentiable at r ∈ ri ∆n. Let αtx = r + tex and
α̃tx = Πn(αtx), where (ex)x∈[n] is the standard basis of Rn. For x ∈ [n], the functions fx(t) := αtx
and gx(t) := ˜̀(α̃tx) satisfy the conditions of Lemma 25. Therefore, hx(t) := 〈fx(0), gx(t)〉 =

〈r, ˜̀(α̃tx)〉 is differentiable at 0 and

∇L̃(r)ex =
d

dt
L̃(αtx)

∣∣∣∣
t=0

=
d

dt
〈fx(t), gx(t)〉

∣∣∣∣
t=0

,

=
〈
ex, ˜̀(r̃)

〉
+

d

dt
hx(t)

∣∣∣∣
t=0

,

= ˜̀
x(r̃),
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where the last equality holds because hx attains a minimum at 0 due to the properness of `. The result
being true for all x ∈ [n] implies that∇L̃(r̃) = ˜̀(r̃) = `(r).

The next Lemma is a restatement of earlier results due to [19]. Our proof is more concise due to our
definition of the Bayes risk in terms of the support function of the superprediction set.

Lemma 27 ([19]). Let ` : ∆n → [0,+∞]n be a proper loss whose Bayes risk is twice differentiable
on ]0,+∞[n and let Xp = Iñ − 1ñp̃

T. The following holds

(i) ∀p ∈ ri ∆n, 〈p,D˜̀(p̃)〉 = 0T
ñ.

(ii) ∀p̃ ∈ int ∆̃n, D˜̀(p̃) =
[
Xp

−p̃T

]
HL̃`(p̃).

(iii) ∀p̃ ∈ int ∆̃n, HL̃log(p̃) = −(Xp)−1(diag (p̃))−1.

We show (i) and (ii). Let p ∈ ri ∆n and f(q̃) := 〈p, ˜̀(q̃)〉 = 〈p,∇L`(q)〉, where the equality is
due to Lemma 26. Since L` is twice differentiable ]0,+∞[n, f is differentiable on int ∆̃n and
we have Df(q̃) = 〈p,D˜̀(p̃)〉. Since ` is proper, f reaches a minimum at p̃ ∈ int ∆n, and thus
〈p,D˜̀(p̃)〉 = 0T

ñ (this shows (i)). On the other hand, we have∇L̃`(p̃) = JT
n∇L`(p) = JT

n
˜̀(p̃). By

differentiating and using the chain the rule, we get HL̃`(p̃) = [D˜̀(p̃)]TJn. This means that ∀i ∈ [ñ],

[HL̃`(p̃)]•,i = ∇˜̀
i(p̃)−∇˜̀

n(p̃), and thus
∑ñ
i=1 pi[HL̃`(p̃)]•,i =

∑ñ
i=1 pi∇˜̀

i(p̃)−(1−pn)∇˜̀
n(p̃).

On the other hand, it follows from point (i) of the lemma that
∑n
i=1 pi∇˜̀

i(p̃) = 0ñ. Therefore,
[HL̃`(p̃)]p̃ = −∇˜̀

n(p̃) and, as a result, ∀i ∈ [ñ], [HL̃`(p̃)]•,i − [HL̃`(p̃)]p̃ = ∇˜̀
i(p̃). The last two

equations can be combined as D˜̀(p̃) =
[
Xp

−p̃T

]
HL̃`(p̃).

[We show (iii)] It follows from (ii), since ∀i ∈ [ñ],∇[˜̀log]i(p̃) = 1
pi
ei, for p̃ ∈ int ∆̃n.

In the next lemma we state a new result for proper losses which will be crucial to prove a necessary
condition for Φ-mixability (Theorem 14) — one of the main results of the paper.

Lemma 28. Let ` : ∆n → [0,+∞]n be a proper loss whose Bayes risk is twice differentiable on
]0,+∞[n. For v ∈ Rn−1 and p̃ ∈ int ∆̃n,

〈
p, (D˜̀(p̃)v)� (D˜̀(p̃)v)

〉
= −vTHL̃`(p̃)[HL̃log(p̃)]−1HL̃`(p̃)v, (17)

where p = qn(p̃) and Llog is the Bayes risk of the log loss.

Furthermore, if t 7→ α̃t is a smooth curve in int ∆̃n and satisfies α̃0 = p̃ and d
dt α̃

t
∣∣
t=0

= v, then
t 7→ 〈p,D˜̀(α̃t)v〉 is differentiable at 0 and we have

d

dt

〈
p,D˜̀(α̃t)v

〉∣∣∣∣
t=0

= −vTHL̃`(p̃)v. (18)

Proof. We know from Lemma 27 that for p̃ ∈ int ∆̃n, we have D˜̀(p̃) =
[
Xp

−p̃T

]
HL̃`(p̃), where

Xp = In−1 − 1n−1p̃
T. Thus, we can write

〈
p,D˜̀(p̃)v � D˜̀(p̃)v

〉
= vT(D˜̀(p̃))T diag (p)D˜̀(p̃)v,

= vT(HL̃`(p̃))T[XT
p , −p̃] diag (p)

[
Xp

−p̃T

]
HL̃`(p̃)v. (19)
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Observe that [XT
p ,−p̃] diag (p) = [In−1 − p̃1T

n−1,−p̃] diag (p) = [diag (p̃)− p̃p̃T, −p̃pn]. Thus,

[XT
p ,−p̃] diag (p)

[
Xp

−p̃T

]
= [diag (p̃)− p̃p̃T,−p̃pn]

[
In−1−1n−1p̃

T

−p̃T

]
,

= diag (p̃)− p̃p̃T − p̃p̃T + p̃p̃T(1− pn) + pnp̃p̃
T,

= diag (p̃)− p̃p̃T,
= diag (p̃)Xp,

= −(HL̃log(p̃))−1, (20)

where the last equality is due to Lemma 27. The desired result follows by combining (19) and (20).

[We show (18)] Let p̃ ∈ int ∆̃n, we define α̃t := p̃ + tv, αt := qn(α̃t) = p + tJnv, and
r(t) := αt/ ‖αt‖, where t ∈ {s : p̃ + sv ∈ int ∆̃n}. Since t 7→ r(t) is differentiable at 0 and
t 7→ D˜̀(α̃t)v is continuous at 0, it follows from Lemma 22 that

d

dt

〈
r(0),D˜̀(α̃t)v

〉∣∣∣∣
t=0

=
d

dt

〈
r(t),D˜̀(α̃t)v

〉∣∣∣∣
t=0

−
〈
ṙ(0),D˜̀(p̃)v

〉
,

= −
〈
ṙ(0),D˜̀(p̃)v

〉
,

where the second equality holds since, according to Lemma 27, we have 〈αt,D˜̀(α̃t)v〉 = 0. Since
r(0) = p/ ‖p‖, ṙ(0) = ‖p‖−1

(In − r(0)[r(0)]T)Jnv, and Jn =
[
In−1

−1T
n−1

]
, we get

‖p̃‖ d

dt

〈
r(0),D˜̀(α̃t)v

〉∣∣∣∣
t=0

= −
〈(
In − r(0)[r(0)]T

)
Jnv,D˜̀(p̃)v

〉
,

= −
〈
Jnv,D˜̀(p̃)v

〉
, (21)

= −
〈
Jnv,

[
Xp

−p̃T

]
HL̃`(p̃)v

〉
,

= −vTHL̃`(p̃)v,

where the passage to (21) is due to r(0) = p/ ‖p‖ ⊥ D˜̀(p̃). In the last equality we used the fact that
JT
n

[
Xp

−p̃T

]
= [In−1,−1n−1]

[
In−1−1n−1p̃

−p̃T

]
= In−1.

Proposition 29. Let Φ: Rk → R∪{+∞} be an entropy and ` : A → [0,+∞]n a closed admissible
loss. If ` is Φ-mixable, then ∀l ⊆ [k] with |l| > 1, ` is Φl-mixable and

∀q ∈ rbd ∆l,∀q̂ ∈ ri ∆l, Φ′(q; q̂ − q) = −∞. (22)

Given an entropy Φ: Rk → R ∪ {+∞} and a loss ` : A → [0,+∞], we define

mΦ(x,A,a, q̂,µ) := 〈µ, `x(A)〉+DΦ(µ, q̂)− `x(a),

where x ∈ [n], A ∈ Ak, a ∈ A, and q, q̂ ∈ ∆k. Reid et al. [13] showed that ` is Φ mixable if and
only if

m̂Φ := inf
A∈Ak,q̂∈∆k

sup
a∗∈A

inf
µ∈∆k,x∈[n]

mΦ(x,A,a, q̂,µ) ≥ 0.

Proof of Proposition 29. [We show that ` is Φl-mixable] Let l ⊆ [k], with |l| > 1, A ∈ Ak, and
q ∈ ∆l. Since ` is Φ-mixable, the following holds

∃a∗ ∈ ∆n,∀x ∈ [n], `x(a∗) ≤ inf
q̂∈∆k

〈q̂, `x(A)〉+DΦ(q̂, q), (23)

≤ inf
q̂∈∆l

〈q̂, `x(A)〉+DΦ(q̂, q), (24)

= inf
q̂∈∆l

〈Πlq̂,Πl`x(A)〉+DΦl
(Πlq̂,Πlq),

= inf
µ̂∈∆|l|

〈
µ̂, `x(AΠT

l )
〉

+DΦl
(µ̂,Πlq), (25)
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where in (23) we used the fact that Φl(Πlq) = Φ(q),∀q ∈ ∆l. Given that A 7→ AΠT
l [resp.

q 7→ Πlq] is onto from Ak to A|l| [resp. from ∆l to ∆|l|], (25) implies that ` is Φl-mixable.

[We show (22)] Suppose that there exists q̂ ∈ rbd ∆k and q ∈ ri ∆k such that |Φ′(q̂; q− q̂)| < +∞.
Let f : [0, ε]→ R be defined by f(λ) := Φ(q̂ + λ(q − q̂)), where ε > 0 is such that q̂ + ε(q − q̂) ∈
ri ∆k. The function f is closed and convex on dom f = [0, ε] and limλ↓0

f(λ)−f(0)
λ = f ′(0; 1) =

Φ′(q̂; q − q̂) which is finite by assumption. Using this and the fact that λf ′(0; 1) = f ′(0;λ), we
have limλ↓0 λ−1(f(λ)− f(0)− f ′(0;λ)) = 0. Substituting f by its expression in terms of Φ in the
latter equality gives

lim
λ↓0

λ−1DΦ(q̂ + λ(q − q̂), q̂) = 0. (26)

Let η > 0 and θ∗ ∈ [k] be such that q̂θ∗ = 0. Suppose that ` is an admissible, Φ-mixable loss. The
fact that ` is admissible implies that there exists (x0, x1,a0,a1) ∈ [n]× [n]×A×A such that [13]

a1 ∈ argmin{`x0
(a) : `x1

(a) = inf
â∈A

`x1
(â)} and inf

a∈A
`x0

(a) = `x0
(a0) < `x0

(a1). (27)

In particular, it holds that `x0
(a0) < `x0

(a1). Fix A ∈ Ak, such that A•,θ∗ = a0 and A•,θ = a1 for
θ ∈ [k] \ {θ∗}. Let

a∗ := argmax
a∈∆n

inf
µ∈∆k,x∈[n]

mΦ(x,A,a, q̂,µ),

with q̂ ∈ rbd ∆k as in (26). Note that a∗ exists since ` is closed.

If a∗ is such that `x1
(a∗) > `x1

(a1), then taking µ = q̂ puts all weights on experts predicting a1,
while DΦ(µ, q̂) = 0. Therefore,

m̂Φ ≤ inf
µ∈∆k,x∈[n]

mΦ(x,A,a∗, q̂,µ) ≤ mΦ(x1, A,a, q̂, q̂) < 0.

This contradicts the Φ-mixability of `. Therefore, `x1
(a∗) = `x1

(a1), which by (27) implies
`x0

(a∗) ≥ `x0
(a1). For qλ = q̂ + λ(q − q̂), with q ∈ ri ∆k as in (23) and λ ∈ [0, ε],

m̂Φ ≤ inf
µ∈∆k,x∈[n]

mΦ(x,A,a∗, q̂,µ),

≤ mΦ(x0, A,a, q̂, q
λ),

= 〈qλ, `x0
(A)〉+DΦ(qλ, q̂)− `x0

(a∗),

= (1− λqθ∗)`x0
(a1) + λqθ∗`x0

(a0) +DΦ(qλ, q̂)− `x0
(a∗),

≤ (1− λqθ∗)`x0(a∗) + λqθ∗`x0(a0) +DΦ(qλ, q̂)− `x0(a∗),

= λqθ∗(`x0(a0)− `x0(a∗)) +DΦ(q̂ + λ(q − q̂), q̂).

Since qθ∗ > 0 (q ∈ ri ∆k) and `x0(a0) < `x0(a1) ≤ `x0(a∗), (23) implies that there exists λ∗ > 0
small enough such that λ∗qθ∗(`x0(a0)− `x0(a∗)) +DΦ(q̂ + λ∗(q − q̂), q̂) < 0. But this implies
that m̂Φ < 0 which contradicts the Φ-mixability of `. Therefore, Φ′(q̂; q − q̂) is either equal to +∞
or −∞. The former case is not possible. In fact, since Φ is convex, it must have non-decreasing
slopes; in particular, it holds that Φ′(q̂; q − q̂) ≤ Φ(q − q̂) − Φ(q̂). Since Φ is finite on ∆k (by
definition of an entropy), we have Φ′(q̂; q − q̂) < +∞. Therefore, we have just shown that

∀q̂ ∈ rbd ∆k,∀q ∈ ri ∆k, Φ′(q̂; q − q̂) = −∞. (28)

Now suppose that (q̂, q) ∈ rbd ∆l × ri ∆l for l ⊆ [k], with |l| > 1. Note that in this case, we
have (Φl)

′(Πlq̂; Πl(q − q̂)) = Φ′(q̂; q − q̂). We showed in the first step of this proof that under
the assumptions of the proposition, ` must be Φl-mixable. Therefore, repeating the steps above
that lead to (28) for Φ, q̂, and q substituted by Φl, Πlq ∈ rbd ∆|l|, and Πlq ∈ ri ∆|l|, we obtain
Φ′(q̂; q − q̂) = Φ′l(Πlq̂; Πl(q − q̂)) = −∞. This shows (22).

Lemma 30. For η > 0, Sη := η−1 S satisfies (22) for all l ⊆ [k] such that |l| > 1, where S is the
Shannon entropy.
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Proof. Let l ⊆ [k] such that |l| > 1. Let (q̂, q) ∈ rbd ∆l × ri ∆l and qλ := q̂ + λ(q − q̂), for
λ ∈]0, 1[. Let I := {j ∈ l : q̂j 6= 0} and K := l \ I. We have

S(q̂; q − q̂) = lim
λ↓0

λ−1
[∑

θ∈l
qλθ log qλθ −

∑
θ′∈I

q̂θ′ log q̂θ′
]
,

= lim
λ↓0

λ−1
[∑

θ∈I
(qλθ log qλθ − q̂θ log q̂θ) +

∑
θ′∈K

qλθ′ log qλθ′
]
. (29)

Observe that the limit of either summation term inside the bracket in (29) is equal to zero. Thus,
using l’Hopital’s rule we get

S(q̂; q − q̂) = lim
λ↓0

[∑
θ∈I

[(qθ − q̂θ) log qλθ + (qθ − q̂θ)] +
∑

θ′∈K
[qθ′ log qλθ′ + qθ′ ]

]
,

=
∑

θ∈I
(qθ − q̂θ) log q̂θ +

∑
θ′∈K

qθ′

[
lim
λ↓0

log qλθ′

]
, (30)

where in (30) we used the fact that
∑
θ∈I(qθ − q̂θ) +

∑
θ′∈K qθ′ = 0. Since for all θ′ ∈ K,

limλ↓0 qλθ′ = 0, the right hand side of (25) is equal to −∞. Therefore S satisfies (22). Since
Sη = η−1 S, it is clear that Sη also satisfies (22).

Lemma 31. Let Φ : Rk → R ∪ {+∞} be an entropy satisfying (22) for all l ⊆ [k] such that |l| > 1.
Then for all such l, it holds that

∀q ∈ ∆l,∀µ ∈ ∆k \∆l, DΦ(µ, q) = +∞.

Proof. Let µ ∈ ∆k \∆l and I := {θ ∈ [k] : µθ 6= 0} ∪ l. In this case, we have q ∈ rbd ∆I and
q+2−1(µ−q) ∈ ri ∆I. Thus, since Φ satisfies (22) and Φ′(q; ·) is 1-homogeneous [8, Prop. D.1.1.2],
it follows that 2−1Φ′(q;µ− q) = Φ′(q; 2−1(µ− q)) = −∞. Hence DΦ(µ, q) = +∞.

Lemma 32. Let Φ: Rk → R ∪ {+∞} be an entropy satisfying (22) for all l ⊆ [k] such that |l| > 1.
If Φ satisfies (22), then ∂Φ̃(q̃) = ∅,∀q̃ ∈ bd ∆̃k. Furthermore, ∀l ⊆ [k] such that |l| > 1,

∀d ∈ Rk,∀q ∈ ri ∆l, MixΦ(d, q) = MixΦl
(Πld,Πlq).

Proof. Let µ ∈ rbd ∆k. Since Φ satisfies (22), it follows that ∀q ∈ ri ∆k, Φ̃(µ̃; q̃− µ̃) = Φ′(µ; q−
µ) = −∞. Therefore, ∂Φ̃′(µ̃) = ∅ [15, Thm. 23.4].

Let d ∈ Rn, l ⊆ [k], with |l| > 1, and q ∈ ri ∆l. Then

MixΦl
(Πld,Πlq) = inf

π∈∆|l|
〈π,Πld〉+DΦl

(π,Πlq),

= inf
µ∈∆l

〈µ,d〉+DΦ(µ, q),

≤ inf
µ∈∆k

〈µ,d〉+DΦ(µ, q), (31)

= MixΦ(d, q).

To complete the proof, we need to show that (31) holds with equality. For this, it suffices to prove
that ∀µ ∈ ∆k \∆l, DΦ(µ, q) = +∞. This follows from Corollary 31.

Lemma 33. Let Φ: Rk → R ∪ {+∞} be an entropy satisfying (22) for all l ⊆ [k] such that |l| > 1.
Let x ∈ [n],d ∈ Rk, and q ∈ ∆k. The infimum in

MixΦ(d, q) = inf
µ∈∆k

〈µ,d〉+DΦ(µ, q) (32)

is attained at some q∗ ∈ ∆k. Furthermore, if q ∈ ri ∆k and q∗ is the infimum of (32) then for any
s∗q ∈ argmax{〈s, q̃∗ − q̃〉 : s ∈ ∂Φ̃(q̃)}, we have

q̃∗ ∈ ∂Φ̃∗(s∗q − JT
k d), (33)

MixΦ(d, q) = dk + Φ̃∗(s∗q)− Φ̃∗(s∗q − JT
k d). (34)
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Proof. Let q ∈ ri ∆k. Since q̃ ∈ int dom Φ̃ = int ∆̃k, the function µ̃ 7→ −Φ̃′(q̃; µ̃ − q̃) is lower
semicontinuous [15, Cor. 24.5.1]. Given that µ̃ 7→ 〈qk(µ̃),d〉+ Φ̃(µ̃)− Φ̃(q̃) is a closed convex
function, it is also lower semi-continuous. Therefore, the function

µ̃ 7→ 〈qk(µ̃),d〉+ Φ̃(µ̃)− Φ̃(q̃)− Φ̃′(q̃; µ̃− q̃)

is lower semicontinuous, and thus attains its minimum on the compact set ∆̃k at some point q̃∗.
Using the fact that DΦ(µ, q) = DΦ̃(µ̃, q̃), we get that

q∗ := qk(q̃∗) = argmin
µ∈∆k

〈µ,d〉+DΦ(µ, q). (35)

If q ∈ rbd ∆k, then either q is a vertex of ∆k or there exists l ( [k] such that q ∈ ri ∆l. In the
former case, it follows from (22) that DΦ(µ, q) = +∞ for all µ ∈ ∆k \ {q}, and thus the infimum
of (32) is trivially attained at µ = q. Now consider the alternative — q ∈ ∆l with |l| > 1. Using
Corollary 31, we have DΦ(µ, q) = +∞ for all µ ∈ ∆k \∆l. Therefore,

MixΦ(d, q) = inf
µ∈∆l

〈µ,d〉+DΦ(µ, q),

= inf
µ̂∈∆|l|

〈µ̂,Πld〉+DΦl
(µ̂,Πlq), (36)

where Φl := Φ ◦Πl. Since Πlq ∈ ri ∆|l|, we can use the same argument as the previous paragraph
with Φ and q replaced by Φl and Πlq, respectively, to show that the infimum in (36) is attained at
some q̂∗ ∈ ∆|l|. Thus, q∗ := ΠT

l q̂ ∈ ∆k attains the infimum in (32).

Now we show the second part of the lemma. Let q ∈ ri ∆k and q∗ be the infimum of (32). Since Φ̃
is convex and q̃ = Πk(q) ∈ int ∆̃k = int dom Φ̃, we have ∂Φ̃(q̃) 6= ∅ [15, Thm. 23.4]. This means
that there exists s∗q ∈ ∂Φ̃(q̃) such that 〈s∗q, q̃∗ − q̃〉 = Φ̃′(q̃; q̃∗ − q̃) [8, p.166]. We will now show
that s∗q − JT

k d ∈ ∂Φ̃(q̃∗), which will imply that q̃∗ ∈ ∂Φ̃∗(s∗q − JT
k d) (ibid., Cor. D.1.4.4). Let

q∗ = argminµ∈∆k
〈µ,d〉+DΦ(µ, q). Thus, for all µ ∈ ∆k,

〈µ,d〉+ Φ̃(µ̃)− Φ̃(q̃)− Φ̃′(q̃; µ̃− q̃) ≥ 〈q∗,d〉+ Φ̃(q̃∗)− Φ̃(q̃)− 〈s∗q, q̃∗ − q̃〉,
=⇒ Φ̃(µ̃) ≥ Φ̃(q̃∗)− 〈µ̃− q̃∗, JT

k d〉+ 〈s∗q, q̃ − q̃∗〉+ Φ′(q̃; µ̃− q̃),

=⇒ Φ̃(µ̃) ≥ Φ̃(q̃∗)− 〈µ̃− q̃∗, JT
k d〉+ 〈s∗q, q̃ − q̃∗〉+ 〈s∗q, µ̃− q̃〉,

=⇒ Φ̃(µ̃) ≥ Φ̃(q̃∗) + 〈µ̃− q̃∗, s∗q − JT
k d〉,

where in the second line we used the fact that ∀q ∈ ∆k, 〈q,d〉 = 〈q̃, JT
k d〉 + dk, and in third

line we used the fact that ∀s ∈ ∂Φ̃(q̃), 〈s, µ̃ − q̃〉 ≤ Φ̃′(q̃; µ̃ − q̃) (ibid.). This shows that
s∗q − JT

k d ∈ ∂Φ̃(q̃∗).

Substituting Φ̃′(q̃; q̃∗ − q̃) by 〈s∗q, q∗ − q〉 in the expression for MixΦ(d, q), we get

MixΦ(d, q) = dk + 〈q̃∗, JT
k d〉+ Φ̃(q̃∗)− Φ̃(q̃)− 〈s∗q, q̃∗ − q̃〉,

= dk + 〈s∗q, q̃〉 − Φ̃(q̃)− [〈s∗q − JT
k d, q̃∗〉 − Φ̃(q̃∗)],

= dk + Φ̃∗(s∗q)− Φ̃∗(s∗q − JT
k d),

where in the last line we used the fact that Φ̃ is a closed convex function, and thus ∀q̃ ∈ ∆̃k,
s ∈ ∂Φ̃(q̃) =⇒ Φ̃∗(s) = 〈s, q̃〉 − Φ̃(q̃) (ibid., Cor. E.1.4.4).

Lemma 34. Let q ∈ ∆k. For any sequence (dm) in [0,+∞[k converging to d ∈ [0,+∞]k

coordinate-wise and any entropy Φ: Rk → R ∪ {+∞} satisfying (22) for l ⊆ [k] such that |l| > 1,

lim
m→∞

MixΦ(dm, q) = MixΦ(d, q). (37)

Proof of Lemma 34. Let q ∈ ∆k and Φ: Rk → R ∪ {+∞} be an entropy as in the statement of the
Lemma. Let (dm) ⊂ Rk such that dm

m→∞→ d ∈ Rk. in [0,+∞[k. Let l := {θ ∈ [k] : dθ < +∞}.
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If l = ∅ then the result holds trivially since, on the one hand, MixΦ(d, q) = +∞ and on the other
hand MixΦ(dm, q) ≥ minθ∈[k] dm,θ

m→∞→ +∞.

Assume now that l 6= ∅. Then
MixΦ(dm, q) = inf

µ∈∆k

〈µ,dm〉+DΦ(µ, q), (38)

≤ inf
µ̂∈∆l

〈µ̂,d〉+DΦ(µ̂, q), (39)

< +∞, (40)

where the last inequality stems from the fact that Πldm is a finite vector in R|l|. Therefore, (40)
implies that the sequence αm := MixΦ(dm, q) is bounded. We will show that (αm) converges in R
and that its limit is exactly MixΦ(d, q). Let (α̂m) be any convergent subsequence of (αm), and let
(d̂m) be the corresponding subsequence of (dm). Consider the infimum in (112) with dm is replaced
by d̂m. From Lemma 33, this infimum is attained at some qm ∈ ∆k. Since ∆k is compact, we may
assume without loss of generality that qm converges to some q̄ ∈ ∆k. Observe that q̄ must be ∆l;
suppose that ∃θ∗ ∈ l̄ such that q̄θ∗ > 0. Then

α̂m ≥ 〈qm, d̂m〉,
≥ qm,θ∗ d̂m,θ∗

m→∞→ +∞.
This would contradict the fact that αm is bounded, and thus q̄ ∈ ∆l. Using this, we get

MixΦ(d̂m, q) = 〈qm, d̂m〉+DΦ(qm, q),

≥ 〈Πlqm,Πld̂m〉+DΦ(qm, q),
m→∞→ 〈Πlq̄,Πld〉+DΦ(q̄, q),

= 〈q̄,d〉+DΦ(q̄, q), (41)
≥ inf
µ̂∈∆l

〈µ̂,d〉+DΦ(µ̂, q). (42)

where in (41) we use the fact that q̄ ∈ ∆l. Combining (42) with (39) shows that α̂m converges to
MixΦ(d, q) = infµ̂∈∆l

〈µ̂,d〉 + DΦ(µ̂, q). Since (α̂m) was any convergent subsequence of (αm)
(which is bounded), the result follows.

C Proofs of Results in the Main Body

C.1 Proof of Theorem 4

Theorem 4 Any loss ` : A → [0,+∞]n such that dom ` 6= ∅, has a proper support loss ` with the
same Bayes risk, L`, as `.

Proof. We will construct a proper support loss ` of `.

Let p ∈ ri ∆n (−p ∈ int domσS`
). Since the support function of a non-empty set is closed and

convex, we have σ∗∗S`
= σS`

[8, Prop. C.2.1.2]. Pick any v ∈ ∂σS`
(−p) = ∂σ∗∗S`

(−p) 6= ∅. Since
σ∗S`

= ιS`
[15], we can apply Proposition 20-(iv) with f replaced by σ∗S`

to obtain 〈−p,v〉 =
σS`

(−p) + ιS`
(v). The fact that 〈−p,v〉 and σS`

(−p) are both finite implies that ιS`
(v) = 0.

Therefore, v ∈ S` and 〈p,v〉 = −σS`
(−p) = L`(p). Define `(p) := v ∈ S`.

Now let p ∈ rbd ∆n and q := 1n/n. Since theL` is a closed concave function and q ∈ int domL`, it
follows that L`(p+m−1(q−p))

m→∞→ L`(p) [8, Prop. B.1.2.5]. Note that qm := p+m−1(q−p) ∈
ri ∆n,∀m ∈ N. Now let vx,m := `x(qm), where `(qm) is as constructed in the previous paragraph.
If (v1,m) is bounded [resp. unbounded], we can extract a subsequence (v1,ϕ1(m)) which converges
[resp. diverges to +∞], where ϕ1 : N → N is an increasing function. By repeating this process
for (v2,ϕ1(m)) and so on, we can construct an increasing function ϕ := ϕn ◦ · · · ◦ ϕ1 : N → N,
such that vm := [vx,ϕ(m)]

T
x∈[n] has a well defined (coordinate-wise) limit in [0,+∞]n. Define

`(p) := limm→∞ vm. By continuity of the inner product, we have
〈p, `(p)〉 = lim

m→∞
〈qϕ(m),vm〉 = lim

m→∞
〈qϕ(m), `(qϕ(m))〉,

= lim
m→∞

L`(qϕ(m)) = L`(p).
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By construction, ∀m ∈ N,pm := qϕ(m) ∈ ri ∆n and `(pm) = vm
m→∞→ `(p). Therefore, ` is

support loss of `.

It remains to show that it is proper; that is ∀p ∈ ∆n,∀q ∈ ∆n, 〈p, `(p)〉 ≤ 〈p, `(q)〉. Let
q ∈ ri ∆n. We just showed that ∀p ∈ ∆n, 〈p, `(p)〉 = L`(p) and that `(q) ∈ S`. Using the fact
that L`(p) = infz∈S`

〈p, z〉, we obtain 〈p, `(p)〉 ≤ 〈p, `(q)〉.
Now let q ∈ rbd ∆k. Since ` is a support loss, we know that there exists a sequence (qm) ⊂ ri ∆n

such that `(qm)
m→∞→ `(q). But as we established in the previous paragraph, 〈p, `(p)〉 ≤ 〈p, `(qm)〉.

By passing to the limit m→∞, we obtain 〈p, `(p)〉 ≤ 〈p, `(q)〉. Therefore ` is a proper loss with
Bayes risk L`.

C.2 Proofs of Theorem 5 and Proposition 12

For a set C, we denote co C and coC its convex hull and closed convex hull, respectively.
Definition 35 ([8]). Let C be non-empty convex set in Rn. We say that u ∈ C is an extreme point of
C if there are no two different points u1 and u2 in C and λ ∈]0, 1[ such that u = λu1 + (1− λ)u2.

We denote the set of extreme points of a set C by ext C.
Lemma 36. Let ` : A → [0,+∞]n be a closed loss. Then ext coS` ⊆ S`.

Proof. Since co S` ⊆ Rn is connected, co S` = {v +
∑n
k=1 αk`(ak): (ak∈[n],α,v) ∈ An ×

∆n × [0,+∞[n} [8, Prop. A.1.3.7].

We claim that coS` = co S`. Let (zm) := (vm +
∑n
k=1 αm,k`(am,k)) be a convergent sequence

in [0,+∞[n, where (αm), ([am,k]k∈[n]) and (vm) are sequences in ∆n, An, and [0,+∞[n, re-
spectively. Since ∆n is compact, we may assume, by extracting a subsequence if necessary, that
αm

m→∞→ α∗ ∈ ∆n. Let K := {k ∈ [n] : α∗k 6= 0}. Since zm converges, ([[`(am,k)]k∈K,vm]) is a
bounded sequence in [0,+∞[n|K|+n. Since ` is closed, we may assume, by extraction a subsequence
if necessary, that ∀k ∈ K, `(am,k)

m→∞→ `(a∗k) and vm
m→∞→ v∗, where [a∗k]k∈K ∈ A|K| and

v∗ ∈ [0,+∞[n. Consequently,

v∗ +

n∑

k=1

α∗k`(a
∗
k) = lim

m→∞

[
vm,k +

∑

k∈K
αm,k`(am,k)

]
,

≤ lim
m→∞

zm,

where the last inequality is coordinate-wise. Therefore, there exists v′ ∈ [0,+∞[n such that
limm→∞ zm = v′ + v∗ +

∑n
k=1 α

∗
k`(a

∗
k) ∈ co S`. This shows that coS` ⊂ co S`, and thus

coS` = co S` which proves our first claim.

By definition of an extreme point, ext coS` ⊆ coS`. Let e ∈ ext coS` and (ak∈[n],α,v) ∈
An×∆n× [0,+∞[n such that e =

∑n
k=1 αk`(ak)+v. If there exists i, j ∈ [n] such that αiαj 6= 0

or αivj 6= 0 then e would violate the definition of an extreme point. Therefore, the only possible
extreme points are of the form {`(a) : a ∈ dom `)} = S`.

Theorem 5 Let ` : A → [0,+∞]n be a loss and ` be a proper support loss of `. If the Bayes risk L`
is differentiable on ]0,+∞[n, then ` is uniquely defined on ri ∆n and

∀p ∈ dom `, ∃a∗ ∈ dom `, `(a∗) = `(p),

∀a ∈ dom `, ∃(pm) ⊂ ri ∆n, `(pm)
m→∞→ `(a) coordinate-wise.

Proof. Let p ∈ ri ∆n and suppose that L` is differentiable at p. In this case, σS`
is differentiable at

−p, which implies [8, Cor. D.2.1.4]

F(p) := ∂σS`
(−p) = {∇σS`

(−p)}. (43)

On the other hand, the fact that σS`
= σcoS`

[8, Prop. C.2.2.1], implies F(p) = ∂σS`
(−p) =

∂σcoS`
(−p). The latter being an exposed face of coS` implies that every extreme point of F(p)
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is also an extreme point of coS` [8, Prop. A.2.3.7, Prop. A.2.4.3]. Therefore, from (43), `(p) =
∇σS`

(−p) is the only extreme point of F(p) ⊂ coS`. From Lemma 36, there exists a∗ ∈ A such
that `(a∗) = `(p). In this paragraph, we showed the following

∀p ∈ ri ∆n,∃a∗ ∈ dom `, `(a∗) = `(p). (44)

For the rest of this proof we will assume that L` is differentiable on ]0,+∞[n. Let p ∈ rbd ∆n ∩
dom `. Since ` is a support loss, there exists (pm) in ri ∆n such that (`(pm))m converges to `(p).
From (44) it holds that ∀pm ∈ ri ∆n,∃am ∈ A, `(am) = `(pm). Since (`(am))m converges and `
is closed, there exists a∗ ∈ A such that `(a∗) = limm→∞ `(am) = `(p).

Now let a ∈ dom ` and f(p, x) := `x(p)− `x(a). Since `(a) ∈ S` and ` is proper, we have for all
p ∈ ri ∆n,Ex∼p[f(p, x)] ≤ 0 and −∞ < f(p, x),∀x ∈ [n]. Therefore, Lemma 24 implies that for
all m ∈ N \ {0} there exists pm ∈ ri ∆n, such that ∀x ∈ [n], `x(pm) ≤ `x(a) + 1/m. On one hand,
since (`(pm)) is bounded (from the previous inequality), we may assume by extracting a subsequence
if necessary, that (`(pm))m converges. On the other hand, since pm ∈ ri ∆n, (44) implies that
there exists am ∈ dom ` such that `(pm) = `(am). Since ` is closed and (`(am))m converges,
there exists a∗ ∈ A, such that `(a∗) = limm→∞ `(am) = limm→∞ `(pm) ≤ `(a). But since ` is
admissible, the latter component-wise inequality implies that `(a∗) = `(a) = limm→∞ `(p).

Lemma 37. Let ` : A → [0,+∞]n be a loss satisfying Assumption 1. If L` is not differentiable at p
then there exist a0,a1 ∈ dom `, such that `(a0) 6= `(a1) and L`(p) = 〈p, `(a0)〉 = 〈p, `(a1)〉.

Proof. Suppose L` is not differentiable at p ∈ ri ∆n. Then from the definition of the Bayes risk,
σS`

is not differentiable at −p. This implies that F(p) := ∂σS`
(−p) has more than one element

[8, Cor. D.2.1.4]. Since σS`
= σcoS`

(ibid.. Prop. C.2.2.1), F(p) = ∂σcoS`
(−p) is a subset

of coS` and every extreme point of F(p) is also an extreme point of coS` (ibid., Prop. A.2.3.7).
Thus, from Lemma 36, we have extF(p) ⊂ S`. On the other hand, since −p ∈ int domσS`

,
F(p) is a compact, convex set [15, Thm. 23.4], and thus F(p) = co(extF(p)) [8, Thm. A.2.3.4].
Hence, the fact that F(p) has more than one element implies there exists a0,a1 ∈ A such that
`(a0), `(a1) ∈ extF(p) ⊆ F(p) and `(a0) 6= `(a1). Since F(p) = ∂σS`

(−p), Proposition
20-(iv) and the fact that σ∗S`

= ιS`
imply that L`(p) = 〈p, `(a0)〉 = 〈p, `(a1)〉.

Proposition 12 Let Φ: Rk → R ∪ {+∞} be an entropy and ` : A → [0,+∞]n. If ` is Φ-mixable,
then the Bayes risk satisfies L` ∈ C1(]0,+∞[n). If, additionally, L` is twice differentiable on
]0,+∞[n, then Φ must be strictly convex on ∆k.

Proof. Let l = {1, 2}. Since ` is Φ-mixable, it must be Φl-mixable, where Φl := Φl ◦ ΠT
l : R2 →

R ∪ {+∞} (Proposition 29). Let Ψ := Φl.

For w ∈]0,+∞[ and z ∈ int dom Ψ̃∗ = R (see appendix E), we define (Ψ̃∗)′∞(w) :=

limt→+∞[Ψ̃∗(z + tw) − Ψ̃∗(z)]/t. The value of (Ψ̃∗)′∞(w) does not depend on the choice of
z, and it holds that (Ψ̃∗)′∞(w) = σdom Ψ̃(w) and (Ψ̃∗)′∞(−w) = σdom Ψ̃(−w) [8, Prop. C.1.2.2].
In our case, we have dom Ψ̃ = [0, 1] (by definition of Ψ̃), which implies that σdom Ψ̃(1) = 1 and
σdom Ψ̃(−1) = 0. Therefore, (Ψ̃∗)′∞(1) + (Ψ̃∗)′∞(−1) = 1. As a result Ψ̃∗ cannot be affine. For all
δ > 0, let gδ : R× {−1, 0,+1} → R be defined by

gδ(s, u) := [Ψ̃∗(s+ δ(u+ 1)/2)− Ψ̃∗(s+ δ(u− 1)/2)]/δ.

Since Ψ̃∗ is convex it must have non-decreasing slopes (ibid., p.13). Combining this with the fact
that Ψ̃∗ is not affine implies that

∃s∗δ ∈ R, gδ(s∗δ ,−1) < gδ(s
∗
δ ,+1). (45)

The fact that Ψ̃∗ has non-decreasing slopes also implies that

gδ(s
∗
δ ,+1) = [Ψ̃∗(s∗δ + δ)− Ψ̃∗(s∗δ)]/δ ≤ lim

t→∞
[Ψ̃∗(s∗δ + t)− Ψ̃∗(s∗δ)]/t = (Ψ̃∗)′∞(1) = 1.

Similarly, we have 0 = −(Ψ̃∗)′∞(−1) ≤ gδ(s∗δ ,−1). Let µ̃ ∈ ∂Ψ̃∗(s∗δ). Since Ψ̃ is a closed convex
function the following equivalence holds µ̃ ∈ ∂Ψ̃∗(s∗δ) ⇐⇒ s∗δ ∈ ∂Ψ̃(µ̃) (ibid., Cor. D.1.4.4).
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Thus, if µ̃ ∈ {0, 1} = bd ∆̃2, then ∂Ψ̃(µ̃) 6= ∅, which is not possible since ` is Ψ-mixable (Lemma
32).

[We showL` ∈ C1(]0,+∞[n)] We will now show thatL` is continuously differentiable on ]0,+∞[n.
Since L` is 1-homogeneous, it suffices to check the differentiability on ri ∆n. Suppose L` is not
differentiable at p ∈ ri ∆n. From Lemma 37, there exists a0,a1 ∈ A such that `(a0), `(a1) ∈
∂σS`

(−p) and `(a0) 6= `(a1). Let A := [a0,a1] ∈ Rn×2, δ := min{|`x(a0) − `x(a1)| : x ∈
[n], |`x(a0) − `x(a1)| > 0}, and s∗δ ∈ R as in (45). We denote g− := gδ(s

∗
δ ,−1) and g+ :=

gδ(s
∗
δ ,+1) ∈]0, 1]. Let µ̃ ∈ ∂Ψ̃∗(s∗δ) ∈ int ∆̃2 and µ = q2(µ̃) ∈ ri ∆2. From the fact that ` is

Ψ-mixable, JT
2 `x(A) = `x(a0)− `x(a1), and (8), there must exist a∗ ∈ A such that for all x ∈ [n],

`x(a∗) ≤ MixΨ(`x(A),µ),

= `x(a1) + Ψ̃∗(s∗δ)− Ψ̃∗(s∗δ − `x(a0) + `x(a1)),

and by letting sgn be the sign function
≤ `x(a1) + gδ(s

∗
δ ,− sgn[`x(a0)− `x(a1)])[`x(a0)− `x(a1)], (46)

where in (46) we used the fact that Ψ̃∗ has non-decreasing slopes and the definition of δ. When
`x(a0) ≤ `x(a1), (46) becomes `x(a∗) ≤ (1 − g+)`x(a1) + g+`x(a0). Otherwise, we have
`x(a∗) ≤ (1 − g−)`x(a1) + g−`x(a0) < (1 − g+)`x(a1) + g+`x(a0). Since ` is admissible,
there must exist at least one x ∈ [n] such that `x(a0) > `x(a1). Combining this with the fact that
px > 0,∀x ∈ [n] (p ∈ ri ∆n), implies that 〈p, `(a∗)〉 < 〈p, (1 − g+)`(a1) + g+`(a0)〉 = L`(p).
This contradicts the fact that `(a∗) ∈ S`. Therefore, L` must be differentiable at p. As argued
earlier, this implies that L` must be differentiable on ]0,+∞[n. Combining this with the fact that
L` is concave on ]0,+∞[n, implies that L` is continuously differentiable on ]0,+∞[n (ibid., Rmk.
D.6.2.6).

[We show Φ̃∗ ∈ C1(Rk−1)] Suppose that Φ̃∗ is not differentiable at some s∗ ∈ Rk−1. Then
there exists d ∈ Rk−1 \ {0k̃} such that −(Φ̃∗)′(s∗;−d) < (Φ̃∗)′(s∗;d). Since s∗ ∈ int dom Φ̃∗,
(Φ̃∗)′(s∗, ·) is finite and convex [8, Prop. D.1.1.2], and thus it is continuous on dom Φ̃∗ = Rk−1

(ibid., Rmk. B.3.1.3). Consequently, there exists δ∗ > 0 such that

∀d̂ ∈ Rk−1, ‖d̂− d‖ ≤ δ∗ =⇒ −(Φ̃∗)′(s∗;−d̂) < (Φ̃∗)′(s∗; d̂) (47)

Let g : {−1, 1} → R be such that

g(u) := sup
‖d̂−d‖≤δ∗

u · (Φ̃∗)′(s∗;ud̂).

Note that since Φ̃∗ has increasing slopes (Φ̃∗ is convex), g(1) ≤ sup‖d̂−d‖≤δ∗(Φ̃
∗)′∞(d̂) =

sup‖d̂−d‖≤δ∗ σdom Φ̃(d̂) ≤ 1, where the last inequality holds because ∆̃k ⊂ B(0k̃, 1), and thus

σdom Φ̃(d̂) = σ∆̃k
(d̂) ≤ σB(0k̃,1)(d̂) = 1. Let ∆g := g(1) − g(−1). From (47), it is clear that

∆g > 0.

Suppose that L` is twice differentiable on ]0,+∞[n and let ` be a support loss of `. By definition
of a support loss, ∀p ∈ ri ∆k, ˜̀(p̃) = `(p) = ∇L`(p) (where ˜̀ := ` ◦ qn). Thus, since L` is
twice differentiable on ]0,+∞[n, ˜̀ is differentiable on int ∆̃n. Furthermore, ` is continuous on
ri ∆k given that L` ∈ C1(]0,+∞[n) as shown in the first part of this proof. We may assume
without loss of generality that ` is not a constant function. Thus, from Theorem 5, ` is not a
constant function either. Consequently, the mean value theorem applied to ` (see e.g. [16, Thm.
5.10]) between any two points in ri ∆n with distinct images under `, implies that there exists
(p̃∗,v∗) ∈ int ∆̃n ×Rn−1, such that D˜̀(p̃∗)v∗ 6= 0ñ. For the rest of the proof let (p̃,v) := (p̃∗,v∗)
and define I := {x ∈ [n] : D˜̀

x(p̃)v 6= 0}. From Lemma 27, we have 〈p,D˜̀(p̃)〉 = 0T
ñ, which

implies that there exists x ∈ I,D˜̀
x(p̃)v > 0. Thus, the set

K :=
{
x ∈ I : D˜̀

x(p̃)v > 0
}

(48)

is non-empty. From this and the fact that p ∈ ri ∆n, it follows that
∑

x′∈K
px′D˜̀

x′(p̃)v > 0. (49)
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Let p̃t := p̃ + tv. From Taylor’s Theorem (see e.g. [3, §151]) applied to the function t 7→ ˜̀(p̃t),
there exists ε∗ > 0 and functions δx : [−ε∗, ε∗]→ Rn, x ∈ [n], such that limt→0 t

−1δx(t) = 0 and

∀|t| ≤ ε∗, `x(pt) = `x(p) + tD˜̀
x(p)v + δx(t). (50)

For x ∈ [n], let dx ∈ Rk̃ and suppose that ‖dx − d‖ ≤ δ∗ (we will define dx explicitly later). By
shrinking ε∗ if necessary, we may assume that

∀x ∈ I,∀θ ∈ [k],∀|t| ≤ ε∗, dθt
−1δx(t) ≤ δ∗|D˜̀

x(p̃)v|√
n

, (51)

∀x 6∈ I, Φ̃∗(s∗)− Φ̃∗
(
s∗ −

[
δx

(
ε∗ dθ‖d‖

)]
θ∈[k̃]

)
≤ ε∗ ∆g

4‖d‖
∑

x′∈K
px′D˜̀

x′(p̃)v, (52)

∀x ∈ [n], Φ̃∗(s∗)− Φ̃∗
(
s∗ − ε∗ D˜̀

x(p̃)v
‖d‖ dx

)
≤ −(Φ̃∗)′

(
s∗;−ε∗ D˜̀

x(p̃)v
‖d‖ dx

)

+ ε∗ ∆g
4‖d‖

∑

x′∈K
px′D˜̀

x′(p̃)v, (53)

where (53) is satisfied for small enough ε∗ because of (49) and the fact that

1
ε

(
Φ̃∗(s∗)− Φ̃∗(s∗ − εD˜̀

x(p̃)v
‖d‖ dx

)
→
ε→0
−(Φ̃∗)′

(
s∗;−D˜̀

x(p̃)v
‖d‖ dx

)
,

and (52) is also satisfied for small enough ε∗ because Φ̃∗(s∗) − Φ̃∗
(
s∗ −

[
δx

(
ε dθ‖d‖

)]
θ∈[k̃]

)
=

O
(

max{θ∈[k̃]}

∣∣∣δx
(
ε dθ‖d‖

)∣∣∣
)

= o(ε), where the first equality is due to the fact that (λ, z) 7→
1
λ

(
Φ̃∗(s∗)− Φ̃∗(s∗ − λz

)
is uniformly bounded on compact subsets of R× Rk̃ (by continuity of

the directional derivative (Φ̃∗)′(s∗; ·)).

If D˜̀
x(p̃)v ≤ 0, then by the positive homogeneity of the directional derivative, the definition of the

function g, and (53), we get

Φ̃∗(s∗)− Φ̃∗
(
s∗ − ε∗ D˜̀

x(p̃)v
‖d‖ dx

)
≤ ε∗ D˜̀

x(p̃)v
‖d‖ g(1) + ε∗ ∆g

4‖d‖
∑

x′∈K
px′D˜̀

x′(p̃)v. (54)

On the other hand, if D˜̀
x(p̃)v > 0, then from the monotonicity of the slopes of Φ̃∗, the positive

homogeneity of the directional derivative, and the definition of the function g, it follows that

1
ε∗

(
Φ̃∗(s∗)− Φ̃∗(s∗ − ε∗ D˜̀

x(p̃)v
‖d‖ dx

)
≤ −(Φ̃∗)′

(
s∗;−D˜̀

x(p̃)v
‖d‖ dx

)
,

= −D˜̀
x(p̃)v
‖d‖ (Φ̃∗)′ (s∗;−dx) ,

≤ D˜̀
x(p̃)v
‖d‖ g(−1),

=
D˜̀
x(p̃)v
‖d‖ (−∆g + g(1)) . (55)

Let λθ := ε∗ dθ‖d‖ , for θ ∈ [k̃]. From Theorem 5, there exists [aθ]θ∈[k] ∈ Ak, such that

`(ak) = `(p) and ∀θ ∈ [k̃], `(aθ) = `(pλθ ) = `(p) + ε∗ dθ‖d‖D
˜̀(p̃)v + δ

(
ε∗ dθ‖d‖

)
, (56)

where [δ(·)]x := δx(·) for x ∈ [n].

From the fact that ` is Φ-mixable, it follows that there exists a∗ ∈ A such that for all x ∈ [n],

`x(a∗) ≤ MixΦ(`x(a1:k),µ) = `x(ak) + Φ̃∗(s∗)− Φ̃∗
(
s∗ − JT

k `x(a1:k)
)
. (57)

For x ∈ [n], we now define dx ∈ Rk̃ explicitly as

∀θ ∈ [k̃], dx,θ :=

{
dθ + ‖d‖

ε∗[D˜̀
x(p̃)v]

δx

(
ε∗ dθ‖d‖

)
, if x ∈ I

dθ, otherwise.
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From (51), we have ‖dx − d‖ ≤ δ∗,∀x ∈ [n]. Furthermore, from (56) and the fact that for all
x ∈ [n], JT

k `x(a1:k) = [`x(aθ)− `x(ak)]θ∈[k̃], we have

JT
k `x(a1:k) =





ε∗ D
˜̀
x(p̃)v
‖d‖ dx, if x ∈ I;[

δx

(
ε∗ dθ‖d‖

)]
θ∈[k̃]

, otherwise.
(58)

Using this, together with (54) and (55), we get ∀x ∈ I,

Φ̃∗(s∗)− Φ̃∗
(
s∗ − JT

k `x(a1:k)
)

= Φ̃∗(s∗)− Φ̃∗
(
s∗ − ε∗ D˜̀

x(p̃)v
‖d‖ dx

)
,

≤ ε∗ D˜̀
x(p̃)v
‖d‖ g(1)− ε∗∆gD˜̀

x(p̃)v
‖d‖ 1{D˜̀

x(p̃)v>0}

+ ε∗ ∆g
4‖d‖1{D˜̀

x(p̃)v≤0}
∑

x′∈K
px′D˜̀

x′(p̃)v. (59)

Combining (57), (58), and (59) yields

〈p, `(a∗)〉 ≤ 〈p, `(ak)〉+ ε∗

‖d‖ 〈p,D˜̀(p̃)v〉g(1)− 3ε∗∆g
4‖d‖

∑

x′∈K
px′D˜̀

x′(p̃)v

+
∑

x6∈I
px

(
Φ̃∗(s∗)− Φ̃∗

(
s∗ −

[
δx

(
ε∗ dθ‖d‖

)]
θ∈[k̃]

))
,

using (52) and the fact that 〈p,D˜̀(p̃)〉 = 0T
ñ (see Lemma 27), we get

≤ 〈p, `(ak)〉 − ε∗∆g
2‖d‖

∑

x′∈K
px′D˜̀

x′(p̃)v, (60)

< 〈p, `(p)〉, (61)

where in (61) we used (49) and the fact that `(p) = `(ak) (see (57)). Equation 61 shows that
`(a∗) 6∈ S`, which is a contradiction.

C.3 Proof of Theorem 7

Theorem 7 Let η > 0, and let ` : A → [0,+∞]n a loss. Suppose that dom ` = A and that L` is
twice differentiable on ]0,+∞[n. If η` > 0 then ` is η`-mixable. In particular, η` ≥ η`.

Proof. Let η := η`. We will show that exp(−ηS`) is convex, which will imply that ` is η-mixable
[6].

Since η` = inf p̃∈int ∆̃n
(λmax([HL̃log(p̃)]−1HL̃`(p̃)))−1 > 0, ηL` − Llog is convex on ri ∆n [19,

Thm. 10]. Let p ∈ ri ∆n and define

Λ(r) := Llog(r) + 〈r, η`(p)− `log(p)〉, r ∈ ri ∆n.

Since Λ is equal to Llog plus an affine function, it follows that ηL`−Λ is also convex on ri ∆n. On the
one hand, since ` and `log are proper losses, we have 〈p, `(p)〉 = L`(p) and 〈p, `log(p)〉 = Llog(p)
which implies that

ηL`(p)− Λ(p) = 0. (62)

On the other hand, since L` and Llog are differentiable we have `(p) = ∇L`(p) and ∇Llog(p) =
`log(p), which yields η∇L`(p)−∇Λ(p) = 0n. This implies that ηL` − Λ attains a minimum at p
[8, Thm. D.2.2.1]. Combining this fact with (62) gives ηL`(r) ≥ Λ(r),∀r ∈ ri ∆n, or equivalently
−ηL` ≤ −Λ. By Proposition 20-(iii), this implies

[−ηL`]∗ ≥ [−Λ]∗. (63)

Using Proposition 20-(ii), we get [−Λ]∗(s) = [−Llog]∗(s − `log(p) + η`(p)) for s ∈ Rn. Since
−ηL`(u) = −L`(ηu) = σS`

(−ηu) and σ∗S`
= ιS`

, Proposition 20-(v) implies [−ηL`]∗(s) =
ιS`

(−s/η). Similarly, we have [−Llog]∗(s) = ιSlog
(−s). Therefore, (63) implies

∀s ∈ Rn, ιS`
(−s/η) ≥ ιSlog

(−s+ `log(p)− η`(p)).
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This inequality implies that if s ∈ −ηS`, then s ∈ −Slog + `log(p) − η`(p). In particular, if
u ∈ e−ηS` then

u ∈ e−Slog+`log(p)−η`(p) ⊆ Hτ(p),1 = {v ∈ Rn : 〈v,p� eη`(p)〉 ≤ 1}. (64)

To see the set inclusion in (64), consider s ∈ −Slog + `log(p) − η`(p), then by definition of the
superprediction set Slog there exists r ∈ ∆n and v ∈ [0,+∞[n, such that s = log r − log p −
η`(p)− v. Thus,

〈es,p� eη`(p)〉 = 〈r, e−v〉 ≤ 1, (65)

where the inequality is true because r ∈ ∆n and v ∈ [0,+∞[n. The above argument shows that
e−ηS` ⊆ Hτ(p),1, where τ(p) := p � eη`(p). Furthermore, e−ηS` ⊆ Hτ(p),1∩]0,+∞[n, since
all elements of e−ηS` have non-negative, finite components. The latter set inclusion still holds
for p̂ ∈ rbd ∆n. In fact, from the definition of a support loss, there exists a sequence (pm) in
ri ∆n converging to p̂ such that `(pm)

m→∞→ `(p̂). Equation 65 implies that for u ∈ e−ηS` ,
〈u,pm � eη`(pm)〉 ≤ 1. Since the inner product is continuous, by passage to the limit, we obtain
〈u, p̂� eη`(p̂)〉 ≤ 1. Therefore,

e−ηS` ⊆
⋂

p∈∆n

Hτ(p),1∩]0,+∞[n. (66)

Now suppose u ∈ ⋂p∈∆n
Hτ(p),1∩]0,+∞[n; that is, for all p ∈ ∆n,

1 ≥
〈
u,p� eη`(p)

〉
=
〈
p,u� eη`(p)

〉
=
〈
p, eη`(p)+logu

〉
,

≥ e〈p,η`(p)〉+〈p,logu〉, (67)

where the first equality is obtained merely by expanding the expression of the inner product, and
the second inequality is simply Jensen’s Inequality. Since u 7→ eu is strictly convex, the Jensen’s
inequality in (67) is strict unless ∃(c,p) ∈ R×∆n, such that

η`(p) + logu = c1n. (68)

By substituting (68) into (67), we get 1 ≥ exp(c), and thus c ≤ 0. Furthermore, (68) together
with the fact that u ∈]0,+∞[n imply that p ∈ dom `, and thus there exists a ∈ dom ` such that
`(a) = `(p) (Theorem 5). Using this and rearranging (68), we get u = exp(−η`(a) + c1). Since
c ≤ 0, this means that u ∈ exp(−ηS`). Suppose now that (68) does not hold. In this case, (67) must
be a strict inequality for all p ∈ ∆n. By applying the log on both side of (67),

∀p ∈ ∆n, ηL`(p) + 〈p, logu〉 = 〈p, η`(p)〉+ 〈p, logu〉 < 0. (69)

Since p 7→ L`(p) = −σS`
(−p) is a closed concave function, the map g : p 7→ ηL`(p) + 〈p, logu〉

is also closed and concave, and thus upper semi-continuous. Since ∆n is compact, the function g
must attain its maximum in ∆n. Due to (69) this maximum is negative; there exists c1 > 0 such that

∀p ∈ ∆k, 〈p, η`(p)〉 − 〈p,− logu〉 ≤ −c1. (70)

Let f(p, x) := η`x(p) + log ux + c1, for x ∈ [n]. It follows from (70) that for all p ∈ ∆n,
Ex∼pf(p, x) ≤ 0 and ∀x ∈ [n],−∞ < f(p, x). Thus, Lemma 25 applied to f with ε = c1/2,
implies that there exists p∗ ∈ ri ∆n, such that η`(p∗) ≤ − logu − c1/2 ≤ − logu. From
this inequality, p∗ ∈ dom `, and therefore, there exists a∗ ∈ dom ` such that `(a∗) = `(p∗)
(Theorem 5). This shows that η`(a∗) ≤ − logu, which implies that u ∈ exp−ηS`. There-
fore,

⋂
p∈∆n

Hτ(p),1∩]0,+∞[n⊆ e−ηS` . Combining this with (66) shows that e−ηS` =⋂
p∈∆n

Hτ(p),1∩]0,+∞[n. Since e−ηS` is the intersection of convex set, it is a itself convex
set. Since dom ` = A by assumption, it follows that S` = S∞` , and thus e−ηS∞` is convex. This
last fact implies that ` is η-mixable [6].

C.4 Proof of Theorem 10

We start by the following characterization of ∆-differentiability (this was defined on page 5 of the
main body of the paper).
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Lemma 38. Let Φ: Rk → R ∪ {+∞} be an entropy. Then Φ is ∆-differentiable if and only if
∀l ⊆ [k] such that |l| > 1, Φ̃l := Φ ◦ qk ◦ [Πk̃

l ]T is differentiable on int ∆̃|l|.

Proof. This is a direct consequence of Proposition B.4.2.1 in [8], since 1) Φ̃l is convex; and 2)

Φ̃′l(ũ; ṽ − ũ) = Φ̃′([Πk̃
l ]Tũ; [Πk̃

l ]T(v − u)),

= Φ′(qk[Πk̃
l ]Tũ;qk[Πk̃

l ]T(v − u)),

for all ũ, ṽ ∈ int ∆̃|l| and Φ̃ := Φ ◦ qk.

Theorem 10 Let Φ : R → R ∪ {+∞} be a ∆-differentiable entropy. Let ` : A → [0,+∞]n be a
loss (not necessarily finite) such that L` is twice differentiable on ]0,+∞[n. If ` is (η,Φ)-mixable
then the GAA achieves a constant regret in the Gn` (A, k) game; for any sequence (xt,at1:k)Tt=1,

Loss`GAA(T )− min
θ∈[k]

Loss`θ(T ) ≤ RΦ
` := inf

q∈∆k

max
θ∈[k]

DΦ(eθ, q)/ηΦ
` ,

where eθ is the θth basis element of Rk.

Proof. For all l ⊆ [k] such that |l| > 1, let Φ̃ := Φ ◦ qk and Φ̃l := Φ̃ ◦ [Πk̃
l ]T. From Lemma 33 the

infimum involved in the definition of the expert distribution qt in Algorithm 2 is indeed attained. It
remains to verify that this minimum is unique. This will become clear in what follows.

Let l0 = [k] and It := {θ ∈ [k] : `xt(a
t
θ) < +∞}, t ∈ [T ]. For t ∈ [T ], we define the non-increasing

sequence of subsets (lt) of [k] defined by lt := It ∩ lt−1. We show by induction that qt ∈ ∆lt and

∇Φ̃lt(Π
k̃
lt q̃

t) = Πk̃
lt

(
∇Φ̃(q̃0)−

t∑

s=1

JT
k `xs(A

s)

)
, (71)

where As := [asθ] ∈ Ak, s ∈ N. Suppose that (71) holds true up to some t ≥ 1. We will now
show that it holds for t+ 1. To simplify expressions, we denote x̃l := Πk̃

l x̃ ∈ Rl for x̃ ∈ Rk̃, and
zt := `xt(A

t), t ∈ [T ]. From the definition of qt in Algorithm 2, we have

qt+1 ∈M := Argmin
µ∈∆k

〈µ, zt+1〉+DΦ(µ, qt).

Using the definition of It+1,
M = Argmin

µ∈∆lt+1

〈µ, zt+1〉+DΦ(µ, qt),

= Argmin
µ∈∆lt+1

〈µ, zt+1〉+ Φ̃lt(µ̃lt)− Φ̃lt(q̃
t
l )− Φ̃′lt(q̃

t
lt ; µ̃lt − q̃tlt).

Now using the facts that qt ∈ ∆lt , µ ∈ ∆lt+1 ⊆ ∆lt , Φ is ∆-differentiable, and Lemma 38, we have

M = Argmin
µ∈∆lt+1

〈µ, zt+1〉+ Φ̃lt+1(µ̃lt+1)− Φ̃lt(q̃
t
lt)− 〈µ̃lt − q̃tlt ,∇Φ̃lt(q̃

t
lt)〉.

Using the facts that 〈µ, zt+1〉 = zt+1
k + 〈µ̃lt+1 ,Πk̃

lt+1JT
k z

t+1〉, for µ̃ ∈ ∆̃lt+1 , and
〈µ̃lt ,∇Φ̃lt(q̃

t
lt)〉M = 〈µ̃lt+1 ,Πlt

lt+1∇Φ̃lt(q̃
t
lt)〉 (since µ ∈ ∆lt+1 )

M = Argmin
µ∈∆lt+1

〈µ̃lt+1 ,−Πlt

lt+1∇Φ̃lt(q̃
t
lt) + Πk̃

lt+1JT
k z

t+1〉+ Φ̃lt+1(µ̃lt+1)

+ 〈q̃tlt ,∇Φ̃lt(q̃
t
lt)〉 − Φ̃lt(q̃

t
lt),

and since the last two terms are independent of µ,

M = Argmin
µ∈∆lt+1

〈µ̃lt+1 ,−Πlt

lt+1∇Φ̃lt(q̃
t
lt) + Πk̃

lt+1JT
k z

t+1〉+ Φ̃lt+1(µ̃lt+1).

Now using Fenchel duality property in Proposition 20-(iv),

M = {µ ∈ ∆lt+1 : Πk̃
lt+1 ◦Πk(µ) = µ̃lt+1 ∈ ∂Φ̃∗lt+1(Πlt

lt+1∇Φ̃lt(q̃
t
lt)−Πk̃

lt+1JT
k z

t+1)}.
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Finally, due to Lemma 29 and Proposition 12, Φ̃∗lt+1 is differentiable on R|lt+1|−1, and thus

M = {qk ◦ [Πk̃
lt+1 ]T ◦ ∇Φ̃∗lt+1(Πlt

lt+1∇Φ̃lt(q̃
t
lt)−Πk̃

lt+1JT
k z

t+1)}. (72)

From (72), we obtain

∇Φ̃lt+1(Πk̃
lt+1 q̃t+1) = Πlt

lt+1∇Φ̃lt(q̃
t
lt)−Πk̃

lt+1JT
k z

t+1. (73)

Thus using the induction assumption and the fact that Πlt

lt+1Πk̃
lt = Πk̃

lt+1 (since lt+1 ⊆ lt), the result
follows, i.e. (71) is true for all t ∈ [T ]. Furthermore, qt+1 ∈ ∆lt+1 , since Πk̃

lt+1 q̃t+1 ∈ dom Φ̃lt+1 ⊆
∆̃|lt+1|. Using the same arguments as above, one arrives at

MixΦ(qt, zt+1) = zt+1
k + inf

µ∈∆lt+1

〈µ̃lt+1 ,−Πlt

lt+1∇Φ̃lt(q̃
t
lt) + Πk̃

lt+1JT
k z

t+1〉+ Φ̃lt+1(µ̃lt+1)

+ 〈q̃tlt ,∇Φ̃lt(q̃
t
lt)〉 − Φ̃lt(q̃

t
lt).

Using the Fenchel duality property Proposition 20-(vi) and (72),

= zt+1
k + Φ̃∗lt(∇Φ̃lt(q̃

t
lt))− Φ̃∗lt+1(Πlt

lt+1∇Φ̃lt(q̃
t
lt)−Πk̃

lt+1JT
k z

t+1). (74)

On the other hand, Φ-mixability implies that there exists at∗ ∈ At, such that for all xt ∈ [n],

∀t ∈ [T ], `xt(a
t
∗) ≤ MixΦ(qt−1, zt),

Summing this inequality for t = 1, . . . , T yields,
T∑

t=1

`xt(a
t
∗) ≤

T∑

t=1

MixΦ(qt−1, zt),

and thus using (74) and (73) yields
T∑

t=1

`xt(a
t
∗) ≤

T∑

t=1

`xt(a
t
k) + Φ̃∗(∇Φ̃(q̃0))− Φ̃∗lT (ΠlT−1

lT ∇Φ̃lT−1(q̃T−1
lT−1)−Πk̃

lT J
T
k z

T ).

Finally, using (71) together with the fact that ΠlT−1

lT Πk̃
lT−1 = Πk̃

lT

T∑

t=1

`xt(a
t
∗) ≤

T∑

t=1

`xt(a
t
k) + Φ̃∗(∇Φ̃(q̃0))− Φ̃∗lT

(
Πk̃

lT

(
∇Φ̃(q̃0)−

T∑

t=1

JT
k `xt(A

t)

))
.

Using the definition of the Fenchel dual and Proposition 20-(vi) again, the above inequality becomes
T∑

t=1

`xt(a
t
∗) ≤

T∑

t=1

`xt(a
t
k) + 〈q̃0,∇Φ̃(q̃0))〉 − Φ̃(q̃0)

− sup
π∈∆|lT |

[〈
π̃,Πk̃

lT

(
∇Φ̃(q̃0)−

T∑

t=1

JT
k `xt(A

t)

)〉
− Φ̃lT (π̃)

]
,

=
T∑

t=1

`xt(a
t
k) + 〈q̃0,∇Φ̃(q̃0))〉 − Φ̃(q̃0)

+ inf
µ∈∆lT

[〈
µ̃,

T∑

t=1

JT
k `xt(A

t)−∇Φ̃(q̃0)

〉
+ Φ̃(µ̃)

]
. (75)

Using the fact that ∀θ ∈ [k] \ lT ,
∑T
t=1 `xt(a

t
θ) = +∞ (by definition of (lt)), the right hand side of

(75) becomes
T∑

t=1

`xt(a
t
k) + 〈q̃0,∇Φ̃(q̃0))〉 − Φ̃(q̃0) + inf

µ∈∆k

[〈
µ̃,

T∑

t=1

JT
k `xt(A

t)−∇Φ̃(q̃0)

〉
+ Φ̃(µ̃)

]
.

Thus, we get

∀µ ∈ ∆k,

T∑

t=1

`xt(a
t
∗) ≤

T∑

t=1

`xt(a
t
k) +

〈
µ̃,

T∑

t=1

JT
k `xt(A

t)

〉

+ Φ̃(µ̃)− Φ̃(q̃0)− 〈µ̃− q̃0,∇Φ̃(q̃0)〉.

31



Using the facts that
∑T
t=1 `xt(a

t
k) +

〈
µ̃,
∑T
t=1 J

T
k `xt(A

t)
〉

=
〈
µ,
∑T
t=1 `xt(A

t)
〉

and the defini-
tion of the divergence,

∀µ ∈ ∆k,
T∑

t=1

`xt(a
t
∗) ≤

〈
µ,

T∑

t=1

`xt(A
t)

〉
+DΦ(µ, q0),

which for µ = eθ implies

∀θ ∈ [k],

T∑

t=1

`xt(a
t
∗) ≤

T∑

t=1

`xt(a
t
θ) +DΦ(eθ, q

0). (76)

When instead of Φ-mixability, we have (η,Φ)-mixability, the last term in (76) becomes DΦ(eθ,q
0)

η

and the desired result follows.

C.5 Proof of Theorem 11

We require the following result:

Proposition 39. For the Shannon entropy S, it holds that S̃
∗
(v) = log(〈exp(v),1k̃〉+1),∀v ∈ Rk−1,

and S?(z) = log〈exp(z),1k〉,∀z ∈ Rk.

Proof. Given v ∈ Rk−1, we first derive the expression of the Fenchel dual S̃
∗
(v) :=

supq̃∈∆̃k
〈q̃,v〉 − S̃(q̃). Setting the gradient of q̃ 7→ 〈q̃,v〉 − S̃(q̃) to 0k̃ gives v = ∇S̃(q̃). For

q ∈]0,+∞[k, we have∇ S(q) = log q+1k, and from appendix A we know that∇S̃(q̃) = JT
k∇ S(q).

Therefore,

v = ∇S̃(q̃) =⇒ v = JT
k∇ S(q) =⇒ v = log

q̃

qk
,

where the right most equality is equivalent to q̃/qk = exp(v). Since 〈q̃,1k̃〉 = 1 − qk, we get
qk = (〈exp(v),1k̃〉 + 1)−1. Therefore, the supremum in the definition of S̃

∗
(v) is attained at

q̃∗ = exp(v)(〈exp(v),1k̃〉+ 1)−1. Hence S̃
∗
(v) = 〈q̃∗,v〉− 〈q̃∗, log q̃∗〉 = log(〈exp(v),1k̃〉+ 1).

Finally, using (14) we get S?(z) = log〈exp(z),1k〉, for z ∈ Rk.

Theorem 11 Let η > 0. A loss ` : A → [0,+∞]n is η-mixable if and only if ` is (η,S)-mixable.

Proof.

Claim 1. For all q ∈ ∆k, A := a1:k ∈ Rk, and x ∈ [n]

−η−1 log 〈exp(−η`x(A)), q〉 = MixηS(`x(A), q). (77)

Let q ∈ ri ∆k. From Proposition 39, the Shannon entropy is such that S? is differentiable on Rk, and
thus it follows from Lemma 33 ((33)-(34)) that for any d ∈ [0,+∞[k

MixS(d, q) = S?(∇S(q))− S?(∇S(q)− d). (78)

By definition of S,∇S(q) = log q+1k, and due to Proposition 39, S?(z) = log〈exp z,1k〉, z ∈ Rk.
Therefore,

∇ S(q)− ηd = log(exp(−ηd)� q) + 1k. (79)

On the other hand, from [13] we also have

MixηS(d, q) = η−1 MixS(ηd, q), η > 0. (80)

Combining (78)-(80), yields

−η−1 log 〈exp(−ηd, q〉 = MixηS(d, q). (81)
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Suppose now that q ∈ ri ∆l for l ⊆ [k] such that |l| > 1. By repeating the argument above for
Sl := S ◦ΠT

l , we get

∀d ∈ [0,+∞[n, MixηSl
(Πld,Πlq) = −η−1 log〈exp(−ηΠld),Πlq〉,

= −η−1 log〈exp(−ηd), q〉. (82)

Fix x ∈ [n] and let d̂ := `x(A) ∈ [0,+∞]k. Let (d̂m) ⊂ [0,+∞[k be any sequence converging to d̂.
Lemma 34, MixηS(d̂m, q)

m→∞→ MixηS(d̂, q). Using this with (82) gives

−η−1 log 〈exp(−η`x(A)), q〉 = lim
m→∞

−η−1 log〈exp(−ηd̂m), q〉,

= lim
m→∞

MixηS(d̂m, q),

= MixηS(d̂, q) = MixηS(`x(A), q). (83)

It remains to check the case where q is a vertex; Without loss of generality assume that q = e1 and
let µ ∈ ∆k \ {e1}. Then there exists l∗ ⊂ [k], such that (e1,µ) ∈ (rbd ∆l∗) × (ri ∆l∗) and by
Lemma 30, S′(e1;µ− e1) = −∞. Therefore, ∀q ∈ ∆k \ {e1}, DSη (q, e1) = +∞, which implies

∀x ∈ [n],MixηS(`x(A), e1) = inf
q∈∆k

〈q, `x(A)〉+DSη (q, e1),

= 〈e1, `x(A)〉+DSη (e1, e1),

= 〈e1, `x(A)〉,
= `x(a1) = −η−1 log 〈exp(−η`x(A)), e1〉 . (84)

Combining (84) and (83) proves the claim in (77). The desired equivalence follows trivially from the
definitions of η-mixability and (η,S)-mixability.

C.6 Proof of Theorem 13

We need the following lemma to show Theorem 13.
Lemma 40. Let Φ be as in Theorem 13. Then η`Φ− S is convex on ∆k only if Φ satisfies (22).

Proof. Let q̂ ∈ rbd ∆k. Suppose that there exists q ∈ ri ∆k such that Φ′(q̂; q − q̂) > −∞. Since Φ
is convex, it must have non-decreasing slopes; in particular, it holds that Φ′(q̂; q− q̂) ≤ Φ(q)−Φ(q̂).
Therefore, since Φ is finite on ∆k (by definition of an entropy), we have Φ′(q̂; q − q̂) < +∞. Since
by assumption η`Φ− S is convex and finite on the simplex, we can use the same argument to show
that [η`Φ − S]′(q̂; q − q̂) = η`Φ

′(q̂; q − q̂) − S′(q̂; q − q̂) < +∞. This is a contradiction since
S′(q̂; q − q̂) = −∞ (Lemma 30). Therefore, it must hold that Φ′(q̂; q − q̂) = −∞.

Suppose now that (q̂, q) ∈ (rbd ∆l) × (ri ∆l) for l ⊆ [k], with |l| > 1. Let Φl := Φ ◦ ΠT
l and

Sl := S ◦ΠT
l . Since η`Φ − S is convex on ∆k and Πl is a linear function, η`Φl − Sl is convex

on ∆|l|. Repeating the steps above for Φ and S substituted by Φl and Sl, respectively, we get
that (Φl)

′(Πlq̂; Πlq − Πlq̂) = −∞. Since (Φl)
′(Πlq̂; Πlq − Πlq̂) = Φ′(q̂; q − q̂) the proof is

completed.

Theorem 13 Let η > 0, ` : A → [0,+∞]n a η-mixable loss, and Φ: Rk → R ∪ {+∞} an entropy.
If ηΦ− S is convex on ∆k, then ` is Φ-mixable.

Proof. Assume η`Φ− S is convex on ∆k. For this to hold, it is necessary that η` > 0 since −S is
strictly concave. Let η := η` and Sη := η−1 S. Then S̃η = η−1S̃ and Φ̃ − S̃η = (Φ − Sη) ◦ qk is
convex on ∆̃k, since Φ− Sη is convex on ∆k and qk is affine.

Let x ∈ [n], A := [aθ]θ∈[k], and q ∈ ∆k. Suppose that q ∈ ri ∆k and let s∗q ∈ ∂Φ̃(q̃) be
as in Proposition 33. Note that if `x(aθ) = +∞,∀θ ∈ [k], then the Φ-mixability condition
(8) is trivially satisfied. Suppose, without loss of generality, that `x(ak) < +∞. Let (dm) ⊂
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[0,+∞[k be any sequence such that dm
m→∞→ d := `x(A) ∈ [0,+∞]k. From Lemmas 30 and 34,

MixΨ(dm, q)
m→∞→ MixΨ(d, q) for Ψ ∈ {Φ,Sη}.

Let Υ̃q : Rk−1 → R ∪ {+∞} be defined by

Υ̃q(µ̃) := S̃η(µ̃) + 〈µ̃, s∗q −∇S̃η(q̃)〉 − Φ̃∗(s∗q) + S̃
∗
η(∇S̃η(q̃)),

and it’s Fenchel dual follows from Proposition 20 (i+ii):

Υ̃∗q(v) = S̃
∗
η(v − s∗q +∇S̃η(q̃)) + Φ̃∗(s∗q)− S̃

∗
η(∇S̃η(q̃)),

After substituting v by s∗q − JT
k d in the expression of Υ̃∗q and rearranging, we get

S̃
∗
η(∇S̃η(q̃))− S̃

∗
η(∇S̃η(q̃)− JT

k dm) = Φ̃∗(s∗q)− Υ̃∗q(s∗q − JT
k dm). (85)

Since s∗q ∈ ∂Φ̃(q̃) and Φ̃ is a closed convex function, combining Proposition 20-(iv) and the fact that
Φ̃∗∗ = Φ̃ [8, Cor. E.1.3.6] yields 〈q̃, s∗q〉 − Φ̃∗(s∗q) = Φ̃(q̃). Thus, after substituting µ̃ by q̃ in the
expression of Υ̃q , we get

Φ̃(q̃) = Υ̃q(q̃). (86)

On the other hand, Φ̃− Υ̃q is convex on ∆̃k, since Υ̃q is equal to S̃η plus an affine function. Thus,
∂[Φ̃ − Υ̃q](q̃) + ∂Υ̃q(q̃) = ∂Φ̃(q̃), since Φ̃ and Υ̃q are both convex (ibid., Thm. D.4.1.1). Since
Υ̃q is differentiable at q̃, we have ∂Υ̃q(q̃) = {∇Υ̃q(q̃)} = {s∗q}. Furthermore, since s∗q ∈ ∂Φ̃(q̃),
then 0k̃ ∈ ∂Φ̃(q)− ∂Υ̃q(q̃) = ∂[Φ̃− Υ̃q](q̃). Hence, Φ̃− Υ̃q attains a minimum at q̃ (ibid., Thm.
D.2.2.1). Due to this and (86), Φ̃ ≥ Υ̃q, which implies that Φ̃∗ ≤ Υ̃∗q (Proposition 20-(iii)). Using
this in (85) gives for all m ∈ N

S̃
∗
η(∇S̃η(q̃))− S̃

∗
η(∇S̃η(q̃)− JT

k dm) ≤ Φ̃∗(s∗q)− Φ̃∗(s∗q − JT
k dm),

=⇒ MixηS(dm, q) ≤ MixΦ(dm, q),

where the implication is obtained by adding [dm]k on both sides of the first inequality and using
Proposition 33.

Suppose now that q ∈ ri ∆l, with |l| > 1, and let Φl := Φ ◦ ΠT
l and Sl := S ◦ΠT

l . Note that since
η`Φ − S is convex on ∆k and Πl is a linear function, η`Φl − Sl is convex on ∆|l|. Repeating the
steps above for Φ, S, q, and A substituted by Φl, Sl, Πlq, and AΠT

l , respectively, yields

MixηSl
(Πldm,Πlq) ≤ MixΦl

(Πldm,Πlq),

=⇒ MixηS(dm, q) ≤ MixΦ(dm, q),

=⇒ MixηS(`x(A), q) ≤ MixΦ(`x(A), q), (87)

where the first implication follows from Lemma 32, since Sη and Φ both satisfy (22) (see Lemmas
30 and 40), and (87) is obtained by passage to the limit m→∞. Since η = η` > 0, ` is η-mixable,
which implies that ` is Sη-mixable (Theorem 11). Therefore, there exists a∗ ∈ A, such that

`x(a∗) ≤ MixηS(`x(A), q) ≤ MixΦ(`x(A), q). (88)

To complete the proof (that is, to show that ` is Φ-mixable), it remains to consider the case where q
is a vertex of ∆k. Without loss of generality assume that q = e1 and let µ ∈ ∆k \ {e1}. Thus, there
exists l∗ ⊆ [k], with |l∗| > 1, such that (e1,µ) ∈ (rbd ∆l∗)× (ri ∆l∗), and Lemma 40 implies that
Φ′(e1;µ− e1) = −∞. Therefore, ∀q ∈ ∆k \ {e1}, DΦ(q, e1) = +∞, which implies

∀x ∈ [n],MixΦ(`x(A), e1) = inf
q∈∆k

〈q, `x(A)〉+DΦ(q, e1),

= 〈e1, `x(A)〉+DΦ(e1, e1) = 〈e1, `x(A)〉,
= `x(a1). (89)

The Φ-mixability condition (8) is trivially satisfied in this case. Combining (88) and (89) shows that
` is Φ-mixable.
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C.7 Proof of Theorem 14

The following Lemma gives necessary regularity conditions on the entropy Φ under the assumptions
of Theorem 14.
Lemma 41. Let Φ and ` be as in Theorem 14. Then the following holds

(i) Φ̃ is strictly concave on int ∆̃k.

(ii) Φ̃∗ is be continuously differentiable on Rk−1.

(iii) Φ̃∗ is twice differentiable on Rk−1 and ∀q̃ ∈ int ∆̃k,HΦ̃∗(∇Φ̃(q̃)) = (HΦ̃(q̃))−1.

(iv) For the Shannon entropy, we have (HS̃(q̃))−1 = HS̃
∗
(∇S̃(q̃)) = diag q̃ − q̃q̃T.

Proof. Since ` is Φ-mixable and L` is twice differentiable on ]0,+∞[n, Φ̃∗ is continously differen-
tiable on Rn−1 (Proposition 12). Therefore, Φ̃ is strictly convex on ri ∆k [8, Thm. E.4.1.2].

The differentiability of Φ̃ and Φ̃∗ implies ∇Φ̃∗(∇Φ̃(q̃)) = q̃ (ibid.). Since Φ̃ is twice differentiable
on int ∆̃k (by assumption), the latter equation implies that Φ̃∗ is twice differentiable on∇Φ̃(int ∆̃k).
Using the chain rule, we get HΦ̃∗(∇Φ̃(u))HΦ̃(u) = Ik̃. Multiplying both sides of the equation by
(HΦ̃(u))−1 from the right gives the expression in (iii). Note that HΦ̃(·) is in fact invertible on int ∆̃k

since Φ̃ is strictly convex on int ∆̃k. It remains to show that∇Φ̃(int ∆̃k) = Rk−1. This set equality
follows from 1) [q̃ ∈ ∂Φ̃∗(s) ⇐⇒ s ∈ ∂Φ̃(q̃)] (ibid., Cor. E.1.4.4); 2) dom Φ̃∗ = Rk−1; and 3)
∀q̃ ∈ bd ∆̃k, ∂Φ̃(q̃) = ∅ (Lemma 32).

For the Shannon entropy, we have S̃
∗
(v) = log(〈exp(v),1k̃〉+ 1) (Proposition 39) and ∇S̃(q̃) =

log q̃
qk

, for (v, q̃) ∈ Rk−1 × ∆̃k. Thus (HS̃(q̃))−1 = HS̃
∗
(∇S̃(q̃)) = diag q̃ − q̃q̃T.

To show Theorem 14, we analyze a particular parameterized curve defined in the next lemma.
Lemma 42. Let ` : ∆n → [0,+∞]n be a proper loss whose Bayes risk L` is twice differentiable on
]0,+∞[n, and let Φ be an entropy such that Φ̃ and Φ̃∗ are twice differentiable on int ∆̃k and Rk−1,
respectively. For (p̃, q̃, V ) ∈ int ∆̃n × int ∆̃k × Rñ×k̃, let β : R→ Rn be the curve defined by

∀x ∈ [n], βx(t) = ˜̀
x(p̃) + Φ̃∗(∇Φ̃(q̃))− Φ̃∗(∇Φ̃(q̃)− JT

k
˜̀
x(P̃ t)), (90)

where P̃ t = [p̃1T
k̃

+ tV, p̃] ∈ Rñ×k and t ∈ {s ∈ R : ∀j ∈ [k̃], p̃+ sV•,j ∈ int ∆̃n}. Then

β(0) = ˜̀(p̃),

β̇(0) = D˜̀(p̃)V q̃,

d

dt

〈
p, β̇(t)

〉∣∣∣∣
t=0

= −
k−1∑

j=1

qjV
T
•,jHL̃`(p̃)V•,j − tr(diag (p)D˜̀(p̃)V (HΦ̃(q̃))−1(D˜̀(p̃)V )T).

(91)

Proof. Since P̃ t = [p̃1T
k̃

+ tV, p̃] ∈ Rñ×k, P̃ 0 = p̃1T
k and ˜̀

x(P̃ 0) = ˜̀
x(p̃)1k. As a result,

JT
k

˜̀
x(P̃ 0) = 0k̃, and thus βx(0) = ˜̀

x(p̃) + Φ̃∗(∇Φ̃(q̃))− Φ̃∗(∇Φ̃(q̃)− 0k̃) = ˜̀
x(p̃). This shows

that β(0) = ˜̀(p̃). Let γx(t) := ∇Φ̃(q̃)− JT
k

˜̀
x(P̃ t). For j ∈ [k − 1],

d

dt
[γx(t)]j =

d

dt

(
[∇Φ̃(q̃)]j − [JT

k
˜̀
x(P̃ t)]j

)
,

= − d

dt

(
˜̀
x(P̃ t•,j)− ˜̀

x(P̃ t•,k)
)
,

= − d

dt

(
˜̀
x(p̃+ tV•,j)− ˜̀

x(p̃)
)
,

(
since

d

dt
`x(P̃ t•,k) =

d

dt
˜̀
x(p̃) = 0

)

= −D˜̀
x(P̃ t•,j)V•,j .
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From the definition of P̃ t, P̃ 0
•,j = p̃, ∀j ∈ [k̃], and therefore, γ̇x(0) = −(D˜̀

x(p̃)V )T. By differ-
entiating βx in (90) and using the chain rule, β̇x(t) = −(γ̇x(t))T∇Φ̃∗(γx(t)). By setting t = 0 ,
β̇x(0) = −(γ̇x(0))T∇Φ̃∗(∇Φ̃(q̃)) = D˜̀

x(p̃)V q̃. Thus, β̇(0) = D˜̀(p̃)V q̃. Furthermore,

d

dt

〈
p, β̇(t)

〉∣∣∣∣
t=0

=
d

dt

n∑

x=1

px



k−1∑

j=1

D˜̀
x(P̃ t•,j)V•,j [∇Φ̃∗(γx(t))]j



∣∣∣∣∣∣
t=0

,

=
k−1∑

j=1

d

dt

(
n∑

x=1

pxD˜̀
x(P̃ t•,j)V•,j [∇Φ̃∗(γx(t))]j

)∣∣∣∣∣
t=0

,

=

k−1∑

j=1

(
d

dt

〈
p,D˜̀(P̃ t•,j)V•,jqj

〉∣∣∣∣
t=0

+

n∑

x=1

pxD˜̀
x(p̃)V•,j

d

dt
[∇Φ̃∗(γx(t))]j

∣∣∣∣
t=0

)
,

= −
k−1∑

j=1

qjV
T
•,jHL̃`(p̃)V•,j −

n∑

x=1

k−1∑

i=1
j=1

pxD˜̀
x(p̃)V•,j [HΦ̃∗(∇Φ̃(q̃))]j,iD˜̀

x(p̃)V•,i,

= −
k−1∑

j=1

qjV
T
•,jHL̃`(p̃)V•,j − tr(diag (p)D˜̀(p̃)V HΦ̃∗(∇Φ̃(q̃))(D˜̀(p̃)V )T),

= −
k−1∑

j=1

qjV
T
•,jHL̃`(p̃)V•,j − tr(diag (p)D˜̀(p̃)V (HΦ̃(q̃))−1(D˜̀(p̃)V )T),

where in the third equality we used Lemma 25, in the fourth equality we used Lemma 28, and in the
sixth equality we used Lemma 41-(iii).

In next lemma, we state a necessary condition for Φ-mixability in terms of the parameterized curve β
defined in Lemma 42.

Lemma 43. Let `, Φ, and β be as in Lemma 42. If ∃(p̃, q̃, V ) ∈ int ∆̃n × int ∆̃k × Rñ×k̃ such that

the curve γ(t) := ˜̀(p̃ + tV q̃) satisfies d
dt 〈p, β̇(t)− γ̇(t)〉

∣∣∣
t=0

< 0, then ` is not Φ−mixable. In

particular, ∃P ∈ ri ∆k
n, such that [MixΦ(`x(P ), q)]Tx∈[n] lies outside S`.

Proof. First note that for any triplet (p̃, q̃, V ) ∈ int ∆̃n × int ∆̃k × Rñ×k̃, the map t 7→〈
p, β̇(t)− γ̇(t)

〉
is differentiable at 0. This follows from Lemmas 25 and 42. Let r(t) :=

qn(p̃+ tV q̃) and δ(t) := 〈r(t), β(t)− γ(t)〉. Then

δ̇(t) =
〈
r(t), β̇(t)− γ̇(t)

〉
+ 〈V q̃, β(t)− γ(t)〉 .

Since t 7→ 〈p, β̇(t) − γ̇(t)〉 is differentiable at 0, it follows from Lemma 25 that t 7→ δ̇(t) is also
differentiable at 0, and thus

δ̈(0) =
d

dt

〈
r(t), β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

+
〈
JnV q̃, β̇(0)− γ̇(0)

〉
,

=
〈
ṙ(0), β̇(0)− γ̇(0)

〉
+

d

dt

〈
p, β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

, (92)

=
〈
JnV q̃, β̇(0)− γ̇(0)

〉
+

d

dt

〈
p, β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

,

=
d

dt

〈
p, β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

< 0, (93)
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where (92) and (93) hold because β̇(0) = D˜̀(p̃)V q̃ = γ̇(0) (see Lemma 42). According to Taylor’s
theorem (see e.g. [3, §151]), there exists ε > 0 and h : [−ε, ε]→ R such that

∀|t| ≤ ε, δ(t) = δ(0) + tδ̇(0) +
t2

2
δ̈(0) + h(t)t2, (94)

and limt→0 h(t) = 0. From Lemma 42, β(0) = γ(0) = 0 and β̇(0) = γ̇(0). Therefore, δ(0) =

δ̇(0) = 0 and (94) becomes δ(t) = t2

2 δ̈(0) + h(t)t2. Due to (93) and the fact that limt→0 h(t) = 0,

we can choose ε∗ > 0 small enough such that δ(ε∗) =
ε2∗
2 δ̈(0) + h(ε∗)ε2∗ < 0. This means that

〈qn(p̃ + ε∗V q̃), β(ε∗)〉 < 〈qn(p̃ + ε∗V q̃), ˜̀(p̃ + ε∗V q̃)〉 = 〈qn(p̃ + ε∗V q̃), `(qn(p̃ + ε∗V q̃)〉.
Therefore, β(ε∗) must lie outside the superprediction set. Thus, the mixability condition (8) does not
hold for P ε∗ = qn[p̃1T

k̃
+ ε∗V, p̃] ∈ ri ∆k

n. This completes the proof.

Theorem 14 Let ` : A → [0,+∞]n be a loss such that L` is twice differentiable on ]0,+∞[n, and
Φ: Rk → R ∪ {+∞} an entropy such that Φ̃ := Φ ◦ qk is twice differentiable on int ∆̃k. Then ` is
Φ-mixable only if η`Φ− S is convex on ∆k.

Proof. We will prove the contrapositive; suppose that η`Φ − S is not convex on ∆k and we show
that ` cannot be Φ-mixable. Note first that from Lemma 41-(iii), Φ̃∗ is twice differentiable on Rk−1.
Thus Lemmas 42 and 43 apply. Let ` be a proper support loss of ` and suppose that η`Φ− S is not
convex on ∆k, This implies that η`Φ̃ − S̃ is not convex on int ∆̃k, and by Lemma 22 there exists
q̃∗ ∈ int ∆̃k, such that 1 > η`λmin(HΦ̃(q̃∗)(HS̃(q̃∗))−1). From this and the definition of η`, there
exists p̃∗ ∈ int ∆̃n such that

1 >
λmin(HΦ̃(q̃∗)(HS̃(q̃∗))−1)

λmax([HL̃log(p̃∗)]−1HL̃`(p̃∗))
=
λmin(HΦ̃(q̃∗)(diag (q̃∗)− q̃∗q̃T∗ ))

λmax([HL̃log(p̃∗)]−1HL̃`(p̃∗))
, (95)

where the equality is due to Lemma 41-(iv). For the rest of this proof let (p̃, q̃) = (p̃∗, q̃∗).
By assumption, L̃` twice differentiable and concave on int ∆̃n, and thus −HL̃`(p̃) is symmetric
positive semi-definite. Therefore, their exists a symmetric positive semi-definite matrix Λp such
that ΛpΛp = −HL̃`(p̃). From Lemma 41-(i), Φ̃ is strictly convex on int ∆̃k, and so there exists a
symmetric positive definite matrix Kq such that KqKq = HΦ̃(q̃). Let w ∈ Rn−1 be the unit norm
eigenvector of [HL̃log(p̃)]−1HL̃`(p̃) associated with λ`∗ := λmax([HL̃log(p̃)]−1HL̃`(p̃)). Suppose
that c` := wTHL̃`(p̃)w = 0. Since wTΛpΛpw = −c` = 0, it follows from the positive semi-
definiteness of Λp that Λpw = 0ñ, and thus HL̃`(p̃)w = −ΛpΛpw = 0ñ. This implies that
λ`∗ = 0, which is not possible due to (95). Therefore, HL̃`(p̃)w 6= 0ñ. Furthermore, the negative
semi-definiteness of HL̃`(p̃) implies that

c` = wTHL̃`(p̃)w < 0. (96)

Let v ∈ Rk−1 be the unit norm eigenvector of Kq(diag (q̃) − q̃q̃T)Kq associated with λΦ
∗ :=

λmin(Kq(diag (q̃) − q̃q̃T)Kq) = λmin(HΦ̃(q̃)(diag (q̃) − q̃q̃T)), where the equality is due to
Lemma 21. Let v̂ := Kqv.

We will show that for V = wv̂T, the parametrized curve β defined in Lemma 42 satisfies
d
dt 〈p, β̇(t)− γ̇(t)〉

∣∣∣
t=0

< 0, where γ(t) = ˜̀(p̃ + tV q̃). According to Lemma 43 this would

imply that there exists P ∈ ri ∆k
n, such that [MixΦ(`x(P ), q)]Tx∈[n] lies outside S`. From The-

orem 5, we know that there exists A∗ ∈ Ak, such that `x(A∗) = `x(P ),∀x ∈ [n]. Therefore,
[MixΦ(`x(A∗), q)]Tx∈[n] = [MixΦ(`x(P ), q)]Tx∈[n] /∈ S`, and thus ` is not Φ-mixable.

From Lemma 42 (Equation 91) and the fact that V•,j = v̂jw, for j ∈ [k̃], we can write

d

dt

〈
p, β̇(t)

〉∣∣∣∣
t=0

= −
k−1∑

j=1

qj v̂
2
jw

THL̃`(p̃)w − tr(diag (p)D˜̀(p̃)V (HΦ̃(q̃))−1(D˜̀(p̃)V )T),

= −〈q̃, v̂ � v̂〉wTHL̃`(p̃)w − (v̂T(HΦ̃(q))−1v̂)〈p, [D˜̀(p̃)w]� [(D˜̀(p̃)w]〉,
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where the second equality is obtained by noting that 1) (v̂T(HΦ̃(q))−1v̂) is a scalar quantity and can
be factorized out; and 2) tr(diag(p)D˜̀(p̃)w(D˜̀(p̃)w)T) = 〈p, (D˜̀(p̃)w)� (D˜̀(p̃)w)〉.
On the other hand, from Lemma 28, d

dt 〈p, γ̇(t)〉
∣∣
t=0

= −〈q̃, v̂〉2wTHL̃`(q̃)w. Using (17) and the
definition of c`, we get

d

dt

〈
p, β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

= [−〈q̃, v̂ � v̂〉+ 〈q̃, v̂〉2]c`+

(v̂T(HΦ̃(q))−1v̂)(wT(HL̃`(p̃))(HL̃log(p̃))−1HL̃`(p)w),

= −c`[〈q̃, v̂ � v̂〉 − 〈q̃, v̂〉2 − λ`∗(v̂T(HΦ̃(q))−1v̂)],

= −c`[v̂T(diag (q̃)− q̃q̃T)v̂ − λ`∗(v̂T(HΦ̃(q))−1v̂)],

= −c`[v̂T(diag (q̃)− q̃q̃T)v̂ − λ`∗(vTKq(KqKq)−1Kqv)],

= −c`[vTKq(diag (q̃)− q̃q̃T)Kqv − λ`∗], (97)

= −c`[λΦ
∗ − λ`∗],

= −c`[λmin(HΦ̃(q)(diag (q̃)− q̃q̃T))− λmax(HL̃`(p̃)(HL̃log(p̃))−1)],

where in (97) we used the fact that vTv = 1. The last equality combined with (95) and (96) shows
that d

dt 〈p, β̇(t)− γ̇(t)〉
∣∣∣
t=0

< 0, which completes the proof.

C.8 Proof of Lemma 15

Lemma 15 Let ` : A → [0,+∞]n be a loss. If dom ` = A, then either H` = ∅ or η` ∈ H`.

Proof. Suppose H` 6= ∅. Let q ∈ ∆k, A := a1:k ∈ Ak. By definition of η` there exists (ηm) ⊂
[0,+∞[ such that ` is ηm-mixable and ηm

m→∞→ η`. Therefore, ∀m ∈ N, ∃am ∈ A such that

∀x ∈ [n], `x(am) ≤ −η−1
m log〈q, exp(−ηm(`x(A))〉 < +∞, (98)

where the right-most inequality follows from the fact dom ` = A. Therefore, the sequence (`(am)) ⊂
[0,+∞[n is bounded, and thus admits a convergent subsequence. If we let s be the limit of this
subsequence, then from (98) it follows that

∀x ∈ [n], s ≤ −η−1
` log〈q, exp(−η`(`x(A))〉, (99)

On the other hand, since ` is closed (by Assumption 1), it follows that there exists a∗ ∈ A such that
`(a∗) = s. Combining this with (99) implies that ` is η`-mixable, and thus η` ∈ H`.

C.9 Proof of Theorem 17

Theorem 17 Let ` and Φ be as in Theorem 16. Then

ηΦ
` = η` inf

q̃∈int ∆̃k

λmin(HΦ̃(q̃)(HS̃(q̃))−1),

Proof. From Theorem 16, ` is Φη-mixable if and only if η`Φη − S = η−1η`Φ− S is convex on ∆k.
When this is the case, Lemma 22 implies that

1 ≤ η−1η`( inf
q̃∈int ∆̃k

λmin[HΦ̃(q̃)[HS̃(q̃)]−1]), (100)

where we used the facts that H(η−1η`Φ̃) = η−1η`HΦ̃, λmin(·) is linear, and η−1η` is independent
of q̃ ∈ int ∆̃k. Inequality 100 shows that the largest η such that ` is Φη-mixable is given by ηΦ

` in
(11).
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C.10 Proof of Theorem 18

Theorem 18 Let S,Φ: Rk → R ∪ {+∞}, where S is the Shannon entropy and Φ is an entropy
such that Φ̃ := Φ ◦ qk is twice differentiable on int ∆̃k. A loss ` : A → [0,+∞[n, with L` twice
differentiable on ]0,+∞[n, is Φ-mixable only if RS

` ≤ RΦ
` .

Proof. Suppose ` is Φ-mixable. Then from Theorem 16, η`Φ − S is convex on ∆k, and thus
η` = ηS

` > 0 (Corollary 17). Furthermore, η`Φ̃− S̃ = [η`Φ− S] ◦ qk is convex on int ∆̃k, since qk
is an affine function. It follows from Lemma 22 and Corollary 17 that

ηΦ
` = η` inf

q̃∈int ∆̃k

λmin(HΦ̃(q̃)(HS̃(q̃))−1) ≥ 1 > 0.

Let µ ∈ ri ∆k and θ∗ := argmaxθDS(eθ,µ). By definition of an entropy and the fact that
the directional derivatives Φ′(µ; ·) and S′(µ; ·) are finite on ∆k [8, Prop. D.1.1.2], it holds that
DΦ(eθ∗ ,µ), DS(eθ∗ ,µ) ∈]0,+∞[. Therefore, there exists α > 0 such that α−1DΦ(eθ∗ ,µ) =
DS(eθ∗ ,µ). If we let Ψ := α−1Φ, we get

DΨ(eθ∗ ,µ) = DS(eθ∗ ,µ). (101)

Let dΨ(q̃) := Ψ̃(q̃)− Ψ̃(µ̃)− 〈q̃ − µ̃,∇Ψ̃(µ̃)〉. Observe that

dΨ(q̃) = Ψ(q)−Ψ(µ)− 〈q − µ,∇Ψ(µ)〉 = DΨ(q,µ).

We define dS similarly. Suppose that ηΨ
` > ηS

` = η`. Then, from Corollary 17, ∀q̃ ∈ int ∆̃k,
λmin(HΨ̃(q̃)(HS̃(q̃))−1) > 1. This implies that ∀q̃ ∈ int ∆̃k, λmin(HdΨ(q̃)(HdS(q̃))−1) > 1, and
from Lemma 22, dΨ − dS must be strictly convex on int ∆̃k. We also have ∇dΨ(µ̃)−∇dS(µ̃) = 0
and dΨ(µ̃)− dS(µ̃) = 0. Therefore, dΨ − dS attains a strict minimum at µ̃ (ibid., Thm. D.2.2.1);
that is, dΨ(q̃) > dS(q̃), ∀q̃ ∈ ∆̃k \ {µ̃}. In particular, for q̃ = Πk(eθ∗), we get DΨ(eθ∗ ,µ) =
dΨ(q̃) > dS(q̃) = DS(eθ∗ ,µ), which contradicts (101). Therefore, ηΨ

` ≤ ηS
` , and thus

RS
` (µ) = maxθDS(eθ,µ)/ηS

` = DS(eθ∗ ,µ)/ηS
` ,

≤ DΨ(eθ∗ ,µ)/ηΨ
` , (102)

≤ maxθDΨ(eθ,µ)/ηΨ
` ,

= RΨ
` (µ), (103)

where (102) is due to DΨ(eθ∗ ,µ) = DS(eθ∗ ,µ) and ηΨ
` ≤ ηS

` . Equation 103, implies that RS
` (µ) ≤

RΦ
` (µ), since RΨ

` (µ) = RαΦ
` (µ) = RΦ

` (µ) [13]. Therefore,

∀µ ∈ ri ∆k, R
S
` (µ) ≤ RΦ

` (µ). (104)

It remains to consider the case where µ is in the relative boundary of ∆k. Let µ ∈ rbd ∆k. There
exists l0 ( [k] such that µ ∈ ∆l0 . Let θ∗ ∈ [k] \ l0 and l := l0 ∪ {θ∗}. It holds that µ ∈ rbd ∆l

and µ + 2−1(eθ∗ − µ) ∈ ri ∆l. Since ` is Φ-mixable, it follows from Proposition 29 and the
1-homogeneity of Φ′(µ; ·) [8, Prop. D.1.1.2] that

Φ′(µ; eθ∗ − µ) = 2Φ′(µ; [µ+ 2−1(eθ∗ − µ)]− µ) = −∞.
Hence,

RΦ
` (µ) = maxθ∈[k]DΦ(eθ,µ),

≥ DΦ(eθ∗ ,µ) = Φ(eθ∗)− Φ(µ)− Φ′(µ; eθ∗ − µ) = +∞. (105)

Inequality 105 also applies to S, since ` is (η`
−1 S)-mixable. From (105) and (104), we conclude that

∀µ ∈ ∆k, R
S
` (µ) ≤ RΦ

` (µ).
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C.11 Proof of Theorem 19

Theorem 19 Let Φ : Rk → R ∪ {+∞} be a ∆-differentiable entropy. Let ` : A → [0,+∞]n

be a loss such that L` is twice differentiable on ]0,+∞[n. Let βt = −η∑t−1
s=1(`xs(A

s) + vs),
where vs ∈ Rk and As := as1:k ∈ Ak. If ` is (η,Φ)-mixable then for initial distribution q0 =
argminq∈∆k

maxθ∈[k]DΦ(eθ, q) and any sequence (xt,at1:k)Tt=1, the AGAA achieves the regret

∀θ ∈ [k], Loss`AGAA(T )− Loss`θ(T ) ≤ RΦ
` +

T−1∑

t=1

(vtθ − 〈vt, qt〉).

Proof. Recall that Φt(w) := Φ(w)− 〈w,βt − θt〉, where θt = −η∑t−1
s=1 `xs(A

s). From Theorem
16 and since Φt is equal to Φ plus an affine function, it is clear that if ` is (η,Φ)-mixable then ` is
(η,Φt)-mixable. Thus, for all (At, qt−1) ∈ Ak ×∆k, there exists at∗ ∈ A such that for any outcome
xt ∈ [n]

`xt(a
t
∗) ≤ η−1[Φ?t (∇Φt(q

t−1))− Φ?t (∇Φt(q
t−1)− η`xt(At))].

Summing over t from 1 to T , we get
T∑

t=1

`xt(a
t
∗) ≤ η−1[Φ?1(∇Φ1(q0))− Φ?T (∇ΦT (qT−1)− η`xT (AT ))] (106)

+ η−1
T−1∑

t=1

[
Φ?t+1(∇Φt+1(qt))− Φ?t (∇Φt(q

t−1)− η`xt(At))
]
.

ODue to the properties of the entropic dual [13] and the definition of Φt, the following holds for all
t ∈ [T ] and z in Rk,

∇Φt(q
t−1) = −η

t−1∑

s=1

`xs(A
s), (107)

Φ?t (z) = Φ?(z +∇Φ(qt−1) + η

t−1∑

s=1

`xs(A
s)), (108)

∇Φ(qt) = ∇Φ(qt−1)− η`xt(At)− ηvt. (109)
Using (107)-(108), we get for all 0 ≤ t < T , Φ?t+1(∇Φt+1(qt)) = Φ?(∇Φ(qt)), and in particular
Φ?1(∇Φ1(q0)) = Φ?(∇Φ(q0)). Similarly, using (107)-(109), gives Φ?t (∇Φt(q

t−1)− η`xt(At)) =
Φ?(∇Φ(qt) + ηvt) for all 1 ≤ t ≤ T . Substituting back into (106) yields

∑T

t=1
`xt(a

t
∗) ≤ η−1[Φ?(∇Φ(q0))− Φ?(∇Φ(qT ) + ηvT )]

+ η−1
T−1∑

t=1

[
Φ?(∇Φ(qt))− Φ?(∇Φ(qt) + ηvt)

]
, (110)

To conclude the proof, we note that since Φ is convex it holds that
Φ?(∇Φ(qt))− Φ?(∇Φ(qt) + ηvt) ≤ −η〈vt,∇Φ?(∇Φ(qt))〉 = −η〈vt, qt〉, (111)

which allows us to bound the sum on the right hand side of 110. To bound the rest of the terms, we
use the fact that∇Φ(qT ) = ∇Φ(q0)− η∑T

t=1(`xt(A
t) + vt), and thus by letting Φη := η−1Φ,

η−1[Φ?(∇Φ(q0))− Φ?(∇Φ(qT ) + ηvT )] = Φ?η(∇Φη(q0))

− Φ?η

(
∇Φη(q0)−

T∑

t=1

`xt(A
t)−

T−1∑

t=1

vt

)
,

= inf
q∈∆k

〈
q,

T∑

t=1

`xt(A
t) +

T−1∑

t=1

vt

〉
+
DΦ(q, q0)

η
,

≤
T∑

t=1

`xt(a
t
θ) +

T−1∑

t=1

vtθ +
DΦ(eθ, q

0)

η
,∀θ ∈ [k].

Substituting this last inequality and (111) back into (110) yields the desired bound.
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D Defining the Bayes Risk Using the Superprediction Set

In this section, we argue that when a loss ` : A → [0,+∞]n is mixable, in the classical or generalized
sense, it does not matter whether we define the Bayes risk L` using the full superprediction set S∞`
or its finite part S`. Recall the definition of the Bayes risk;

Definition 2 Let ` : A → [0,+∞]n be a loss such that dom ` 6= ∅. The Bayes risk L` : Rn →
R ∪ {−∞} is defined by

∀u ∈ Rn, L`(u) := inf
z∈S`

〈u, z〉 . (112)

Note that the right hand side of (112) does not change if we substitute S` for its closure — S` —
with respect to [0,+∞]n. Thus, it suffices to show that S∞` ⊆ S` when the loss ` is mixable. We
show this in Theorem 45, but first we give a characterization of the (finite part) of the superprediction
set for a proper loss.

Proposition 44. Let ` : ∆n → [0,+∞]n be a proper loss. If L` is differentiable on ]0,+∞[n, then

S` ⊇ C` := {u ∈ [0,+∞]n : ∀p ∈ ∆n, L`(p) ≤ 〈p,u〉}. (113)

Proof. Let v ∈ C` ∩ [0,+∞[n. Let f : ri ∆n × [n] → R be defined by f(p, x) := `x(p) − vx.
By the choice of v, we have Ex∼pf(p, x) = 〈p, `(p)〉 − 〈p,v〉 ≤ 0 for all p ∈ ∆n. Since L` is
differentiable on ]0,+∞[n, by assumption, ` is continuous on ri ∆n, and thus f is continuous in the
first argument. Since v has finite components, the map f satisfies all the conditions of Lemma 24.
Therefore, there exists (pm) ⊂ ri ∆n such that

∀m ∈ N,∀x ∈ [n], `x(pm) ≤ vx +
1

m
. (114)

Without loss of generality, we can assume by extracting a subsequence if necessary that `(pm)
converges to s ∈ [0,+∞]n. By definition, we have s ∈ S`, and from (114) it follows that s ≤ v
coordinate-wise. Thus, v is in S`.

The above argument shows that C` ∩ [0,+∞[n⊆ S`, and since S` is closed in [0,+∞]n we have
C ⊆ S`, where C is the closure of C` ∩ [0,+∞[n in [0,+∞]n. Now it suffice to show that C` ⊆ C to
complete the proof.

Let u ∈ C` and l := {x ∈ [n] : ux < +∞}. Define (um) ⊂ [0,+∞[n by um,x = ux if x ∈ l; and
m otherwise. Let p ∈ ∆n. It follows that

〈p,um〉 =
∑

x′∈l
px′um,x′ +

∑

x/∈l
pxum,x,

=
∑

x′∈l
px′um,x′ +

∑

x/∈l
pxum,x, . (115)

Claim 2. ∀ε > 0,∃mε ≥ 1,∀p ∈ ∆k, L`(p) ≤ 〈p,umε〉 − ε.

Suppose that Claim 2 is false. This means that there exists δ > 0 such that

∀m ≥ 1,∃pm ∈ ∆n, 〈pm,um〉 − δ < L`(pm). (116)

We may assume, by extracting a subsequence if necessary (∆n is compact), that (pm) converges to
p∗ ∈ ∆n. Taking the limit m → ∞ in (116) would lead to the contradiction ‘〈p∗,u〉 < L`(p∗)’,
since from (115) we have limm→∞〈pm,um〉 = 〈p∗,u〉. Therefore, Claim 2 is true. For ε = 1

k let
mk := mε be as in Claim (2). The claim then implies that lim infk→∞〈p,umk〉 ≥ L`(p) uniformly
for p ∈ ∆k. By the claim we also have that umk ∈ C` ∩ [0,+∞[n for all k ∈ N, and by construction
of vm, we have limk→∞ umk = u. This shows that C` ⊆ C, which completes the proof.

Theorem 45. Let ` : A → [0,+∞]n be a loss. If S∞` 6⊆ S`, then ` is not mixable.
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Proof. Suppose that ` is mixable and let ` be a proper support loss of `. From Proposition 12, L`
is differentiable on ]0,+∞[n, and thus Theorem 5 implies that S` = S`. Therefore, Lemma 44
implies that S` ⊇ {u ∈ [0,+∞]n : ∀p ∈ ∆n, L`(p) ≤ 〈p,u〉}. Thus, if S∞` 6⊆ S`, there exists
ε > 0, pε ∈ ∆k, and s ∈ S∞` \S` such that

〈pε, s〉 < L`(pε)− 2ε. (117)

Note that pε cannot be in ri ∆n; otherwise, (117) would imply that s has all finite components, and
thus would be included in S`, which is a contradiction. Assume from now on that pε ∈ rbd ∆n.
From the definition of the support loss, there exists a sequence (pm) ⊆ ri ∆n such that pm

m→∞→ pε
and `(pm)

m→∞→ `(pε). Therefore, Theorem 5 implies that there exists aε ∈ A such that

〈pε, `(aε)〉 < 〈pε, `(pε)〉+ ε. (118)

To see this, note that since (pm) ⊂ ri ∆n ⊆ dom `, Theorem 5 guarantees the existence of a sequence
(am) ⊂ A such that `(am) = `(pm). On the other hand, for any x ∈ [n] such that `x(pε) = +∞,
we have pε,x = 0 — otherwise, L`(pε) would be infinite. It follows, by continuity of the inner
product that 〈pε, `(am)〉 m→∞→ 〈pε, `(pm)〉, and thus it suffices to pick aε equal to am for m large
enough.

Now since ` is η-mixable, there exists η > 0 and a∗ ∈ A such that

`(a∗) ≤ −η−1 log

(
1

2
e−ηs +

1

2
e−η`(aε)

)
,

and due to the convexity of − log,

≤ 1

2
s+

1

2
`(aε).

Using (117) and (118) yields
〈pε, `(a∗)〉 ≤ L`(pε)− ε/2. (119)

On the other hand, by definition of a proper support loss, 〈pε, `(pε)〉 ≤ 〈pε, `(a∗)〉. This combined
with (119), lead to the contradiction 〈pε, `(pε)〉 < L`(pε).

E The Update Step of the GAA and the Mirror Descent Algorithm

In this section, we demonstrate that the update steps of the GAA and the Mirror Descent Algorithm
are essentially the same (at least for finite losses) according to the definition of the MDA given by
Beck and Teboulle [2];

Let ` : A → [0,+∞[n be a loss and Φ: Rk → R ∪ {+∞} an entropy such that Φ̃ is differentiable
on int ∆̃k. Let qt be the update distribution of the GAA at round t and q̃t = Πk(qt). It follows from
the definition of qt (see Algorithm 2) that

q̃t = argmin
q̃∈∆̃k

〈
qk(q̃), `xt(A

t)
〉

+ η−1DΦ̃(q̃, q̃t−1),

= argmin
q̃∈∆̃k

〈
q̃, JT

k `xt(A
t)
〉

+ η−1DΦ̃(q̃, q̃t−1),

= argmin
q̃∈∆̃k

〈
q̃,∇lt(q̃t−1)

〉
+ η−1DΦ̃(q̃, q̃t−1), (120)

where lt(µ̃) := 〈qk(µ̃), `xt(A
t)〉 = 〈µ, `xt(At)〉. Update (120) is, by definition [2], the MDA with

the sequence of losses lt on int ∆̃k, ‘distance’ function DΦ̃(·, ·), and learning rate η. Therefore, the
MDA is exactly the update step of the GAA.

F The Generalized Aggregating Algorithm Using the Shannon Entropy S

The purpose of this appendix is to show that the GAA reduces to the AA when the former uses the
Shannon entropy. In this case, generalized and classical mixability are equivalent. In what follows,
we make use of the following proposition which is proved in C.5.
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Proposition 39 For the Shannon entropy S, it holds that S̃
∗
(v) = log(〈exp(v),1k̃〉+1),∀v ∈ Rk−1,

and S?(z) = log〈exp(z),1k〉,∀z ∈ Rk.

Let ` : A → [0,+∞[n be a loss and Φ be as in Proposition 33 and suppose that Φ and Φ̃∗ are
differentiable on ri ∆k and Rk−1, respectively. It was shown in [13] that

∇Φ?(∇Φ(q)− `x(A)) = argmin
µ∈∆k

〈µ, `x(A)〉+DΦ(µ, q), (121)

MixΦ(`x(A), q) = Φ?(∇Φ(q))− Φ?(∇Φ(q)− `x(A)). (122)

Let q ∈ ri ∆k. By definition of S, ∇S(q) = log q + 1k, and due to Proposition 39, S?(z) =
log〈exp z,1k〉, z ∈ Rk. Therefore, ∇ S(q) − η`x(A) = log(exp(−η`x(A)) � q) + 1k and
∇ S?(z) = exp z

〈exp z,1k〉 , ∀(x,A) ∈ [n]× (dom `)k. Thus,

∇S?(∇ S(q)− η`x(A)) =
exp(−η`x(A))� q
〈exp(−η`x(A)), q〉 . (123)

Let Sη := η−1 S. Then ∇ S = η∇ Sη and ∀z ∈ Rk,∇S?η(z) = ∇S?(ηz) [13].2 Then the left hand
side of (123) can be written as ∇ S?η(∇ Sη(q)− `x(A)). Using this fact, (121) and (123) show that
the update distribution qt of the GAA (Algorithm 2) coincides with that of the AA after substituting
q, x, and A by qt−1, xt, and At := [aθ]θ∈[k], respectively.

Now using the fact that MixηS(`x(A), q) = η−1 MixS(η`x(A), q) [13] and (122), we get

MixηS(`x(A), q) = η−1[S?(∇ S(q))− S?(∇S(q)− η`x(A))],

= −η−1 log〈exp(−η`x(A)), q〉. (124)

Equation 124 shows that the η-mixability condition is equivalent to the (η,S)-mixability condition
for a finite loss. This remains true for losses taking infinite values — see the proof of Theorem 11 in
Appendix C.5.

G Legendre Φ, but no Φ-mixable `

In this appendix, we construct a Legendre type entropy [15] for which there are no Φ-mixable losses
satisfying a weak condition (see below).

Let ` : A → [0,+∞]n be a loss satisfying condition 1. According to Alexandrov’s Theorem, a
concave function is twice differentiable almost everywhere (see e.g. [5, Thm. 6.7]). Now we give a
version of Theorem 14 which does not assume the twice differentiability of the Bayes risk. The proof
is almost identical to that of Theorem 14 with only minor modifications.

Theorem 46. Let Φ: Rk → R ∪ {+∞} be an entropy such that Φ̃ is twice differentiable on int ∆̃k,
and ` : A → [0,+∞]n a loss satisfying Condition 1 and such that ∃(p̃,v) ∈ D×Rñ,HL̃`(p̃)v 6= 0ñ,
where D ⊂ int ∆̃n is a set of Lebesgue measure 1 where L̃` is twice differentiable, and define

η`
∗ := inf

p̃∈D
(λmax([HL̃log(p̃)]−1HL̃`(p̃)))−1. (125)

Then ` is Φ-mixable only if η`∗Φ− S is convex on ∆k.

The new condition on the Bayes risk is much weaker than requiring L` to be twice differentiable on
]0,+∞[n. In the next example, we will show that there exists a Legendre type entropy for which
there are no Φ-mixable losses satisfying the condition of Theorem 46.

Example 2. Let Φ : R2 → R ∪ {+∞} be an entropy such that

∀q ∈]0, 1[, Φ(q, 1− q) = Φ̃(q) =

∫ q

1/2

log

(
log(1− t)

log t

)
dt.

2Reid et al. [13] showed the equality ∇Φ?η(u) = ∇Φ?(ηu), ∀u ∈ dom Φ?, for any entropy differentiable
on ∆k - not just for the Shannon Entropy.

43



Φ̃ is differentiable and strictly convex on the open set (0, 1). Furthermore, it satisfies (22) which
makes it a function of Legendre type [15, Lem. 26.2]. In fact, (22) is satisfied due to

∣∣∣∣
d

dq
Φ̃(q)

∣∣∣∣ =

∣∣∣∣log

(
log(1− q)

log q

)∣∣∣∣
q→b→ +∞, where b ∈ {0, 1},

d2

dq2
Φ̃(q) =

−1

q log q
+

−1

(1− q) log(1− q) > 0, ∀q ∈]0, 1[.

The Shannon entropy on ∆2 is defined by S(q, 1 − q) = S̃(q) = q log q + (1 − q) log(1 − q), for
q ∈]0, 1[. Thus, d2

dq2 S̃(q) = 1
q(1−q) .

Suppose now that there exists a Φ-mixable loss ` : A → [0,+∞]n satisfying condition 1 and such
that ∃(p̃,v) ∈ D × Rñ,HL̃`(p̃)v 6= 0ñ. Let η`∗ be as in (125). By definition, we have η`∗ < +∞,
and thus

η`
∗
[
d2

dq2
Φ̃(q)

] [
d2

dq2
S̃(q)

]−1

= η`
∗
(
q − 1

log q
+

−q
log(1− q)

)
q→b→ 0, (126)

where b ∈ {0, 1}. From Lemma 22, (126) implies that η`∗Φ − S is not convex on ∆k, which is a
contradiction according to Theorem 46.

H Loss Surface and Superprediction Set

In this appendix, we derive an expression for the curvature of the image of a proper loss function. We
will need the following lemma.

Lemma 47. Let σ : [0,+∞[n→ R be a 1-homogeneous, twice differentiable function on ]0,+∞[n.
Then σ is concave on ]0,+∞[n if and only if σ̃ = σ ◦ qn is concave on int ∆̃n.

Proof. The forward implication is immediate; if σ is concave on ]0,+∞[n, then σ ◦ qk is concave
on int ∆̃k, since qk is an affine function.

Now assume that σ̃ is concave on int ∆̃k. Let λ ∈ [0, 1] and (p, q) ∈ [0,+∞[n×[0,+∞[n. We need
to show that

λσ(p) + (1− λ)σ(q) ≤ σ(λp+ (1− λ)q). (127)

Note that if p = 0 or q = 0, (127) is trivially with equality due to the 1-homogeneity of σ. Now
assume that p and q are non-zero and let c := λ ‖p‖1 + (1 − λ) ‖q‖1. For convenience, we also
denote p1 = p/ ‖p‖1 and q1 = q/ ‖q‖1 which are both in ∆n. It follows that

λσ(p) + (1− λ)σ(q) = cM

(
λ
‖p‖1
c

σ(p1) + (1− λ)
‖q‖1
c

σ(q1)

)
,

= c

(
λ
‖p‖1
c

σ̃(p̃1) + (1− λ)
‖q‖1
c

σ̃(q̃1)

)
,

≤ cσ̃
(
λ
‖p‖1
c
p̃1 + (1− λ)

‖q‖1
c
q̃1

)
,

= cσ

(
λ
‖p‖1
c
p1 + (1− λ)

‖q‖1
c
q1

)
,

= σ(λp+ (1− λ)q),

where the first and last equalities are due the 1-homogeneity of σ and the inequality is due to σ̃ being
concave on the int ∆̃n.
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H.1 Convexity of the Superprediction Set

In the literature, many theoretical results involving loss functions relied on the fact that the superpre-
diction set of a proper loss is convex [24, 7]. An earlier proof of this result by [24] was incomplete3.
In the next theorem we restate this result.
Theorem 48. If ` : ∆n → [0,+∞[n is a continuous proper loss, then S` =

⋂
p∈∆n

H−p,−L`(p). In
particular, S` is convex.

S` ⊆
⋂
p∈∆n

H−p,−L`(p). : Let v ∈ S`, u ∈ [0,+∞[n, and q ∈ ∆n such that v = `(q) + u.
Since ` is proper then ∀p ∈ ∆n, L`(p) = 〈p, `(p)〉 ≤ 〈p, `(q)〉 ≤ 〈p, `(q)+u〉 = 〈p,v〉. Therefore,
v ∈ ⋂p∈∆n

H−p,−L`(p).

[
⋂
p∈∆n

H−p,−L`(p) ⊆ S`]: Let v ∈ ⋂p∈∆n
H−p,−L`(p). Let Ω = [n], ∆(Ω) = ∆n, and

Q(p, x) = `x(p) − vx for all (p, x) ∈ ∆n × [n]. Since v ∈ ⋂p∈∆n
H−p,−L`(p), Ex∼pQ(p, x) =

〈p, `(p)〉 − 〈p,v〉 ≤ 0 for all p ∈ ∆n. Lemma 23, implies that there exists p∗ ∈ ∆n such that
Q(p∗, x) = `x(p∗)− vx ≤ 0, for all x ∈ [n]. This shows that v ∈ S`.

H.2 Curvature of the Loss Surface

The normal curvature of a ñ-manifold S [18] at a point r ∈ S in the direction of w ∈ TrS, where
TrS is the tangent space of S at r ∈ S, is defined by

κ(r,w) =

〈
w,DNS(r)w

〉

〈w,w〉 , (128)

where NS(r) is the normal vector to the surface at r. The minimum principal curvature of S at r is
expressed as κ(r) := inf{κ(r,w) : w ∈ TrS ∩ B(r, 1)}.
In the next theorem, we establish a direct link between the curvature of a loss surface and the Hessian
of the loss’ Bayes risk.
Theorem 49. Let ` : ri ∆n → [0,+∞[n be a loss whose Bayes risk is twice differentiable and
strictly concave on ]0,+∞[n. Let p ∈ ri ∆n, Xp := Iñ − p̃1T

ñ, and w ∈ T˜̀(p̃)S`. Then

1. ∃v ∈ Rn−1 such that D˜̀(p̃)v = w.

2. S` is a ñ-manifold.

3. The normal curvature of S` at `(p) = ˜̀(p̃) in the direction w is given by

κ`(`(p),w) =

∥∥∥∥
[
Xp
−p̃T

]
(−HL̃`(p̃))

1
2u

∥∥∥∥
−1

, (129)

where u = (−HL̃`(p̃))
1
2v/‖(−HL̃`(p̃))

1
2v‖.

It becomes clear from (129) that smaller eigenvalues of −HL̃`(p̃) will tend to make the loss surface
more curved at `(p), and vice versa.

Before proving Theorem 49, we first define parameterizations on manifolds.
Definition 50 (Local and Global Parameterization). Let S ⊆ Rn be a ñ-manifold and U an open
set in Rñ. The map ϕ : U → S is called a local parameterization of S if Dϕ(u) : Rñ → Tϕ(u)S is
injective for all u ∈ U , where Tϕ(u)S is the tangent space of S at ϕ(u) ∈ S. ϕ is called a global
parameterization of S if it is, additionally, onto.

Let ϕ be a global parameterization of S and Nϕ := NS ◦ ϕ. By a direct application of the chain rule,
(128) can be written as

κ(ϕ(u),w) =
〈w,DNϕ(u)v〉
〈w,w〉 , (130)

3It was claimed that if S` is non-convex, there exists a point s0 on the loss surface S` such that no hyperplane
supports S` at s0. The non-convexity of a set by itself is not sufficient to make such a claim; the continuity of
the loss ` is required.
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where v is such that Dϕ(u)v = w. The existence of such a v is guaranteed by the fact that Dϕ is
injective and dimRñ = dimTϕ(u)S = ñ.

Theorem 49. First we show that S` is a ñ-manifold. Consider the map ˜̀ : int ∆̃n → S` and note that
int ∆̃n is trivially a ñ-manifold. Due to the strict concavity of the Bayes risk, ˜̀ is injective [19] and
from Lemmas 27 and 47, D˜̀(p̃) : Rñ → T˜̀(p̃)S` is also injective. Therefore, ˜̀ is an immersion [14].
˜̀ is also proper in the sense that the preimage of every compact subset of S` is compact. Therefore, ˜̀

is a proper injective immersion, and thus it is an embedding from the ñ-manifold int ∆̃n to S` (ibid.).
Hence, S` is a manifold.

Now we prove (129). The map ˜̀ is a global parameterization of S`. In fact, from Lemma 27, D˜̀(p̃)

has rank ñ, for all p̃ ∈ int ∆̃n, which implies that D˜̀(p̃) is onto from Rñ to T˜̀(p̃)S`. Therefore,

given w ∈ T˜̀(p̃)S`, there exists v ∈ Rñ such that w = D˜̀(p̃)v. Furthermore, Lemma 27 implies

that N˜̀
(p̃) = p, since 〈p,D˜̀(p̃)〉 = 0T

ñ. Substituting N
˜̀ into (130) yields

κ`(˜̀(p̃),w) =

vT(D˜̀(p̃))T
[
Iñ,
1ñ

]
v

〈
D˜̀(p̃)v,D˜̀(p̃)v

〉 ,

=

vTHL̃`(p̃)
[
XT
p , −p̃

] [Iñ
1ñ

]
v

〈
D˜̀(p̃)v,D˜̀(p̃)v

〉 ,

=
vTHL̃`(p̃)v

vTHL̃`(p̃)
[
XT
p , −p̃

] [ Xp
−p̃T

]
HL̃`(p̃)v

. (131)

Setting u = (−HL̃`(p̃))
1
2v/‖(−HL̃`(p̃))

1
2 v‖ in (131) gives the desired result.

I Classical Mixability Revisited

In this appendix, we provide a more concise proof of the necessary and sufficient conditions for the
convexity of the superprediction set [19].
Theorem 51. Let ` : ∆n → [0,+∞[n be a strictly proper loss whose Bayes risk is twice differentiable
on ]0,+∞[n. The following points are equivalent;

(i) ∀p̃ ∈ int ∆̃n, ηHL̃`(p̃) � HL̃log(p̃).

(ii) e−ηS` =
⋂
p∈∆n

Hτ(p),1 ∩ [0,+∞[n, where τ(p) := p� eη`(p).

(iii) e−ηS` is convex.

Proof. We already showed (i) =⇒ (ii) =⇒ (iii) in the proof of Theorem 7.

We now show (iii) =⇒ (i). Since e−ηS` is convex, any point s ∈ bd e−ηS` is supported by
a hyperplane [8, Lem. A.4.2.1]. Since u → e−ηu is a homeomorphism, it maps boundaries to
boundaries. From this and Lemma 36, bd e−ηS` = e−ηS` . Thus, for p ∈ ri ∆n, there exists a
unit-norm vector u ∈ Rn such that for all s ∈ S` it either holds that 〈u, e−η`(p)〉 ≤ 〈u, e−ηs〉;
or 〈u, e−η`(p)〉 ≥ 〈u, e−ηs〉. It is easy to see that it is the latter case that holds, since we can
choose s = `(r) + c1 ∈ S`, for r ∈ ∆n, and make 〈u, e−ηs〉 arbitrarily small by making c ∈ R
large. Therefore, ∀r ∈ ri ∆n, 〈u, e−η ˜̀(p̃)〉 = 〈u, e−η`(p)〉 ≥ 〈u, e−η`(r)〉 = 〈u, e−η ˜̀(r̃)〉 and p̃ is a
critical point of the function f(r̃) := 〈u, e−η ˜̀(r̃)〉 on int ∆̃n. This implies that ∇f(p̃) = 0ñ; that
is, −η〈u,diag(e−η

˜̀(p̃))D˜̀(p̃)〉 = −η〈diag(e−η
˜̀(p̃))u,D˜̀(p̃)〉 = 0T

ñ. From Lemma 27, there exists
λ ∈ R such that diag(e−η

˜̀(p̃))u = λp. Therefore, u = λp � eη ˜̀(p̃), where λ = ‖p � eη ˜̀(p̃)‖−1,
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since ‖u‖ = 1. For v ∈ Rn−1, let α̃t := p̃+ tv, where t ∈ {s : p̃+ sv ∈ int ∆̃n}. Since f is twice
differentiable and attains a maximum at p̃,

0 ≥ 1

λη

d2

dt2
f ◦ α̃t

∣∣∣∣
t=0

=
1

λ

d

dt

〈
u,diag e−η

˜̀(α̃t)D˜̀(α̃t)v
〉∣∣∣∣
t=0

,

=
d

dt

〈
p� eη ˜̀(p̃),diag e−η

˜̀(α̃t)D˜̀(p̃)v
〉∣∣∣∣
t=0

+
d

dt

〈
p,D˜̀(α̃t)v

〉∣∣∣∣
t=0

,

= ηvTHL̃`(p̃)(HL̃log(p̃))−1HL̃`(p̃)v − vTHL̃`(p̃)v, (132)

where in the second equality we substituted u by λp�eη ˜̀(p̃) and in (132) we used (17) and (18) from
Lemma 28. Note that by the assumptions on ` it follows that the Bayes risk L̃` is strictly concave [19,
Lemma 6] and −HL̃`(p̃) is symmetric negative-definite. In particular, HL̃`(p̃) is invertible. Setting
v̂ := HL̃`(p̃)v in (132) yields

0 ≥ ηv̂(HL̃log(p̃))−1v̂ − v̂(HL̃`(p̃))−1v̂.

Since v ∈ Rn−1 was chosen arbitrarily, (HL̃`(p̃))−1 � η(HL̃log(p̃))−1,∀p̃ ∈ int ∆̃n. This is
equivalent to the condition ∀p̃ ∈ int ∆̃n, ηHL̃`(p̃) � HL̃log(p̃).

J An Experiment on Football Prediction Dataset
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Figure 1: The figure corresponds to the 2005/2006, 2006/2007, 2007/2008, and 2008/2009 seasons.
The solid lines represent, at each round t, the difference between the cumulative losses of the experts
and that of the learner who uses either the AA (left) or the AGAA (right); that is, Loss`Brier

θ (t) −
Loss`Brier

M (t), for M ∈ {AA,AGAA}. The red dashed lines represent the negative of the regret
bound in (12) with respect to the best expert θ∗; that is, −RS

`Brier
−∆Rθ∗(t) at each round t.

J.1 Testing the AGAA

To test the AGAA empirically, we used prediction data4 from the British football leagues, including
the Premier Leagues, Championships, Leagues 1-2, and Conferences. The first dataset contains
predictions for the 2005/2006, 2006/2007, 2007/2008, and 2008/2009 seasons, matching the dataset
used in [21]. The second dataset contains predictions for the 2009/2010, 2010/2011, 2011/2012, and
2012/2013 seasons. For this set, we considered predictions from 9 bookmakers; Bet365, Bet&Win,
Blue Square, Gamebookers, Interwetten, Ladbrokes, Stan James, VC Bet, and William Hill.

On each dataset, we compared the performance of the AGAA with that of the AA using the Brier
score (the Brier loss is 1-mixable). For the AGAA, we chose βt according to Theorem 19 with
vt := − 1

2t

∑t
s=1 `xs(A

s) and we set Φ = S, i.e. the Shannon entropy. The results in Figure 1 [resp.
Figure 2] correspond to the seasons from 2005 to 2009 [resp. 2009 to 2013]. For fair comparison

4The data was collected from http://www.football-data.co.uk/.
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Figure 2: The figure corresponds to the 2009/2010, 2010/2011, 2011/2012, and 2012/2013 seasons
The solid lines represent, at each round t, the difference between the cumulative losses of the experts
and that of the learner who uses either the AA (left) or the AGAA (right); that is, Loss`Brier

θ (t) −
Loss`Brier

M (t), for M ∈ {AA,AGAA}. The red dashed lines represent the negative of the regret
bound in (12) with respect to the best expert θ∗; that is, −RS

`Brier
−∆Rθ∗(t) at each round t.
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Figure 3: The figure on the left [resp. right] hand side corresponds to the football seasons from 2005
to 2009 [resp. 2009 to 2013]. The solid lines represent, at each round t, the difference between the
cumulative losses of the experts and that of the learner using the AA-AGAA meta algorithm (refer
to text); that is, Loss`Brier

θ (t)− Loss`Brier

AA-AGAA(t). The red dashed lines represent the negative of the
regret bound in (12) with respect to the best expert θ∗; that is, −RS

`Brier
−∆Rθ∗(t) at each round t.

with the results of Vovk [21], we 1) used the same substitution function as [21]; 2) used the same
method for converting odds to probabilities; and 3) sorted the data first by date then by league and
then by name of the host team (For more detail see [21]).

In all figures the solid lines represent, at each round t, the difference /between the cumulative losses
of the experts and that of the learners; that is, Loss`Brier

θ (t) − Loss`Brier

M (t), for M = AA,AGAA.
The red dashed lines represent the negative of the regret bound in (12) with respect to the best expert
θ∗; that is, −RS

`Brier
−∆Rθ∗(t) = −RS

`Brier
−∑t−1

s=1(vsθ − 〈vs, qs〉) at each round t, where (qs) are
the distributions over experts.

From Figures 1 and 2 it can be seen that the learners using the AGAA perform better than the best
expert (and better than the AA) at the end of the games.

J.2 Testing a AA-AGAA Meta-Learner

Consider the algorithm (referred to as AA-AGAA) that takes the outputs of the AGAA and the AA as
in the previous section and aggregates them using the AA to yield a meta prediction. The worst case
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regret of this algorithm is guaranteed not to exceed that of the original AA and AGAA by more than
η−1 log 2 for an η-mixable loss. Figure 3 shows the results for this algorithm for the same datasets as
the previous section. The AA-AGAA still achieves a negative regret at the end of the game.
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Chapter 3

Lipschitz Adaptivity with Multiple
Learning Rates in Online Learning

This chapter considers the bounded OCO optimization setting, which generalizes
the experts’ setting from the previous chapter. In the bounded OCO setting, the sem-
inal MetaGrad algorithm of Van Erven and Koolen [2016] can automatically adapt to
different types of curvature of the observed loss functions. It is the first algorithm
that adapts to the strong convexity and exp-concavity of the observed sequence of
losses—achieving logarithmic regrets in these cases—without requiring knowledge
of the curvature parameters. Algorithms such as online gradient descent, online
newton step, and the exponential weights algorithm can also achieve a logarithmic
regret in these cases. Still, they require knowledge of the parameters of curvature in
advance [Hazan et al., 2007]. MetaGrad’s guarantee shows that automatic curvature
adaptivity is possible. However, MetaGrad (and many other algorithms) assumes
that the losses have bounded gradients and require the corresponding bound as
input—without it, the algorithm may completely fail [Van Erven et al., 2021]. On
the other hand, there exist algorithms that can adapt to an unknown bound on the
gradients, which we refer to as Lipschitz adaptivity. Thus, what remains unknown
is whether curvature and Lipschitz adaptivity are possible simultaneously. In this
chapter, we answer this question positively by studying novel gradient-clipping and
restart schemes that are of independent interest in OCO. The restart scheme consists
of reinitializing the algorithm whenever the ratio of the maximum norm of observed
subgradient to the norm of the initial non-zero subgradient is too large (typically
larger than the current number of rounds). Adopting this restart scheme solves issues
related to Lipschitz adaptivity for many existing algorithms (e.g. those by Ross et al.
[2013a]; Wintenberger [2017]; Kotłowski [2017]; Mhammedi et al. [2019b]; Kempka
et al. [2019b]), making them scale-free. Here, scale-free means multiplying the losses
by some positive constant does not change the algorithm’s outputs—a naturally de-
sirable property put forward by Cesa-Bianchi et al. [2007]; Orabona and Pál [2016b].
Carefully applying the restart and clipping schemes to MetaGrad leads to the first
scale-free and curvature-adaptive algorithm for bounded OCO.
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Abstract
We aim to design adaptive online learning algorithms that take advantage of any special structure
that might be present in the learning task at hand, with as little manual tuning by the user as possible.
A fundamental obstacle that comes up in the design of such adaptive algorithms is to calibrate
a so-called step-size or learning rate hyperparameter depending on variance, gradient norms, etc.
A recent technique promises to overcome this difficulty by maintaining multiple learning rates in
parallel. This technique has been applied in the MetaGrad algorithm for online convex optimization
and the Squint algorithm for prediction with expert advice. However, in both cases the user still has
to provide in advance a Lipschitz hyperparameter that bounds the norm of the gradients. Although
this hyperparameter is typically not available in advance, tuning it correctly is crucial: if it is set
too small, the methods may fail completely; but if it is taken too large, performance deteriorates
significantly. In the present work we remove this Lipschitz hyperparameter by designing new
versions of MetaGrad and Squint that adapt to its optimal value automatically. We achieve this
by dynamically updating the set of active learning rates. For MetaGrad, we further improve the
computational efficiency of handling constraints on the domain of prediction, and we remove the
need to specify the number of rounds in advance.

1. Introduction

We consider online convex optimization (OCO) of a sequence of convex functions `1, . . . , `T over
a given bounded convex domain, which become available one by one over the course of T rounds
(Shalev-Shwartz, 2011; Hazan, 2016). Typically `t(u) = LOSS(u,xt, yt) represents the loss of
predicting with parameters u on the t-th data point (xt, yt) in a machine learning task. At the start
of each round t, a learner has to predict the best parameters ût for the function `t before finding
out what `t is, and the goal is to minimize the regret, which is the difference in the sum of function
values between the learner’s predictions û1, . . . , ûT and the best fixed oracle parameters u that
could have been chosen if all the functions had been given in advance. A special case of OCO is
prediction with expert advice (Cesa-Bianchi and Lugosi, 2006), where the functions `t(u) = 〈u, lt〉
are convex combinations of the losses lt = (lt,1, . . . , lt,K) of K expert predictors and the domain is
the probability simplex.

© 2019 Z. Mhammedi, W. M. Koolen & T. van Erven.



LIPSCHITZ ADAPTIVITY

Central results in these settings show that it is possible to control the regret with virtually no prior
knowledge about the functions. For instance, knowing only a ‖·‖2-upper-bound G on the gradients
gt = ∇`t(ût), the online gradient descent (OGD) algorithm guarantees O(G

√
T ) regret by tuning

its learning rate hyperparameter ηt proportional to 1/(G
√
t) (Zinkevich, 2003), and in the case of

prediction with expert advice the Hedge algorithm achieves regret O(L
√
T lnK) knowing only an

upper-bound L on the range maxk lt,k −mink lt,k of the expert losses (Freund and Schapire, 1997).
Here G is the ‖·‖2-Lipschitz constant of the learning task1, and L/2 is the ‖·‖1-Lipschitz constant
over the probability simplex.

The above guarantees are tight if we make no further assumptions about the functions (`t)
(Hazan, 2016; Cesa-Bianchi et al., 1997), but they can be significantly improved if the functions
have additional special structure that makes the learning task easier. The literature on online learning
explores multiple orthogonal dimensions in which tasks may be significantly easier in practice (see
‘related work’ below). Here, we focus on the following refined data-dependent regret guarantees,
which are known to exploit multiple types of easiness at the same time:

OCO: O
(√

V u
T d log T

)
for all u, with V u

T =

T∑

t=1

〈ût − u, gt〉2, (1)

Experts: O
(√

Eρ(k)[V
k
T ] KL(ρ‖π)

)
for all ρ, with V k

T =

T∑

t=1

〈ût − ek, lt〉2, (2)

where d is the number of parameters and KL(ρ‖π) =
∑K

k=1 ρ(k) ln ρ(k)/π(k) is the Kullback-
Leibler divergence from a fixed prior distribution π over experts to any (data-dependent) comparator
distribution ρ; for instance, ρ is allowed here to be a point-mass on the best expert k∗ in hindsight, in
which case we would have KL(ρ‖π) = − lnπ(k∗).

The OCO guarantee is achieved by the METAGRAD algorithm (Van Erven and Koolen, 2016),
and implies regret that grows at most logarithmically in T both in case the losses are curved (exp-
concave, strongly convex) and in the stochastic case whenever the losses are independent, identically
distributed samples with variance controlled by a Bernstein condition (Koolen et al., 2016). The
guarantee for the expert case is achieved by the SQUINT algorithm (Koolen and Van Erven, 2015;
Koolen, 2015). It simultaneously exploits two types of structures: in many cases the V k

T term is
much smaller than L2T (Gaillard et al., 2014; Koolen et al., 2016) and the so-called quantile bound
KL(ρ‖π) is much smaller than the worst case lnK when multiple experts make good predictions
(Chaudhuri et al., 2009; Chernov and Vovk, 2010). SQUINT and METAGRAD are both based on the
same technique of tracking the empirical performance of multiple learning rates in parallel over
quadratic approximations of the original losses. A computational difference though is that SQUINT

is able to do this by a continuous integral that can be evaluated in closed form, whereas METAGRAD

uses a discrete grid of learning rates.
Unfortunately, to achieve (1) and (2), both METAGRAD and SQUINT need knowledge of the

Lipschitz constant (G or L, respectively). Overestimating G or L by a factor of c > 1 has the effect
of reducing the effective amount of available data by the same factor c, but underestimating the
Lipschitz constant is even worse since it can make the methods fail completely. In fact, the ability
to adapt to G has been credited (Ward et al., 2018) as one of the main reasons for the practical

1. We slightly abuse terminology here, because the standard definition of a Lipschitz constant requires an upper-bound
on the gradient norms for any parameters u, not just for u = ût, and may therefore be larger.

2
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success of the AdaGrad algorithm (Duchi et al., 2011; McMahan and Streeter, 2010). Thus getting
the Lipschitz constant right makes the difference between having practical algorithms and having
promising theoretical results.

For OCO, an important first step towards combining Lipschitz adaptivity to G with regret bounds
of the form (1) was taken by Cutkosky and Boahen (2017b), who aimed for (1) but had to settle for
a weaker result with G

∑T
t=1 ‖gt‖2‖ût − u‖22 instead of V u

T . Although not sufficient to adapt to
a Bernstein condition, they do provide a series of stochastic examples where their bound already
leads to a fast O(ln4 T ) rates. For the expert setting, Wintenberger (2017) has made significant
progress towards a version of (2) without the quantile bound improvement, but he is left with having
to specify an initial guess Lguess for L that enters as O(ln ln(L/Lguess)) in his bound, which may yet
be arbitrarily large when the initial guess is on the wrong scale.

Main Contributions. Our main contributions are that we complete the process began by Cutkosky
and Boahen (2017b) and Wintenberger (2017) by showing that it is indeed possible to achieve (1)
and (2) without prior knowledge of G or L. In fact, for the expert setting we are able to adapt to
the tighter quantity B ≥ maxk |〈ût − ek, lt〉|. We achieve these results by dynamically updating
the set of active learning rates in METAGRAD and SQUINT depending on the observed Lipschitz
constants. In both cases, we encounter a similar tuning issue as Wintenberger (2017), but we avoid
the need to specify any initial guess using a new restarting scheme, which restarts the algorithm
when the observed Lipschitz constant increases too much. Interestingly, the scheme and its analysis
are different from the well-known doubling trick (Cesa-Bianchi and Lugosi, 2006), and the regret
bound is dominated by the regret incurred over the last two epochs instead of just the last epoch.
Adding up the regret bounds over the last two epochs leads to at most an extra

√
2 factor multiplying

the final bound, and so this is the overhead we incur for Lipschitz adaptivity. In addition to these
main results, we remove the need to specify the number of rounds T in advance for METAGRAD

by adding learning rates as T gets larger, and we improve the computational efficiency of how it
handles constraints on the domain of prediction: by a minor extension of the black-box reduction for
projections of Cutkosky and Orabona (2018), we incur only the computational cost of projecting on
the domain of interest in Euclidean distance. This should be contrasted with the usual projections in
time-varying Mahalanobis distance for second-order methods like METAGRAD.

Related Work. We build on several lines of work that achieve subsets of Lipschitz, variance
and quantile adaptivity. Lipschitz adaptivity in OCO is achieved by OGD with learning rate ηt ∝
1/
√∑t

s=1 ‖gs‖22, which leads to O(
√∑T

t=1 ‖gt‖22) = O(G
√
T ) regret. This is the approach taken

by AdaGrad (for each dimension separately) (Duchi et al., 2011; McMahan and Streeter, 2010).
Lipschitz adaptive methods for prediction with expert advice (sometimes called scale-free) were
obtained by Cesa-Bianchi et al. (2007) and De Rooij et al. (2014). These include a data-dependent
variance term (though different from V k

T in (2)), but no quantiles.
Dropping Lipschitz adaptivity, we find that bounds with V k

T from (2) have previously been
obtained by Gaillard et al. (2014) and Wintenberger (2014) without quantile bounds. Quantile
adaptivity was achieved by Chaudhuri et al. (2009) and Chernov and Vovk (2010) without variance
adaptivity, and with a slightly weaker notion of variance by Luo and Schapire (2015). In OCO, the
analogue of quantile adaptivity is to adapt to the norm of u, which has been achieved in various
different ways, see for instance (McMahan and Abernethy, 2013; Cutkosky and Orabona, 2018).

Several other important (and related) criteria of easiness are actively considered in the literature.
These include curvature of the loss functions, where earlier results achieve fast rates assuming that

3
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the degree of curvature is known (Hazan et al., 2007), measured online (Bartlett et al., 2007; Do et al.,
2009) or entirely unknown (Van Erven and Koolen, 2016; Cutkosky and Orabona, 2018). Fast rates
are also possible for slowly-varying linear functions and, more generally, optimistically predictable
gradient sequences (Hazan and Kale, 2010; Chiang et al., 2012; Rakhlin and Sridharan, 2013).

We view our results as a step towards developing algorithms that automatically adapt to multiple
relevant measures of difficulty at the same time. It is not a given that such combinations are always
possible. For example, Cutkosky and Boahen (2017a) show that Lipschitz adaptivity and adapting
to the comparator complexity in OCO, although both achievable independently, cannot both be
realized at the same time (at least not without further assumptions). A general framework to study
which notions of task difficulty do combine into achievable bounds is provided by Foster et al.
(2015). Foster et al. (2017) characterize the achievability of general data-dependent regret bounds for
domains that are balls in general Banach spaces.

Outline. We add Lipschitz adaptivity to SQUINT for the expert setting in Section 2. Then, in
Section 3, we do the same for METAGRAD in the OCO setting. The developments are analogous at
a high level but differ in the details for computational reasons. We highlight the differences along
the way. Section 3 further describes how to avoid specifying T in advance for METAGRAD. Then,
in Section 4, we add efficient projections for METAGRAD, and finally Section 5 concludes with a
discussion of directions for future work.

Problem Setting and Notation. In OCO, a learner repeatedly chooses actions ût from a closed
convex set U ⊆ Rd during rounds t = 1, . . . , T , and suffers losses `t(ût), where `t : U → R is a
convex function. The learner’s goal is to achieve small regret Ru

T =
∑T

t=1 `t(ût)−
∑T

t=1 `t(u) with
respect to any comparator action u ∈ U , which measures the difference between the cumulative loss
of the learner and the cumulative loss they could have achieved by playing the oracle action u from
the start. A special case of OCO is prediction with expert advice, where `t(u) = 〈u, lt〉 for lt ∈ RK
and the domain U is the probability simplex 4K = {(u1, . . . , uK) : ui ≥ 0,

∑
i ui = 1}. In this

context we will further write p instead of u for the parameters to emphasize that they represent a
probability distribution. We further define [K] = {1, . . . ,K}.

2. An Adaptive Second-order Quantile Method for Experts

In this section, we present an extension of the SQUINT algorithm that adapts automatically to the
loss range in the setting of prediction with expert advice.

Throughout this section, we denote the instantaneous regret of expert k ∈ [K] in round t by
rkt := 〈p̂t − ek, lt〉, where p̂t ∈ 4K is the weight vector played by the algorithm and lt ∈ RK is
the observed loss vector. The cumulative regret with respect to expert k is given by Rkt :=

∑t
s=1 r

k
s .

The cumulative ‘variance’ with respect to expert k is measured by V k
t :=

∑t
s=1 v

k
s for vkt := (rkt )2.

In the next subsection, we review the SQUINT algorithm.

2.1. The SQUINT Algorithm

We first describe the original SQUINT algorithm as introduced by Koolen and Van Erven (2015).
Let π and γ be prior distributions with supports on k ∈ [K] and η ∈ ]0, 1/2], respectively. After t

4
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rounds, SQUINT outputs predictions

p̂t+1 ∝ E
π(k)γ(η)

[
ηe−

∑t
s=1 fs(k,η)ek

]
, (3)

where ft(k, η) are quadratic surrogate losses defined by

ft(k, η) := −η〈p̂t − ek, lt〉+ η2〈p̂t − ek, lt〉2.

Koolen and Van Erven (2015) propose to use the improper prior γ(η) = 1/η which does not integrate
to a finite value over its domain, but because of the weighting by η in (3) the predictions p̂t+1 are
still well-defined. The benefit of the improper prior is that it allows calculating p̂t+1 in closed
form (Koolen and Van Erven, 2015). It is also the natural candidate for Lipschitz adaptivity, as it
is scale-invariant: the density of an interval only depends on the ratio of its endpoints, not on their
location. For any distribution ρ ∈ 4K , SQUINT achieves the following bound:

RρT = O

(√
V ρ
T (KL(ρ||π) + ln lnT )

)
,

where RρT = Eρ(k)

[
RkT
]

and V ρ
T = Eρ(k)

[
V k
T

]
. This version of SQUINT assumes the loss range

maxk lt,k − mink lt,k is at most 1, and can fail otherwise. In the next subsection, we present an
extension of SQUINT which does not need to know the Lipschitz constant.

2.2. Lipschitz Adaptive SQUINT

We first design a version of SQUINT, called SQUINT+C, that still requires an initial estimate B
of the Lipschitz constant. We then present SQUINT+L which tunes this parameter online. For
now, we consider a fixed B > 0. In addition to this, the algorithm takes a prior distribution
π ∈ 4K . We denote the observed Lipschitz constant in round t at the algorithm’s prediction p̂t by
bt := maxk|rkt | = maxk |〈p̂t − ek, lt〉|, and denote its running maximum by Bt := B ∨maxs≤t bs,
with the convention that B0 = B. We will also require a clipped version of the loss vector
l̄t = lt · Bt−1/Bt, and denote by r̄kt = 〈p̂t − ek, l̄t〉 the clipped instantaneous regret; we will use
that |r̄kt | ≤ Bt−1. Following Cutkosky (2019), it suffices to control the regret for the clipped loss,
because the cumulative difference is of the order of one round (i.e. a negligible lower-order constant):

RkT − R̄kT :=
T∑

t=1

(
rkt − r̄kt

)
=

T∑

t=1

(Bt −Bt−1)
rkt
Bt
≤ BT −B0. (4)

This means we can focus on the regret for l̄t, for which the range bound |r̄kt | ≤ Bt−1 is available
ahead of each round t. To motivate SQUINT+C, we define the potential function after T rounds by

ΦT :=
∑

k

πk

∫ 1
2BT−1

0

eηR̄
k
T−η2V̄ kT − 1

η
dη where R̄kT :=

T∑

t=1

r̄kt and V̄ k
T :=

T∑

t=1

(r̄kt )2. (5)

We also define Φ0 = 0 (due to the integrand being zero), even though it involves the meaningless
B−1 in the upper limit. The algorithm is now derived from the desire of keeping this potential under
control. As we will see in the analysis, this requirement uniquely forces the choice of weights

p̂kT+1 ∝ πk

∫ 1
2BT

0
eηR̄

k
T−η2V̄ kT dη. (6)

5
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Algorithm 1 Restarts to make SQUINT+C or METAGRAD+C scale-free.
Require: ALG is either SQUINT+C or METAGRAD+C, taking as input parameter an initial scale B;

1: Play 0 for OCO or π for experts until the first time t = τ1 that bt 6= 0;

2: Run ALG with input B = Bτ1 until the first time t = τ2 that
Bt
Bτ1

>
t∑

s=1

bs
Bs

;

3: Set τ1 = τ2 and goto line 2;

The predictions p̂t+1 take the same functional form as the original SQUINT, and can hence be
evaluated in closed form (i.e. in terms of the Gaussian CDF). The regret analysis consists of two
parts. First, we show that the algorithm keeps the potential small:

Lemma 1 Given parameter B > 0, SQUINT+C ensures ΦT ≤ ln
BT−1

B .

The next step of the argument is to show that a small potential ΦT is useful. The argument here
follows from (Koolen and Van Erven, 2015), specifically the version by Koolen (2015). We have:

Lemma 2 For any comparator distribution ρ ∈ 4K the regret of SQUINT+C is at most

R̄ρT ≤
√

2V̄ ρ
T

(
1 +

√
2CρT

)
+ 5BT−1

(
CρT + ln 2

)
, where

CρT := KL (ρ‖π) + ln

(
ΦT +

1

2
+ ln

(
2 +

T−1∑

t=1

bt
Bt

))
.

Keeping only the dominant terms, this reads R̄ρT = O
(√

V̄ ρ
T (KL (ρ‖π) + ln (ΦT + lnT ))

)
. Com-

bining with (4), and Lemmas 1 and 2, we obtain a bound of the form

RρT = O

(√
V ρ
T

(
KL (ρ‖π) + ln ln

TBT−1

B

)
+ 5BT

(
KL (ρ‖π) + ln ln

TBT−1

B

))
. (7)

However, there does not seem to be any safe a-priori way to tune B = B0. If we set it too small, the
factor ln ln(BT−1/B) explodes. If we set it too large, with B much larger than the effective range of
the data, then BT = B and the term outside the square-root on the RHS of (7) blows up. It does not
appear possible to bypass this tuning dilemma directly within the current construction. Instead, we
solve this problem using a new type of restarts that are different from the well-known doubling trick.
For this, we present Algorithm 1, which applies to both SQUINT+C and METAGRAD+C (presented
in the next section). It monitors a condition on the sequences (bt) and (Bt) to trigger restarts.

Theorem 3 Let SQUINT+L be the result of applying Algorithm 1 with SQUINT+C as ALG.
SQUINT+L guarantees, for any comparator ρ ∈ 4K ,

RρT ≤ 2
√
V ρ
T

(
1 +

√
2ΓρT

)
+ 10BT

(
ΓρT + ln 2

)
+ 4BT ,

where ΓρT := KL (ρ‖π) + ln
(

ln
(∑T−1

t=1 bt/Bt

)
+ ln

(
2 +

∑T−1
t=1 bt/Bt

))
+ 1/2.

6
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Note that ΓρT in Theorem 3 is equal to KL (ρ‖π) + O (ln lnT ). Importantly, this theorem and
Algorithm 1 do not depend on any initial guess B anymore. Instead, Algorithm 1 plays the starting
parameters until the first time a non-zero loss is observed, and then monitors a data-dependent
criterion that measures whether the loss range has increased by more than a factor that is roughly t,
to decide when to trigger a restart. For most types of data, such large increases in the loss range
should be rare after a few start-up rounds, so restarts should quickly stop occurring.

3. An Adaptive Method for Online Convex Optimization

We now present an extension of the METAGRAD algorithm which adapts automatically to the gradient
norm in online convex optimization — we call this Lipschitz adaptive version METAGRAD+L. Recall
that in the OCO setting, at each round t, the learner predicts a vector ût in a closed convex set
U ⊂ Rd, then suffers loss `t(ût), where `t : U → R is a convex function. The goal of the learner
is to minimize the regret Ru

T :=
∑T

t=1 `t(ût) −
∑T

t=1 `t(u) with respect to the single best action
u ∈ U in hindsight. In this case, convexity of the losses implies that `t(ût)− `t(u) ≤ 〈ût − u, gt〉,
where gt := ∇`t(ût), and so it suffices to control the pseudo-regret R̃u

T :=
∑T

t=1〈ût − u, gt〉. We
will assume that the set U is bounded, and denote its diameter by

D := sup
u,v∈U

‖u− v‖2. (8)

Without loss of generality, we will also assume that the set U is centered at 0. The proofs for this
section are deferred to Appendix B. We now review the METAGRAD algorithm.

3.1. The METAGRAD Algorithm

The METAGRAD algorithm runs several sub-algorithms at each round: namely, a set of slave
algorithms, which learn the best action in U given a learning rate η in some pre-defined grid G, and
a master algorithm, which learns the best learning rate. Through this, the METAGRAD algorithm
controls the sum of surrogate losses

∑T
t=1 ft(u, η) over all η ∈ G and u ∈ U simultaneously, where

ft(u, η) := −η〈ût − u, gt〉+ η2〈ût − u, gt〉2, (9)

and ût is the master’s prediction at round t ∈ [T ]. Each slave algorithm takes as input a learning rate
from a finite grid G (with d1/2 log2 T e points) in the form of a geometric progression and within the
interval [1/(5DG

√
T ), 1/(5DG)], where G is an upper-bound on the norms of the gradients. In this

case, G must be known in advance to construct the grid; in the proof of METAGRAD’s regret bound,
it is crucial for the learning rates to be in the right interval in order to invoke a certain Gaussian
exp-concavity result due to Van Erven and Koolen (2016) for the surrogate losses in (9). In what
follows, we let St :=

∑t
s=1 gsg

ᵀ
s , for t ≥ 0.

Slaves’ Predictions. Each slave η ∈ G starts with ûη1 = 0 ∈ U , and at the end of round t ≥ 1, it
receives the master’s prediction ût and updates its own prediction in two steps:

uηt+1 := ûηt − ηΣη
t+1gt

(
1 + 2η (ûηt − ût)

ᵀ
gt
)
, where Ση

t+1 :=
(

I
D2 + 2η2St

)−1
, (10)

and ûηt+1 = argmin
u∈U

(
uηt+1 − u

)ᵀ (
Ση
t+1

)−1 (
uηt+1 − u

)
.

7
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Master’s Predictions. After receiving the slaves’ predictions, (ûηt )η∈G , at round t ≥ 1, the master
algorithm aggregates them and outputs ût ∈ U according to:

ût :=

∑
η∈G ηw

η
t û

η
t∑

η∈G ηw
η
t

; wηt := e−
∑t−1
s=1 fs(û

η
s ,η).

Van Erven and Koolen (2016) showed that METAGRAD has regret bounded by (1). In the next
subsection, we present an extension of METAGRAD which does not require knowledge of either the
horizon T or the Lipschitz constant (i.e. a bound on the norms of the gradients).

3.2. Lipschitz Adaptive METAGRAD

Similar to the SQUINT case, we first design a version of METAGRAD, called METAGRAD+C, which
still requires an input B > 0 (in this case, B/D is the initial estimate of the Lipschitz bound).
We then present METAGRAD+L which sets this parameter online. For now, we consider a fixed
B > 0. We define bt := D‖∇`t(ût)‖2 = D‖gt‖2, for t ≥ 1, and b0 := B. We denote the running
maximum of (bt) by Bt := max0≤s≤t bs. We will also require a clipped version of the gradient
vector ḡt = gt ·Bt−1/Bt, and denote by r̄ut = 〈ût − u, ḡt〉 the clipped instantaneous pseudo-regret
with respect to u ∈ U . In addition, it will be useful to define

f̄t(u, η) := −ηr̄ut + (ηr̄ut )2 and S̄t :=

t∑

s=1

ḡsḡ
ᵀ
s . (11)

Recall that in the original METAGRAD, the horizon T and the Lipschitz constant G were required to
construct the grid of learning rates. We circumvent this by defining an infinite grid G in which, at any
given round t ≥ 1, only a finite number of (active) slaves — up to log2 t many — output a non-zero
prediction. Each slave η in this grid receives a prior weight π(η) ∈ [0, 1], where

∑
η∈G π(η) = 1.

Given input B > 0 to METAGRAD+C, the grid G and the prior π are defined by

G :=

{
ηi :=

1

5B2i
: i ∈ N ∪ {0}

}
; π(ηi) :=

1

(i+ 1)(i+ 2)
, i ∈ N ∪ {0}. (12)

The subset of active slaves At at a round t ≥ 1 is given by

At :=
{
η ∈ G ∩

[
0, 1

5Bt−1

]
: sη < t

}
, with sη := min

{
t ≥ 0 :

1

η
≤ D

t∑

s=1

‖ḡs‖2 +Bt

}
. (13)

We note that restricting the slaves (or learning rates) to the set Gt := G ∩ [0, 1/(5Bt−1)] is similar in
principle to clipping the upper integral range in the SQUINT+C case.

Slaves’ Predictions. A slave η ∈ G ∩ [0, 1/(5Bt−1)] issues predictions ûηt = 0 in all rounds
t ≤ sη + 1. From then on (i.e. at the end of round t ≥ sη + 1), it receives the master’s prediction ût
as input and updates its own prediction in two steps:

uηt+1 := ûηt − ηΣη
t+1ḡt

(
1 + 2η (ûηt − ût)

ᵀ
ḡt
)
, where Ση

t+1 :=
(

I
D2 + 2η2

(
S̄t − S̄sη

))−1
,

and ûηt+1 = argmin
u∈U

(
uηt+1 − u

)ᵀ (
Ση
t+1

)−1 (
uηt+1 − u

)
.

8
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Master’s Predictions. At each round t ≥ 1, the master algorithm receives the slaves’ predictions
(ûηt )t∈At and outputs

ût =

∑
η∈At ηw

η
t û

η
t∑

η∈At ηw
η
t

, where wηt := π(η)e
−∑t−1

s=sη+1 f̄s(û
η
s ,η)

. (14)

Remark 4 (Number of Active Slaves) At any round t ≥ 1, the number of active slaves is at most
dlog2 te. In fact, if η ∈ At, then by definition η ≥ 1/(D

∑sη
s=1‖gs‖2 + Bsη) ≥ 1/(tBt−1) (since

sη ≤ t− 1), and thus At ⊂ [1/(tBt−1), 1/(5Bt−1)]. Since At is a grid in the form of a geometric
progression with common ratio 2, there are at most dlog2 te slaves in At.

To motivate METAGRAD+C, we define the potential function after t ≥ 0 rounds by

Φt := π(Gt \ At) +
∑

η∈At
π(η)e

−∑t
s=sη+1 f̄s(û

η
s ,η)

, where Gt := G ∩
[
0, 1

5Bt−1

]
. (15)

Let u ∈ U . Recall that the pseudo-regret is defined by R̃u
T :=

∑T
t=1〈ût − u, gt〉. We now defined

its clipped version by R̄u
T :=

∑T
t=1〈ût − u, ḡt〉. For rut := 〈ût − u, gt〉, we have, similarily to (4),

R̃u
T − R̄u

T =

T∑

t=1

(rut − r̄ut ) =

T∑

t=1

(Bt −Bt−1)
rut
Bt
≤ BT −B0, (16)

where the last inequality follows from the Cauchy-Schwarz inequality and the fact that U has diameter
D, which together imply that |rut | ≤ Bt. Using the inequality ex−x

2 − 1 ≤ x, which holds for all
x ≥ −1/2, one can shown that the potential is a decreasing function of the number of rounds:

Lemma 5 METAGRAD+C guarantees that ΦT ≤ · · · ≤ Φ0 = 1, for all T ∈ N.

We now give an upper-bound on R̄u
T in terms of the clipped ‘variance’ V̄ u

T :=
∑T

t=1(r̄ut )2;

Theorem 6 Given input B > 0, the clipped pseudo-regret for METAGRAD+C is bounded by

R̄u
T ≤ 3

√
V̄ u
T CT + 15BTCT , for any u ∈ U ,

where CT := d ln
(

1 +
2
∑T−1
t=0 b2t

25dB2
T−1

)
+ 2 ln

(
log+

2

√∑T
t=1 b

2
t

B + 3

)
+ 2 and log+

2 = 0 ∨ log2.

Remark 7 For u ∈ U , we can relate the clipped pseudo-regret to the ordinary regret via Ru
T ≤

R̃u
T ≤ R̄u

T +BT (see (16)) and on the right-hand side we can also use that V̄ u
T ≤ V u

T .

An important aspect to note from Theorem 6 is that the ratio
√∑T

t=1 b
2
t /B, could in principle be

arbitrarily large if the input B is too small compared to the actual norms of the gradients (for SQUINT

it was the ratio BT−1/B which was problematic). To resolve this issue, we use the same restart
approach as in the SQUINT case:

9
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Theorem 8 Let METAGRAD+L be the result of applying Algorithm 1 to METAGRAD+C. Then the
actual and linearised regrets for METAGRAD+L are both bounded by

Ru
t ≤ R̃u

T ≤ 3
√
V u
T ΓT + 15BTΓT + 4BT for all u ∈ U ,

where ΓT := 2d ln
(

1 + 2
25d

∑T
t=1

b2t
B2
t

)
+ 4 ln

(
log+

2

√∑T
t=1(

∑t
s=1

bs
Bs

)2 + 3
)

+ 4 = O(d lnT ).

Theorem 8 replaces the ratio
√∑T

t=1 b
2
t /B appearing in the (clipped) pseudo-regret bound of

METAGRAD+C by σT :=
√∑T

t=1(
∑t

s=1 bs/Bs)
2. The latter is independent of the input B and is

always smaller than T 3/2; this is perfectly affordable since σT appears inside a ln ln. Our reason
for including the linearised regret R̃u

T in Theorem 8 is that a bound on it in terms of V u
T is the

precondition for fast rate results in individual-sequence settings based on curvature (Van Erven and
Koolen, 2016) and in statistical settings under certain (Bernstein type) conditions (Koolen et al.,
2016).

4. Efficient Implementation Through a Reduction to the Ball

Using METAGRAD (+C or +L), the computation of each slave prediction ûηt requires a projection
onto an arbitrary convex set U in Mahalanobis distance. Numerically, this typically requires O(dp)
floating point operations (flops), for some p ∈ N which depends on the geometry of the set U . Since
p can be large in many applications, evaluating ûηt for each slave η can become computationally
prohibitive, especially when the number of slaves grows with T ; for the METAGRAD versions
discussed in this paper, there can be up to dlog2 T e slaves at round T ≥ 1 (see Remark 4).

The goal of this section is to streamline these computations, which we will do in two steps. In
Section 4.1, we will describe an efficient implementation of METAGRAD on the ball. The main idea
here is that the Mahalanobis projections onto the ball, which are performed by the slaves, can reuse a
common matrix decomposition. In Section 4.2, we will then obtain an algorithm for any bounded
convex set U by applying the black-box reduction of Cutkosky and Orabona (2018) to METAGRAD

on the ball enclosing U . We show (Theorem 10) that the reduction also transports variance bounds.
The techniques discussed here also apply to the versions of METAGRAD presented in the previous
section. However, to simplify the presentation, we will only focus on the original METAGRAD. The
proofs for this section are deferred to Appendix C.

4.1. Efficient Implementation of METAGRAD on the Ball

Suppose that U is the ball of diameter D: U = BD :=
{
u ∈ Rd : ‖u‖2 ≤ D/2

}
. To compute the

slave’s prediction ûηt+1, the following quadratic program needs to be solved for each η:

ûηt+1 = argmin
u∈U

(
uηt+1 − u

)ᵀ (
Ση
t+1

)−1 (
uηt+1 − u

)
, (17)

where uηt+1 (the unprojected prediction) and Ση
t+1 = (I/D2 + 2η2St)

−1 (the co-variance matrix)
are defined in (10). Since U is a ball and Ση

t+1 is symmetric positive-definite, (17) can be solved in
O(d3) by performing a singular value decomposition of Ση

t+1. Instead of doing this singular value
decomposition separately for each η, we can be a little more efficient by doing a singular value
decomposition of St once and then using the following lemma:

10
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Algorithm 2 Reducing an OCO problem on U ⊂ Rd to one on a ball.
Require: A bounded convex set U ⊂ Rd with diameter D > 0, a Lipschitz bound G > 0.

We write METAGRAD(D) for METAGRAD applied to the ball BD enclosing U .
for t = 1 to T do

Get ût from METAGRAD(D) ; //The initial input to METAGRAD is B = DG.
Predict ŵt = ΠU (ût) and receive g̊t = ∇`t(ŵt);
Set gt ∈ 1

2 (g̊t + ‖g̊t‖∂ dU (ût));
Send gt to METAGRAD(D) ;

end for

Lemma 9 Let Λt := diag((λit)i∈[d]) and Qt be the matrices of eigenvalues and eigenvectors of St,
respectively, such that QtStQ

ᵀ
t = Λt and QtQ

ᵀ
t = I.2 Then the solution of (17) is

ûηt+1 =

{
uηt+1, if uηt+1 ∈ U ,
Qᵀ
t (x

η
t I + 2η2Λt)

−1Qtv
η
t+1, otherwise,

where vηt+1 :=
(
I/D2 + 2η2St

)
uηt+1 and the scalar xηt is the unique solution of

ρηt (x) :=
d∑

i=1

〈ei,Qtv
η
t+1〉2

(x+ 2η2λit)
2

=
D2

4
. (18)

Since ρηt in (18) is strictly convex and decreasing, ρηt (x) = D2/4 can be solved using Newton’s
method in linear time.

A further improvement leverages the rank-one update St = St−1 + gtg
ᵀ
t to update Λt−1 and

Qt−1. It is possible to compute the new matrices Λt and Qt in, respectively, O(d2) and O(d3) flops,
where the latter cost for computing Qt is only due to matrix multiplication (rather than a full singular
value decomposition) (Bunch et al., 1978), and thus admits an efficient parallel implementation.

4.2. A Reduction to the Ball

In this subsection, we extend the black-box technique of Cutkosky and Orabona (2018) to reduce an
OCO problem on an arbitrary bounded convex set U ⊂ Rd to one on a ball, where the implementation
of METAGRAD from the previous subsection can be applied.

Let D be the diameter of a closed bounded convex set U ⊂ Rd as in (8), so that the ball BD of
radius D/2 encloses U . As in the previous section, we again assume, without loss of generality, that
U is centered at 0. For u ∈ U , we denote dU (u) = minw∈U‖u−w‖2 the distance function from
the set U , and we define ΠU (u) := {w ∈ U : ‖w − u‖2 = dU (u)}. Algorithm 2 reduces the OCO
problem on the set U to one on the ball BD, where the METAGRAD algorithm is used as a black-box
to solve it. We note that Algorithm 2 (including its METAGRAD subroutine) only performs a single
projection (applied to the output of METAGRAD) onto the set U in Euclidean distance — as opposed
the time-varying Mahalanobis distance (17); the METAGRAD subroutine only performs projections
onto the ball BD, which can be done efficiently as described in the previous subsection.

2. The existence of such a Qt and Λt is guaranteed due to St being symmetric positive-definite.

11
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In the next theorem, we assume that a Lipschitz bound G > 0 is known in advance3, and we
let R̊u

T :=
∑T

t=1〈ŵt − u, g̊t〉 and V̊ u
T :=

∑T
t=1〈ŵt − u, g̊t〉2 be the pseudo-regret and ‘variance’

corresponding to Algorithm 2. We now show that the (pseudo) regret guarantee of METAGRAD

readily transfers to Algorithm 2 with almost no overhead:

Theorem 10 Let D > 0, and suppose that the METAGRAD(D) subroutine of Algorithm 2 achieves
a pseudo-regret bound of the form

R̃u
T ≤

√
V u
T ΓT +BΓT , for all u ∈ BD,

where R̃u
t :=

∑T
t=1〈ût − u, gt〉, V u

t :=
∑T

t=1〈ût − u, gt〉2, and ΓT = O(d ln(T/d)). Then,
Algorithm 2 guarantees:

T∑

t=1

(`t(ŵt)− `t(u)) ≤ R̊u
T ≤

√
V̊ u
T ΓT + 4BΓT , for all u ∈ U .

From the standard black-box reduction of Cutkosky and Orabona (2018), we would obtain an
unsatisfactory result in which V̊ u

T would be measured in terms of the fake gradients gt that are
supplied internally to METAGRAD(D) instead of the actual gradients g̊t. As this would not be
sufficient to adapt to the easiness conditions described in the introduction, the proof of Theorem 10
involves an extra step to relate the variance term back to the actual gradients.

5. Conclusion

We present algorithms that adapt to the Lipschitz constant of the loss for OCO and experts, with
hardly any overhead in terms of regret or computation compared to their previous counterparts that
had to know the Lipschitz constant up-front. This fits into a larger picture of understanding which
types of adaptivity are possible at which price in terms of additional regret and additional run time.

One surprising conclusion from our work is the following observation: for OCO, Cutkosky and
Boahen (2017a) show that in general it is not possible to be adaptive to both the Lipschitz constant
and the norm of the comparator ‖u‖ at the same time. Since the analogue of ‖u‖ in the expert setting
is the complexity measure KL(ρ‖π), we might therefore conjecture that Lipschitz adaptivity would
also be incompatible with a quantile regret bound in terms of KL(ρ‖π). However, our results show
this conjecture to be false: for experts there is no conflict. This holds even in cases where the prior
π is not uniform, and our results can easily be extended to a countably infinite number of experts
where KL(ρ‖π) cannot even be uniformly bounded.

A final and very interesting question is when is it possible to exploit scenarios with large Lipschitz
constants or loss ranges that occur only very infrequently. An example of this is found in statistical
learning with heavy-tailed loss distributions. For such scenarios, martingale methods (related to our
potential functions) suggest that it may be necessary to replace in ft(u, η) the ‘surrogate’ negative
quadratic term that our algorithms include in the exponent by another function appropriate for the
specific distribution (Howard et al., 2018, Table 3). It is not currently clear what individual sequence
analogues can be obtained.

3. If one uses METAGRAD+C or METAGRAD+L as the subroutine in Algorithm 2 instead of METAGRAD, then a
Lipschitz bound need not be known in adavance; a version of Theorem 10 with different constants would still hold in
this case.
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Appendix A. Proofs of Section 2

Proof of Lemma 1 We proceed by induction on T . By definition Φ0 = 0. For T ≥ 0, the definition
(5) gives

ΦT+1 =
∑

k

πk

∫ 1
2BT

0

eηR̄
k
T−η2V̄ kT

(
eηr̄

k
T+1−η2(r̄kT+1)2 − 1

)

η
dη

︸ ︷︷ ︸
=:Q1

+
∑

k

πk

∫ 1
2BT

0

eηR̄
k
T−η2V̄ kT − 1

η
dη

︸ ︷︷ ︸
=:Q2

.

To control the first term Q1, we apply the so-called ‘prod bound’ ex−x
2 ≤ 1 + x for x ≥ −1/2

(Cesa-Bianchi et al., 2007) to x = ηr̄kT+1, which we may do as ηr̄T+1 ≥ − 1
2BT

BT . Linearity and
the definition of the weights (6), yield the following upper-bound on the term Q1

∑

k

πk

∫ 1
2BT

0

eηR̄
k
T−η2V̄ kT ηr̄kT+1

η
dη =

〈∑

k

πk

∫ 1
2BT

0
eηR̄

k
T−η2V̄ kT (p̂T+1 − ek) dη, l̄T+1

〉
= 0.

To control the second term Q2, we extend the range of the integral to find

Q2 ≤
∑

k

πk

∫ 1
2BT−1

0

eηR̄
k
T−η2V̄ kT − 1

η
dη + ln

BT
BT−1

= ΦT + ln
BT
BT−1

.
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Proof of Lemma 2 For any ε ∈ [0, 1/(2BT−1)], we may split the potential (5) as follows

ΦT =
∑

k

πk

∫ ε

0

eηR̄
k
T−η2V̄ kT − 1

η
dη

︸ ︷︷ ︸
=:Q1

+
∑

k

πk

∫ 1
2BT−1

ε

eηR̄
k
T−η2V̄ kT − 1

η
dη

︸ ︷︷ ︸
=:Q2

.

For convenience, let us introduce b̄t := maxk|r̄kt | = bt · Bt−1/Bt and abbreviate S̄T :=
∑T

t=1 b̄t.
To bound the left term Q1 from below, we use ex − 1 ≥ x. Then combined with R̄kT ≥ −S̄T and
V̄ k
T ≤

∑T−1
t=1 b̄2t ≤ BT−1S̄T we find

Q1 ≥
∑

k

πk

∫ ε

0
R̄kT − ηV̄ k

T dη ≥ −
(
ε+

ε2

2
BT−1

)
S̄T .

For the right term Q2, we use KL duality to find

Q2 =
∑

k

πk

∫ 1
2BT−1

ε

eηR̄
k
T−η2V̄ kT

η
dη + ln (2BT−1ε) ,

≥ e−KL(ρ‖π)

∫ 1
2BT−1

ε

eηR̄
ρ
T−η2V̄ ρT

η
dη + ln (2BT−1ε) .

Way pick the admissible ε = 1/(2(S̄T + BT−1)) for which
(
ε+BT−1 · ε2/2

)
S̄T ≤ 1/2 (as it is

increasing in S̄T ≥ 0 and decreasing in BT−1 ≥ 0), and find

ΦT ≥ e−KL(ρ‖π)

∫ 1
2BT−1

ε

eηR̄
ρ
T−η2V̄ ρT

η
dη − 1

2
− ln

(
1 +

S̄T
BT−1

)
,

which we may reorganise to

Q3 := ln

∫ 1
2BT−1

1
2(S̄T+BT−1)

eηR̄
ρ
T−η2V̄ ρT

η
dη ≤ KL (ρ‖π) + ln

(
ΦT +

1

2
+ ln

(
1 +

S̄T
BT−1

))
.

The argument to bound the integral in Q3 splits in 3 cases. Let us abbreviate R ≡ R̄ρT and V ≡ V̄ ρ
T .

Let η̂ = R
2V be the maximiser of η → ηR− η2V .

1. First the important case, where [η̂ − 1/
√

2V , η̂] ⊆ [1/(2(S̄T +BT+1)), 1/(2BT−1)]. Then

Q3 ≥ ln

∫ η̂

η̂− 1√
2V

eηR−η
2V

η
dη ≥ ln

∫ η̂

η̂− 1√
2V

e

(
η̂− 1√

2V

)
R−
(
η̂− 1√

2V

)2
V

η
dη

=

(
η̂ − 1√

2V

)
R−

(
η̂ − 1√

2V

)2

V + ln ln
η̂

η̂ − 1√
2V

=
R2

4V
− 1

2
+ ln ln

1

1−
√

2V
R

≥ 1

2

(
R√
2V
− 1

)2
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where the last inequality uses ln ln(x/(x−1)) ≥ 1−x for x ≥ 1, which can be easily verified
by a one-dimensional plot. We conclude

R ≤
√

2V

(
1 +

√
2 KL (ρ‖π) + 2 ln

(
ΦT +

1

2
+ ln

(
1 +

S̄T
BT−1

)))
.

2. Then in the case where η̂ − 1/
√

2V < 1/S̄T , we have

R <
√

2V +
2V

S̄T
≤
√

2V + 2BT−1,

and we are done again.

3. We come to the final case where η̂ > 1/(2BT−1), meaning that R > V/BT−1. Here we use
that for any u ∈ [1/(2(S̄T +BT−1)), 1/(2BT−1)]

Q3 ≥ ln

∫ 1
2BT−1

u

euR−u
2V

η
dη ≥ uR(1− uBT−1) + ln ln

1

2uBT−1
,

and hence

R ≤
Q3 − ln ln 1

2uBT−1

u(1− uBT−1)
.

Picking the feasible u = (5−
√

5)/(10BT−1) and using − ln ln(5/(5−
√

5)) ≤ ln 2 yields

R ≤ 5BT−1

(
KL (ρ‖π) + ln

(
ΦT +

1

2
+ ln

(
1 +

S̄T
BT−1

))
+ ln 2

)
.

Finally, using the fact that

S̄T
BT−1

=
1

BT−1

T∑

t=1

Bt−1

Bt
bt ≤ 1 +

T−1∑

t=1

bt
Bt

concludes the proof.

Proof of Theorem 3 The idea of the proof is to analyse the rounds in three parts, as shown in
Figure 1.

For comparator ρ ∈ 4K , B > 0 and τ1, τ2 ∈ N such that τ1 < τ2, we define the regret Rρ(τ1,τ2]

and variance V ρ
(τ1,τ2] of SQUINT+C started at round τ1 + 1 (with input Bτ1) and terminated after

round τ2 by

Rρ(τ1,τ2]
:=

τ2∑

t=τ1+1

Eρ(k)

[
rkt

]
, V ρ

(τ1,τ2]
:=

τ2∑

t=τ1+1

Eρ(k)

[
(rkt )2

]
.

We also define

Γρ(τ1,τ2]
:= KL (ρ‖π) + ln

(
ln

τ2−1∑

t=1

bt
Bt

+
1

2
+ ln

(
2 +

τ2−1∑

t=τ1+1

bt
Bt

))
.
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. . .

1 Tτ2τ1

final restartpenultimate restart

√
V bound

√
V boundtiny

implies

Figure 1: Regret bounding strategy; most general case

Lemma 11 Let ρ ∈ 4K and τ1, τ2 ∈ N be such that τ1 < τ2. Suppose that Bτ2−1/Bτ1 ≤∑τ2−1
t=1 bt/Bt (this corresponds to the case where the restart condition in line 2 of Algorithm 1 is not

triggered at the end of round τ2 − 1). Then, the regret Rρ(τ1,τ2] of SQUINT+C satisfies:

Rρ(τ1,τ2] ≤
√

2V ρ
(τ1,τ2]

(
1 +

√
2Γρ(τ1,τ2]

)
+ 5Bτ2

(
Γρ(τ1,τ2] + ln 2

)
+Bτ2 . (19)

Proof of Lemma 11 By the assumption that Bτ2−1/Bτ1 ≤ ln
∑τ2−1

t=1 bt/Bt and Lemma 1, the
potential function Φτ2 can be upper-bounded by

Φτ2 ≤ ln
Bτ2−1

Bτ1
≤ ln

τ2−1∑

t=1

bt
Bt
.

Using this, together with Lemma 2 and (4), we get (19).

Assume without loss of generality that b1 6= 0. Then the regret of SQUINT+L in round t = 1 is
bounded by B1 ≤ BT , and SQUINT+C is started for the first time in round t = 2 with input B = B1.

Now suppose first that the restart condition in line 2 of Algorithm 1 is never triggered, which
means that Bt/B1 ≤

∑t
s=1 bs/Bs for all rounds t = 2, . . . , T . Then for any comparator distribution

ρ ∈ 4K , the result follows from Lemma 2 and the facts that V ρ
(1:T ] ≤ V

ρ
T and Γρ(1:T ] ≤ ΓρT .

Alternatively, suppose there is at least one restart. Then let 1 ≤ τ1 < τ2 < T be such that (τ1, τ2]
and (τ2, T ] are the two intervals over which the last two runs of SQUINT+C occurred. We invoke
Lemma 2 separately for both these intervals and use Lemma 11 to bound

Rρ(τ1,T ] ≤
√

2V ρ
(τ1,τ2]

(
1 +

√
2Γρ(τ1,τ2]

)
+ 5Bτ2

(
Γρ(τ1,τ2] + ln 2

)
+Bτ2

+
√

2V ρ
(τ2,T ]

(
1 +

√
2Γρ(τ2,T ]

)
+ 5BT

(
Γρ(τ2,T ] + ln 2

)
+BT ,

≤ 2
√
V ρ

(τ1,T ]

(
1 +

√
2Γρ(τ1,T ]

)
+ 10BT

(
Γρ(τ1,T ] + ln 2

)
+ 2BT , (20)

≤ 2
√
V ρ
T

(
1 +

√
2ΓρT

)
+ 10BT

(
ΓρT + ln 2

)
+ 2BT . (21)
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where in (20) we used the fact that
√
x+
√
y ≤ √2x+ 2y. If there is exactly one restart, then (21)

implies the desired result. If there are multiple restarts, then the proof is completed by bounding the
contribution to the regret of all rounds 2, . . . , τ1 by

Ru
(1,τ1] ≤

τ1∑

t=2

bt ≤ Bτ1
τ1∑

t=1

bt
Bt
≤ Bτ1

τ2∑

t=1

bt
Bt

< Bτ2 ≤ BT ,

where the second to last inequality holds because there was a restart at the end of round t = τ2.
Finally, by bounding the instantaneous regret from the first round by BT , we obtain the desired result.

Appendix B. Proofs of Section 3

Proof of Lemma 5 Let t ≥ 1. To simplify notation, we denote r̄ηs := 〈ûs − ûηs , ḡs〉, for u ∈ U and
s ∈ N. By appealing to the prod-bound (i.e. ex−x

2 − 1 ≤ x, for x ≥ −1/2), we have

Φt+1 = π(Gt+1 \ At+1) +
∑

η∈At+1

wηt+1

(
eηr̄

η
t+1−η(r̄ηt+1)2 − 1

)
+

∑

η∈At+1

wηt+1,

≤ π(Gt+1 \ At+1) +
∑

η∈At+1

wηt+1ηr̄
η
t+1 +

∑

η∈At+1

wηt+1.

Now by (14) ∑

η∈At+1

wηt+1ηr̄
η
t+1 =

∑

η∈At+1

ηwηt+1(ût+1 − ûηt+1)ᵀḡt = 0.

Moreover, by definition of Gt and At,

π(Gt+1 \ At+1) +
∑

η∈At+1

wηt+1 = π({η ∈ Gt+1 : sη > t}) +
∑

η∈Gt+1:sη≤t
wηt+1,

≤ π({η ∈ Gt : sη > t}) +
∑

η∈Gt:sη≤t
wηt+1 = π({η ∈ Gt : sη ≥ t}) +

∑

η∈Gt:sη<t
wηt+1,

= π(Gt \ At) +
∑

η∈At
wηt+1 = Φt.

Where we used that wηsη+1 = π(η). Finally, as A0 = ∅ and G0 = G, we find Φ0 = π(G) = 1.

Proof of Theorem 6 Throughout this proof we will deal with slaves η ∈ GT \AT that are provisioned
but not active yet by time T , and we will interpret their sη = T for uniform treatment, even though
technically all we know from (13) is that sη ≥ T .

First due to Lemma 5, we have ΦT ≤ 1, where ΦT is the potential defined in (15). Taking
logarithms and rearranging, we find

∀η ∈ GT , −
T∑

t=sη+1

f̄t(û
η
t , η) ≤ − lnπ(η). (22)
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Moreover, every slave η ∈ GT guarantees the following regret for the rounds t = sη + 1, . . . , T (see
Van Erven and Koolen 2016, Lemma 5):

T∑

t=sη+1

(
f̄t(û

η
t , η)− f̄t(u, η)

)
≤ ln det

(
I + 2η2D2(S̄T − S̄sη)

)
+ ‖u‖2

2D2 ,

≤ d ln
(

1 + 2D2

25dB2
T−1

tr S̄T

)
+ ‖u‖2

2D2 , (23)

where in (23) we used concavity of ln det, S̄sη � 0, and the fact that η ∈ GT ⊂ [0, 1/(5BT−1)]. We
then invert the ‘wake up condition’ (13) at time sη − 1 to infer

−
sη∑

t=1

f̄t(u, η) ≤ η
sη∑

t=1

r̄ut ≤
∑sη−1

t=1 r̄ut + r̄usη

D
∑sη−1

t=1 ‖ḡt‖2 +Bsη−1

≤ 1. (24)

Combining the bounds (22), (23), and (24), then dividing through by η, gives:

∀η ∈ GT , R̄u
T ≤ ηV̄ u

T + 1
ηCT (η), (25)

where CT (η) := d ln
(

1 + 2D2

25dB2
T−1

tr S̄T

)
− lnπ(η) + 2.

Let CT be as in the theorem statement and η∗ be the estimator defined by η∗ :=
√
CT /V̄ u

T .
Suppose that η∗ ≤ 1/(5BT−1). By construction of the grid GT , there exists i ∈ N such that

η̂ := 2−i/(5B0) ∈ GT and η̂ ∈ [η∗/2, η∗] . (26)

Since CT ≥ 1, the estimator η∗ can be lower-bounded by 1/
√
V̄ u
T , and thus due to (26) we have

2−i/(5B0) ≥ 1/
√

4V̄ u
T . This implies that the prior weight on η̂ satisfies

1

π(η̂)
= (i+ 1)(i+ 2) ≤

(
log2

2
√
V̄ u
T

5B0
+ 1

)(
log2

2
√
V̄ u
T

5B0
+ 2

)
≤
(

log2

√
V̄ u
T

B0
+ 3

)2

. (27)

Now from the fact that 1/
√
V̄ u
T ≤ η∗ ≤ 1/(5BT−1) ≤ 1/(5B0), we have

√
V̄ u
T /B0 ≥ 2. This,

combined with (27), implies that CT (η̂) ≤ CT , where CT is as in the theorem statement. Plugging
η = η̂ into (25) and using the fact that η̂ ∈ [η∗/2, η∗], gives

R̄u
T ≤ η̂V̄ u

T + 1
η̂CT (η̂) ≤ η∗V̄ u

T + 2
η∗
CT = 3

√
V̄ u
T CT . (28)

Now suppose that η∗ > 1/(5BT−1), and let η̂ := maxGT ≥ 1/(10BT−1), where the last inequality
follows by construction of GT . Note that in this case 1

π(η̂) ≤ (log2
2BT−1

B0
+ 1)(log2

2BT−1

B0
+ 2), and

the inequality CT (η̂) ≤ CT still holds. Plugging η = η̂ into (25) and using the assumption on η∗, i.e.
η∗ > 1/(5BT−1), we obtain

R̄u
T ≤ η̂V̄ u

T + 1
η̂CT (η̂) ≤ η̂V̄ u

T + 1
η̂CT ≤ 15BTCT . (29)

By combining (28) and (29), we get the desired result.
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Proof of Theorem 8 Assume without loss of generality that b1 6= 0. Then the regret of META-
GRAD+L in round one is bounded by B1 ≤ BT , and METAGRAD+C is started for the first time in
round t = 2 with parameter B = B1.

Let V u
(1:T ] and C(1:T ] represent the quantities denoted by V u

T and CT in Theorem 6 but measured
on rounds 2, . . . , T . Now suppose first that the restart condition in line 2 of Algorithm 1 is never
triggered, which means that

Bt
B1
≤

t∑

s=1

bs
Bs
, for all rounds t = 2, . . . , T . (30)

Then the result follows from Theorem 6, V u
(1:T ] ≤ V u

T , for all u ∈ U , and

C(1:T ] = d ln

(
1 +

2

25d

∑T−1
t=1 b2t
B2
T−1

)
+ 2 ln


log+

2

√∑T
t=2 b

2
t

B1
+ 3


+ 2,

≤ d ln

(
1 +

2

25d

∑T−1
t=1 b2t
B2
T−1

)
+ 2 ln


log+

2

√√√√
T∑

t=2

(
t∑

s=1

bs
Bs

)2

+ 3


+ 2, (31)

≤ ΓT ,

where in (31), we used (30). Alternatively, suppose there is at least one restart. Then let 1 ≤
τ1 < τ2 < T be such that (τ1, τ2] and (τ2, T ] are the two intervals over which the last two runs of
METAGRAD+C occurred. We invoke Theorem 6 separately for both these intervals to bound

Ru
(τ1,T ] ≤ 3

√
V u

(τ1,τ2]C(τ1,τ2] + 15BTC(τ1,τ2] +Bτ2

+ 3
√
V u

(τ2,T ]C(τ2,T ] + 15BTC(τ2,T ] +BT ,

≤ 3
√
V u

(τ1,τ2]ΓT /2 + 3
√
V u

(τ2,T ]ΓT /2 + 15BTΓT + 2BT ,

≤ 3
√
V u

(τ1,T ]ΓT + 15BTΓT + 2BT , (32)

where a subscript (τ1, τ2] indicates a quantity measured only on rounds τ1 + 1, . . . , τ2 and the last
inequality uses

√
x+
√
y ≤ √2x+ 2y. If there is exactly one restart, then (32) implies the desired

result. If there are multiple restarts, then the proof is completed by bounding the contribution to the
regret of all rounds 2, . . . , τ1 by

Ru
(1,τ1] ≤

τ1∑

t=2

bt ≤ Bτ1
τ1∑

t=1

bt
Bt
≤ Bτ1

τ2∑

t=1

bt
Bt

< Bτ2 ≤ BT ,

where the second to last inequality holds because there was a restart at t = τ2. Finally, by bounding
the instantaneous regret from the first round by BT , we obtain the desired result.
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Appendix C. Proofs of Section 4

Proof of Lemma 9 We use the Lagrangian multiplier to solve (17). For this, let

L(u, µ) :=
(
uηt+1 − u

)ᵀ (
Ση
t+1

)−1 (
uηt+1 − u

)
+ µ(uᵀu−D2).

Setting ∂L
∂u = 0 implies that 2

(
Ση
t+1

)−1 (
u− uηt+1

)
+ 2µu = 0. After rearranging, this becomes

u =
((
µ+ 1

D2

)
I + 2η2St

)−1 (
Ση
t+1

)−1
uηt ,

= Qᵀ
t

(
xI + 2η2Λt

)−1
Qtv

η
t+1,

where we set x := µ+ 1/D2. The result follows after observing that uᵀu = D2/4 ⇐⇒ ρηt (x) =
D2/4.

Proof of Theorem 10 Let R̊u
T :=

∑T
t=1〈ŵt − u, g̊t〉 and V̊ u

T :=
∑T

t=1〈ŵt − u, g̊t〉2 be the pseudo-
regret and ‘variance’ of Algorithm 2. From our assumption on the pseudo-regret R̃u

T of METAGRAD

and the fact that 2
√
x = infη>0{ηx+ 1/η}, we have

∀u ∈ U ⊂ BD,∀η > 0, ηR̃u
T − η2

2 V
u
T ≤ 1

2ΓT + ηBΓT . (33)

Now, as in the proof of (Cutkosky and Orabona, 2018, Theorem 3), we have

〈ŵt − u, g̊t〉 ≤ 2˚̀
t(ût)− 2˚̀

t(u), (34)

where ŵt = ΠU (ût) is the prediction of Algorithm 2 at round t and ˚̀
t is the function defined by

˚̀
t(u) := 1

2 (〈g̊t,u〉+ ‖g̊t‖ dU (u)). By convexity of ˚̀
t and the fact that gt ∈ ∂˚̀

t(ût), we have

〈ût − u, gt〉 ≥ ˚̀
t(ût)− ˚̀

t(u) ≥ 1
2〈ŵt − u, g̊t〉, for u ∈ U , (35)

where the right-most inequality follows from (34). Since the function x 7→ x − x2/2 is strictly
increasing on the interval ]−∞, 1], (35) implies that for all η ∈ ]0, 1/B] =]0, 1/(DG)],

η
2 〈ŵt − u, g̊t〉 − η2

8 〈ŵt − u, g̊t〉2 ≤ η〈ût − u, gt〉 − η2

2 〈ût − u, gt〉2, for u ∈ U .

Summing this over t = 1, . . . , T and using (33), we get for all η ∈ ]0, 1/B] and u ∈ U ,

1
2R̊

u
T − η

8 V̊
u
T ≤ R̃u

T − η
2V

u
T ≤ 1

2ηΓT +BΓT , and so

R̊u
T ≤ η

4 V̊
u
T + 1

ηΓT + 2BΓT . (36)

The ‘unconstrained’ η ∈ [0,+∞] which minimizes the RHS of (36) is given by η∗ := 2
√

ΓT /V̊ u
T .

We consider two cases: suppose first that η∗ ≤ 1/B. For η = η∗, we have

η
4 V̊

u
T + 1

ηΓT =

√
V̊ u
T ΓT . (37)

Now suppose that η∗ > 1/B. For η = 1/B, we have

η
4 V̊

u
T + 1

ηΓT ≤ 2BΓT . (38)

Combining (36)–(38) yields the desired bound.

22



84 Lipschitz Adaptivity with Multiple Learning Rates in Online Learning



Chapter 4

Lipschitz and Comparator-Norm
Adaptivity in Online Learning

In this chapter, we shift our attention to unbounded OCO. Despite recent efforts in de-
veloping adaptive methods for the unbounded OCO setting, the resulting algorithms
typically require additional information about the sequence of losses compared with
(adaptive) algorithms for the bounded case. Namely, a bound on the norm of the
gradients needs to be known in advance, which is not guaranteed to be available in
practice. This motivated the COLT 2016 open problem by Orabona and Pál [2016b]
who asked whether it is possible to compete against unbounded comparators in on-
line linear optimization while being scale-free (and thus, not requiring a bound on
the norm of the gradients). In this chapter, we derive the first algorithm—FreeGrad—
that achieves precisely that at the cost of an additive penalty in the regret bound that
depends on the cubed norm of the comparator. We complement this result with a
new matching lower bound, thus fully characterizing the limits of adaptivity in this
setting.

In addition to being scale-free and suited for the unbounded setting, FreeGrad also
enjoys an adaptive regret bound where the main regret term depends on the sum of
the squared norms of the observed gradients (similar to AdaGrad). This type of data-
dependent bound has been useful in various applications; many existing reductions
accept algorithms with such a regret bound to achieve different types of adaptivity
[Cutkosky, 2019a]. The techniques introduced in this chapter also resolve some open
questions relating to Lipschitz adaptivity in online learning. In particular, many al-
gorithms in the literature that attempt to adapt to the scale of the losses have a term
in their regret bounds which can, in principle, be arbitrarily large depending on the
sequence of observed losses (leading to vacuous bounds) Ross et al. [2013b]; Winten-
berger [2017]; Kotłowski [2017]; Mhammedi et al. [2019b]; Kempka et al. [2019b]. The
restart scheme introduced in the previous chapter solves this issue for the bounded
setting. In this chapter, we extend the restart trick and its analysis to the unbounded
setting.
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Abstract
We study Online Convex Optimization in the unbounded setting where neither predictions nor
gradient are constrained. The goal is to simultaneously adapt to both the sequence of gradients and
the comparator. We first develop parameter-free and scale-free algorithms for a simplified setting
with hints. We present two versions: the first adapts to the squared norms of both comparator and
gradients separately using Opdq time per round, the second adapts to their squared inner products
(which measure variance only in the comparator direction) in time Opd3q per round. We then
generalize two prior reductions to the unbounded setting; one to not need hints, and a second to
deal with the range ratio problem (which already arises in prior work). We discuss their optimality
in light of prior and new lower bounds. We apply our methods to obtain sharper regret bounds for
scale-invariant online prediction with linear models.
Keywords: Online Convex Optimization, Parameter-Free Online Learning, Scale-Invariant Online
Algorithms

1. Introduction

We consider the setting of online convex optimization where the goal is to make sequential predictions
to minimize a certain notion of regret. Specifically, at the beginning of each round t ě 1, a learner
predicts pwt in some convex set W Ď Rd in dimension d P N. The environment then reveals a
convex loss function ft : W Ñ R, and the learner suffers loss ftp pwtq. The goal of the learner is
to minimize the regret

řT
t“1 ftp pwtq ´řT

t“1 ftpwq after T ě 1 rounds against any “comparator”
prediction w PW . Typically, an online learning algorithm outputs a vector pwt, t ě 1, based only
on a sequence of observed sub-gradients pgsqsăt, where gs P Bfsp pwsq, s ă t. In this paper, we are
interested in online algorithms which can guarantee a good regret bound (by a measure which we
will make precise below) against any comparator vector w PW , even whenW is unbounded, and
without prior knowledge of the maximum norm L :“ maxtďT }gt} of the observed sub-gradients. In
what follows, we refer to L as the Lipschitz constant.

By assuming an upper-boundD ą 0 on the norm of the desired comparator vector w in hindsight,
there exist Lipschitz-adaptive algorithms that can achieve a sub-linear regret of order LD

?
T , without

knowing L in advance. A Lipschitz-adaptive algorithm is also called scale-free (or scale-invariant) if
its predictions do not change when the loss functions pftq are multiplied by a factor c ą 0; in this
case, its regret bound is expected to scale by the same factor c. When L is known in advance and
W “ Rd, there exists another type of algorithms, so-called parameter-free, which can achieve an
rOp}w}L?T q regret bound, where w is the desired comparator vector in hindsight (the notation rO

© 2020 Z. Mhammedi & W. M. Koolen.
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hides log-factors). Up to an additive lower-order term, this type of regret bound is also achievable for
boundedW via the unconstrained-to-constrained reduction (Cutkosky, 2019).

The question of whether an algorithm can simultaneously be scale-free and parameter-free was
posed as an open problem by Orabona and Pál (2016b). It was latter answered in the negative by
Cutkosky and Boahen (2017). Nevertheless, Cutkosky (2019) recently presented algorithms which
achieve an rOp}w}L?T ` L}w}3q regret bound, without knowing either L or ‖w‖. This does not
violate the earlier lower bound of Cutkosky and Boahen (2017), which insists on norm dependence
rOp‖w‖q.

Though Cutkosky (2019) designs algorithms that can to some extent adapt to both L and ‖w‖,
their algorithms are still not scale-free. Multiplying pftq, and as a result pgtq, by a positive factor
c ą 0 changes the outputs p pwtq of their algorithms, and their regret bounds scale by a factor c1, not
necessarily equal to c. Their algorithms depend on a parameter ε ą 0 which has to be specified in
advance. This parameter appears in their regret bounds as an additive term and also in a logarithmic
term of the form logpLα{εq, for some α ą 1. As a result of this type of dependence on ε and the fact
that α ą 1, there is no prior choice of ε which can make their regret bounds scale-invariant. What
is more, without knowing L, there is also no “safe” choice of ε which can prevent the logpLα{εq
term from becoming arbitrarily large relative to L (it suffices for ε to be small enough relative to the
“unknown” L).

Contributions. Our main contribution is a new scale-free, parameter-free learning algorithm for
OCO with regret at most Op}w}aVT logp}w}T qq, for any comparator w PW in a bounded setW ,
where VT –

řT
t“1 }gt}2. When the setW is unbounded, the algorithm achieves the same guarantee

up to an additive OpLamaxtďT Bt`L}w}3q, where Bt :“ řt
s“1 }gs}{Lt and Lt :“ maxsďt‖gs‖,

for all t P rT s. In the latter case, we also show a matching lower bound; whenW is unbounded and
without knowing L, any online learning algorithm which insists on an rOp?T q bound, has regret
at least ΩpL?BT ` L}w}3q. We also provide a second scale-invariant algorithm which replaces
the leading }w}?VT term in the regret bound of our first algorithm by

?
wᵀVTw ln detVT , where

VT :“ řT
t“1 gtg

ᵀ
t . Our starting point for designing our algorithms is a known potential function

which we show to be controlled for a unique choice of output sequence p pwtq.
As our main application, we show how our algorithms can be applied to learn linear models.

The result is an online algorithm for learning linear models whose label predictions are invariant to
coordinate-wise scaling of the input feature vectors. The regret bound of the algorithm is naturally
also scale-invariant and improves on the bounds of existing state-of-the-art algorithms in this setting
(Kotłowski, 2017; Kempka et al., 2019).

Related Work For an overview of Online Convex Optimization in the bounded setting, we refer
to the textbook (Hazan, 2016). The unconstrained case was first studied by McMahan and Streeter
(2010). A powerful methodology for the unbounded case is Coin Betting by Orabona and Pál
(2016a). Even though not always visible, our potential functions are inspired by this style of thinking.
We build our unbounded OCO learner by targeting a specific other constrained problem. We
further employ several general reductions from the literature, including gradient clipping Cutkosky
(2019), the constrained-to-unconstrained reduction Cutkosky and Orabona (2018), and the restart
wrapper to pacify the final-vs-initial scale ratio appearing inside logarithms by Mhammedi et al.
(2019). Our analysis is, at its core, proving a certain minimax result about sufficient-statistic-
based potentials reminiscent of the Burkholder approach pioneered by Foster et al. (2017, 2018).
Applications for scale-invariant learning in linear models were studied by Kempka et al. (2019).
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For our multidimensional learner we took inspiration from the Gaussian Exp-concavity step in the
analysis of the MetaGrad algorithm by Van Erven and Koolen (2016).

Outline In Section 2, we present the setting and notation, and formulate our goal. In Section 3, we
present our main algorithms. In Section 4, we present new lower-bounds for algorithms which adapt
to both the Lipschitz constant and the norm of the comparator. In Section 5, we apply our algorithms
to online prediction with linear models.

2. Preliminaries

Our goal is to design scale-free algorithms that adapt to the Lipschitz constant L and comparator
norm ‖w‖. We will first introduce the setting, then discuss existing reductions, and finally state what
needs to be done to achieve our goal.

2.1. Setting and Notation

LetW Ď Rd, d P N, be a convex set, and assume without loss of generality that 0 PW . We allow the
setW to be unbounded, and we define its (possibly infinite) diameter D :“ supw,w1PW }w ´w1} P
r0,`8s. We consider the setting of Online Convex Optimization (OCO) where at the beginning of
each round t ě 1, the learner outputs a prediction pwt PW , before observing a convex loss function
ft : W Ñ R, or an element of its sub-gradient gt P Bftp pwtq at pwt. The goal of the learner is to
minimize the regret after T ě 0 rounds, which is given by

Tÿ

t“1
ftp pwtq ´

Tÿ

t“1
ftpwq

for any comparator vector w PW . In this paper, we do not assume that T is known to the learner,
and so we are after algorithms with so called any-time guarantees. By convexity, we have

Tÿ

t“1
ftp pwtq ´

Tÿ

t“1
ftpwq ď

Tÿ

t“1
xgt, pwt ´wy, for all w PW, (1)

and thus for the purpose of minimizing the regret, typical OCO algorithms minimize the RHS
of (1), which is known as the linearized regret, by generating outputs p pwtq based on the sequence of
observed sub-gradients pgtq. Likewise, we focus our attention exclusively on linear optimization.

Given a sequence of sub-gradients pgtq, it will be useful to define the running maximum gradient
norm and the clipped sub-gradients

Lt :“ max
sPrts

}gs} and ḡt – gt ¨ Lt´1{Lt,

for t ě 1, with the convention that L0 “ 0. We also drop the subscript t from Lt when t “ T , i.e.
we write L for LT .

We denote by Apg1, . . . , gt´1;htq the output in round t ě 1 of an algorithm A, which uses
the observed sub-gradients so far and a hint ht ě Lt on the upcoming sub-gradient gt. As per
Section 1, we say that an algorithm is scale-free (or scale-invariant) if its predictions are invariant to
any common positive scaling of the loss functions pftq and, if applicable, the hints.

3
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Additional Notation. Given a closed convex set X Ď Rd, we denote by ΠX pxq the Euclidean
projection of a point x P Rd on the set X ; that is, ΠX pxq P argminx̃PX }x´ x̃}.

2.2. Helpful Reductions

The difficulty behind designing scale-free algorithms lies partially in the fact that Lt is unknown at
the start of round t; before outputting pwt. The following result due to Cutkosky (2019) quantifies the
additional cost of proceeding with the plug-in estimate Lt´1 for Lt:

Lemma 1 Let A be an online algorithm which at the start of each round t ě 1, has access to a hint
ht ě Lt, and outputs Apg1, . . . , gt´1;htq PW , before observing gt. Suppose that A guarantees an
upper-bound RA

T pwq on its linearized regret for the sequence pgtq and for all w PW, T ě 1. Then,
algorithm B which at the start of each round t ě 1 outputs pwt “ Apḡ1, . . . , ḡt´1;Lt´1q, guarantees

Tÿ

t“1
x pwt ´w, gty ď RA

T pwq `max
tPrT s

} pwt}Lt ` }w}L, @w PW, T ě 1. (2)

First, we note that Lemma 1 is only really useful when W is bounded; otherwise, depending on
algorithm A, the term maxtPrT s Lt} pwt} on the RHS of (2) could in principle be arbitrarily large even
for fixed w, L, and T . The moral of Lemma 1 is that as long as the setW is bounded, one does not
really need to know Lt before outputting pwt to guarantee a “good” regret bound against any w PW .
For example, suppose thatW has a bounded diameter D and algorithm A in Lemma 1 is such that
RA
T pwq “ rOp}w}L?T `DLq, for all w P W . Then, from (2) and the fact that } pwt} ď D (since
pwt PW), it is clear that algorithm B in Lemma 1 also guarantees the same regret bound RA

T pwq up
to an additive 2DL, despite not having had the hints phtq.

It is possible to extend the result of Lemma 1 so that the regret bound of algorithm B remains
useful even in the case whereW is unbounded. An approach suggested by Cutkosky (2019) is to
restrict the outputs p pwtq of algorithm B to be in a non-decreasing sequence pWtq of bounded convex
subsets ofW . In this case, the diameters pDtq Ă R of pWtq need to be carefully chosen to achieve
a desired regret bound. This approach, which essentially combines the idea of Lemma 1 and the
unconstrained-to-constrained reduction due to Cutkosky and Orabona (2018), is formalized in the
next lemma (essentially due to Cutkosky (2019)):

Lemma 2 Let algorithm A be as in Lemma 1, and let pWtq be a sequence of non-decreasing closed
convex subsets ofW with diameters pDtq Ă Rą0. Then, algorithm B which at the start of round
t ě 1 outputs pwt “ ΠWtp rwtq, where

rwt :“ Aprg1, . . . , rgt´1;Lt´1q and rgs :“ pḡs ` }ḡs} ¨ p rws ´ pwsq{} rws ´ pws}q{2, s ă t,

guarantees, for all w PW and T ě 1,
Tÿ

t“1
x pwt ´w, gty ď RA

T pwq `
Tÿ

t“1
}gt} ¨ }w ´ΠWtpwq} ` LDT ` L}w}. (3)

We see that compared to Lemma 1, the additional penalty that algorithm B incurs for restricting its
predictions to the setsW1, . . . ,WT ĎW is the sum

řT
t“1 }gt} ¨ }w ´ΠWtpwq}. The challenge is

now in choosing the diameters pDtq to control the trade-off between this sum and the term LDT on

4
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the RHS of (3). If T is known in advance, one could set D1 “ ¨ ¨ ¨ “ DT “
?
T , in which case the

RHS of (3) is at most

RA
T pwq ` Lp}w}3 ` }w}q ` L

?
T . (4)

We now instantiate the bound of Lemma 2 for another choice of pDtq when T is unknown:

Corollary 3 In the setting of Lemma 2, letWt be the ball of diameter Dt :“ ?maxsďtBs, t ě 1,
where Bt :“ řt

s“1 }gs}{Lt, and letW “ Rd. Then the RHS of (3) is bounded from above by

RA
T pwq ` L}w}3 ` L

c
max
tPrT s

Bt ` L}w}, @w PW “ Rd, T ě 1. (5)

We see that by the more careful choice of pDtq in Corollary 3, one can replace the L
?
T term in

(4) by the smaller quantity L
a

maxtPrT sBt; whether this can be improved further to
?
VT , where

VT “ řT
t“1 }gt}2, was raised as an open question by Cutkosky (2019). We will answer this in the

negative in Theorem 14. We will also show in Theorem 15 below that, if one insists on a regret of
order rOp?T q, it is essentially not possible to improve on the penalty L}w}3 in (5).

2.3. Outlook

The conclusion that should be drawn from Lemmas 1 and 2 is the following; if one seeks an
algorithm B with a regret bound of the form rOp}w}L?T q up to some lower-order terms in T ,
without knowledge of L and regardless of whether W is bounded or not, it suffices to find an
algorithm A which guarantees the sought type of regret whenever it has access to a sequence of hints
phtq satisfying (as in Lemmas 1 and 2), ht ě Lt, for all t ě 1. Thus, our first goal in the next section
is to design a scale-free algorithm A which accesses such a sequence of hints and ensures that its
linearized regret is bounded from above by:

O
´
}w}aVT lnp}w}VT q

¯
, where VT :“ h21 `

Tÿ

t“1
}gt}2, (6)

for all w P Rd, T ě 0, and pgtq Ă Rd. We show an analogous “full-matrix” upgrade of ordera
wᵀV w ln pwᵀV w detV q, with V “ řT

t“1 gtg
ᵀ
t . We note that if Algorithm A in Lemmas 1 and

2 is scale-free, then so is the corresponding Algorithm B.
If the desired setW has bounded diameter D ą 0, then using the unconstrained-to-constrained

reduction due to Cutkosky and Orabona (2018), it is straightforward to design a new algorithm based
on A with regret also bounded by (6) up to an additive LD, for w PW (this is useful for Lemma 1).

Finally, we also note that algorithms which can access hints phtq such that ht ě Lt, for all t ě 1,
are of independent interest; in fact, it is the same algorithm A that we will use in Section 5 as a
scale-invariant algorithm for learning linear models.

3. Scale-Free, Parameter-Free Algorithms for OCO

In light of the conclusions of Section 2, we will design new unconstrained scale-free algorithms
which can access a sequence of hints phtq (as in Lemma 1) and guarantee a regret bound of the form
given in (6). In this section, we will make the following assumption on the hints phtq:

5
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Assumption 1 We assume that (i) phtq is a non-decreasing sequence; (ii) ht ě Lt, for all t ě 1;
and (iii) if the sub-gradients pgsq are multiplied by a factor c ą 0, then the hints phtq are multiplied
by the same factor c.

The third item of the assumption ensures that our algorithms are scale-free. We note that Assumption
1 is satisfied by the sequence of hints that Algorithm B constructs when invoking Algorithm A
in Lemmas 1 and 2. To avoid an uninteresting case distinction, we will also make the following
assumption, which is without loss of generality, since the regret is zero while gt “ 0.

Assumption 2 We assume that L1 “ ‖g1‖ ą 0.

3.1. FREEGRAD: An Adaptive Scale-Free Algorithm

In this subsection, we design a new algorithm based on a time-varying potential function, where
the outputs of the algorithm are uniquely determined by the gradients of the potential function at its
iterates—an approach used in the design of many existing algorithms (Cesa-Bianchi et al., 1997).

Let t ě 1, let pgsqsďt Ă Rd be a sequence of sub-gradients satisfying Assumption 2, and let phtq
be a sequence of hints satisfying Assumption 1. Consider the following potential function:

Φt :“ St ` h21?
Vt
¨ exp

ˆ }Gt}2
2Vt ` 2ht}Gt}

˙
, t ě 0, (7)

where St :“
tÿ

s“1
xgs, pwsy, Gt :“

tÿ

s“1
gs, Vt :“ h21 `

tÿ

s“1
}gs}2. (8)

This potential function has appeared as a by-product in the analyses of previous algorithms such as
the ones in (Cutkosky and Orabona, 2018; Cutkosky, 2019). The expression of Φt in (7) is interesting
to us since it can be shown via the regret-reward duality (McMahan and Orabona, 2014) (as we do
in the proof of Theorem 6 below) that any algorithm which outputs vectors p pwtq such that pΦtq is
non-increasing for any sequence of sub-gradients pgtq, also guarantees a regret bound of the form
(6). We will now design such an algorithm.

Definition 4 (FREEGRAD) In round t, based on the sequence of past sub-gradients pgsqsăt and the
available hint ht ě Lt, the FREEGRAD algorithm outputs the unconstrained iterate

pwt :“ ´Gt´1 ¨ p2Vt´1 ` ht}Gt´1}q ¨ h21
2pVt´1 ` ht}Gt´1}q2 ?Vt´1 ¨ exp

ˆ }Gt´1}2
2Vt´1 ` 2ht}Gt´1}

˙
, (9)

where pGtq and pVtq are as in (8).

The prediction (9) is forced by our design goal of decreasing potential Φt ď Φt´1. To see why,
observe that at zero gt “ 0 we have Φt “ Φt´1. The weights pwt cancel the derivative ∇gtΦt at
gt “ 0, ensuring there is no direction of linear increase (which would present a violation for tiny gt).
Our main technical contribution in this subsection is to show that, in fact, with the choice of p pwtqtě1
as in (9), the potential functions pΦtq are non-increasing for any sequence of sub-gradients pgtq:
Theorem 5 For p pwtq, and pΦtq as in (9), and (7), under Assumptions 1 and 2, we have:

ΦT ď ¨ ¨ ¨ ď Φ0 “ h1, for all T ě 1.

6
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The proof of the theorem is postponed to Appendix A. Theorem 5 and the regret-reward duality
(McMahan and Orabona, 2014) yield a regret bound for FREEGRAD. In fact, if ΦT ď Φ0, then by
the definition of ΦT in (7), we have

Tÿ

t“1
xgt, pwty ď Φ0 ´ΨT pGT q, where ΨT pGq :“ h21?

VT
exp

ˆ }G}2
2VT ` 2hT }G}

˙
, G P Rd.(10)

Now by Fenchel’s inequality, we have ´ΨT pGT q ď xw,GT y `Ψ‹T p´wq, for all w P Rd, where
Ψ‹T pwq :“ supzPRdtxw, zy ´ ΨT pzqu, w P Rd, is the Fenchel dual of ΨT (Hiriart-Urruty and
Lemaréchal, 2004). Combining this with (10), we obtain:

Tÿ

t“1
xgt, pwty ď inf

wPRd

#
Tÿ

t“1
xgt,wy `Ψ‹T p´wq ` Φ0

+
. (11)

Rearranging (11) for a given w P Rd leads to a regret bound of Ψ‹T p´wq ` Φ0. Further bounding
this quantity using existing results due to Cutkosky and Orabona (2018); Cutkosky (2019); McMahan
and Orabona (2014), leads to the following regret bound (the proof is in Appendix B.1):

Theorem 6 Under Assumptions 1 and 2, for p pwtq as in (9), we have, with ln`p¨q :“ 0_ lnp¨q,
Tÿ

t“1
xgt, pwt ´wy ď

«
2}w}

d
VT ln`

ˆ
2}w}VT
h21

˙ff
_
„
4hT }w} ln

ˆ
4hT }w}

?
VT

h21

˙
` h1,

for all w PW “ Rd, T ě 1.

Range-Ratio Problem. While the outputs p pwtq in (9) of FREEGRAD are scale-free for the se-
quence of hints phtq satisfying Assumption 1, there remains one serious issue; the fractions VT {h21
and hT {h1 inside the log-terms in the regret bound of Theorem 6 could in principle be arbitrarily
large if h1 is small enough relative to hT . Such a problematic ratio has appeared in the regret bounds
of many previous algorithms which attempt to adapt to the Lipschitz constant L (Ross et al., 2013;
Wintenberger, 2017; Kotłowski, 2017; Mhammedi et al., 2019; Kempka et al., 2019).

When the output setW is bounded with diameter D ą 0, this ratio can be dispensed of using a
recently proposed restart trick due to Mhammedi et al. (2019), which restarts the algorithm whenever
Lt{L1 ą řt

s“1 }gs}{Ls. The price to pay for this is merely an additive OpLDq in the regret bound.
However, this trick does not directly apply to our setting since in our caseW may be unbounded.
Fortunately, we are able to extend the analysis of the restart trick to the unbounded setting where a
sequence of hints phtq satisfying Assumption 1 is available; the cost we incur in the regret bound is
an additive lower-order rOp}w}Lq term. Algorithm 1 displays our restart “wrapper”, FREERANGE,
which uses the outputs of FREEGRAD to guarantee the following regret bound (the proof is in
Appendix B):

Theorem 7 Let p pwtq be the outputs of FREERANGE (Algorithm 1). Then,

Tÿ

t“1
xgt, pwt ´wy ď 2}w}a2VT ln` p}w}bT q ` hT ¨ p16}w} ln`p2}w}bT q ` 2}w} ` 3q,

for all w P Rd, T ě 1, and pgtq Ă Rd, where bT :“ 2
řT
t“1

`řt´1
s“1

}gs}
hs
` 2

˘2 ď pT ` 1q3.

We next introduce our second algorithm, in which the variance is only measured in the comparator
direction; the algorithm can be viewed as a “full-matrix” version of FREEGRAD.

7
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Algorithm 1 FREERANGE: A Restart Wrapper for the Range-Ratio Problem (under Assumption 2).
Require: Hints phtq satisfying Assumption 1.

1: Set τ “ 1;
2: for t “ 1, 2, . . . do
3: Observe hint ht;
4: if ht{hτ ą řt´1

s“1 }gs}{hs ` 2 then
5: Set τ “ t;
6: end if
7: Output pwt as in (9) with ph1, Vt´1,Gt´1q replaced by phτ , h2τ `

řt´1
s“τ }gs}2,

řt´1
s“τ gs);

8: end for

3.2. MATRIX-FREEGRAD: Adapting to Directional Variance

Reflecting on the previous subsection, we see that the potential function that we ideally would like
to use is St ` h1 exp

`
1
2Gᵀ

tV
´1
t Gt ´ 1

2 ln detVt
˘
, t ě 1, where Vt “ řt

s“1 gsg
ᵀ
s . However, as we

saw, this is a little too greedy even in one dimension, and we need to introduce some slack to make
the potential controllable. In the previous subsection we did this by increasing the scalar denominator
from V to V ` ‖G‖, which acts as a barrier function restricting the norm of pwt. In this section, we
will instead employ a hard norm constraint. We will further need to include a fudge factor γ ą 1
multiplying V to turn the above shape into a bona fide potential. To describe its effect, we define

ρpγq :“ 1

2γ

´b
pγ ` 1q2 ´ 4e

1
2γ
´ 1

2γ3{2 ` γ ´ 1
¯
, for γ ě 1. (12)

The increasing function ρ satisfies limγÑ1 ρpγq “ 0, limγÑ8 ρpγq “ 1, and ρp2q “ 0.358649.

The potential function of this section is parameterized by a prod factor γ ą 1 (which we will set to
some universal constant). We define

ΨpG,V , hq :“
h1 exp

´
infλě0

!
1
2Gᵀ `γh21I ` γV ` λI˘´1 G` λρpγq2

2h2

)¯

c
det

´
I ` 1

h21
V
¯ , (13)

where G P Rd, V P Rdˆd, and h ą 0. We introduce the following algorithm to control Ψ.

Definition 8 (MATRIX-FREEGRAD) In round t, given past sub-gradients pgsqsăt and a hint ht ě
LT , the MATRIX-FREEGRAD prediction is obtained from the gradient of Ψ in the first argument by

pwt :“ ´∇p1,0,0qΨpGt´1,Vt´1, htq, (14)

where Gt´1 “ řt´1
s“1 gs and Vt´1 :“ řt´1

s“1 gsg
ᵀ
s .

We can compute pwt in Opd3q time per round by first computing an eigendecomposition of Vt´1,
followed by a one-dimensional binary search for the λ‹ which achieves the inf in (13) with
pG,V , hq “ pGt´1,Vt´1, htq. Then the output is given by

pwt “ ´ΨpGt´1,Vt´1, htq ¨
`
γh21I ` γVt´1 ` λ‹I

˘´1
Gt´1.

Our heavy-lifting step in the analysis is the following, which we prove in Appendix C:

8
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Lemma 9 For any vector gt P Rd and ht ą 0 satisfying ‖gt‖ ď ht, the vector pwt in (14) ensures

gᵀ
t pwt ď ΨpGt´1,Vt´1, htq ´ΨpGt,Vt, htq.

From here, we obtain our main result using telescoping and regret-reward duality:

Theorem 10 Let Σ´1T :“ γh21I ` γVT . For p pwtq as in (14), we have

Tÿ

t“1
x pwt ´w, gty ď h1 `

gffeQw
T ln`

˜
det

`
γh21ΣT

˘´1

h21
Qw
T

¸
, for all w P Rd, where

Qw
T :“ max

#
wᵀΣ´1T w,

1

2

˜
h2T ‖w‖2
ρpγq2 ln

˜
det

`
γh21ΣT

˘´1

h21

h2T ‖w‖2
ρpγq2

¸
`wᵀΣ´1T w

¸+
.

Note in particular that the result is scale-free. Expanding the main case of the theorem (modest ‖w‖),
we find regret bounded by

Tÿ

t“1
x pwt ´w, gty ď h1 ` h1

a
γwᵀQw ln` pγwᵀQw detQq where Q “ I ` VT {h21.

This bound looks almost like an ideal upgrade of that in Theorem 6, though technically, the bounds
are not really comparable since the ln detQ can be as large as d lnT , potentially canceling the
advantage of having wᵀQw instead of }w}2řT

t“1 }gt}2 inside the square-root. The matrix Q and
hence any directional variance wᵀQw is scale-invariant. The only fudge factor in the answer is the
γ ą 1. We currently cannot tolerate γ “ 1, for then ρpγq “ 0 so the lower-order term would explode.
We note that a bound of the form given in the previous display, with the ln detQ replaced by the
larger term d ln trQ, was achieved by a previous (not scale-free) algorithm due to Cutkosky and
Orabona (2018).

Remark 11 As Theorem 7 did in the previous subsection, our restarts method allows us to get rid of
problematic scale ratios in the regret bound of Theorem 10; this can be achieved using FREERANGE

with p pwtq set to be as in (14) instead of (9). The key idea behind the proof of Theorem 7 is to show
that the regrets from all but the last two epochs add up to a lower-order term in the final regret bound.
This still holds when p pwtq are the outputs of MATRIX-FREEGRAD instead of FREEGRAD, since
by Theorem 10, the regret bound of MATRIX-FREEGRAD is of order at most d times the regret of
FREEGRAD within any given epoch.

As a final note about the algorithm, we may also develop a “one-dimensional” variant by replacing
matrix inverse and determinant by their scalar analogues applied to VT “ řT

t“1‖gt‖2. One effect
of this is that the minimization in λ can be computed in closed form. The resulting potential and
corresponding algorithm and regret bound are very close to those of Section 3.1.

Conclusion The algorithms designed in this section can now be used in the role of algorithm A
in the reductions presented in Section 2.2. This will yield algorithms which achieve our goal; they
adapt to the norm of the comparator and the Lipschitz constant and are completely scale-free, for
both bounded and unbounded sets, without requiring hints. We now show that the penalties incurred
by these reductions are not improvable.

9
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4. Lower Bounds

As we saw in Corollary 3, given a base algorithm A, which takes a sequence of hints phtq such that
ht ě Lt for all t ě 1, and which suffers regret RA

T pwq against comparator w PW , there exists an
algorithm B for the setting without hints which suffers the same regret against w up to an additive
penalty LT }w}3 ` LTamaxtPrT sBt, where Bt “ řt

s“1 }gs}{Lt. In this section, we show that the
penalty LT }w}3 is not improvable if one insists on a regret bound of order rOp?T q. We also show
that it is not possible to replace the penalty LT

a
maxtPrT sBt by the typically smaller quantity

?
VT ,

where VT “ řT
t“1 }gt}2. Our starting point is the following lemma:

Lemma 12 For all t ě 1, past sub-gradients pgsqsăt and past and current outputs p pwsqsďt P Rd,

Dgt P Rd,
tÿ

s“1
xgs, pwsy ě } pwt} ¨ Lt{2, where Lt “ max

sďt }gs}.

Proof We want to find gt such that xgt, pwty ě }wt}Lt{2 ´ St´1, where St´1 :“ řt´1
s“1xgs, pwsy.

By restricting gt to be aligned with pwt, the problem reduces to finding x “ }gt} such that

x} pwt} ´ |} pwt} ¨ pLt´1 _ xq{2´ St´1| ě 0. (15)

The LHS of (15) is a piece-wise linear function in x which goes to infinity as x Ñ 8. Therefore,
there exists a large enough x ě 0 which satisfies (15).

Observe that if } pwt} ě Dt ą 0, for t ě 1, then by Lemma 12, there exists a sub-gradient gt
which makes the regret against w “ 0 at round t at least DtL{2. This essentially means that if the
sub-gradients pgtq are unbounded, then the outputs p pwtq must be in a bounded set whose diameter
will depend on the desired regret bound; if one insists on a regret of order rOp?T q, then the outputs
pwt, t ě 1, must be in a ball of radius at most rOp?T q.

Cutkosky (2019) posed the question of whether there exists an algorithm which can guarantee
a regret bound of order }w}aVT lnp}w}T q ` ?VT lnT ` L}w}3, with VT “ řT

t“1 }gt}2, while
adapting to both L and }w} (which essentially means replacing L

a
maxtPrT sBt in Corollary 3 by?

VT lnT ). Here, we ask the question whether }w}aVT lnp}w}T q`?VT lnT `L}w}ν is possible
for any ν ě 1. If such an algorithm exists, then by Lemma 12, there exists a constant b ą 0 such that
its outputs p pwtq satisfy } pwt} ď b

?
Vt ln t{Lt, for all t ě 1. The next lemma, when instantiated with

α “ 2, gives us a regret lower-bound on such algorithms (the proof is in Appendix D):

Lemma 13 For all b, c, β ě 0, ν ě 1, and α Ps1, 2s, there exists pgtq P Rd, T ě 1, and w P Rd,
such that for any sequence p pwtq satisfying } pwt} ď b ¨ aVα,t lnptq{Lαt , for all t P rT s, where
Vα,t :“ řt

s“1 }gs}α, we have

Tÿ

t“1
x pwt ´w, gty ě c ¨ lnp1` }w}T qβ ¨ pLT }w}ν ` L1´α{2

T p}w} ` 1qaVα,T lnT q.

By combining the results of Lemma 12 and 13, we have the following regret lower bound for
algorithms with can adapt to both L and }w}:

10
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Theorem 14 For any α Ps1, 2s, c ą 0 and ν ě 1, there exists no algorithm that guarantees, up to
multiplicative log-factors in }w} and T , a regret bound of the form c ¨ pLT }w}ν ` L1´α{2

T p}w} `
1qaVα,T lnT q, for all T ě 1, w P Rd, and pgtq Ă Rd, where Vα,T :“ řT

t“1 }gt}α.

Proof By Lemma 12, the only candidate algorithms are those whose outputs p pwtq satisfy } pwt} ď
b
a
Vα,t lnptq{Lαt , for all t ě 1, for some constant b ą 0. By Lemma 13, no such algorithms can

achieve the desired regret bound.

The regret lower bound in Theorem 14 does not apply to the case where α “ 1. In fact, thanks
to Corollary 3 and our main algorithm in Section 3 (which can play the role of Algorithm A in
Corollary 3), we know that there exists an algorithm B which guarantees a regret bound of order
rOpLT }w}3`}w}

a
VT lnp}w}T q`LTamaxtPrT sBtq, where Bt “ řt

s“1 }gs}{Lt. Next we show
that if one insists on a regret bound of order

?
BT , or even

?
T (up to log-factors), the exponent in

}w}3 is unimprovable (the proof of Theorem 15 is in Appendix D.2).

Theorem 15 For any ν P r1, 3r and c ą 0, there exists no algorithm that guarantees, up to
multiplicative log-factors in }w} and T , a regret bound of the form c ¨ pLT }w}ν ` LT p}w} `
1q?T lnT q, for all T ě 1, w P Rd, and pgtq Ă Rd.

5. Application to Learning Linear Models with Online Algorithms

In this section, we consider the setting of online learning of linear models which is a special case of
OCO. At the start of each round t ě 1, a learner receives a feature vector xt PW “ Rd, then issues
a prediction pyt P R in the form of an inner product between xt and a vector put P Rd, i.e. pyt “ puᵀ

txt.
The environment then reveals a label yt P R and the learner suffers loss `pyt, pytq, where ` : R2 Ñ R
is a fixed loss function which is convex and 1-Lipschitz in its second argument; this covers popular
losses such as the logistic, hinge, absolute and Huberized squared loss. (Technically, the machinery
developed so far and the reductions in Section 2.2 allow us to handle the non-Lipschitz case).

In the current setting, the regret is measured against the best fixed “linear model” w P Rd as

REGRETT pwq :“
Tÿ

t“1
`pyt, pytq ´

Tÿ

t“1
`pyt,wᵀxtq ď

Tÿ

t“1
δtxxt, put ´wy, (16)

where the last inequality holds for any sub-gradients δt P Bp0,1q`pyt, pytq, t ě 1, due to the convexity
of ` in its second argument, which in turn makes the function ftpwq :“ `pyt,wᵀxtq convex for all
w P W “ Rd. Here, Bp0,1q` denotes the sub-differential of ` with respect to its second argument.
Thus, minimizing the regret in (16) fits into the OCO framework described in Section 2. In fact, we
will show how our algorithms from Section 3 can be applied in this setting to yield scale-free, and
even rotation-free, (all with respect to the feature vectors pxtq) algorithms for learning linear models.
These algorithms can, without any prior knowledge on w or pwᵀxtq, achieve regret bounds against
any w P Rd matching (up to log-factors) that of OGD with optimally tuned learning rate.

As in Section 3, we focus on algorithms which make predictions based on observed sub-gradients
(gt); in this case, gt “ xtδt P xt ¨ Bp0,1q`pyt, pytq “ Bftpputq, t ě 1, where ftpwq “ `pyt,wᵀxtq.
Since the loss ` is 1-Lipschitz, we have |δt| ď 1, for all δt P Bp0,1q`pyt, pytq and t ě 1, and so
}gt} ď }xt}. Since xt is revealed at the beginning of round t ě 1, the hint

ht “ max
sďt }xs} ě LT “ max

sďt }gs} (17)

11
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is available ahead of outputting put, and so our algorithms from Section 3 are well suited for this
setting.

Improvement over Current Algorithms. We improve on current state-of-the-art algorithms in
two ways; First, we provide a (coordinate-wise) scale-invariant algorithm which guarantees regret
bound, against any w P Rd, of order

dÿ

i“1
|wi|

b
VT,i lnp|wi|

a
VT,iT q ` |wi| ln`p|wi|

a
VT,iT q, (18)

where VT,i :“ |x1,i|2 ` řT
t“1 δ2t |xt,i|2, i P rds, which improves the regret bound of the current

state-of-the-art scale-invariant algorithm SCLNOL1 (Kempka et al., 2019) by a
a

lnp}w}T q factor.
Second, we provide an algorithm that is both scale and rotation invariant with respect to the input
feature vectors pxtq with a state-of-the-art regret bound; by scale and rotation invariance we mean
that, if the sequence of feature vectors pxtq is multiplied by cO, where c ą 0 and O is any special
orthogonal matrix in Rdˆd, the outputs (pyt) of the algorithm remain unchanged. Arguably the closest
algorithm to ours in the latter case is that of Kotłowski (2017) whose regret bound is essentially of
order rOp?wᵀSTwq for any comparator w P Rd, where ST “ řT

t“1 xtx
ᵀ
t . However, in our case,

instead of the matrix ST , we have VT :“ }x1}2I `řT
t“1 xtx

ᵀ
t δ

2
t , where δt P Bp0,1q`pyt, pytq, t ě 1,

which can yield a much smaller bound for small pδtq (this typically happens when the algorithm
starts to “converge”).

A Scale-Invariant Algorithm. To design our first scale-invariant algorithm, we will use the
outputs ( pwt) of FREEGRAD in (9) with phtq as in (17), and a slight modification of FREERANGE

(see Algorithm 2). This modification consists of first scaling the outputs p pwtq of FREEGRAD by the
initial hint of the current epoch to make the predictions ppytq scale-invariant. By Theorem 20 below,
the regret bound corresponding to such scaled outputs will have a lower-order term which, unlike in
the regret bound of Theorem 6, does not depend on the initial hint. This breaks our current analysis
of FREERANGE in the proof of Theorem 7 which we used to overcome the range-ratio problem. To
solve this issue, we further scale the output pwt at round t ě 1 by the sum

řτ
s“1 }xs}{hs, where τ

denotes the first index of the current epoch (see Algorithm 2). Due to this change, the proof of the
next theorem differs slightly from that of Theorem 7.

First, we study the regret bound of Algorithm 2 in the case whereW “ R.

Theorem 16 Let d “ 1 and phtq be as in (17). If pputq are the outputs of Algorithm 2, then for all
w P R;T ě 1; pxt, ytq Ă R2, s.t. h1 “ |x1| ą 0; and δt P Bp0,1q` pyt, xtputq, t P rT s,

Tÿ

t“1
δtxt ¨ pput ´ wq ď 2|w|aVT ln`p2|w|2VT cT q

` hT |w|p14 ln`p2|w|
a

2VT cT q ` 1q ` 2` lnBT , (19)

where VT :“ |x1|2 `řT
t“1 δ2t x2t , cT :“ 2B2

T

řT
t“1

´řt
s“1

|xs|
hs

¯2 ď T 5, and BT “ řT
s“1

|xs|
hs
ď T .

The proof of Theorem 16 is in Appendix E. If pputq are the outputs of Algorithm 2 in the one-
dimensional case, then by Theorem 16 and (16), the algorithm which, at each round t ě 1, predicts

12



LIPSCHITZ-COMPARATOR-NORM-ADAPTIVITY

Algorithm 2 Modified FREERANGE for the setting of online learning of linear models.
Require: The hints phtq as in (17).

1: Set τ “ 1;
2: for t “ 1, 2, . . . do
3: Observe hint ht;
4: if ht{hτ ą řt´1

s“1 }xs}{hs ` 1 then
5: Set τ “ t;
6: end if
7: Output put “ pwt ¨

´
hτ ¨řτ

s“1
}xs}
hs

¯´1
, where pwt is as in (9) with ph1, Vt´1,Gt´1q replaced

by phτ , h2τ `
řt´1
s“τ }gs}2,

řt´1
s“τ gsq;

8: end for

pyt “ xtput has regret bounded from above by the RHS of (19). Note also that the outputs ppytq are
scale-invariant.

Now consider an algorithm A which at round t ě 1 predicts pyt “ řd
i“1 xt,iput,i, where pput,iq, i P

rds, are the outputs of Algorithm 2 when applied to coordinate i; in this case, we will have a sequence
of hints pht,iq for each coordinate i satisfying ht,i “ maxsďt |xt,i|, for all t ě 1. Algorithm A is
coordinate-wise scale-invariant, and due to (16) and Theorem 16, it guarantees a regret bound of the
form (18). We note, however, that a factor d will appear multiplying the lower-order term p2` lnBT q
in (19) (since the regret bounds for the different coordinates are added together). To avoid this, at the
cost of a factor d appearing inside the logarithms in (18), it suffices to divide the outputs of algorithm
A by d. To see why this works, see Theorem 20 in the appendix.

A Rotation-Invariant Algorithm. To obtain a rotation and scale-invariant online algorithm for
learning linear models we will make use of the outputs of MATRIX-FREEGRAD instead of FREEGRAD.
Let ppytq be the sequence of predictions defined by

pyt “ xᵀ
t pwt{h1, t ě 1, (20)

with phtq as in (17) and where pwt are the predictions of a variant of MATRIX-FREEGRAD, where
the leading h1 in the potential (13) is replaced by 1 (we analyze this variant in Appendix C.1).

Theorem 17 Let γ ą 0 and phtq be as in (17). If ppytq are as in (20), then

@w P Rd,@T ě 1,@pgtq Ă Rd, REGRETT pwq ď 1`
c
Qw
T ln`

´
det

`
γh21ΣT

˘´1
Qw
T

¯
, where

Qw
T :“ max

#
wᵀΣ´1T w,

1

2

˜
hT ‖w‖2
ρpγq2 ln

˜
hT ‖w‖2
ρpγq2 det

`
γh21ΣT

˘´1
¸
`wᵀΣ´1T w

¸+
,

and Σ´1T :“ γh21I ` γ
řT
t“1 gtg

ᵀ
t .

Proof It suffices to use (16) and instantiate the regret bound in Theorem 21 with pε, σ´2q “ p1, γh21q.

The range-ratio problem manifests itself again in Theorem 17 through the term detpγh21ΣT q´1. This
can be solved using the outputs of Algorithm 2, where in Line 7, pwt is taken to be as in (20) (see
Remark 11).

13
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Francesco Orabona and Dávid Pál. Open problem: Parameter-free and scale-free online algorithms.
In Conference on Learning Theory, pages 1659–1664, 2016b.

Stephane Ross, Paul Mineiro, and John Langford. Normalized online learning. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pages 537–545, 2013.

Olivier Wintenberger. Optimal learning with Bernstein online aggregation. Machine Learning, 106
(1):119–141, 2017.

15



LIPSCHITZ-COMPARATOR-NORM-ADAPTIVITY

Appendix A. Proof of Theorem 5

The proof of Theorem 5 relies on the following key lemma:

Lemma 18 For G, g P R and, V ą 0, define

ΘpG,V, gq :“
?
Va

V ` g2 ¨ exp

ˆ pG` gq2
2V ` 2g2 ` 2|G` g| ´

G2

2V ` 2|G|
˙
´ gGp|G| ` 2V q

2p|G| ` V q2 ´ 1.

It holds that ΘpG,V, gq ď 0, for all G P R, V ą 0, and g P r´1, 1s.
Proof For notational simplicity we assume G ě 0. Let us look at

ΓpG,V, gq :“ 1

2

pg `Gq2
V ` g2 ` |G` g| ´

1

2

G2

G` V ´ ln

ˆ
1` gGpG` 2V q

2pG` V q2
˙
´ 1

2
ln

ˆ
1` g2

V

˙
.

Since ln is increasing, we have that Θ ď 0, if and only if, Γ ď 0, and so we want to show Γ ď 0
for all V ą 0, G ě 0, and g P r´1, 1s. Our approach will be to show that Γ is increasing in V . The
result then follows from limVÑ8 Γ “ 0. It remains to study the derivative

BΓ
BV “ ´ 1

2

pg `Gq2
p|g `G| ` g2 ` V q2 `

2gGV

pG` V qp2pG` V q2 ` gGpG` 2V qq
` 1

2

G2

pG` V q2 `
1

2

g2

g2V ` V 2
.

Factoring this as a ratio of polynomials, we obtain:

BΓ
BV “ α0 ` α1V ` α2V

2 ` α3V
3 ` α4V

4 ` α5V
5

2V pg2 ` V q pG` V q2 ppg ` 2qG2 ` 2pg ` 2qGV ` 2V 2q p|g `G| ` g2 ` V q2 ,

where αi, i P r5s, are polynomials in g and G whose explicit (yet gruesome) expressions are:

α0 “ g2pg ` 2qG4
`|g `G| ` g2˘2

α1 “ g2pg ` 2qG3
`
2
`
g2pG` 4q `G˘ |g `G| ` g4pG` 4q ` 2g2pG` 2q ` 8gG` 4G2

˘

α2 “ g2G2

¨
˚̋

2
`
g3p2G` 9q ` 4g2pG` 3q ` 2gGpG` 2q ` 4GpG` 2q˘ |g `G|

` 3g2p3g ` 4q `g2 ` 1
˘´ 2pg ` 2qG3

` pgpgp3g ` 2q ` 2q ` 14qG2 ` 2gpgpgpgpg ` 2q ` 3q ` 15q ` 12qG

˛
‹‚

α3 “ G

¨
˚̋

2
`
6g5 ` 2g4pG` 4q ` g3Gp4G` 13q ` 4g2Gp2G` 3q ` gG3 ` 2G3

˘ |g `G|
` pgpg ` 2qp2g ` 13q ` 20qg3G` 2

`
g
`
3g2 ` g ´ 6

˘` 10
˘
g2G2

` 2p3g ` 4q `g2 ` 1
˘
g4 ´ 2pg ` 2qG4 ´ 2pgpg ` 4q ` 2qgG3

˛
‹‚

α4 “ 2

˜
2
`
g4 ` p5g ` 4qg2G` pg ` 2qG3 ` 2pg ` 1qgG2

˘ |g `G| ` g6 ` g4
` pgp7g ` 4q ` 4qg3G` ppg ´ 2qg ` 6qg2G2 ´ 2pg ` 2qG4 ` pgp2g ´ 3q ´ 8qgG3

¸

α5 “ 2
´

2 |g `G|3 ` g4 ` 4g3G´ 6gG2 ´ 2G3
¯

Under our assumptions V ą 0, G ą 0 and g P r´1, 1s, the denominator of BΓ{BV above is
positive. Furthermore, its numerator, regarded as a polynomial in V , has exclusively positive
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In[ ]:= $Assumptions = V > 0 && Element[G, Reals] && -1 ≤ g ≤ 1;

Let us call “gap” the difference between what we have and the upper bound we want to establish. 

Φ [G_, V_] = -

G2

2 (V + Abs[G])

+

1

2

Log[V];

In[ ]:= gap = -Log[1 - g D[Φ [G, V], G]] - ΦG + g, V + g2 -Φ [G, V] // FullSimplify;

We want to show that the gap is ≤ 0. Our approach will be to show that gap is increasing, so that we 

can then bound it by the limit

In[ ]:= Limit[gap, V → Infinity]

Out[ ]= 0

So why is gap increasing? Let us take the derivative

In[ ]:= dgap = D[gap, V];

and write it as a ratio of polynomials

In[ ]:= {num, den} = With[{rpoly = Factor[dgap]}, {Numerator[rpoly], Denominator[rpoly]} // Simplify];

Now the denominator is always positive

In[ ]:= den > 0 // FullSimplify

Out[ ]= True

We will show that the numerator is positive by showing that it is a polynomial with only positive 

coefficients. Here are the coefficients on the monomials Vi for i=0,1,...

In[ ]:= coefs = CoefficientList[num, V] // Simplify;

And all the coefficients  are positive

In[ ]:= Map[FullSimplify[# ≥ 0] &, coefs]

Out[ ]= {True, True, True, True, True, True}

Figure 1: Mathematica notebook in support of Theorem 5.

coefficients αi ě 0, as can be verified using computer algebra software (we used Mathematica’s
FullSimplify—see Figure 1). This implies that BΓ{BV ě 0, for all G P R, V ą 0, and
g P r´1, 1s, and so Γ ď limVÑ8 Γ “ 0.

We are ourselves a bit disgruntled about the opacity of the above proof. On the one hand, it is
just a tedious verification of an analytic statement about a function of three scalar variables, and one
might expect that tighter statements require more sophisticated techniques (c.f. Kotłowski, 2017,
Appendix F). It is quite plausible that positivity may be established in a somewhat more streamlined
fashion using Sum-of-Squares techniques. Yet on the other hand, we were hoping to gain, from the
proof, a deeper insight into the design of potential functions. Unfortunately this did not materialize.
In particular, we still do not know how to address the multi-dimensional case of our Section 3.2 with
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a similar potential. Controlling the intuitive upgrade of (7) where the exponential is replaced by

exp

ˆ
sup
u

puᵀGq2
2puᵀV u` L‖u‖ ¨ |uᵀG|q ´

1

2
ln detV

˙

is impossible, as witnessed by numerical counterexamples returned by random search, already in
dimension 2.

We need one more result before we prove Theorem 5:

Lemma 19 Let G, s P R and V, h ě 0. Then, the function

g ÞÑ 1a
V ` g2 exp

˜
g2 ` 2s`G2

2V ` 2g2 ` 2h
a
g2 ` 2s`G2

¸
,

is non-increasing on tg ě 0 | g2 ` 2s`G2 ě 0u.
Proof It suffices to show that the function

Ξpgq :“ g2 ` 2s`G2

2V ` 2g2 ` 2h
a
g2 ` 2s`G2

´ 1

2
ln
`
V ` g2˘ ,

is non-increasing on tg ě 0 | g2 ` 2s`G2 ě 0u. Evaluating the derivative of Ξ, we find that

dΞ

dg
pgq “ ´gN ¨

`
2h2N ` 2V N ` 2g2N ` 3g2h` 3hV

˘

2 pg2 ` V q phN ` g2 ` V q2 , (21)

where N :“a
g2 `G2 ` 2s. The derivative in (21) is non-positive for all V, h ě 0 and g ě 0 such

that g2 ` 2s`G2 ě 0.

Proof of Theorem 5. We will proceed by induction. By the fact that }G0} “ 0 and the definition of
the potential in (7), we have Φ0 “ h1. Now let t ě 0, h1 ą 0, and pSt, Vt, ht,Gtq P R ˆ Rě0 ˆ
Rą0 ˆ Rd. We will show that Φt`1 ´ Φt ď 0. First, note that for any ht`1 ě ht, we have

St ` h21?
Vt
¨ exp

ˆ }Gt}2
2Vt ` 2ht`1}Gt}

˙
ď Φt “ St ` h21?

Vt
¨ exp

ˆ }Gt}2
2Vt ` 2ht}Gt}

˙
.

Thus, for any gt`1 P Rd such that }gt`1} ď ht`1, and pS, V, h,G, gq :“ pSt, Vt, ht`1,Gt, gt`1q,

Φt`1 ´ Φt ď h21a
V ` }g}2 ¨ exp

ˆ }g `G}2
2V ` 2}g}2 ` 2h}g `G}

˙

´
ˆ

1` xg,Gy ¨ p2h}G} ` 2V q
2ph}G} ` V q2

˙
¨ h

2
1?
V
¨ exp

ˆ }G}2
2V ` 2h}G}

˙
. (22)

Let g‹ be the vector g P Bh which maximizes the RHS of (22), where Bh is the ball in Rd of radius h.
Suppose that G ‰ 0, and letH :“ tg P Rd | xg,Gy “ xg‹,Gyu. Note that within the hyperplaneH,
only the first term on the RHS of (22) varies. Since g‹ is the maximizer of the RHS of (22) within Bh,
instantiating Lemma 19 with s :“ xg‹,Gy and G :“ }G}, implies that g‹ P argmint}g} | g P Hu.

18



LIPSCHITZ-COMPARATOR-NORM-ADAPTIVITY

Adding this to the fact thatH is a hyperplane orthogonal to G implies that g‹ and G must be aligned,
i.e. there exists a c‹ P R such that g‹ “ c‹G{}G}. Therefore, we have }g‹ `G} “ |g‹ `G|, where

g‹ :“
"
c‹, if G ą 0;
}g‹}, otherwise.

Further, note that |g‹| ď h. Thus, the RHS of (22) is bounded from above by

∆ :“ h21a
V ` g2‹

¨ exp

ˆ pg‹ `Gq2
2V ` 2g2‹ ` 2h|g‹ `G|

˙

´
ˆ

1` g‹G ¨ p2V ` 2h|G|q
2pV ` h|G|q2

˙
¨ h

2
1?
V
¨ exp

ˆ
G2

2V ` 2h|G|
˙
. (23)

Note that ∆ in (23) can be written in terms of the function Θ in Lemma 18 as:

∆ “ h21?
V
¨ exp

ˆ
G2

2V ` 2hG

˙
¨Θ

ˆ
G

h
,
V

h2
,
g‹
h

˙
.

Since pG{h, V {h2, g‹{hq P Rˆ Rą0 ˆ r´1, 1s, Lemma 18 implies that ΘpG{h, V {h2, g‹{hq ď 0,
and so due to (23), we also have ∆ ď 0. Since ∆ is an upper-bound on the RHS of (22), it follows
that Φt`1 ´ Φt ď 0 as desired.

Appendix B. Proofs of Section 3.1

B.1. Proof of Theorem 6

The proof of Theorem 6 follows from the next theorem by setting ε “ 1. Theorem 20 essentially
gives the regret bound of FREEGRAD if its outputs p pwtq are scaled by a constant ε ą 0. This will be
useful to us later.

Theorem 20 Let ε ą 0, and put :“ pwt{ε, for p pwtq as in (9). Then, under Assumptions 1 and 2:

Tÿ

t“1
xgt, put ´wy ď

«
2}w}

d
VT ln`

ˆ
2ε}w}VT

h21

˙ff
_
„
4hT }w} ln

ˆ
4hT ε}w}

?
VT

h21

˙
` h1

ε
,

for all w PW “ Rd, T ě 1.

Proof Since the assumptions of Theorem 5 are satisfied, we have

ΦT “
Tÿ

t“1
pwᵀ
t gt `

h21?
VT
¨ exp

ˆ }GT }2
2VT ` 2hT }GT }

˙
ď Φ0 “ h1, (24)

Dividing both sides of (24) by ε ą 0 and rearranging yields

Tÿ

t“1
puᵀ
t gt ď

h1
ε
´ΘT pGT q, where ΘT pGq :“ h21

ε
?
VT
¨ exp

ˆ }G}2
2VT ` 2hT }G}

˙
,G P Rd,
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By duality, we further have that

Tÿ

t“1
puᵀ
t gt ď

h1
ε
`wᵀGT `Θ‹T p´wq, for all w P Rd. (25)

Since ΘT pGq “ ΨT pGq{ε, for all G P Rd, where ΨT is the function defined in (10), we have by
the properties of the Fenchel dual (Hiriart-Urruty and Lemaréchal, 2004, Prop. 1.3.1) that

Θ‹T pwq “ Ψ‹T pεwq{ε, for all w P Rd. (26)

We now bound Ψ‹T p´wq from above, for w P Rd. For this, note that ΨT pGq “ ψT p}G}{hT q, for
G P Rd, where

ψT pxq :“ h21?
VT
¨ exp

ˆ
x2

2VT {h2T ` 2|x|
˙
.

Thus, according to (McMahan and Orabona, 2014, Lemma 3) and the properties of duality (Hiriart-
Urruty and Lemaréchal, 2004, Prop. E.1.3.1), we have

Ψ‹T p´wq “ ψ‹T phT }w}q. (27)

On the other hand, (Cutkosky and Orabona, 2018, Lemma 18, 19) and (Orabona and Pál, 2016a,
Lemma 18) provides the following upper-bound on ψ‹T puq, u P R, using the Lambert function W
(where W pxq is defined as the principal solution to W pxqeW pxq “ x):

ψ‹T puq ď ΛT puq _
ˆ

4u ¨ ln
ˆ

4u
?
VT

h21

˙˙
, (28)

where ΛT pyq :“ y

c
2VT
hT

¨
´`
W

`
c2T y

2
˘˘1{2 ´ `

W
`
c2T y

2
˘˘´1{2¯

, y P R,

and cT :“ ?2VT {phTh21q. Using the fact that the Lambert function satisfies pW pxqq1{2´pW pxqq´1{2 ďa
ln` x, for all x ě 0 (see Lemma 22), together with (28) and (27) implies that

Ψ‹T p´wq ď
«

2}w}
d
VT ln`

ˆ
2}w}VT
h21

˙ff
_
„
4hT }w} ln

ˆ
4hT }w}

?
VT

h21

˙
,

for all w P Rd. Combining this with (25) and (26) leads to the desired regret bound.

Proof of Theorem 6. Invoke Theorem 20 with ε “ 1.

B.2. Proof of Theorem 7

Proof Fix w P Rd and let k ě 1 be the total number of epochs. We denote by τi ě 1 the start index
of epoch i P rks. Further, for τ, τ 1 P N, we define τ̃ :“ τ ´ 1 and Vτ :τ 1 :“ h2τ `

řτ̃ 1
s“τ }gs}2 (note

20



LIPSCHITZ-COMPARATOR-NORM-ADAPTIVITY

how the upper index is exclusive). Recall that at epoch i P rks, the restart condition in Algorithm 1 is
triggered at t “ τi`1 ą τi only if

ht
hτi

ą
t´1ÿ

s“1

}gs}
hs

` 2 ě
tÿ

s“1

}gs}
hs

, (29)

where the last inequality follows by Assumption 1. We note that (29) also implies that

hτi`1 ą 2hτi , for all i P rks. (30)

On the other hand, within epoch i P rks, ht
hτi
ď řt´1

s“1
}gs}
hs
` 2, for all τi ď t ď τ̃i`1, and thus

hτ̃i`1

hτi
ď

a
Vτi:τi`1

hτi
ď

gffe
τ̃i`1ÿ

t“τi

˜
t´1ÿ

s“1

}gs}
hs

` 2

¸2

ď
c
bT
2
, (31)

where bT :“ 2
řT
t“1p

řt´1
s“1 }gs}{hs ` 2q2. Therefore, by the regret bound of Theorem 6 and (31):

τ̃i`1ÿ

s“τi
xgs, pws ´wy ď 2}w}

b
Vτi:τi`1 ln` p}w}bT q ` p4}w} lnp2}w}bT q ` 1qhτi`1 , i P rks. (32)

Summing this inequality over i “ 1, . . . , k ´ 2, we get:

τ̃k´1ÿ

s“1
xgs, pws ´wy ď 2}w}

k´2ÿ

i“1

b
Vτi:τi`1 ln` p}w}bT q `

k´2ÿ

i“1
p4}w} lnp2}w}bT q ` 1qhτi`1 . (33)

Now using (29) at t “ τi`2, we have for all i P rks,

Vτi:τi`1 ď h2τi `
τ̃i`1ÿ

s“1

}gs}2
h2τi`1

¨ h2τi`1
ď h2τi `

τ̃i`2ÿ

s“1

}gs}2
h2s

¨ h2τi`1
,

p˚qď h2τi `
τ̃i`2ÿ

s“1

}gs}
hs

¨ h2τi`1
,

(29)ď h2τi ` hτi`1hτi`2 ď 2h2τi`2
, (34)

where the inequality p˚q follows by Assumption 1. Now by (30), we also have

k´2ÿ

i“1
hτi`1 ď

˜
kÿ

i“1

1

2i

¸
hτk ď hτk . (35)

Thus, substituting (35) and (34) into (33), and using the fact that hτk ď hT , we get:

τ̃k´1ÿ

s“1
xgs, pws ´wy ď 4}w}hT

a
2 ln` p}w}bT q ` hT ¨ p4}w} lnp2}w}bT q ` 1q,

ď hT ¨ p8}w} ln`p2}w}bT q ` 2}w} ` 1q, (36)
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where in the last inequality, we used the fact that
?

2x ď x` 1{2, for all x ě 0. Now, summing (32)
over the last two epochs, yields

Tÿ

s“τk´1

xgs, pws ´wy ď 2}w}a2VT ln` p}w}bT q ` 2hT ¨ p4}w} ln`p2}w}bT q ` 1q. (37)

Adding (36) and (37) together leads to

Tÿ

s“1
xgs, pws ´wy ď 2}w}a2VT ln` p}w}bT q ` p16}w} ln`p2}w}bT q ` 2}w} ` 3qhT .

This concludes the proof.

Appendix C. Proofs for Section 3.2

In this section we work on a version of the potential function that does not have the tuning for
Section 3.2 substituted in yet, so that we can prove the result necessary for Section 5 in one go. The
potential is parameterized by a prior variance σ2 ą 0, initial wealth ε ą 0 and, as before prod factor
γ ą 1. It is defined by

ΨpG,V , hq :“
ε exp

´
infλě0

!
1
2Gᵀ `σ´2I ` γV ` λI˘´1 G` λρpγq2

2h2

)¯

a
det pI ` σ2γV q , (38)

C.1. Proof of Lemma 9

We prove the claim in Lemma 9 for the more general potential (38). Let λ‹ ě 0 be the minimizer
in the problem ΨpGt´1,Vt´1, htq. With that notation, we see that pwt “ ´ΨpGt´1,Vt´1, htq ¨`
σ´2I ` γV ` λ‹I

˘´1
Gt´1. To prove the lemma, it suffices to prove the stronger statement

obtained by picking the sub-optimal choice λ “ λ‹ for the problem ΨpGt,Vt, htq, and dividing by
ΨpGt´1,Vt´1, htq ą 0, i.e.

´ gt ¨
`
σ´2I ` γVt´1 ` λ‹I

˘´1
Gt´1

ď 1´
exp

´
1
2Gᵀ

t

`
σ´2I ` γVt ` λ‹I

˘´1
Gt ` λ‹ρpγq2

2h2t
´ 1

2 ln det
`
I ` σ2γVt

˘¯

exp
´
1
2Gᵀ

t´1 pσ´2I ` γVt´1 ` λ‹Iq´1 Gt´1 ` λ‹ρpγq2
2h2t

´ 1
2 ln det pI ` σ2γVt´1q

¯ .

Let us abbreviate Σ´1 “ σ´2I ` γVt´1 ` λ‹I . The matrix determinant lemma and monotonicity
of matrix inverse give

ln
det

`
I ` σ2γVt

˘

det pI ` σ2γVt´1q “ ln
´

1` γgᵀ
t

`
σ´2I ` γVt´1

˘´1
gt

¯
ě ln p1` γgᵀ

t Σgtq .

Then Sherman-Morrison gives

Gᵀ
t

`
σ´2I ` γVt ` λ‹I

˘´1
Gt “ Gᵀ

tΣGt ´ γ pg
ᵀ
t ΣGtq2

1` γgᵀ
t Σgt
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and splitting off the last round Gt “ Gt´1 ` gt gives

Gᵀ
t

`
σ´2I ` γVt ` λ‹I

˘´1
Gt “ Gᵀ

t´1ΣGt´1 ` 2Gᵀ
t´1Σgt ` gᵀ

t Σgt ´ γpgᵀ
t ΣGt´1q2

1` γgᵀ
t Σgt

.

All in all, it suffices to show

´gᵀ
t ΣGt´1 ď 1´ exp

˜
2Gᵀ

t´1Σgt ` gᵀ
t Σgt ´ γpgᵀ

t ΣGt´1q2
2p1` γgᵀ

t Σgtq ´ 1

2
ln p1` γgᵀ

t Σgtq
¸
.

Introducing scalars r “ gᵀ
t ΣGt´1 and z “ gᵀ

t Σgt, this simplifies to

´r ď 1´ exp

ˆ
2r ` z ´ γr2

2p1` γzq ´ 1

2
ln p1` γzq

˙

Being a square, z ě 0 is positive. In addition, optimality of λ‹ ensures that ‖ΣGt´1‖ “ ρpγq
ht

; this
follows from the fact that d

dλ Gᵀ
t´1pσ´2I ` γV ` λIq´1Gt´1

ˇ̌
λ“λ‹ “ }ΣGt´1}2. In combination

with ‖gt‖ ď ht, we find |r| ď ρpγq ď 1. The above requirement may hence be further reorganized to

2r ´ γr2 ď ´ z ` p1` γzq pln p1` γzq ` 2 lnp1` rqq .
The convex right hand side is minimized subject to z ě 0 at

z “ max

#
0,
e

1
γ
´1´2 lnp1`rq ´ 1

γ

+

so it remains to show

2r ´ γr2 ď
#

1
γ ´ p1` rq´2e

1
γ
´1
, if 1

γ ´ 1 ě 2 lnp1` rq;
2 lnp1` rq, otherwise.

The function ρ in (12) is designed to satisfy the hardest case, where r “ ´ρpγq, with equality.

C.2. Proof of Theorem 10

We restate the claim for the potential (38) before tuning:

Theorem 21 (Theorem 10 rephrased) Let Σ´1T :“ σ´2I ` γVT . For p pwtq as in (14), we have

Tÿ

t“1
x pwt ´w, gty ď ε`

gffeQw
T ln`

˜
det

`
σ2Σ´1T

˘

ε2
Qw
T

¸
, for all w P Rd, where

Qw
T :“ max

#
wᵀΣ´1T w,

1

2

˜
h2T ‖w‖2
ρpγq2 ln

˜
det

`
σ2Σ´1T

˘

ε2
h2T ‖w‖2
ρpγq2

¸
`wᵀΣ´1T w

¸+
.
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Using that ΨpG,V , hq is decreasing in h, we can telescope to obtain

Tÿ

t“1
gᵀ
t pwt ď Ψp0,0, h1q ´ΨpGT ,VT , hT q

Using the definition reveals Ψp0,0, h1q “ ε, yielding

Tÿ

t“1
gᵀ
t pwt ď ε´

ε exp
´

infλě0 1
2Gᵀ

T

`
Σ´1T ` λI˘´1 GT ` λρpγq2

2h2T

¯

b
det

`
σ2Σ´1T

˘ . (39)

To transform this into a regret bound, it remains to compute the convex conjugate of the RHS of (39)
in GT . To this end, let

fpGq “ exp

ˆ
inf
λě0

1

2
Gᵀ pQ` λIq´1 G` λZ

2

˙
.

The Fenchel dual of this function is

f‹puq “ sup
G

wᵀG´ exp

ˆ
inf
λě0

1

2
Gᵀ pQ` λIq´1 G` λZ

2

˙

“ sup
G,λě0

wᵀG´ exp

ˆ
1

2
Gᵀ pQ` λIq´1 G` λZ

2

˙

“ sup
α,λě0

αwᵀ pQ` λIqw ´ exp

ˆ
α2

2
wᵀ pQ` λIqw ` λZ

2

˙

“ sup
λě0

a
wᵀ pQ` λIqwX

´
wᵀ pQ` λIqwe´λZ

¯
,

where the model complexity is measured for θ ě 0 through the function Xpθq :“ supα α ´
e
α2

2
´ 1

2
ln θ. One can write Xpθq “ W pθq1{2 ´ W pθq´1{2 in terms of the Lambert function W

(where W pxq is defined as the principal solution to W pxqeW pxq “ x). We will further use that Xpθq
is increasing, and that it satisfies Xpθq ď a

ln` θ (see Lemma 22). Zero derivative of the above
objective for λ occurs at the pleasantly explicit

λ “ ln ‖w‖2
Z

2Z
´ wᵀQw

2‖w‖2
,

and hence the optimum for λ is either at that point or at zero, whichever is higher, with the crossover
point at ‖w‖2

Z ln ‖w‖2
Z “ wᵀQw. Plugging that in, we find that

f‹pwq “

$
’’&
’’%

b
1
2 pC `wᵀQwqX

¨
˝1

2 pC `wᵀQwq e´
ln

‖w‖2
Z
2

`ZwᵀQw

2‖w‖2

˛
‚, if C ě wᵀQw;

?
wᵀQwXpwᵀQwq, otherwise,

where C :“ ‖w‖2
Z ln ‖w‖2

Z . Using that Xpθq is increasing, we may drop the exponential in its
argument in the first case, and obtain

f‹pwq ď a
Qw
T XpQw

T q where Qw
T :“ max

#
wᵀQw,

1

2

˜
‖w‖2
Z

ln
‖w‖2
Z

`wᵀQw

¸+
.
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Note that this is a curious maximum between wᵀQw (the larger for modest w), and the average
between that very same term and another quantity that grows super-linearly with ‖w‖2 (so this is the
winner for extreme w).

Okay, now let’s collect everything for the final result and undo the abbreviations. We have

Tÿ

t“1
gᵀ
t pwt ď ε` inf

w
wᵀGT ` εb

det
`
σ2Σ´1T

˘f‹
¨
˝´

b
det

`
σ2Σ´1T

˘

ε
w

˛
‚,

ď ε` inf
w

wᵀGT `
a
Qw
T X

˜
det

`
σ2Σ´1T

˘

ε2
Qw
T

¸
,

where

Qw
T :“ max

#
wᵀΣ´1T w,

1

2

˜
h2T ‖w‖2
ρpγq2 ln

˜
det

`
σ2Σ´1T

˘

ε2
h2T ‖w‖2
ρpγq2

¸
`wᵀΣ´1T w

¸+
.

To complete the proof of Theorem 21, it remains to prove the following result.

Lemma 22 For θ ě 0, define Xpθq :“ supα α ´ e
α2

2
´ 1

2
ln θ. Then Xpθq “ pW pθqq1{2 ´

pW pθqq´1{2 “ ?ln θ ` op1q.
Proof The fact that Xpθq “ pW pθqq1{2 ´ pW pθqq´1{2 follows from (Orabona and Pál, 2016a,
Lemma 18). Recall that

sup
x

yx´ ex “ y ln y ´ y
Hence

Xpθq “ sup
α

α´ eα
2

2
´ 1

2
ln θ

“ sup
α

inf
η
α´ η

ˆ
α2

2
´ 1

2
ln θ

˙
` η ln η ´ η

“ inf
η

1

2η
` η

2
ln θ ` η ln η ´ η

ď min

#?
ln θ ´ 1` 1

2 ln ln θ?
ln θ

,

?
θ

2
´ 1?

θ

+

ď a
ln` θ

where we plugged in the sub-optimal choices η “ 1?
ln θ

(this requires θ ě 1) and η “ 1?
θ

. When we

stick in η “ 1?
lnpee´2`θq we find

Xpθq ď
lnpee´2 ` θq ` ln θ ´ ln

´
lnpee´2 ` θq

¯
´ 2

2
a

lnpee´2 ` θq ď
b

lnpee´2 ` θq

Note that ee
´2 “ 1.14492. This is less than 2, the value of θ where

?
θ{2´ 1{?θ becomes positive.
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Appendix D. Proofs for Section 4

D.1. Proof of Lemma 13

Let c, b, β ě 0, ν ě 1, α Ps1, 2s, and γ Ps ´ 1,´α´1r. We consider the 1-dimensional case (i.e.
d “ 1) and set gt “ tγ , for all t ě 1. Since ´1 ă γ ă ´1{α, we have Lt “ L1 “ 1, for all t ě 1,
and so the sequence paVα,t lnptq{Lαt q is increasing. Further, there exists p, q ą 0 such that,

@t ě 1, p
?

ln t ď
b
Vα,t lnptq{Lαt “

gffeln t
tÿ

s“1
sαγ ď q

?
ln t. (40)

Thus, given any sequence p pwtq P R satisfying

| pwt| ď b
b
Vα,t lnptq{Lαt , t ě 1,

we have, for T ě 1 and w “ ´2b
a
Vα,T lnpT q{LαT ,

Tÿ

t“1
gt ¨ p pwt ´ wq ě b

b
Vα,T lnpT q{LαT ¨

Tÿ

t“1
gt,

(40)ě bp
?

lnT ¨
Tÿ

t“1
tγ ,

ě bp
?

lnT

γ ` 1
¨ ppT ` 1qγ`1 ´ 1q. (41)

Now by the choice of w and (40), we have |w| ď 2bq
?

lnT , and so by (41),

Tÿ

t“1
gt ¨ p pwt ´ wq ě LT |w|ν ¨ p ¨ ppT ` 1qγ`1 ´ 1q

pγ ` 1qp2qqνbν´1plnT qν{2´1{2 . (42)

Using again the fact that |w| ď 2bq
?

lnT and (40), we have L1´α{2
T p|w| ` 1qaVα,T lnT ď

2bq2 lnT ` q?lnT , and so due to (41), we have

Tÿ

t“1
gt ¨ p pwt ´ wq ě L

1´α{2
T p|w| ` 1q

a
VT lnT ¨ pT ` 1qγ`1 ´ 1

pγ ` 1q
´
2q2

p

?
lnT ` q

bp

¯ . (43)

Since γ ą ´1, the exists T ě 1 such that

2c ¨ lnp1` |w|T qβ ď min

¨
˝ pT ` 1qγ`1 ´ 1

pγ ` 1q
´
2q2

p

?
lnT ` q

bp

¯ , p ¨ ppT ` 1qγ`1 ´ 1q
pγ ` 1qp2qqνbν´1plnT qν{2´1{2

˛
‚,

and so for such a choice of T , (42) and (43) imply the desired result.
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D.2. Proof of Theorem 15

We need the following lemma in the proof of Theorem 15:

Lemma 23 For all b, c, β ě 0 and ν P r1, 3r, there exists pgtq P Rd, T ě 1, and w P Rd, such that
for any sequence p pwtq satisfying } pwt} ď b ¨ ?t ln t, for all t ě 1, we have

Tÿ

t“1
x pwt ´w, gty ě c ¨ lnp1` }w}T qβ ¨ pLT }w}ν ` LT p}w} ` 1q?T lnT q.

Proof Let c, b, β,ě 0, ν P r1, 3r, and α Ps1, 2s. We consider the 1-dimensional case (i.e. d “ 1) and
set gt “ 1, for all t ě 1. In this case, we have Lt “ 1, for all t ě 1. Given any sequence p pwtq P R
satisfying

| pwt| ď b
?
t ln t, t ě 1, (44)

we have, for T ě 1 and w “ ´2b
?
T lnT ,

Tÿ

t“1
gt ¨ p pwt ´ wq

(44)ě b
?
T lnT ¨

Tÿ

t“1
gt,

“ b
?
T lnT ¨ T. (45)

Now since |w| “ 2b
?
T lnT , we have, by (45),

Tÿ

t“1
gt ¨ p pwt ´ wq ě LT |w|ν ¨ T 3{2´ν{2

2νbν´1plnT qν{2´1{2 . (46)

Using again the fact that |w| “ 2b
?
T lnT and LT “ 1, we have LT p|w|`1q?T lnT “ 2bT lnT `?

T lnT , and so due to (45),

Tÿ

t“1
gt ¨ p pwt ´ wq ě LT p|w| ` 1q?T lnT ¨ T

2
?
T lnT ` 1{b . (47)

Since ν P r1, 3r, the exists T ě 1 such that

2c ¨ lnp1` |w|T qβ ď min

˜
T

2
?
T lnT ` 1{b ,

T 3{2´ν{2

2νbν´1plnT qν{2´1{2
¸
,

and so for such a choice of T , (46) and (47) imply the desired result.

Proof of Theorem 15. By Lemma 12, the only candidate algorithms are the ones whose outputs
p pwtq satisfy } pwt} ď b

?
t ln t, for all t ě 1, for some constant b ą 0. By Lemma 23, no such

algorithms can achieve the desired regret bound.
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Appendix E. Proof of Section 5

Proof of Theorem 16. The proof is similar to that of Theorem 7 expect for some changes to account
for the fact that the modified FREERANGE wrapper scales the outputs of FREEGRAD.

First, let us review some notation. Let k ě 1 be the total number of epochs and denote by
τi ě 1 the start index of epoch i P rks. Further, for τ, τ 1 P N, we define τ̃ :“ τ ´ 1, Vτ :τ 1 :“
|xτ |2 `řτ̃ 1

s“τ |gs|2, and Bτ :“ řτ
s“1 |xs|{hs. In what follows, let w P R be fixed.

Let pputq be the outputs of algorithm 2 and i P rks. In this case, we have put “ pwt{phτiBτiq, for
all t P tτi, . . . , τ̃i`1u, and by Theorem 20, with d “ 1, ε “ hτiBτi , and gt P xt ¨ Bp0,1q`pyt, xtputq:

τ̃i`1ÿ

t“τi
gt ¨ pput ´ wq ď 2|w|

d
Vτi:τi`1 ln`

ˆ
2hτiBτi |w|Vτi:τi`1

h2τi

˙

` 4hτi`1 |w| ln
˜

4hτ̃i`1hτiBτi |w|
a
Vτi:τi`1

h2τi

¸
` hτi
hτiBτi

,

ď 2|w|
d
Vτi:τi`1 ln`

ˆ
2Bτi |w|Vτi:τi`1

hτi

˙

` 4hτi`1 |w| ln
˜

4hτ̃i`1Bτi |w|
a
Vτi:τi`1

hτi

¸
` 1

Bτi
, (48)

Recall that at epoch i P rks, the restart condition in Algorithm 2 is triggered at t “ τi`1 ě τi only if

ht
hτi

p˚qą
t´1ÿ

s“1

|xs|
hs

` 1 “
tÿ

s“1

|xs|
hs

, (49)

where the equality follows by the fact that when p˚q is satisfied for the first time, it must hold that
|xt| “ ht (recall that the hints phtq satisfy (17)); in fact, we have,

hτi “ |xτi |, for all i P rks. (50)

From (49), we get that

hτ̃i`1

hτi
ď

a
Vτi:τi`1

hτi
ď

gffe
τ̃i`1ÿ

t“τi

˜
tÿ

s“1

|xs|
hs

¸2

ď
c
bT
2
, (51)

where bT :“ 2
řT
t“1p

řt
s“1 |xs|{hsq2. Plugging (51) into (48), and letting cT :“ B2

T bT , we get:

τ̃i`1ÿ

t“τi
gt ¨ pput ´ wq ď 2|w|

b
Vτi:τi`1 ln`p|w|

a
2VT cT q

` 4hτi`1 |w| ln
´

2|w|
a

2VT cT

¯
` 1

Bτi
, (52)
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Summing this inequality over i “ 1, . . . , k ´ 2, we get:

τ̃k´1ÿ

t“1
gt ¨ pput ´ wq ď 2|w|

gffek
k´2ÿ

i“1
Vτi:τi`1 ln`

´
|w|

a
2VT cT

¯

`
k´2ÿ

i“1
4hτi`1 |w| ln

´
2|w|

a
2VT cT

¯
`
k´2ÿ

i“1

1

Bτi
, ,

ď 2|w|
gffek ¨

˜
τk´1ÿ

s“1
|xs|2 `

k´2ÿ

i“1
h2τi

¸
ln`

´
|w|

a
2VT cT

¯

`
k´2ÿ

i“1
4hτi`1 |w| ln

´
2|w|

a
2VT cT

¯
`
k´2ÿ

i“1

1

Bτi
,

(50)ď 2|w|
gffe2k

τk´1ÿ

s“1
|xs|2 ln`

´
|w|

a
2VT cT

¯

`
k´2ÿ

i“1
4hτi`1 |w| ln

´
2|w|

a
2VT cT

¯
`
k´2ÿ

i“1

1

Bτi
. (53)

Using (49) again, we get that

τk´1ÿ

s“1
|xs|2 “

τk´1ÿ

s“1

|xs|2
h2τk´1

¨ h2τk´1
ď

τkÿ

s“1

|xs|2
h2s

¨ h2τk´1
ď

τkÿ

s“1

|xs|
hs

¨ h2τk´1

p˚qď
˜

τkÿ

s“1

|xs|
hs

¸2

¨ h
2
τk´1

k
,

(49)ď h2τk
k
, (54)

where the inequality p˚q follows by the fact that
řτk
s“1 |xs|{hs ě k due to (50). We also have

k´2ÿ

i“1
hτi`1 ď

τk´1ÿ

s“1
|xs| “

τk´1ÿ

s“1

|xs|
hτk´1

¨ hτk´1
ď

τkÿ

s“1

|xs|
hs

¨ hτk´1

(49)ď hτk . (55)

k´2ÿ

i“1

1

Bτi

(50)“
k´2ÿ

i“1

|xτi |
hτi

Bτi
“

k´2ÿ

i“1

|xτi |
hτiřτi

s“1
|xs|
hs

ď
τk´2ÿ

t“1

|xt|
htřt

s“1
|xs|
hs

ď lnBT . (56)

Thus, substituting (56), (55), and (54) into (53), and using the fact that hτk ď hT , we get:

τ̃k´1ÿ

t“1
gt ¨ pput ´ wq ď 2|w|hT

b
2 ln`p|w|

a
2VT cT q

` 4hT |w| ln
´

2|w|
a

2VT cT

¯
` lnBT ,

ď hT |w| ¨ p6 ln`p2|w|
a

2VT cT q ` 1q ` lnBT , (57)
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where in the last inequality, we used the fact that
?

2x ď x` 1{2, for all x ě 0. Now, summing (52)
over the last two epochs, yields

Tÿ

t“τk´1

gt ¨ pput ´ wq ď 2|w|
b

2VT ln`p|w|
a

2VT cT q ` 8hT |w| lnp2|w|
a

2VT cT q ` 2. (58)

Adding (57) and (58) together implies the desired result.
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Chapter 5

PAC-Bayes Unexpected Bernstein
Inequality

We now switch to the statistical learning setting and consider a notion of adaptivity
through data-dependent bounds. While it is not completely clear whether existing
generalization bounds can ever explain the often-witnessed (good) generalization
performance of deep NNs [Nagarajan and Kolter, 2019], some recently proposed
ideas seem promising. One of them involves deriving data-dependent PAC-Bayesian
bounds that can automatically adapt to the easiness of the problem at hand, leading
to non-vacuous bounds in many cases. In this chapter, we derive a data-dependent
bound whose main term is reminiscent of the empirical loss variance, but unlike the
latter, it converges to zero when the number of samples increases. This can lead
to a much tighter generalization bound compared with the state-of-the-art as we
show. The key tools used to derive our bound (which are of independent interest)
are I) a new concentration inequality reminiscent of the empirical Bernstein inequal-
ity [Maurer and Pontil, 2009], and II) the idea of splitting the dataset in two and
learning an informed prior from each half before combining them to produce the final
bound.
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Abstract

We present a new PAC-Bayesian generalization bound. Standard bounds contain a√
Ln ⋅ KL/n complexity term which dominates unless Ln, the empirical error of

the learning algorithm’s randomized predictions, vanishes. We manage to replace
Ln by a term which vanishes in many more situations, essentially whenever the
employed learning algorithm is sufficiently stable on the dataset at hand. Our new
bound consistently beats state-of-the-art bounds both on a toy example and on
UCI datasets (with large enough n). Theoretically, unlike existing bounds, our
new bound can be expected to converge to 0 faster whenever a Bernstein/Tsybakov
condition holds, thus connecting PAC-Bayesian generalization and excess risk
bounds—for the latter it has long been known that faster convergence can be
obtained under Bernstein conditions. Our main technical tool is a new concentration
inequality which is like Bernstein’s but with X2 taken outside its expectation.

1 Introduction

PAC-Bayesian generalization bounds [1, 8, 9, 17, 18, 20, 28, 29, 30] have recently obtained renewed
interest within the context of deep neural networks [14, 34, 42]. In particular, Zhou et al. [42] and
Dziugaite and Roy [14] showed that, by extending an idea due to Langford and Caruana [23], one
can obtain nontrivial (but still not very strong) generalization bounds on real-world datasets such as
MNIST and ImageNet. Since using alternative methods, nontrivial generalization bounds are even
harder to get, there remains a strong interest in improved PAC-Bayesian bounds. In this paper, we
provide a considerably improved bound whenever the employed learning algorithm is sufficiently
stable on the given data.

Most standard bounds have an order
√
Ln ⋅ COMPn/n term on the right, where COMPn represents

model complexity in the form of a Kullback-Leibler divergence between a prior and a posterior,
and Ln is the posterior expected loss on the training sample. The latter only vanishes if there is a
sufficiently large neighborhood around the “center” of the posterior at which the training error is 0.
In the two papers [14, 42] mentioned above, this is not the case. For example, the various deep net
experiments reported by Dziugaite et al. [14, Table 1] with n = 150000 all have Ln around 0.03, so
that

√
COMPn/n is multiplied by a non-negligible

√
0.03 ≈ 0.17. Furthermore, they have COMPn

increasing substantially with n, making
√
Ln ⋅ COMPn/n converge to 0 at rate slower than 1/√n.

In this paper, we provide a bound (Theorem 3) with Ln replaced by a second-order term Vn—a term
which will go to 0 in many cases in which Ln does not. This can be viewed as an extension of an
earlier second-order approach by Tolstikhin and Seldin [39] (TS from now on); they also replace Ln,
but by a term that, while usually smaller than Ln, will tend to be larger than our Vn. Specifically, as
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they write, in classification settings (our primary interest), their replacement is not much smaller than
Ln itself. Instead our Vn can be very close to 0 in classification even when Ln is large. While the TS
bound is based on an “empirical” Bernstein inequality due to [27]1, our bound is based on a different
modification of Bernstein’s moment inequality in which the occurrence of X2 is taken outside of its
expectation (see Lemma 13). We note that an empirical Bernstein inequality was introduced in [4,
Theorem 1], and the name “Empirical Bernstein” was coined in [32].

The term Vn in our bound goes to 0—and our bound improves on existing bounds—whenever the
employed learning algorithm is relatively stable on the given data; for example, if the predictor
learned on an initial segment (say, 50%) of the dataset performs similarly (i.e. assigns similar losses
to the same samples) to the predictor based on the full data. This improvement is reflected in our
experiments where, except for very small sample sizes, we consistently outperform existing bounds
both on a toy classification problem with label noise and on standard UCI datasets [13]. Of course,
the importance of stability for generalization has been recognized before in landmark papers such as
[7, 33, 38], and recently also in the context of PAC-Bayes bounds [35]. However, the data-dependent
stability notion “Vn” occurring in our bound seems very different from any of the notions discussed
in those papers.

Theoretically, a further contribution is that we connect our PAC-Bayesian generalization bound to
excess risk bounds; we show that (Theorem 7) our generalization bound can be of comparable size to
excess risk bounds up to an irreducible complexity-free term that is independent of model complexity.
The excess risk bound that can be attained for any given problem depends both on the complexity of
the set of predictorsH and on the inherent “easiness” of the problem. The latter is often measured in
terms of the exponent β ∈ [0,1] of the Bernstein condition that holds for the given problem [6, 15, 19],
which generalizes the exponent in the celebrated Tsybakov margin condition [5, 40]. The larger β,
the faster the excess risk converges. In Section 5, we essentially show that the rate at which the√
Vn ⋅ COMPn/n term goes to 0 can also be bounded by a quantity that gets smaller as β gets larger.

In contrast, previous PAC-Bayesian bounds do not have such a property.

Contents. In Section 2, we introduce the problem setting and provide a first, simplified version of
our main theorem. Section 3 gives our main bound. Experiments are presented in Section 4, followed
by theoretical motivation in Section 5. The proof of our main bound is provided in Section 6, where
we first present the convenient ESI language for expressing stochastic inequalities, and (our main
tool) the unexpected Bernstein lemma (Lemma 13). The paper ends with an outlook for future work.

2 Problem Setting, Background, and Simplified Version of Our Bound

Setting and Notation. Let Z1, . . . , Zn be i.i.d. random variables in some set Z , with Z1 ∼ D.
Let H be a hypothesis set and ` ∶ H × Z → [0, b], b > 0, be a bounded loss function such that
`h(Z) ∶= `(h,Z) denotes the loss that hypothesis h makes on Z. We call any such tuple (D, `,H) a
learning problem. For a given hypothesis h ∈H, we denote its risk (expected loss on a test sample
of size 1) by L(h) ∶= EZ∼D [`h(Z)] and its empirical error by Ln(h) ∶= 1

n ∑ni=1 `h(Zi). For any
distribution P onH, we write L(P ) ∶= Eh∼P [L(h)] and Ln(P ) ∶= Eh∼P [Ln(h)].
For any m ∈ [n] and any variables Z1, . . . , Zn in Z , we denote Z≤m ∶= (Z1, . . . , Zm) and Z<m ∶=
Z≤m−1, with the convention that Z≤0 = ∅. Similarly, we denote Z≥m ∶= (Zm, . . . , Zn) and Z>m ∶=
Z≥m+1, with the convention that Z≥n+1 = ∅. As is customary in PAC-Bayesian works, a learning
algorithm is a (computable) function P ∶ ⋃ni=1Zi → P(H) that, upon observing input Z≤n ∈ Zn,
outputs a “posterior” distribution P (Z≤n)(⋅) onH. The posterior could be a Gibbs or a generalized-
Bayesian posterior but also other algorithms. When no confusion can arise, we will abbreviate
P (Z≤n) to Pn, and denote P0 any “prior” distribution, i.e. a distribution on H which has to be
specified in advance, before seeing the data; we will use the convention P (∅) = P0. Finally, we
denote the Kullback-Leibler divergence between Pn and P0 by KL(Pn∥P0).

Comparing Bounds. Both existing state-of-the-art PAC-Bayes bounds and ours essentially take the
following form; there exists constants P,A,C ≥ 0, and a function εδ,n, logarithmic in 1/δ and n, such

1An alternative form of empirical Bernstein inequality appears in [41], based on an inequality due to [11].
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that for all δ ∈]0,1[, with probability at least 1 − δ over the sample Z1, . . . , Zn, it holds that,

L(Pn) −Ln(Pn) ≤ P ⋅
√

Rn ⋅ (COMPn + εδ,n)
n

+A ⋅ COMPn + εδ,n
n

+ C ⋅
√

R′
n ⋅ εδ,n
n

, (1)

where Rn,R′
n ≥ 0 are sample-dependent quantities which may differ from one bound to another.

Existing classical bounds that after slight relaxations take on this form are due to Langford and
Seeger [24, 37], Catoni [10], Maurer [26], and Tolstikhin and Seldin (TS) [39] (see the latter for a
nice overview). In all these cases, COMPn = KL(Pn∥P0), R′

n = 0, and—except for the TS bound—
Rn = Ln(Pn). For the TS bound, Rn is equal to the empirical loss variance. Our bound in Theorem 3
also fits (1) (after a relaxation), but with considerably different choices for COMPn, R′

n, and Rn.

Of special relevance in our experiments is the bound due to Maurer [26], which as noted by TS
[39] tightens the PAC-Bayes-kl inequality due to Seeger [36], and is one of the tightest known
generalization bounds in the literature. It can be stated as follows: for δ ∈]0,1[, n ≥ 8, and any
learning algorithm P , with probability at least 1 − δ,

kl(L(Pn), Ln(Pn)) ≤ KL(Pn∥P0) + ln 2
√
n
δ

n
, (2)

where kl is the binary Kullback-Leibler divergence. Applying the inequality p ≤ q +√
2q kl(p∥q) +

2 kl(p∥q) to (2) yields a bound of the form (1) (see [39] for more details). Note also that using
Pinsker’s inequality together with (2) implies McAllester’s classical PAC-Bayesian bound [28].

We now present a simplified version of our bound in Theorem 3 below as a corollary.

Corollary 1. For any 1 ≤m < n and any deterministic estimator ĥ ∶ ⋃ni=1Zi →H (such as ERM),
there exists P,A,C > 0, such that (1) holds with probability at least 1 − δ, with

COMPn = KL(Pn∥P (Z≤m)) + KL(Pn∥P (Z>m)),
R′
n ∶= V ′

n ∶= 1

n

m∑
i=1

`ĥ(Z>m)(Zi)2 + 1

n

n∑
j=m+1

`ĥ(Z≤m)(Zj)2, (3)

Rn ∶= Vn ∶= 1

n
Eh∼Pn

⎡⎢⎢⎢⎣
m∑
i=1

(`h(Zi) − `ĥ(Z>m)(Zi))2 + n∑
j=m+1

(`h(Zj) − `ĥ(Z≤m)(Zj))2⎤⎥⎥⎥⎦ . (4)

Like in TS’s and Catoni’s bound, but unlike McAllester’s and Maurer’s, our εδ,n grows as (ln lnn)/δ.
Another difference is that our complexity term is a sum of two KL divergences, in which the prior (in
this case P (Z≤m) or P (Z>m)) is “informed”—when m = n/2, it is really the posterior based on half
the sample. Our experiments confirm that this tends to be much smaller than KL(Pn∥P0). While the
idea to use part of the sample to create an informed prior is due to [2], we are the first to combine all
parts (halves) into a single bound, which requires a novel technique. This technique can be applied to
other existing bounds as well (see Section 3).

A larger difference between our bound and others is in the fact that we have Rn = Vn instead of
the typical empirical error Rn = Ln(Pn). Only TS [39] have a Rn that is somewhat reminiscent
of ours; in their case Rn = Eh∼Pn[∑ni=1 (`h(Zi) −Ln(h))2]/(n − 1) is the empirical loss variance.
The crucial difference to our Vn is that the empirical loss variance cannot be close to 0 unless a
sizeable Pn-posterior region of h has empirical error almost constant on most data instances. For
classification with 0-1 loss, this is a strong condition since the empirical loss variance is equal to
nLn(Pn)(1 − Ln(Pn))/(n − 1), which is only close to 0 if Ln(Pn) is itself close to 0 or 1. In
contrast, our Vn can go to zero 0 even if the empirical error and variance do not, as long as the
learning algorithm is sufficiently stable. This can be witnessed in our experiments in Section 4. In
Section 5, we argue more formally that under a Bernstein condition, the

√
Vn ⋅ COMPn/n term in

our bound can be much smaller than
√

COMPn/n. Note, finally, that the term Vn has a two-fold
cross-validation flavor, but in contrast to a cross-validation error, for Vn to be small, it is sufficient
that the losses are similar, not that they are small.

The price we pay for having Rn = Vn in our bound is the right-most, irreducible remainder term in
(1) of order at most b/√n. Note, however, that this term is decoupled from the complexity COMPn,
and thus it is not affected by COMPn growing with the “size” of H. The following lemma gives a
tighter bound (tighter than the b/√n just mentioned) on the irreducible term:
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Lemma 2. Suppose that the loss is bounded by 1 (i.e. b = 1) and that n is even, and let m = n/2.
For δ ∈]0,1[, R′

n as in (3), and any estimator ĥ ∶ ⋃ni=1Zi → H, we have, with probability at least
1 − δ, √

R′
n

n
≤
√

2(L(ĥ(Z>m)) +L(ĥ(Z≤m)))
n

+ 4
√

ln 4
δ

n
. (5)

Behind the proof of the lemma is an application of Hoeffding’s and the empirical Bernstein inequality
[27] (see Section C). Note that in the realizable setting, the first term on the RHS of (5) can be of order
O(1/n) with the right choice of estimator ĥ (e.g. ERM). In this case (still in the realizable setting),
our irreducible term would go to zero at the same rate as other bounds which have Rn = Ln(Pn).

3 Main Bound

We now present our main result in its most general form. Let ϑ(η) ∶= (− ln(1 − η) − η)/η2 and
cη ∶= η ⋅ ϑ(ηb), for η ∈]0,1/b[, where b > 0 is an upper-bound on the loss `.
Theorem 3. [Main Theorem] Let Z1, . . . , Zn be i.i.d. with Z1 ∼ D. Let m ∈ [0..n] and π be any
distribution with support on a finite or countable grid G ⊂]0,1/b[. For any δ ∈]0,1[, and any learning
algorithms P,Q ∶ ⋃ni=1Zi → P(H), we have,

L(Pn) ≤ Ln(Pn) + inf
η∈G

⎧⎪⎪⎨⎪⎪⎩cη ⋅ Vn +
COMPn + 2 ln 1

δ⋅π(η)
η ⋅ n

⎫⎪⎪⎬⎪⎪⎭ + inf
ν∈G

⎧⎪⎪⎨⎪⎪⎩cν ⋅ V
′
n + ln 1

δ⋅π(ν)
ν ⋅ n

⎫⎪⎪⎬⎪⎪⎭ , (6)

with probability at least 1 − δ, where COMPn, V ′
n, and Vn are the random variables defined by:

COMPn ∶= KL(Pn∥P (Z≤m)) + KL(Pn∥P (Z>m)), (7)

V ′
n ∶= 1

n

m∑
i=1

Eh∼Q(Z>i) [`h(Zi)2] + 1

n

n∑
j=m+1

Eh∼Q(Z<j) [`h(Zj)2] ,
Vn ∶= 1

n
Eh∼Pn

⎡⎢⎢⎢⎣
m∑
i=1

(`h(Zi) −Eh′∼Q(Z>i) [`h′(Zi)])2 + n∑
j=m+1

(`h(Zj) −Eh′∼Q(Z<j) [`h′(Zj)])2
⎤⎥⎥⎥⎦ .

While the result holds for all 0 ≤m ≤ n, in the remainder of this paper, we assume for simplicity that
n is even and that m = n/2. We will also be using the grid G and distribution π defined by

G ∶= { 1
2b
, . . . , 1

2Kb
∶K ∶= ⌈log2 ( 1

2

√
n

ln 1
δ

)⌉} , and π ≡ uniform distribution over G. (8)

Roughly speaking, this choice of G ensures that the infima in η and ν in (6) are attained within[minG,maxG]. Using the relaxation cη ≤ η/2 + η211b/20, for η ≤ 1/(2b), in (6) and tuning η and
ν within the grid G defined in (8) leads to a bound of the form (1). Furthermore, we see that the
expression of Vn in Corollary 1 now follows when Q is chosen such that, for 1 ≤ i ≤ m < j ≤ n,
Q(Z>i) ≡ δ(ĥ(Z>m)) and Q(Z<j) ≡ δ(ĥ(Z≤m)), for some deterministic estimator ĥ, where δ(h)(⋅)
denotes the Dirac distribution at h ∈H.

Online Estimators. It is clear that Theorem 3 is considerably more general than its Corollary
1; when predicting the j-th point Zj , j > m, in the RHS sum of Vn, we could use a posterior
Q(Z<j) ≡ δ(ĥ(Z<j)) which does not only depend on Z1, . . . , Zm, but also on part of the second
sample, namely Zm+1, . . . , Zj−1, and analogously when predicting Zi, i ≤ m, in the LHS sum of
Vn. We can thus base our bound on a sum of errors achieved by online estimators (ĥ(Z<j)) and(ĥ(Z>i)) which converge to the final ĥ(Z≤n) based on the full data. Doing this would likely improve
our bounds, but we did not try it in our experiments since it is computationally demanding.

Informed Priors. Other bounds can also be modified to make use of “informed priors” from each
half of the data; in this case, the KL(Pn∥P0) term in these bounds can be replaced by COMPn defined
in (7). As revealed by additional experiments in the Appendix H, doing this substantially improves
the corresponding bounds when the learning algorithm is sufficiently stable. Here we show how this
can be done for Maurer’s bound in (2) (the details for other bounds are postponed to Appendix A).
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Lemma 4. Let δ ∈]0,1[ and m ∈ [0..n]. In the setting of Theorem 3, we have, with probability at
least 1 − δ,

kl(L(Pn), Ln(Pn)) ≤ KL(Pn∥P (Z≤m)) + KL(Pn∥P (Z>m)) + ln
4
√
m(n−m)
δ

n
. (9)

Remark 5. (Useful for Section 5 below) Though this may deteriorate the bound in practice, Theorem 3
allows choosing a learning algorithm P such that for 1 ≤m < n, P (Z≤m) ≡ P (Z>m) ≡ P0 (i.e. no
informed priors); this results in COMPn = 2KL(Pn∥P0)—the bound is otherwise unchanged.

Biasing. The term Vn in our bound can be seen as the result of “biasing” the loss when evaluating
the generalization error on each half of the sample. The TS bound, having a second order variance
term, can be used in a way as to arrive at a bound like ours with the same Vn as in Corollary 1.
The idea here is to apply the TS bound twice (once on each half of the sample) to the biased losses
`(h, ⋅) − `(ĥ(Z≤m), ⋅) and `(h, ⋅) − `(ĥ(Z>m), ⋅), then combine the results with a union bound. The
details of this are postponed to Appendix B. Note however, that this trick will not lead to a bound
with a Vn term as in Theorem 3, i.e. with the online posteriors (Q(Z>i)) and (Q(Z<j)) which get
closer and closer to the final Q(Z≤m) based on the full sample.

4 Experiments

In this section, we experimentally compare our bound in Theorem 3 to that of TS [39], Catoni [9,
Theorem 1.2.8] (with α = 2), and Maurer in (2). For the latter, given Ln(Pn) ∈ [0,1[ and the RHS of
(2), we solve for an upper bound of L(Pn) by “inverting” the kl. We note that TS [39] do not claim
that their bound is better than Maurer’s in classification (in fact, they do better in other settings).
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Figure 1: Results for the synthetic data.

UCI d Test err. Our Maurer
Dataset of ĥ bound bound
Haberman 3 0.272 0.521 0.411
(n=244)
Breast-C. 9 0.068 0.185 0.159
(n=560)
TicTacToe 27 0.046 0.191 0.216
(n=766)
Banknote 4 0.058 0.125 0.136
(n=1098)
kr-vs-kp 73 0.044 0.108 0.165
(n=2556)
Spambase 57 0.173 0.293 0.312
(n=3680)
Mushroom 116 0.002 0.018 0.055
(n=6500)

Adult 108 0.168 0.195 0.234
(n=24130)

Table 1: Results for the UCI datasets.

Setting. We consider both synthetic and real-world datasets for binary classification, and we evaluate
bounds using the 0-1 loss. In particular, the data space Z is X ×Y ∶= Rd × {0,1}, where d ∈ N is the
dimension of the feature space. In this case, the hypothesis setH is also Rd, and the error associated
with h ∈ H on a sample Z = (X,Y ) ∈ X × Y is given by `h(Z) = ∣Y − 1{φ(h⊺X) > 1/2}∣, where
φ(w) ∶= 1/(1 + e−w),w ∈ R. We learn our hypotheses using regularized logistic regression; given a
sample S = (Zp, . . . , Zq), with (p, q) ∈ {(1,m), (m + 1, n), (1, n)} and m = n/2, we compute

ĥ(S) ∶= arg min
h∈H

λ∥h∥2

2
+ 1

q − p + 1

q∑
i=pYi ⋅ lnφ(h⊺Xi) + (1 − Yi) ⋅ ln(1 − φ(h⊺Xi)). (10)

For Z≤n ∈ Zn, and 1 ≤ i ≤m < j ≤ n, we choose algorithm Q in Theorem 3 such that

Q(Z>i) ≡ δ (ĥ(Z>m)) and Q(Z<j) ≡ δ(ĥ(Z≤m)).
5



Given a sample S ≠ ∅, we set the “posterior” P (S) to be a Gaussian centered at ĥ(S) with variance
σ2 > 0; that is, P (S) ≡ N (ĥ(S), σ2Id). The prior distribution is set to P0 ≡ N (0, σ2

0Id), for σ0 > 0.

Parameters. We set δ = 0.05. For all datasets, we use λ = 0.01, and (approximately) solve (10)
using the BFGS algorithm. For each bound, we pick the σ2 ∈ {1/2, . . . ,1/2J ∶ J ∶= ⌈log2 n⌉} which
minimizes it on the given data (with n instances). In order for the bounds to still hold with probability
at least 1− δ, we replace δ on the RHS of each bound by δ/⌈log2 n⌉ (this follows from the application
of a union bound). We choose the prior variance such that σ2

0 = 1/2 (this was the best value on
average for the bounds we compare against). We choose the grid G in Theorem 3 as in (8). Finally,
we approximate Gaussian expectations using Monte Carlo sampling.

Synthetic data. We generate synthetic data for d = {10,50} and sample sizes between 800 and 8000.
For a given sample size n, we 1) draw X1, . . . ,Xn [resp. ε1, . . . , εn] identically and independently
from the multivariate-Gaussian distribution N (0, Id) [resp. the Bernoulli distribution B(0.9)]; and
2) we set Yi = 1{φ(h⊺∗Xi) > 1/2} ⋅ εi, for i ∈ [n], where h∗ ∈ Rd is the vector constructed from the
first d digits of π. For example, if d = 10, then h∗ = (3,1,4,1,5,9,2,6,5,3)⊺. Figure 1 shows the
results averaged over 10 independent runs for each sample size.

UCI datasets. For the second experiment, we use several UCI datasets. These are listed in Table 1
(where Breast-C. stands for Breast Cancer). We encode categorical variables in appropriate 0-1
vectors. This effectively increases the dimension of the input space (this is reported as d in Table 1).
After removing any rows (i.e. instances) containing missing features and performing the encoding, the
input data is scaled such that every column has values between -1 and 1. We used a 5-fold train-test
split (n in Table 1 is the training set size), and the results in Table 1 are averages over 5 runs. We only
compare with Maurer’s bound since other bounds were worse than Maurer’s and ours on all datasets.

Discussion. As the dimension d of the input space increases, the complexity KL(Pn∥P0)—and
thus, all the PAC-Bayes bounds discussed in this paper—get larger. Our bound suffers less from this
increase in d, since for a large enough sample size n, the term Vn is small enough (see Figure 1) to
absorb any increase in the complexity. In fact, for large enough n, the irreducible (complexity-free)
term involving V ′

n in our bound becomes the dominant one. This, combined with the fact that for the
0-1 loss, V ′

n ≈ Ln(Pn) for large enough n (see Figure 1), makes our bound tighter than others.

Adding a regularization term in the objective (10) is important as it stabilizes ĥ(Z<m) and ĥ(Z≥m);
a similar effect is achieved with methods like gradient descent as they essentially have a “built-in”
regularization. For very small sample sizes, the regularization in (10) may not be enough to ensure
that ĥ(Z<m) and ĥ(Z≥m) are close to ĥ(Z≤n), in which case Vn need not be necessarily small. In
particular, this is the case for the Haberman and the breast cancer datasets where the advantage of our
bound is not fully leveraged, and Maurer’s bound is smaller.

5 Theoretical Motivation of the Bound

In this section, we study the behavior of our bound (6) under a Bernstein condition:

Definition 6. [Bernstein Condition (BC)] The learning problem (D, `,H) satisfies the (β,B)-
Bernstein condition, for β ∈ [0,1] and B > 0, if for all h ∈H,

EZ∼D [(`h(Z) − `h∗(Z))2] ≤ B ⋅EZ∼D [`h(Z) − `h∗(Z)]β ,
where h∗ ∈ arg infh∈HEZ∼D [`h(Z)] is a risk minimizer within the closer ofH.

The Bernstein condition [3, 5, 6, 15, 22] essentially characterizes the “easiness” of the learning
problem; it implies that the variance in the excess loss random variable `h(Z) − `h∗(Z) gets smaller
the closer the risk of hypothesis h ∈ H gets to that of the risk minimizer h∗. For bounded loss
functions, the BC with β = 0 always holds. The BC with β = 1 (the “easiest” learning setting) is also
known as the Massart noise condition [25]; it holds in our experiment with synthetic data in Section
4, and also, e.g., whenever H is convex and h ↦ `h(z) is exp-concave, for all z ∈ Z [15, 31]. For
more examples of learning settings where a BC holds see [22, Section 3].

Our aim in this section is to give an upper-bound on the infimum term involving Vn in (6), under a
BC, in terms of the complexity COMPn and the excess risks L̄(Pn), L̄(Q(Z>m)), and L̄(Q(Z≤m)),
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where for a distribution P ∈ P(H), the excess risk is defined by

L̄(P ) ∶= Eh∼P [EZ∼D [`h(Z)]] −EZ∼D [`h∗(Z)] .
In the next theorem, we denote Q≤m ∶= Q(Z≤m) and Q>m ∶= Q(Z>m), for m ∈ [n]. To simplify the
presentation further (and for consistency with Section 4), we assume that Q is chosen such that

Q(Z>i) = Q>m, for 1 ≤ i ≤m, and Q(Z<j) = Q≤m, for m < j ≤ n. (11)

Theorem 7. Let G and π be as in (8), δ ∈]0,1[, and εδ,n = 2 ln 1
δ⋅π(η) = 2 ln ∣G∣

δ
, η ∈ G. If the(β,B)-Bernstein condition holds with β ∈ [0,1] and B > 0, then for any learning algorithms P and

Q (with Q satisfying (11)), there exists a C > 0, such that ∀n ≥ 1 and m = n/2, with probability at
least 1 − δ,

1

C
⋅ inf
η∈G {cη ⋅ Vn + COMPn + εδ,n

η ⋅ n } ≤ L̄(Pn) + L̄(Q≤m) + L̄(Q>m)
+ (COMPn + εδ,n

n
) 1

2−β + COMPn + εδ,n
n

. (12)

In addition to the “ESI” tools provided in Section 6 and Lemma 13, the proof of Theorem 7, presented
in Appendix E, also uses an “ESI version” of the Bernstein condition due to [22].

First note that the only terms in our main bound (6), other than the infimum on the LHS of (12), are
the empirical error Ln(Pn) and a Õ(1/√n)-complexity-free term which is typically smaller than√

KL(Pn∥P0)/n (e.g. when the dimension of H is large enough). The term
√

KL(Pn∥P0)/n is
often the dominating one in other PAC-Bayesian bounds when lim infn→∞Ln(Pn) > 0.

Now consider the remaining term in our main bound, which matches the infimum term on the LHS of
(12), and let us choose algorithm P as per Remark 5, so that COMPn = 2KL(Pn∥P0). Suppose that,
with high probability (w.h.p.), KL(Pn∥P0)/n converges to 0 for n→∞ (otherwise no PAC-Bayesian
bound would converge to 0), then (COMPn/n)1/(2−β) + COMPn/n—essentially the sum of the last
two terms on the RHS of (12)—converges to 0 at a faster rate than

√
KL(Pn∥P0)/n w.h.p. for β > 0,

and at equal rate for β = 0. Thus, in light of Theorem 7, to argue that our bound can be better than
others (still when lim infn→∞Ln(Pn) > 0), it remains to show that there exist algorithms P and Q
for which the sum of the excess risks on the RHS of (12) is smaller than

√
KL(Pn∥P0)/n.

One choice of estimator with small excess risk is the Empirical Risk Minimizer (ERM). When
m = n/2, if one chooses Q such that it outputs a Dirac around the ERM on a given sample, then
under a BC with exponent β and for “parametric” H (such as the d-dimensional linear classifiers
in Sec. 4), L̄(Q≤m) and L̄(Q>m) are of order Õ (n−1/(2−β)) w.h.p. [3, 19]. However, setting
Pn ≡ δ(ERM(Z≤n)) is not allowed, since otherwise KL(Pn∥P0) =∞. Instead one can choose Pn
to be the generalized-Bayes/Gibbs posterior. In this case too, under a BC with exponent β and for
parametricH, the excess risk is of order Õ (n−1/(2−β)) w.h.p. for clever choices of prior P0 [3, 19].

6 Detailed Analysis

We start this section by presenting the convenient ESI notation and use it to present our main technical
Lemma 13 (proofs of the ESI results are in Appendix D). We then continue with a proof of Theorem 3.

Definition 8. [ESI (Exponential Stochastic Inequality, pronounce as:easy) 19, 22] Let η > 0, and
X , Y be any two random variables with joint distribution D. We define

X ⊴Dη Y ⇐⇒ X − Y ⊴Dη 0 ⇐⇒ E(X,Y )∼D [eη(X−Y )] ≤ 1. (13)

Definition 8 can be extended to the case where η = η̂ is also a random variable, in which case the
expectation in (13) needs to be replaced by the expectation over the joint distribution of (X , Y , η̂).
When no ambiguity can arise, we omit D from the ESI notation. Besides simplifying notation, ESIs
are useful in that they simultaneously capture “with high probability” and “in expectation” results:
Proposition 9. [ESI Implications] For fixed η > 0, if X ⊴η Y then E[X] ≤ E[Y ]. For both fixed

and random η̂, if X ⊴η̂ Y , then ∀δ ∈]0,1[, X ≤ Y + ln 1
δ

η̂
, with probability at least 1 − δ.
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In the next proposition, we present two results concerning transitivity and additive properties of ESI:
Proposition 10. [ESI Transitivity and Chain Rule] (a) Let Z1, . . . , Zn be any random variables
on Z (not necessarily independent). If for some (γi)i∈[n] ∈]0,+∞[n, Zi ⊴γi 0, for all i ∈ [n], then

n∑
i=1

Zi ⊴νn 0, where νn ∶= ( n∑
i=1

1

γi
)−1

(so if ∀i ∈ [n], γi = γ > 0 then νn = γ/n). (14)

(b) Suppose now that Z1, . . . , Zn are i.i.d. and let X ∶ Z ×⋃ni=1Zi → R be any real-valued function.
If for some η > 0, X(Zi; z<i) ⊴η 0, for all i ∈ [n] and all z<i ∈ Zi−1, then ∑ni=1X(Zi;Z<i) ⊴η 0.

We now give a basic PAC-Bayesian result for the ESI context:
Proposition 11. [ESI PAC-Bayes] Fix η > 0 and let {Yh ∶ h ∈H} be any family of random variables
such that for all h ∈H, Yh ⊴η 0. Let P0 be any distribution onH and let P ∶ ⋃ni=1Zi → P(H) be a
learning algorithm. We have:

Eh∼Pn[Yh] ⊴η KL(Pn∥P0)
η

, where Pn ∶= P (Z≤n).
In many applications (especially for our main result) it is desirable to work with a random (i.e.
data-dependent) η in the ESI inequalities; one can tune η after seeing the data.
Proposition 12. [ESI from fixed to random η] Let G be a countable subset of ]0,+∞[ and let π be
a prior distribution over G. Given a countable collection {Yη ∶ η ∈ G} of random variables satisfying
Yη ⊴η 0, for all fixed η ∈ G, we have, for arbitrary estimator η̂ with support on G,

Yη̂ ⊴η̂ − lnπ(η̂)
η̂

. (15)

The following key lemma, which is of independent interest, is central to our main result.
Lemma 13. [Key result: un-expected Bernstein] Let X ∼D be a random variable bounded from
above by b > 0 almost surely, and let ϑ(u) ∶= (− ln(1 − u) − u)/u2. For all 0 < η < 1/b, we have (a):

E[X] −X ⊴Dη c ⋅X2, for all c ≥ η ⋅ ϑ(ηb). (16)

(b): The result is tight; for every c < η ⋅ϑ(ηb), there exists a distribution D so that (16) does not hold.

Lemma 13 is reminiscent of the following slight variation of Bernstein’s inequality [12]; let X be any
random variable bounded from below by −b, and let κ(x) ∶= (ex − x − 1)/x2. For all η > 0, we have

E[X] −X ⊴η s ⋅E[X2], for all s ≥ η ⋅ κ(ηb). (17)

Note that the un-expected Bernstein Lemma 13 has the X2 lifted out of the expectation. In Appendix
G, we prove (17) and compare it to standard versions of Bernstein. We also compare (16) to the
related but distinct empirical Bernstein inequality due to [27, Theorem 4]. We now prove part (a) of
Lemma 13, which follows easily from the proof of an existing result [16, 21]. Part (b) is novel; its
proof is postponed to Appendix F.

Proof of Lemma 13-Part (a). [16] (see also [21]) showed in the proof of their lemma 4.1 that

exp(λξ − λ2ϑ(λ)ξ2) ≤ 1 + λξ, for all λ ∈ [0,1[ and ξ ≥ −1. (18)

Letting η = λ/b and ξ = −X/b, (18) becomes,

exp(−ηX − η2ϑ(ηb)X2) ≤ 1 − ηX, for all η ∈]0,1/b[. (19)

Taking expectation on both sides of (19) and using the fact that 1 − ηE[X] ≤ exp(−ηE[X]) on the
RHS of the resulting inequality, leads to (16).

Proof of Theorem 3. Let η ∈]0,1/b[ and cη ∶= η ⋅ ϑ(ηb). For 1 ≤ i ≤m < j ≤ n, define

Xh(Zi; z>i) ∶= `h(Zi) −Eh′∼Q(z>i) [`h′(Zi)] , for z>i ∈ Zn−i,
X̃h(Zj ; z<j) ∶= `h(Zj) −Eh′∼Q(z<j) [`h′(Zj)] , for z<j ∈ Zj−1.
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Since ` is bounded from above by b, Lemma 13 implies that for all h ∈H and 1 ≤ i ≤m < j ≤ n,

∀z>i ∈ Zn−i, Y ηh (Zi; z>i) ∶= EZ′
i∼D [Xh(Z ′

i; z>i)] −Xh(Zi; z>i) − cη ⋅Xh(Zi; z>i)2 ⊴η 0,

∀z<j ∈ Zj−1, Ỹ ηh (Zj ; z<j) ∶= FZ′
j∼D[X̃h(Z ′

j ; z<j)] − X̃h(Zj ; z<j) − cη ⋅ X̃h(Zj ; z<j)2 ⊴η 0,

Since Z1, . . . , Zn are i.i.d. we can chain the ESIs above using Proposition 10-(b) to get:

S ∶= m∑
i=1

Y ηh (Zi;Z>i) ⊴η 0, S̃ ∶= n∑
j=m+1

Ỹ ηh (Zj ;Z<j) ⊴η 0. (20)

Applying PAC-Bayes (Proposition 11) to S and S̃ in (20) with priors P (Z>m) and P (Z≤m), respec-
tively, and common posterior Pn = P (Z≤n) on H, we get, with KL>m ∶= KL(Pn∥P (Z>m)) and
KL≤m ∶= KL(Pn∥P (Z≤m)):

Eh∼Pn [m∑
i=1

Y ηh (Zi;Z>i)] − KL>m
η

⊴η 0, Eh∼Pn
⎡⎢⎢⎢⎣

n∑
j=m+1

Ỹ ηh (Zj ;Z<j)⎤⎥⎥⎥⎦ −
KL≤m
η

⊴η 0.

We now apply Proposition 10-(a) to chain these two ESIs, which yields

Eh∼Pn
⎡⎢⎢⎢⎣
m∑
i=1

Y ηh (Zi;Z>i) + n∑
j=m+1

Ỹ ηh (Zj ;Z<j)⎤⎥⎥⎥⎦ ⊴ η2
KL(Pn∥P (Z>m)) + KL(Pn∥P (Z≤m))

η
.

With the prior π on G, we have for any η̂ = η̂(Z≤n) ∈ G ⊂ [1/√nb2,1/b[ (see Proposition 12),

Eh∼Pn
⎡⎢⎢⎢⎣
m∑
i=1

Y η̂h (Zi;Z>i) + n∑
j=m+1

Ỹ η̂h (Zj ;Z<j)⎤⎥⎥⎥⎦ ⊴ η̂2
COMPn

η̂
− 2 lnπ(η̂)

η̂
, i.e.,

n ⋅ (L(Pn) −Ln(Pn)) ⊴ η̂
2
n ⋅ cη̂ ⋅ Vn + COMPn + 2 ln 1

π(η̂)
η̂

+
⎡⎢⎢⎢⎣
m∑
i=1

(EZ′
i∼D [¯̀

Q>i(Z ′
i)] − ¯̀

Q>i(Zi)) + n∑
j=m+1

(EZ′
j∼D [¯̀

Q<j(Z ′
j)] − ¯̀

Q<j(Zj))⎤⎥⎥⎥⎦ , (21)

where ¯̀
Q>i(Zi) ∶= Eh∼Q(Z>i) [`h(Zi)] and ¯̀

Q<j(Zj) ∶= Eh∼Q(Z<j) [`h(Zj)]. Let Un denote the
quantity between the square brackets in (21). Using the un-expected Bernstein Lemma 13, together
with Proposition 15, we get for any estimator ν̂ on G:

Un ⊴ν̂ cν̂ ⋅ ⎛⎝
m∑
i=1

Eh′∼Q(Z>i) [`h′(Zi)2] + n∑
j=m+1

Eh′∼Q(Z<j) [`h′(Zj)2]⎞⎠ +
ln 1

π(ν̂)
ν̂

. (22)

By chaining (22) and (21) using Proposition 10-(a) and dividing by n, we get:

L(Pn) ⊴ nη̂ν̂
η̂+2ν̂

Ln(Pn) + cη̂ ⋅ Vn + COMPn + 2 ln 1
π(η̂)

η̂ ⋅ n + cν̂ ⋅ V ′
n + ln 1

π(ν̂)
ν̂ ⋅ n . (23)

We now apply Proposition 9 to (23) to obtain the following inequality with probability at least 1 − δ:

L(Pn) ≤ Ln(Pn) + ⎡⎢⎢⎢⎢⎣cη̂ ⋅ Vn +
COMPn + 2 ln 1

π(η̂)⋅δ
η̂ ⋅ n

⎤⎥⎥⎥⎥⎦ +
⎧⎪⎪⎨⎪⎪⎩cν̂ ⋅ V

′
n + ln 1

π(ν̂)⋅δ
ν̂ ⋅ n

⎫⎪⎪⎬⎪⎪⎭ . (24)

Inequality (6) follows after picking ν̂ and η̂ to be, respectively, estimators which achieve the infimum
over the closer of G of the quantities between braces and square brackets in (24).

7 Conclusion and Future Work

The main goal of this paper was to introduce a new PAC-Bayesian bound based on a new proof
technique; we also theoretically motivated the bound in terms of a Bernstein condition. The simple
experiments we provided are to be considered as a basic sanity check—in future work, we plan to put
the bound to real practical use by applying it to deep nets in the style of, e.g., [42].
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A Informed Priors

Any bound of the form of (1) with COMPn = KL(Pn∥P0) can be applied in a way as to replace this
KL term by KL(Pn∥P (Z>m)) + KL(Pn∥P (Z≤m)), and thus making use of “informed priors”. For
this, it suffices to apply the bound on each part of the sample, i.e. Z>m and Z≤m, and then combine
the resulting bounds with a union bound. In fact, suppose that (1) holds with Rn = Ln(Pn) and C = 0,
and let δ ∈]0,1[. Applying the bound on the second part of the sample Z>m with prior P (Z≤m) and
posterior Pn, we get, with probability at least 1 − δ,

L(Pn) −L>m(Pn) ≤ P ⋅
√

L>m(Pn) ⋅ (KL(Pn∥P (Z≤m)) + εδ,n−m)
n −m

+A ⋅ KL(Pn∥P (Z≤m)) + εδ,n−m
n −m , (25)

where L>m(Pn) ∶= 1
n−m ∑nj=m+1 Eh∼Pn[`h(Zj)]. Similarly, applying the bound on the first half of

the sample Z≤m with prior P (Z>m) and posterior Pn, we get, with probability at least 1 − δ,

L(Pn) −L≤m(Pn) ≤ P ⋅
√

L≤m(Pn) ⋅ (KL(Pn∥P (Z>m)) + εδ,m)
m

+A ⋅ KL(Pn∥P (Z>m)) + εδ,m
m

, (26)

where L≤m(Pn) ∶= 1
m ∑mi=1 Eh∼Pn[`h(Zi)]. Let p ∶= m/n and q ∶= (n −m)/n (note that p + q = 1).

Applying a union bound and adding q × (25) with p × (26), yields the bound

L(Pn) −Ln(Pn) ≤ P ⋅
√

2Ln(Pn) ⋅ (KL(Pn∥P (Z>m)) + KL(Pn∥P (Z≤m)) + ε̄δ,n)
n

+A ⋅ KL(Pn∥P (Z>m)) + KL(Pn∥P (Z≤m)) + ε̄δ,n
n

, (27)

with probability at least 1 − δ, where ε̄δ,n ∶= εδ/2,m + εδ/2,n−m. To get to (27), we also used the fact
that

√
x +√

y ≤ √
2(x + y), for all x, y ∈ R≥0.

The above trick does not directly apply to Maurer’s bound in (2) (since the dependence on L(Pn) is
not linear). Instead, one can use the joint convexity of the binary Kullback-Leibler divergence kl in
its two arguments as in the following proof of Lemma 4:

Proof of Lemma 4. Let δ ∈]0,1[. We can write Ln(Pn) as

Ln(Pn) = p

m

m∑
i=1

Eh∼Pn[`h(Zi)] + q

n −m
n∑

j=m+1

Eh∼Pn[`h(Zj)],
where p ∶=m/n and q ∶= (n −m)/n (note that p + q = 1). Let us denote

L≤m(Pn) ∶= 1

m

m∑
i=1

Eh∼Pn[`h(Zi)] and L>m(Pn) ∶= 1

n −m
n∑

j=m+1

Eh∼Pn[`h(Zj)].
By the joint convexity of the binary Kullback-Leibler divergence kl in its two arguments, we have

kl(L(Pn)∥Ln(Pn)) = kl(pL(Pn) + qL(Pn)∥pL≤m(Pn) + qL>m(Pn)),≤ p ⋅ kl(L(Pn)∥L≤m(Pn)) + q ⋅ kl(L(Pn)∥L>m(Pn)),
≤ p ⋅ KL(Pn∥P (Z>m)) + ln 4

√
m
δ

m
,

+ q ⋅ KL(Pn∥P (Z≤m)) + ln 4
√
n−m
δ

n −m , (28)

with probability at least 1 − δ, where the last inequality follows by Maurer’s bound (2) and the union
bound. Substituting the expressions of p and q in (28) yields the desired result.
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B Biasing

A PAC-Bayes bound similar to the one in our Corollary 1 can be obtained from the TS bound. For
this, the TS bound must be applied twice, once on each part of the sample (i.e. Z≤m and Z>m) to
biased losses. We demonstrate this in what follows.

Let ĥ ∶ ⋃ni=1Zi → H be any estimator. The TS bound can be expressed in the form of (1) with
COMPn = KL(Pn∥P0), C = 0, and Rn = Eh∼Pn[Varn[`h(Z)]], where Varn[X] denotes the em-
pirical variance. Applying the TS bound on the second part of the sample Z>m with prior P0 and
posterior Pn, and with the biased loss ˜̀

h(Z) = `h(Z) − `ĥ(Z≤m)(Z), gives

L̃(Pn) − L̃>m(Pn) ≤ P ⋅
√

Eh∼Pn[Var>m[˜̀
h(Z)]] ⋅ (KL(Pn∥P0) + εδ,n−m)

n −m
+A ⋅ KL(Pn∥P0) + εδ,n−m

n −m , (29)

with probability at least 1− δ, where Var>m[X] ∶= 1
n−m ∑ni=m+1 (Xi − 1

n−m ∑nj=m+1Xj)2
, L̃(Pn) ∶=

Eh∼Pn[EZ∼D[˜̀
h(Z)]], and L̃>m(Pn) ∶= 1

n−m ∑nj=m+1 Eh∼Pn[˜̀
h(Zj)].

Doing the same on the first part of the sample Z≤m, but now with the loss ˇ̀
h(Z) ∶= `h(Z) −

`ĥ(Z>m)(Z), yields

Ľ(Pn) − Ľ≤m(Pn) ≤ P ⋅
√

Eh∼Pn[Var≤m[ˇ̀
h(Z)]] ⋅ (KL(Pn∥P0) + εδ,m)

m

+A ⋅ KL(Pn∥P0) + εδ,m
m

, (30)

with probability at least 1 − δ, where Var≤m[X] ∶= 1
m ∑mi=1 (Xi − 1

m ∑mj=1Xj)2
, Ľ(Pn) ∶=

Eh∼Pn[EZ∼D[ˇ̀
h(Z)]], and Ľ≤m(Pn) ∶= 1

m ∑mi=1 Eh∼Pn[ˇ̀
h(Zi)].

Two more applications of the TS bound with prior and posterior equal to P0, yields,

L(ĥ(Z≤m)) −L>m(ĥ(Z≤m)) ≤ P ⋅
¿ÁÁÀVar>m[`ĥ(Z≤m)(Z)] ⋅ εδ/2,n−m

n −m + A ⋅ εδ/2,n−m
n −m , and (31)

L(ĥ(Z>m)) −L≤m(ĥ(Z>m)) ≤ P ⋅
¿ÁÁÀVar≤m[`ĥ(Z>m)(Z)] ⋅ εδ/2,m

m
+ A ⋅ εδ/2,m

m
, (32)

with probability at least 1 − δ, where

L≤m(ĥ(Z>m)) ∶= 1

m

m∑
i=1

`ĥ(Z>m)(Zi) and L>m(ĥ(Z≤m)) ∶= 1

n −m
n∑

j=m+1

`ĥ(Z≤m)(Zj).
Let p =m/n and q = (n −m)/n. Applying a union bound and combining (29)-(32), as

q × ((29) + (31)) + p × ((30) + (32)),
yields a bound of the form (1) with

R′
n = p ⋅Var≤m[`ĥ(Z>m)(Z)] + q ⋅Var<m[`ĥ(Z≤m)(Z)] ≤ V ′

n,

Rn = p ⋅Eh∼Pn[Var≤m[ˇ̀
h(Z)]] + q ⋅Eh∼Pn[Var>m[˜̀

h(Z)]] ≤ Vn,
where V ′

n and Vn are as in Corollary 1.

A Direct Approach. Though the steps above lead to a bound similar to ours in Corollary 1, the
constants involved may not be optimal. We now re-derive a modification of the TS bound with a Vn
term like in Corollary 1, and with tighter constants. The proof techniques used here are the same as
those used in the proof of Theorem 3. For η ∈]0,1/b[ (where b > 0 is an upper-bound on the loss `)
and m ∈ [2..n], define

sη ∶= η ⋅ κ(ηb), where κ(η) ∶= (eη − η − 1)/η2,

and c̃η ∶= sηm

2m − 2
(1 + ηm

2m − 2
)−1

, λ(η) ∶= ηβ(η)
η + β(η) , where β(η) ∶= η + η2m2

2m − 2
.
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We assume that n > 2 is even in the next theorem. We remind the reader of the definitions

Var≤m[X] ∶= 1

m

m∑
i=1

⎛⎝Xi − 1

m

m∑
j=1

Xj

⎞⎠
2

and Var>m[X] ∶= 1

n −m
n∑

i=m+1

⎛⎝Xi − 1

n −m
n∑

j=m+1

Xj

⎞⎠
2

.

Theorem 14. [New PAC-Bayes Empirical Bernstein Bound] Let Z1, . . . , Zn be i.i.d. with Z1 ∼D.
Let m = n/2 > 1 and π be any distribution with support on a finite or countable grid G ⊂]0,1/b[. For
any δ ∈]0,1[, learning algorithm P ∶ ⋃ni=1Zi → P(H), and estimator ĥ ∶ ⋃ni=1Zi →H, we have,

L(Pn) ≤ Ln(Pn) + inf
η∈G

⎧⎪⎪⎨⎪⎪⎩c̃η ⋅Gn +
COMPn + 2 ln 1

δ⋅π(η)
λ(η) ⋅ n

⎫⎪⎪⎬⎪⎪⎭ + inf
ν∈G

⎧⎪⎪⎨⎪⎪⎩c̃ν ⋅G
′
n + ln 1

δ⋅π(ν)
λ(ν) ⋅ n

⎫⎪⎪⎬⎪⎪⎭ ,
with probability at least 1 − δ, where COMPn, G′

n, and Gn are the random variables defined by:
COMPn ∶= KL(Pn∥P (Z≤m)) + KL(Pn∥P (Z>m)),
G′
n ∶= Var>m [`ĥ(Z≤m)(Z)] +Var≤m [`ĥ(Z>m)(Z)] ,

Gn ∶= Eh∼Pn [Var>m [`h(Z) − `ĥ(Z≤m)(Z)] +Var≤m [`h(Z) − `ĥ(Z>m)(Z)]] .
Note that since Var≤m(X) ≤ ∑mi=1X

2
i /m and Var>m(X) ≤ ∑ni=m+1X

2
i /m, we have

Gn ≤ Vn and G′
n ≤ V ′

n,

where Vn and V ′
n are defined in (4) and (3), respectively. However, one cannot directly compare

Gn to the Vn defined in Theorem 3, since the latter uses “online” posteriors (Q(Z>i)) and Q(Z<j)
which get closer and closer to the posterior Q(Z≤n) based on the full sample.

To prove Theorem 14, we need the following self-bounding property of the empirical variance [27]:

mVar[X] ⊴η m2

m − 1
Varm[X] − ηm2

2m − 2
Var[X], (33)

for any η > 0 and any bounded random variable X , where Varm[X] is either Var>m[X] or
Var≤m[X] (recall that m = n/2). Re-arranging (33) and dividing by (1 + ηm/(2m − 2)), leads
to

mVar[X] ⊴β(η) m2

m − 1
⋅ (1 + ηm

2m − 2
)−1

Varm[X], (34)

where β(η) ∶= η + η2m

2m − 2
.

Proof of Theorem 14. Let η ∈]0,1/b[ and sη ∶= η ⋅ κ(ηb). We define
Xh(Zi) ∶= `h(Zi) − `ĥ(Z>m)(Zi), for 1 ≤ i ≤m,
X̃h(Zj) ∶= `h(Zj) − `ĥ(Z≤m)(Zj), for m < j ≤ n.

Since ` is bounded from above by b, the Bernstein inequality (17) applied to the zero-mean random
variables EZ′

i∼D [Xh(Z ′
i)] −Xh(Zi), i ∈ [n], implies that for all h ∈H,

Y ηh (Zi) ∶= EZ′
i∼D [Xh(Z ′

i)] −Xh(Zi) − sη ⋅Var[Xh(Z)] ⊴η 0, for 1 ≤ i ≤m,
Ỹ ηh (Zj) ∶= EZ′

j∼D[X̃h(Z ′
j)] − X̃h(Zj) − sη ⋅Var[X̃h(Z)] ⊴η 0, for m < j ≤ n.

Since Z1, . . . , Zn are i.i.d. we can chain the ESIs above using Proposition 10-(b) to get:

S ∶= m∑
i=1

Y ηh (Zi) ⊴η 0, S̃ ∶= n∑
j=m+1

Ỹ ηh (Zj) ⊴η 0.

Chaining S ⊴η 0 [resp. S̃ ⊴η 0] and (34) with Varm ≡ Var≤m [resp. Varm ≡ Var>m] using
Proposition 10-(a), yields,

W η
h ⊴ ηβ(η)

η+β(η) 0 and W̃ η
h ⊴ ηβ(η)

η+β(η) 0, where (35)

W η
h ∶= m∑

i=1

(EZ′i∼D [Xh(Z ′
i)] −Xh(Zi)) − sηm2

m − 1
⋅ (1 + ηm

2m − 2
)−1

Var≤m[Xh(Z)],
W̃ η
h ∶= n∑

j=m+1

(EZ′
j∼D [Xh(Z ′

j)] −Xh(Zj)) − sηm2

m − 1
⋅ (1 + ηm

2m − 2
)−1

Var>m[Xh(Z)].
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Let λ(η) ∶= ηβ(η)/(β(η)+η). Applying PAC-Bayes (Proposition 11) toW η
h ⊴λ(η) 0 and W̃ η

h ⊴λ(η) 0
in (35), with priors P (Z>m) and P (Z≤m), respectively, and posterior Pn = P (Z≤n) onH, we get:

Eh∼Pn [W η
h ] − KL(Pn∥P (Z>m))

λ(η) ⊴λ(η) 0, Eh∼Pn [W̃ η
h ] − KL(Pn∥P (Z≤m))

λ(η) ⊴λ(η) 0.

We now apply Proposition 10-(a) to chain these two ESIs, which yields

Eh∼Pn [W η
h + W̃ η

h ] ⊴λ(η)
2

KL(Pn∥P (Z>m)) + KL(Pn∥P (Z≤m))
λ(η) .

With the discrete prior π on G, we have for any η̂ = η̂(Z≤n) ∈ G ⊂ 1/b ⋅ [1/√n,1[ (see Proposition
12),

Eh∼Pn [W η
h + W̃ η

h ] ⊴λ(η̂)
2

COMPn

λ(η̂) − 2 lnπ(η̂)
λ(η̂) , i.e.,

n ⋅ (L(Pn) −Ln(Pn)) ⊴λ(η̂)
2

n ⋅ c̃η̂ ⋅Gn + COMPn + 2 ln 1
π(η̂)

λ(η̂) +
⎡⎢⎢⎢⎣
m∑
i=1

(EZ′
i∼D [`ĥ>m(Z ′

i)] − `ĥ>m(Zi)) + n∑
j=m+1

(EZ′
j∼D [`ĥ≤m(Z ′

j)] − `ĥ≤m(Zj))⎤⎥⎥⎥⎦ , (36)

where ĥ>m ∶= ĥ(Z>m) and ĥ≤m ∶= ĥ(Z≤m). Let Un denote the quantity between the square brackets
in (36). Using the Bernstein inequality in (17) chained with (34), and Proposition 15, we get for any
estimator ν̂ on G:

Un ⊴λ(ν̂) n ⋅ c̃ν̂ ⋅ (Var≤m[`ĥ(Z>m)(Z)] +Var>m[`ĥ(Z≤m)(Z)]) + ln 1
π(ν̂)

λ(ν̂) . (37)

By chaining (36) and (37) using Proposition 10-(a), dividing by n, we get:

L(Pn) ⊴ nλ(η̂)λ(ν̂)
λ(η̂)+2λ(ν̂) Ln(Pn) + c̃η̂ ⋅Gn +

COMPn + 2 ln 1
π(η̂)

λ(η̂) ⋅ n + c̃ν̂ ⋅G′
n + ln 1

π(ν̂)
λ(ν̂) ⋅ n. (38)

We now apply Proposition 9 to (38) to obtain the following inequality with probability at least 1 − δ:

L(Pn) ≤ Ln(Pn) + ⎡⎢⎢⎢⎢⎣c̃η̂ ⋅Gn +
COMPn + 2 ln 1

π(η̂)⋅δ
λ(η̂) ⋅ n

⎤⎥⎥⎥⎥⎦ +
⎧⎪⎪⎨⎪⎪⎩c̃ν̂ ⋅G

′
n + ln 1

π(ν̂)⋅δ
λ(ν̂) ⋅ n

⎫⎪⎪⎬⎪⎪⎭ . (39)

Inequality (6) follows after picking ν̂ and η̂ to be, respectively, estimators which achieve the infimum
over the closer of G of the quantities between braces and square brackets in (39).

C Proof of Lemma 2

Proof. Throughout this proof, we denote ĥ>m ∶= ĥ(Z>m) and ĥ≤m ∶= ĥ(Z≥m). Let δ ∈]0,1[. Since
the sample Z≤m is independent of Z>m, we have

2

n

m∑
i=1

`ĥ>m(Zi)2 = Var≤m[`ĥ>m(Z)] + ( 1

m

m∑
i=1

`ĥ>m(Zi))2

. (40)

On the other hand, from [27, Theorem 10], we have

Var≤m[`ĥ>m(Z)] ≤ 2(m − 1)
m

Var[`ĥ>m(Z)] + 8 ln 1
δ

n
,

∣`∣≤1≤ 2(m − 1)
m

L(ĥ>m) + 8 ln 1
δ

n
, (41)

with probability at least 1 − δ. By Hoeffding’s inequality, we also have

( 1

m

m∑
i=1

`ĥ>m(Zi))2 ≤ 2L(ĥ>m)2 + 8 ln 1
δ

n
,

∣`∣≤1≤ 2L(ĥ>m) + 8 ln 1
δ

n
, (42)
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with probability at least 1 − δ. Combining (40), (41), and (42) together using a union bound, yields

2

n

m∑
i=1

`ĥ>m(Zi)2 ≤ 4(n − 1)
n

L(ĥ>m) + 16 ln 2
δ

n
, (43)

with probability at least 1 − δ. Applying the same argument on the second part of the sample Z>m,
yields

2

n

n∑
j=m+1

`ĥ≤m(Zi)2 ≤ 4(n − 1)
n

L(ĥ≤m) + 16 ln 2
δ

n
, (44)

with probability at least 1 − δ. Applying a union bound, and adding together (43) and (44) then
dividing by 2, yields,

R′
n ≤ 2(n − 1)

n
(L(ĥ≤m) +L(ĥ>m)) + 16 ln 4

δ

n
,

≤ 2 (L(ĥ≤m) +L(ĥ>m)) + 16 ln 4
δ

n
, (45)

with probability at least 1 − δ. Diving (45) by n and applying the square-root yields the desired
result.

D Proofs for Section 6

Proof of Proposition 9. Let Z =X − Y . For fixed η, Jensen’s inequality yields E[Z] ≤ 0. For η = η̂
that is either fixed or itself a random variable, applying Markov’s inequality to the random variable
e−η̂Z yields Z ≤ ln 1

δ

η̂
, with probability at least 1 − δ, for any δ ∈]0,1[.

Proof of Proposition 10. [Part (a)] Fix (γi)i∈[n] ∈]0,+∞[n, and let νj ∶= (∑ji=1
1
γi

)−1
, for j ∈ [n].

We proceed by induction to show that ∀j ∈ [n], ∑ji=1Zi ⊴νj 0. The result holds trivially for j = 1,
since ν1 = γ1. Suppose that

j∑
i=1

Zi ⊴νj 0, (46)

for some 1 ≤ j < n. We now show that (46) holds for j + 1; we have,

E [e νjγj+1
νj+γj+1

(∑ji=1 Zi+Zj+1)] = E [e νjγj+1
νj+γj+1

∑ji=1 Zi+ νjγj+1
νj+γj+1

Zj+1] ,
Jensen≤ γj+1

νj+γj+1
E [eνj ∑ji=1 Zi] + νj

νj+γj+1
E [eγj+1Zj+1] ,

using (46)≤ 1.

Thus the result holds for j + 1, since νj+1 = νjγj+1

νj+γj+1
. This establishes (14).

[Part (b)] This is a special case of [22, Lemma 6], who treat the general case with non-i.i.d.
distributions.

Proof of Proposition 11. Let ρ(h) = (dPn/dP0)(h) be the density of h ∈ H relative to the prior
measure P0. We then have KL(Pn∥P0) = Eh∼Pn[lnρ(h)]. We can now write:

E [eηEh∼Pn [Yh]−KL(Pn∥P0)] = E [eηEh∼Pn [Yh−lnρ(h)]] ,
≤ E [Eh∼Pn [eη(Yh−lnρ(h))]] , (Jensen’s Inequality)
= E [Eh∼Pn [ dP0

dPn
⋅ eηYh]] ,

= E [Eh∼P0
[eηYh]] ,

= Eh∼P0
[E [eηYh]] , (Tonelli’s Theorem)

= 1,

where the final equality follows from our assumption that Yh ⊴η 0, for all h ∈H.
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Proof of Proposition 12. Since Yη ⊴η 0, for η ∈ G, we have in particular:

1 ≥ E
⎡⎢⎢⎢⎢⎣∑η∈G π(η)e

ηYη

⎤⎥⎥⎥⎥⎦ ≥ E [π(η̂)eη̂Yη̂] , (47)

where the right-most inequality follows from the fact that the expectation of a countable sum of
positive random variable is greater than the expectation of a single element in the sum. Rearranging
(47) gives (15).

E Proof of Theorem 7

In what follows, for h ∈ H, we denote Xh(Z) ∶= `h(Z) − `h∗(Z) the excess loss random variable,
where h∗ is the risk minimizer withinH. Let

ρ(η) ∶= 1

η
lnEZ∼D [e−ηXh(Z)]

be its normalized cumulant generating function. We need the following useful lemmas:
Lemma 15. [22] Let h ∈H and Xh be as above. Then, for all η ≥ 0,

αη ⋅Xh(Z)2 −Xh(Z) ⊴η ρ(2η) + αη ⋅ ρ(2η)2, where αη ∶= η

1 +√
1 + 4η2

.

Lemma 16. [22] Let b > 0, and suppose that Xh ∈ [−b, b] almost surely, for all h ∈ H. If the(β,B)-Bernstein condition holds with β ∈ [0,1] and B > 0, then

ρ(η) ≤ (Bη) 1
1−β , for all η ∈]0,1/b].

Lemma 17. [12] Let b > 0, and suppose that Xh ∈ [−b, b] almost surely, for all h ∈H. Then

ρ(η) ≤ ηb2
2
, for all η ∈ R.

Proof of Theorem 7. First we apply the following inequality

(a − d)2 ≤ 2(a − c)2 + 2(d − c)2 (48)

which holds for all a, c, d ∈ R to upper bound Vn. Let’s focus on the first term in the expression of
Vn, which we denote V left

n : that is,

V left
n ∶= Eh∼Pn [ 1

n

m∑
i=1

(`h(Zi) −Eh′∼Q(Z>i) [`h′(Zi)])2] .
Letting Xh(Z) ∶= `h(Z) − `h∗(Z) and applying (48) with a = `h(Zi), c = `h∗(Zi), and d =
Eh′∼Q(Z>i) [`h′(Zi)] ∗= Eh′∼Q(Z>m) [`h′(Zi)] (where ∗= is due to our assumption on Q), we get:

V left
n ≤ Eh∼Pn [ 2

n

m∑
i=1

Xh(Zi)2] + 2

n

m∑
i=1

(Eh′∼Q(Z>m) [`h′(Zi)] − `h∗(Zi))2
,

≤ Eh∼Pn [ 2

n

m∑
i=1

Xh(Zi)2] +Eh∼Q(Z>m) [ 2

n

m∑
i=1

Xh(Zi)2] . (by Jensen’s Inequality) (49)

Let i ∈ [m], h ∈H, and η ∈]0,1/b[. Under the (β,B)-Bernstein condition, Lemmas 15-17 imply,

αη ⋅Xh(Zi)2 ⊴η Xh(Zi) + (1 + b
2
) (2Bη) 1

1−β , (50)

where αη ∶= η/(1 +√
1 + 4η2). Now, due to the Bernstein inequality (17), we have

Xh(Zi) ⊴η EZ′
i∼D [Xh(Z ′

i)] + sη ⋅EZ′i∼D [Xh(Z ′
i)2] , where sη ∶= η ⋅ κ(ηb),

⊴ EZ′
i∼D [Xh(Z ′

i)] + sη ⋅EZ′i∼D [Xh(Z ′
i)]β , (by the Bernstein condition)

⊴η 2EZ′
i∼D [Xh(Z ′

i)] + a β
1−β
β ⋅ (sη) 1

1−β , where aβ ∶= (1 − β)1−βββ . (51)
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The last inequality follows by the fact that zβ = aβ ⋅ infν>0{z/ν + ν β
1−β }, for z ≥ 0 (in our case, we

set ν = aβ ⋅ sη to get to (51)). By chaining (50) with (51) using Proposition 10-(a), we get:

αη ⋅Xh(Zi)2 ⊴ η
2

2EZ′
i∼D [Xh(Z ′

i)] + a β
1−β
β ⋅ (sη) 1

1−β + (1 + b
2
) (2Bη) 1

1−β .

⊴ η
2

2EZ′
i∼D [Xh(Z ′

i)] +P ⋅ η 1
1−β , with P ∶= a β

1−β
β + (1 + b

2
) (2B) 1

1−β , (52)

where in the last inequality we used κ(1) ≤ 1. Since (52) holds for all h ∈ H, it still holds in
expectation overH with respect to the distribution Q(Z>m) (recall that i ≤m);

αη ⋅Eh∼Q(Z>m) [Xh(Zi)2] ⊴ η
2

2Eh∼Q(Z>m) [EZ′
i∼D [Xh(Z ′

i)]] +P ⋅ η 1
1−β . (53)

Since the samples Z≤n are i.i.d, we have EZi∼D [`h(Zi)] = EZj∼D [`h(Zj)], for all i, j ∈ [m]. Thus,
after summing (52) and (53), for i = 1, . . . ,m, using Proposition 10-(b) and dividing by n, we get

αη

n

m∑
i=1

Xh(Zi)2 ⊴n⋅η
2

EZ∼D [Xh(Z)] + P

2
⋅ η 1

1−β , (54)

Eh∼Q(Z>m) [αη
n

m∑
i=1

Xh(Zi)2] ⊴n⋅η
2

Eh∼Q(Z>m) [EZ∼D [Xh(Z)]] + P

2
⋅ η 1

1−β . (m = n/2) (55)

Now we apply PAC-Bayes (Proposition 11) to (54), with prior P (Z>m) and posterior Pn, and obtain:

Eh∼Pn [αη
n

m∑
i=1

Xh(Zi)2] ⊴n⋅η
2

Eh∼Pn [EZ∼D [Xh(Z)]] + P

2
⋅ η 1

1−β + 2KL(Pn∥P (Z>m))
η ⋅ n .(56)

Note that the upper-bound on V left
n in (49) is the sum of the left-hand sides of (55) and (56) divided

by αη/2. From now on, we restrict η to the range ]0,1/(2b)[ and define

Aη ∶= 2cη
αη

≤ 2ϑ ( 1
2
) ⋅ (1 +√

1 + 1
b2

) =∶ A, η ∈ ]0, 1
2b

[ .
Chaining (55) and (56) using Proposition 10-(a) and multiplying throughout by Aη , yields

cη ⋅ V left
n ⊴ nη

4Aη
A ⋅ (L̄(Pn) + L̄(Q(Z>m))) +PAη

1
1−β + 2A ⋅ KL(Pn∥P (Z>m))

η ⋅ n . (57)

By a symmetric argument, a version of (57), with Q(Z>m) [resp. P (Z>m)] replaced by Q(Z≤m)
[resp. P (Z≤m)], holds for V right

n ∶= Vn − V left
n . Using Proposition 10-(a) again, to chain the ESI

inequalities of cη ⋅ V left
n and cη ⋅ V right

n , we obtain:

cη ⋅ Vn ⊴ nη
8Aη

A ⋅ (2L̄(Pn) + L̄(Q≤m) + L̄(Q>m)) + 2PAη
1

1−β + 2A ⋅ COMPn

η ⋅ n , (58)

where Q>m ∶= Q(Z>m) and Q≤m ∶= Q(Z≤m). Let δ ∈]0,1[, and π and G be as in (8). Applying
Proposition 12 to (58) to obtain the corresponding ESI inequality with a random estimator η̂ = η̂(Z≤n)
with support on G, and then applying Proposition 9, we get, with probability at least 1 − δ,

cη̂ ⋅ Vn ≤ A ⋅ (2L̄(Pn) + L̄(Q≤m) + L̄(Q>m)) + 2PAη̂
1

1−β + 2A ⋅ COMPn + 8A ln ∣G∣
δ

η̂ ⋅ n . (59)

Now adding (COMPn + εδ,n)/(η̂ ⋅ n) on both sides of (59) and choosing the estimator η̂ optimally in
the closure of G yields the desired result.

F Proof of Lemma 13

Proof. Part (a) of the lemma was shown in the main body of the paper2. Thus, we only prove part
(b); we will show a slight extension, namely that for all 0 < u < 1, for all β > 0, u > 0,

sup
ρ≤u sup

P ∶EP [X]=ρ,P (X≤u)=1

EX∼P [eβE[X]−X−cX2] > 1 if 0 < c < ϑ(u) or β ≠ 1.

2The proof was inspired by the proof of Theorem 4 in [21].
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The statement of the lemma (16) follows as the special case for β = 1, by replacing X by ηX and
setting u to u ∶= ηb < 1.

We prove this by considering the set of distributions satisfying the constraint E[X] = ρ that are
supported on at most two points,Px,ρ,x̄,u = {P ∶ P{x} + P{x̄} = 1;EP [X] = ρ, x ≤ x̄ ≤ u},
and showing that

sup
ρ≤u sup

P ∈Px,ρ,x̄,u gc,β(P ), with gc,β(P ) ∶= EX∼P [eβρ−X−cX2]
is larger than 1. We first show that , for any β ≠ 1, we can choose such a P such that
supP ∈Px,ρ,x̄,u gc,β(P ) > 1. To see this, write gc,β(P ) as

p ⋅ e−x+βρ−cx2 + (1 − p)e−x̄+βρ−cx̄2

with ρ = EP [X]. We need to maximize this over ρ = px + (1 − p)x̄, so that in the end, we want to
maximize over 0 ≤ p ≤ 1, u ≤ x ≤ x̄ ≤ u, the expression

p ⋅ e−x+β(px+(1−p)x̄)−cx2 + (1 − p)e−x̄+β(px+(1−p)x̄)−cx̄2

Now we write x = x̄ − a for some a ≥ 0. The expression becomes

p ⋅ e−βpa+(β−1)x̄+a−c(x̄−a)2 + (1 − p) ⋅ e−βpa+(β−1)x̄−cx̄2

which is equal to

f(p, a, x̄) ∶= e−cx̄2−βpa+(β−1)x̄ (pea+2cax̄−ca2 + 1 − p) =
if β = 1

ecx̄
2−pa (pea+2cax̄−ca2 + 1 − p) ,

where the dependency of f on c and β is suppressed in the notation. At p = 1 and p = 0, this simplifies
to (using also x again)

f(1, a, x̄) = e−cx̄2−βa+(β−1)x̄ (ea+2cax̄−ca2) = e−cx2+(β−1)x =
if β = 1

e−cx2

f(0, a, x̄) = e−cx̄2+(β−1)x̄ =
if β = 1

e−cx̄2

.

If β < 1, we can choose x = x̄− a negative yet very close to 0 making f(1, a, x̄) > 1; if β > 1, we can
choose x̄ positive yet very close to 0 making f(0, a, x̄) > 1. Thus, sup gc,β(P ) can be made larger
than 1 by P satisfying the constraint if β ≠ 1. This shows (F) for the case β ≠ 1. Hence, from now
on we restrict to the case β = 1; we will further restrict to x and x̄ such that x ≤ 0 ≤ x̄ so x̄ ≤ a. We
will determine the maximum over (F) for a ≥ x̄ and 0 ≤ p ≤ 1, for each given 0 ≤ x̄ ≤ u. The partial
derivatives to p and a are:

∂

∂p
f(p, a, x̄) = e−cx̄2−pa ( (ea+2cax̄−ca2 − 1) − a ⋅ (pea+2cax̄−ca2 + (1 − p)) )

= e−cx̄2−pa ( ea+2cax̄−ca2(1 − ap) − 1 − a + ap)
∂

∂a
f(p, a, x̄) = −p ⋅ e−cx̄2−pa (pea+2cax̄−ca2 + (1 − p))+

+ e−cx̄2−pa ⋅ p ⋅ ea+2cax̄−ca2 ⋅ (1 + 2cx̄ − 2ca)
= p(1 − p) ⋅ e−cx̄2−pa ⋅ (−1 + ea+2cax̄−ca2(1 + 2c

x̄ − a
1 − p )) .

At a = x̄ (i.e. x = 0), f(p, a, x̄) simplifies to

f(p, x̄, x̄) = e−cx̄2−px̄ ⋅ (pex̄+cx̄2 + (1 − p)) so f(1, x̄, x̄) = 1

and the partial derivative to p at (p, a, x̄) = (1, x̄, x̄) becomes

e−cx̄2−x̄ ((ex̄+c(x̄)2 − 1) − x̄ex̄+c(x̄)2) = 1 − e−cx̄2−x̄ − x̄.
If (F) is negative, we can take a = x̄ and p slightly smaller than 1 to get f(p, a, x̄) > 1. This happens
if and only if c is smaller than − ln(1 − x̄) − x̄

x̄2
= ϑ(x̄).

Thus, by taking x = 0 and x̄ = a = u, and p slightly smaller than 1 again, we get f(p, a, x̄) > 1 if
c < ϑ(u); this shows (F) for the case β = 1; the result is proved.
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G Comparison Between “Bernstein” Inequalities

Discussion and Proof of Our Version of Bernstein’s Inequality (17). Standard versions of Bern-
stein’s inequality (see [12], and [15, Lemma 5.6]) can also be brought in ESI notation. In particular,
compared with our version they express the inequality in terms of the random variable Y = −X ,
which is then upper bounded by b; more importantly, they have the second moment rather than the
variance on the right-hand side, resulting in a slightly worse multiplicative factor κ(2ηb) instead of
our κ(ηb); the proof is a standard one (see [12, Lemma A.4]) with trivial modifications: let U ∶= ηX
and ū ∶= ηb. Since κ(u) is nondecreasing in u and U ≤ ū, we have

eU −U − 1

U2
≤ eū − ū − 1

ū2
,

and hence eU −U − 1 ≤ κ(ū)U2. Taking expectation on both sides and using that lnE[eU ] ≤
E[U]− 1, we get lnE [eU ]−E[U] ≤ κ(ū)E[U2]. The result follows by exponentiating, rearranging,
and using the ESI definition.

Comparison Between Un-expected and Empirical Bernstein Inequalities. The proof of the
following proposition demonstrates how the un-expected Bernstein inequality in Lemma 13 together
with the standard Bernstein inequality (17) imply a version of the empirical Bernstein inequality in
[27, Theorem 4] with slightly worse factors. However, the latter inequality cannot be used to derive
our main result — we do really require our new inequality to show Theorem 3, since we need to
“chain” it to work with samples of length n rather than 1 in a different way. In the next proposition,
we will use the following grid G and distribution π,

G ∶= { 1
ν
, . . . , 1

νK
∶K ∶= ⌈logν (√ n

2 ln 2
δ

)⌉} , and π = uniform distribution over G. (60)

for ν > 0. To simplify the presentation, we will use ν = 2 in the next proposition, albeit this may not
be the optimal choice.

Proposition 18. Let G be as in (60) with ρ = 2, and Z,Z1, . . . , Zn be i.i.d random variables taking
values in [0,1]. Then, for all δ ∈]0,1[, with probability at least 1 − δ,

E[Z] − 1

n

n∑
i=1

Zi ≤ ⎛⎜⎜⎝3

¿ÁÁÀVarn[Z] ⋅ ln 2∣G∣
δ

2n
+ 11 ln 2∣G∣

δ

10n

⎞⎟⎟⎠ ∨
11 ln 2∣G∣

δ

4n
+ c1/2 ⋅ ln 2

δ

2n
,

where Varn[Z] ∶= 1
n ∑ni=1 (Zi − 1

n ∑nj=1Zj)2
is the empirical variance, c1/2 ∶= ϑ(1/2)/2, and ϑ as

in Lemma 13.

Proof. Let δ ∈]0,1[. Applying Lemma 13 to Xi = Zi −E[Z], for i ∈ [n], we get, for all 0 < η < 1/2,

E [Z] −Zi ⊴η cη ⋅ (Zi −E[Z])2, where cη ∶= η ⋅ ϑ(η). (61)

Applying Proposition 10-(b) to chain (61) for i = 1, . . . , n, then dividing by n yields

E[Z] − 1

n

n∑
i=1

Zi ⊴nη cη
n

n∑
i=1

(Zi −E[Z])2
,

= cη ⋅Varn[Z] + cη ⋅ (E[Z] − 1

n

n∑
i=1

Zi)2

, (62)

where the equality follows from the standard bias-variance decomposition. Let G and π be as in (60),
and let η̂ = η̂(Z≤n) be any random estimator with support on G. By Proposition 12, a version of (62)
with η is replaced by η̂ and ln(∣G∣)/(nη̂) added to its RHS also holds. By applying Proposition 9 to
this new inequality, we get, with probability at least 1 − δ,

E[Z] − 1

n

n∑
i=1

Zi ≤ cη̂ ⋅Varn[Z] + ln ∣G∣
δ

n ⋅ η̂ + cη̂ ⋅ (E[Z] − 1

n

n∑
i=1

Zi)2

. (63)
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Now using Hoeffding’s inequality [27, Theorem 3], we also have

(E[Z] − 1

n

n∑
i=1

Zi)2 ≤ ln 1
δ

2n
, (64)

with probability at least 1 − δ. Thus, by combining (63) and (64) via the union bound, we get that,
with probability at least 1 − δ,

E[Z] − 1

n

n∑
i=1

Zi ≤ ⎛⎝cη̂ ⋅Varn[Z] + ln 2∣G∣
δ

n ⋅ η̂ ⎞⎠ + cη̂ ⋅ ln
2
δ

2n
. (65)

We now use the fact that for all η ∈]0,1/2[,
cη = η ⋅ ϑ(η) ≤ η

2
+ 11η2

20
. (66)

Let η̂∗ ∈ [0,+∞] be the un-constrained estimator defined by

η̂∗ ∶=
¿ÁÁÀ 2 ln 2∣G∣

δ

Varn[Z] ⋅ n.
Note that by our choice of G in (60), we always have η̂∗ ≥ minG. Let η̂ ∈ ([η̂∗/2, η̂∗]∩G) ≠ ∅, if η̂∗ ≤
1, and η̂ = 1/2, otherwise. In the first case (i.e. when η̂∗ ≤ 1), substituting η for η̂ ∈ ([η̂∗/2, η̂∗] ∩ G)
in the expression between brackets in (65), and using the fact that η̂∗/2 ≤ η̂ ≤ η̂∗ and (66), gives

cη̂ ⋅Varn[Z] + ln 2∣G∣
δ

η̂ ⋅ n ≤ (1 + 2)
¿ÁÁÀVarn[Z] ⋅ ln 2∣G∣

δ

2n
+ 11 ⋅ ln 2∣G∣

δ

10n
. (67)

Now for the case where η̂∗ ≥ 1, we substitute η for η̂ = 1/2 in the expression between brackets in
(65), and use (66) and the fact that 1 ≤ η̂∗ = √

2 ln(2∣G∣/δ)/(Varn[Z] ⋅ n), we get:

cη̂ ⋅Varn[Z] + ln 2∣G∣
δ

η̂ ⋅ n ≤ ( η̂
2
+ 11η̂2

20
) ⋅Varn[Z] + 2 ⋅ ln 2∣G∣

δ

n
,

≤ ( η̂
2
+ 11η̂2

20
) ⋅ 2 ln 2∣G∣

δ

n
+ 2 ⋅ ln 2∣G∣

δ

n
, (due to η̂∗ ≥ 1)

= 11 ln 2∣G∣
δ

4n
, (η̂ = 1/2) (68)

Combining (65), with (67) and (68) yields the desired results.

H Additional Experiments

H.1 Informed Priors

In this section, we run the same experiments as in Section 4 of the main body, except for the following
changes

• For Maurer’s bound, we use the version in our Lemma 4 with informed priors.
• For the TS and Catoni bounds, we build a prior from the first half of the data (i.e. we replace P0

by P (Z≤m), where m = n/2) and use it to evaluate the bounds on the second half of the data. In
this case, the “posterior” distribution is P (Z>m), and thus the term KL(Pn∥P0) is replaced by
KL(P (Z>m)∥P (Z≤m)).

Recall that P (Z>m) ≡ N (ĥ(Z>m), σ2Id), P (Z≤m) ≡ N (ĥ(Z≤m), σ2Id), and P (Z≤n) ≡N (ĥ(Z≤n), σ2Id), where the variance σ2 is learned from a geometric grid (see Section 4); our
own bound is not affected by any of these changes. The results for the synthetic and UCI datasets are
reported in Figure 2 and Table 2, respectively.
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Figure 2: Results for the synthetic data with informed priors.

Dataset n d Test error of ĥ Our Maurer TS Catoni
Haberman 244 3 0.272 0.52 0.459 0.501 0.55
Breast-C. 560 9 0.068 0.185 0.164 0.215 0.219

Tic-Tac-Toe 766 27 0.046 0.19 0.152 0.202 0.199
Bank-note 1098 4 0.058 0.125 0.117 0.136 0.143
kr-vs-kp 2556 73 0.044 0.107 0.102 0.123 0.127

Spam-base 3680 57 0.173 0.293 0.284 0.317 0.323
Mushroom 6500 116 0.002 0.018 0.016 0.023 0.024

Adult 24130 108 0.168 0.195 0.198 0.2 0.203

Table 2: Results for the UCI datasets.

Though our bound still performs better than Catoni’s and TS, Maurer’s bound in Lemma 4 tends to
be slightly tighter than ours, especially when the sample size is small. We note, however, that the
advantage of our bound has not been fully leveraged here; our bound in its full generality in Theorem
3 allows one to use “online posteriors” (Q(Z>i)) and (Q(Z<j)) in the Vn term which converge to
the one based on the full sample, i.e. Q(Z≤n). We expect this to substantially improve our bound.
However, we did not experiment with this due to computational reasons.

H.2 Maurer’s Bound: Informed Versus Uninformed Priors

In this section, we compare the performance of Maurer’s bound with and without informed priors (i.e.
(2) and (9), respectively) on synthetic data in the same setting as Section 4. From Figure 3, we see
that using informed priors as in Lemma 4 substantially improves Maurer’s bound.

H.3 Varying the Bayes Error and Bayes Act

In this subsection, we run the same synthetic experiment as in Subsection (H.1) (i.e. using informed
priors for all bounds), except for the following changes:

• We vary the Bayes error by varying the level of noise: we flip the labels with probability either
0.05, 0.1, or 0.2 (note that in Section 4 we flipped labels with probability 0.1).
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Figure 3: Results for the synthetic data: (Blue curve) Uninformed Maurer’s bound (2); (Red curve)
Informed Maurer’s bound (9).
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Figure 4: Results for the synthetic data with in-
formed priors, randomly generated Bayes act, and
Bayes error set to 0.05.
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Figure 5: Results for the synthetic data with in-
formed priors, randomly generated Bayes act, and
Bayes error set to 0.2.

• In each case, we generate the synthetic data using a randomly generated h∗ with coordinates
uniformly sampled in the interval [0,1]. The reported results in Figures 4-6 are averages over 10
runs for each tested sample size.
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Figure 6: Results for the synthetic data with informed priors, randomly generated Bayes act, and
Bayes error set to 0.1.
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Chapter 6

PAC-Bayesian Bound for the
Conditional Value at Risk

When talking about generalization bounds, it is natural to automatically think about
bounding the difference between the expected risk and its empirical version. However,
in some machine learning applications, the mean performance of an algorithm may
not be the best objective. Such settings include prediction tasks where a mistake im-
plies a disastrous consequence. If such mistakes happen with low enough probability,
they may not be effectively captured by the mean performance. As a result, there is
growing interest in working with alternative measures of risk which can better cap-
ture the “worst” events [Huo and Fu, 2017; Bhat and Prashanth, 2019; Williamson
and Menon, 2019; Chen et al., 2009; Chow and Ghavamzadeh, 2014; Prashanth and
Ghavamzadeh, 2013; Tamar et al., 2015; Pinto et al., 2017; Morimura et al., 2010;
Takeda and Kanamori, 2009]. A prime candidate for this purpose is the Conditional
Value at Risk (CVaR). CVaRα[X] measures the conditional expectation of a real ran-
dom variable X conditioned on the event that X is greater than its (1− α)-quantile.
CVaR has recently been used in many risk-averse applications, including bandits,
reinforcement learning, and fairness.

From a statistical learning perspective, it is desirable to have generalization bounds
for algorithms when the objective is the CVaR of a loss. Generalization bounds for
the expected risk are obtained via concentration inequalities. However, these inequal-
ities cannot directly be used to estimate CVaR due to its non-linearity as a function
of the data-generating distribution. For this reason, generalization bounds for CVaR
are much harder to come by. In this chapter, we reduce the problem of estimating
CVaR to that of estimating the standard expectation from empirical means. Thanks
to this, we derived new tight concentration inequalities for CVaR and the first PAC-
Bayesian bound when learning with a CVaR objective. The bound in question is
data-dependent and becomes small whenever the empirical risk (empirical CVaR in
this case) is small—a property only shared with state-of-the-art PAC-Bayesian bounds
for the expected risk [Langford and Shawe-Taylor, 2003; Maurer, 2004].

143



PAC-Bayesian Bound for the Conditional Value at
Risk

Zakaria Mhammedi
The Australian National University and Data61

zak.mhammedi@anu.edu.au

Benjamin Guedj
Inria and University College London

benjamin.guedj@inria.fr

Robert C. Williamson
bobwilliamsonoz@icloud.com

Abstract

Conditional Value at Risk (CVAR) is a family of “coherent risk measures” which
generalize the traditional mathematical expectation. Widely used in mathematical
finance, it is garnering increasing interest in machine learning, e.g., as an alternate
approach to regularization, and as a means for ensuring fairness. This paper
presents a generalization bound for learning algorithms that minimize the CVAR
of the empirical loss. The bound is of PAC-Bayesian type and is guaranteed to be
small when the empirical CVAR is small. We achieve this by reducing the problem
of estimating CVAR to that of merely estimating an expectation. This then enables
us, as a by-product, to obtain concentration inequalities for CVAR even when the
random variable in question is unbounded.

1 Introduction

The goal in statistical learning is to learn hypotheses that generalize well, which is typically formalized
by seeking to minimize the expected risk associated with a given loss function. In general, a loss func-
tion is a map `∶H ×X → R≥0, where X is a feature space andH is an hypotheses space. In this case,
the expected risk associated with a given hypothesis h ∈ H is given by R[`(h,X)] ∶= E[`(h,X)].
Since the data-generating distribution is typically unknown, the expected risk is approximated using
observed i.i.d. samples X1, . . . ,Xn of X , and an hypothesis is then chosen to minimize the empirical
risk R̂[`(h,X)] ∶= ∑ni=1 `(h,Xi)/n. When choosing an hypothesis ĥ based on the empirical risk R̂,
one would like to know how close R̂[`(ĥ,X)] is to the actual risk R[`(ĥ,X)]; only then can one
infer something about the generalization property of the learned hypothesis ĥ.

Generalization bounds—in which the expected risk is bounded in terms of its empirical version up to
some error—are at the heart of many machine learning problems. The main techniques leading to
such bounds comprise uniform convergence arguments (often involving the Rademacher complexity
of the set H), algorithmic stability arguments (see e.g. [Bousquet and Elisseeff, 2002] and more
recently the work from [Abou-Moustafa and Szepesvári, 2019, Bousquet et al., 2019, Celisse and
Guedj, 2016]), and the PAC-Bayesian analysis for non-degenerate randomized estimators [McAllester,
2003]. Behind these techniques lies concentration inequalities, such as Chernoff’s inequality (for
the PAC-Bayesian analysis) and McDiarmid’s inequality (for algorithmic stability and the uniform
convergence analysis), which control the deviation between population and empirical averages [see
Boucheron et al., 2003, 2013, McDiarmid, 1998, among others].

Standard concentration inequalities are well suited for learning problems where the goal is to
minimize the expected risk E[`(h,X)]. However, the expected risk—the mean performance of
an algorithm—might fail to capture the underlying phenomenon of interest. For example, when
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dealing with medical (responsitivity to a specific drug with grave side effects, etc.), environmental
(such as pollution, exposure to toxic compounds, etc.), or sensitive engineering tasks (trajectory
evaluation for autonomous vehicles, etc.), the mean performance is not necessarily the best objective
to optimize as it will cover potentially disastrous mistakes (e.g., a few extra centimeters when crossing
another vehicle, a slightly too large dose of a lethal compound, etc.) while possibly improving on
average. There is thus a growing interest to work with alternative measures of risk (other than the
expectation) for which standard concentration inequalities do not apply directly. Of special interest
are coherent risk measures [Artzner et al., 1999] which possess properties that make them desirable
in mathematical finance and portfolio optimization [Allais, 1953, Ellsberg, 1961, Rockafellar et al.,
2000], with a focus on optimizing for the worst outcomes rather than on average. Coherent risk
measures have also been recently connected to fairness, and appear as a promising framework to
control the fairness of an algorithm’s solution [Williamson and Menon, 2019].

A popular coherent risk measure is the Conditional Value at Risk (CVAR; see Pflug, 2000); for
α ∈ (0,1) and random variable Z, CVARα[Z] measures the expectation of Z conditioned on the
event that Z is greater than its (1 − α)-th quantile. CVAR has been shown to underlie the classical
SVM [Takeda and Sugiyama, 2008], and has in general attracted a large interest in machine learning
over the past two decades [Bhat and Prashanth, 2019, Chen et al., 2009, Chow and Ghavamzadeh,
2014, Huo and Fu, 2017, Morimura et al., 2010, Pinto et al., 2017, Prashanth and Ghavamzadeh,
2013, Takeda and Kanamori, 2009, Tamar et al., 2015, Williamson and Menon, 2019].

Various concentration inequalities have been derived for CVARα[Z], under different assumptions on
Z, which bound the difference between CVARα[Z] and its standard estimator ĈVARα[Z] with high
probability [Bhat and Prashanth, 2019, Brown, 2007, Kolla et al., 2019, Prashanth and Ghavamzadeh,
2013, Wang and Gao, 2010]. However, none of these works extend their results to the statistical
learning setting where the goal is to learn an hypothesis from data to minimize the conditional value
at risk. In this paper, we fill this gap by presenting a sharp PAC-Bayesian generalization bound when
the objective is to minimize the conditional value at risk.

Related Works. Deviation bounds for CVAR were first presented by Brown [2007]. However,
their approach only applies to bounded continuous random variables, and their lower deviation bound
has a sub-optimal dependence on the level α. Wang and Gao [2010] later refined their analysis to
recover the “correct” dependence in α, albeit their technique still requires a two-sided bound on the
random variable Z. Thomas and Learned-Miller [2019] derived new concentration inequalities for
CVAR with a very sharp empirical performance, even though the dependence on α in their bound is
sub-optimal. Further, they only require a one-sided bound on Z, without a continuity assumption.

Kolla et al. [2019] were the first to provide concentration bounds for CVAR when the random variable
Z is unbounded, but is either sub-Gaussian or sub-exponential. Bhat and Prashanth [2019] used a
bound on the Wasserstein distance between true and empirical cumulative distribution functions to
substantially tighten the bounds of Kolla et al. [2019] when Z has finite exponential or kth-order
moments; they also apply their results to other coherent risk measures. However, when instantiated
with bounded random variables, their concentration inequalities have sub-optimal dependence in α.

On the statistical learning side, Duchi and Namkoong [2018] present generalization bounds for a
class of coherent risk measures that technically includes CVAR. However, their bounds are based on
uniform convergence arguments which lead to looser bounds compared with ours. Another bound
based on a uniform convergence argument was also presented in a concurrent work by Curi et al.
[2020].

Contributions. Given a learning algorithm that outputs a posterior distribution ρ̂ onH, our main
contribution is a PAC-Bayesian generalization bound for the conditional value at risk, where we
bound the difference CVARα[Z] − ĈVARα[Z], for α ∈ (0,1) and Z ∶= Eh∼ρ̂[`(h,X)], by a term

of order
√

ĈVARα[Z] ⋅Kn/(nα), with Kn representing a complexity term which depends on H.
Due to the presence of ĈVARα[Z] inside the square-root, our generalization bound has the desirable
property that it becomes small whenever the empirical conditional value at risk is small. For the
standard expected risk, only state-of-the-art PAC-Bayesian bounds share this property (see e.g. Catoni
[2007], Langford and Shawe-Taylor [2003], Maurer [2004] or more recently in Mhammedi et al.
[2019], Tolstikhin and Seldin [2013]). We refer to [Guedj, 2019] for a recent survey on PAC-Bayes.
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As a by-product of our analysis, we derive a new way of obtaining concentration bounds for the
conditional value at risk by reducing the problem to estimating expectations using empirical means.
This reduction then makes it easy to obtain concentration bounds for CVARα[Z] even when the
random variable Z is unbounded (Z may be sub-Gaussian or sub-exponential). Our bounds have
explicit constants and are sharper than existing ones due to Bhat and Prashanth [2019], Kolla et al.
[2019] which deal with the unbounded case.

Outline. In Section 2, we define the conditional value at risk along with its standard estimator. In
Section 3, we recall the statistical learning setting and present our PAC-Bayesian bound for CVAR.
The proof of our main bound is in Section 4. In Section 5, we present a new way of deriving
concentration bounds for CVAR which stems from our analysis in Section 4. Section 6 concludes
and suggests future directions.

2 Preliminaries

Let (Ω,F , P ) be a probability space. For p ∈ N, we denote by Lp(Ω) ∶= Lp(Ω,F , P ) the space
of p-integrable functions, and we letMP (Ω) be the set of probability measures on Ω which are
absolutely continuous with respect to P . We reserve the notation E for the expectation under the
reference measure P , although we sometimes write EP for clarity. For random variables Z1, . . . , Zn,
we denote P̂n ∶= ∑ni=1 δZi/n the empirical distribution, and we let Z1∶n ∶= (Z1, . . . , Zn). Furthermore,
we let π ∶= (1, . . . ,1)⊺/n ∈ Rn be the uniform distribution on the simplex. Finally, we use the notationÕ to hide log-factors in the sample size n.

Coherent Risk Measures (CRM). A CRM [Artzner et al., 1999] is a functional R∶L1(Ω) →
R ∪ {+∞} that is simultaneously, positive homogeneous, monotonic, translation equivariant, and
sub-additive1 (see Appendix B for a formal definition). For α ∈ (0,1) and a real random variable
Z ∈ L1(Ω), the conditional value at risk CVARα[Z] is a CRM and is defined as the mean of the
random variable Z conditioned on the event that Z is greater than its (1 − α)-th quantile2. This is
equivalent to the following expression, which is more convenient for our analysis:

CVARα[Z] = Cα[Z] ∶= inf
µ∈R{µ + E[Z − µ]+

α
} .

Key to our analysis is the dual representation of CRMs. It is known that any CRM R∶L1(Ω) →
R∪{+∞} can be expressed as the support function of some closed convex setQ ⊆ L1(Ω) [Rockafellar
and Uryasev, 2013]; that is, for any real random variable Z ∈ L1(Ω), we have

R[Z] = sup
q∈Q EP [Zq] = sup

q∈Q ∫Ω
Z(ω)q(ω)dP (ω). (dual representation) (1)

In this case, the setQ is called the risk envelope associated with the risk measure R. The risk envelopeQα of CVARα[Z] is given by

Qα ∶= {q ∈ L1(Ω) ∣ ∃Q ∈MP (Ω), q = dQ

dP
≤ 1

α
} , (2)

and so substituting Qα for Q in (1) yields CVARα[Z].3 Though the overall approach we take in
this paper may be generalizable to other popular CRMs, (see Appendix B) we focus our attention
on CVAR for which we derive new PAC-Bayesian and concentration bounds in terms of its natural
estimator ĈVARα[Z]; given i.i.d. copies of Z1, . . . , Zn of Z, we define

ĈVARα[Z] ∶= Ĉα[Z] ∶= inf
µ∈R{µ + n∑

i=1

[Zi − µ]+
nα

} . (3)

From now on, we write Cα[Z] and Ĉα[Z] for CVARα[Z] and ĈVARα[Z], respectively.
1These are precisely the properties which make coherent risk measures excellent candidates in some machine

learning applications (see e.g. [Williamson and Menon, 2019] for an application to fairness)
2We use the convention in Brown [2007], Prashanth and Ghavamzadeh [2013], Wang and Gao [2010].
3The dual representation of CVAR was also leveraged in a concurrent work by Curi et al. [2020] for the

purpose of efficiently optimizing CVAR objectives.
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3 PAC-Bayesian Bound for the Conditional Value at Risk

In this section, we briefly describe the statistical learning setting, formulate our goal, and present our
main results.

In the statistical learning setting, Z is a loss random variable which can be written as Z = `(h,X),
where `∶H ×X → R≥0 is a loss function and X [resp. H] is a feature [resp. hypotheses] space. The
aim is to learn an hypothesis ĥ = ĥ(X1∶n) ∈H, or more generally a distribution ρ̂ = ρ̂(X1∶n) overH
(also referred to as randomized estimator), based on i.i.d. samples X1, . . . ,Xn of X which minimizes
some measure of risk—typically, the expected risk EP [`(ρ̂,X)], where `(ρ̂,X) ∶= Eh∼ρ̂[`(h,X)].
Our work is motivated by the idea of replacing this expected risk by any coherent risk measure R. In
particular, if Q is the risk envelope associated with R, then our quantity of interest is

R[`(ρ̂,X)] ∶= sup
q∈Q ∫Ω

`(ρ̂,X(ω))q(ω)dP (ω).
Thus, given a consistent estimator R̂[`(ρ̂,X)] of R[`(ρ̂,X)] and some prior distribution ρ0 onH,
our grand goal (which goes beyond the scope of this paper) is to bound the risk R[`(ρ̂,X)] as

R[`(ρ̂,X)] ≤ R̂[`(ρ̂,X)] + Õ⎛⎝
√

KL(ρ̂∥ρ0)
n

⎞⎠ , (4)

with high probability. Based on (3), the consistent estimator we use for Cα[`(ρ̂,X)] is

Ĉα[`(ρ̂,X)] ∶= inf
µ∈R{µ + n∑

i=1

[`(ρ̂,Xi) − µ]+
nα

} , α ∈ (0,1). (5)

This is in fact a consistent estimator (see e.g. [Duchi and Namkoong, 2018, Proposition 9]). As a first
step towards the goal in (4), we derive a sharp PAC-Bayesian bound for the conditional value at risk,
which we state now as our main theorem:
Theorem 1. Let α ∈ (0,1), δ ∈ (0,1/2), n ≥ 2, and N ∶= ⌈log2(n/α)⌉. Further, let ρ0 be any
distribution on an hypothesis set H, `∶H × X → [0,1] be a loss, and X1, . . . ,Xn be i.i.d. copies

of X . Then, for any “posterior” distribution ρ̂ = ρ̂(X1∶n) overH, εn ∶= √
2 ln(N/δ)

αn
+ ln(N/δ)

3αn
, and

Kn ∶= KL(ρ̂∥ρ0) + ln(N/δ), we have, with probability at least 1 − 2δ.

Eh∼ρ̂[Cα[`(h,X)]] ≤ Ĉα[`(ρ̂,X)] +
√

27Ĉα[`(ρ̂,X)]Kn

5αn
+ 2εnĈα[`(ρ̂,X)] + 27Kn

5nα
. (6)

Discussion of the bound. Although we present the bound for the bounded loss case, our result easily
generalizes to the case where `(h,X) is sub-Gaussian or sub-exponential, for all h ∈H. We discuss
this in Section 5. Our second observation is that since Cα[Z] is a coherent risk measure, it is convex
in Z [Rockafellar and Uryasev, 2013], and so we can further bound the term Eh∼ρ̂[Cα[`(h,X)]]
on the LHS of (6) from below by Cα[`(ρ̂,X)] = Cα[Eh∼ρ̂[`(h,X)]]. This shows that the type of
guarantee we have in (6) is in general tighter than the one in (4).

Even though not explicitly done before, a PAC-Bayesian bound of the form (4) can be derived for
a risk measure R using an existing technique due to McAllester [2003] as soon as, for any fixed
hypothesis h, the difference R[`(h,X)] − R̂[`(h,X)] is sub-exponential with a sufficiently fast tail
decay as a function of n (see the proof of Theorem 1 in [McAllester, 2003]). While it has been shown
that the difference Cα[Z] − Ĉα[Z] also satisfies this condition for bounded i.i.d. random variables
Z,Z1, . . . , Zn (see e.g. Brown [2007], Wang and Gao [2010]), applying the technique of McAllester
[2003] yields a bound on Eh∼ρ̂[Cα[`(h,X)]] (i.e. the LHS of (6)) of the form

Eh∼ρ̂[Ĉα[`(h,X)]] +
√

KL(ρ̂∥ρ0) + ln n
δ

αn
. (7)

Such a bound is weaker than ours in two ways; (I) by Jensen’s inequality the term Ĉα[`(ρ̂,X)]
in our bound (defined in (5)) is always smaller than the term Eh∼ρ̂[Ĉα[`(h,X)]] in (7); and (II)
unlike in our bound in (6), the complexity term inside the square-root in (7) does not multiply the
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empirical conditional value at risk Ĉα[`(ρ̂,X)]. This means that our bound can be much smaller
whenever Ĉα[`(ρ̂,X)] is small—this is to be expected in the statistical learning setting since ρ̂

will typically be picked by an algorithm to minimize the empirical value Ĉα[`(ρ̂,X)]. This type
of improved PAC-Bayesian bound, where the empirical error appears multiplying the complexity
term inside the square-root, has been derived for the expected risk in works such as [Catoni, 2007,
Langford and Shawe-Taylor, 2003, Maurer, 2004, Seeger, 2002]; these are arguably the state-of-the-
art generalization bounds.

A reduction to the expected risk. A key step in the proof of Theorem 1 is to show that for a real
random variable Z (not necessarily bounded) and α ∈ (0,1), one can construct a function g∶R→ R
such that the auxiliary variable Y = g(Z) satisfies (I)

E[Y ] = E[g(Z)] = Cα[Z]; (8)

and (II) for i.i.d. copies Z1∶n of Z, the i.i.d. random variables Y1 ∶= g(Z1), . . . , Yn ∶= g(Zn) satisfy

1

n

n∑
i=1

Yi ≤ Ĉα[Z](1 + εn), where εn = Õ(α−1/2n−1/2), (9)

with high probability. Thus, due to (8) and (9), bounding the difference

E[Y ] − 1

n

n∑
i=1

Yi, (10)

is sufficient to obtain a concentration bound for CVAR. Since Y1, . . . , Yn are i.i.d., one can apply stan-
dard concentration inequalities, which are available whenever Y is sub-Gaussian or sub-exponential,
to bound the difference in (10). Further, we show that whenever Z is sub-Gaussian or sub-exponential,
then essentially so is Y . Thus, our method allows us to obtain concentration inequalities for Ĉα[Z],
even when Z is unbounded. We discuss this in Section 5.

4 Proof Sketch for Theorem 1

In this section, we present the key steps taken to prove the bound in Theorem 1. We organize the
proof in three subsections. In Subsection 4.1, we introduce an auxiliary estimator C̃α[Z] for Cα[Z],
α ∈ (0,1), which will be useful in our analysis; in particular, we bound this estimator in terms of
Ĉα[Z] (as in (9) above, but with the LHS replaced by C̃α[Z]). In Subsection 4.2, we introduce
an auxiliary random variable Y whose expectation equals Cα[Z] (as in (8)) and whose empirical
mean is bounded from above by the estimator C̃α[Z] introduced in Subsection 4.1—this enables the
reduction described at the end of Section 3. In Subsection 4.3, we conclude the argument by applying
the classical Donsker-Varadhan variational formula [Csiszár, 1975, Donsker and Varadhan, 1976].

4.1 An Auxiliary Estimator for CVAR

In this subsection, we introduce an auxiliary estimator C̃α[Z] of Cα[Z] and show that it is not much
larger than Ĉα[Z]. For α, δ ∈ (0,1), n ∈ N, and π ∶= (1, . . . ,1)⊺/n ∈ Rn, define:

Q̃α ∶= {q ∈ [0,1/α]n ∶ ∣ Ei∼π[qi] − 1∣ ≤ εn} , where εn ∶=
√

2 ln 1
δ

αn
+ ln 1

δ

3αn
. (11)

Using the set Q̃α, and given i.i.d. copies Z1, . . . , Zn of Z, let

C̃α[Z] ∶= sup
q∈Q̃α

1

n

n∑
i=1

Ziqi. (12)

In the next lemma, we give a “variational formulation” of C̃α[Z], which will be key in our results:

Lemma 2. Let α, δ ∈ (0,1), n ∈ N, and C̃α[Z] be as in (12). Then, for any Z1, . . . , Zn ∈ R,

C̃α[Z] = inf
µ∈R{µ + ∣µ∣εn + Ei∼π[Zi − µ]+

α
} , where εn as in (11). (13)
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The proof of Lemma 2 (which is in Appendix A.1) is similar to that of the generalized Donsker-
Varadhan variational formula considered in [Beck and Teboulle, 2003]. The “variational formulation”
on the RHS of (13) reveals some similarity between C̃α[Z] and the standard estimator Ĉα[Z] defined
in (3). In fact, thanks to Lemma 2, we have the following relationship between the two:

Lemma 3. Let α, δ ∈ (0,1), n ∈ N, and Z1, . . . , Zn ∈ R≥0. Further, let Z(1), . . . , Z(n) be the
decreasing order statistics of Z1, . . . , Zn. Then, for εn as in (11), we have

C̃α[Z] ≤ Ĉα[Z] ⋅ (1 + εn); (14)

and if Z1, . . . , Zn ∈ R (not necessarily positive), then

C̃α[Z] ≤ Ĉα[Z] + ∣Z(⌈nα⌉)∣ ⋅ εn. (15)

The inequality in (15) will only be relevant to us in the case where Z maybe negative, which we deal
with in Section 5 when we derive new concentration bounds for CVAR.

4.2 An Auxiliary Random Variable

In this subsection, we introduce a random variable Y which satisfies the properties in (8) and (9),
where Y1, . . . , Yn are i.i.d. copies of Y (this is where we leverage the dual representation in (1)). This
allows us to the reduce the problem of estimating CVAR to that of estimating an expectation.

Let X be an arbitrary set, and f ∶X → R be some fixed measurable function (we will later set f to a
specific function depending on whether we want a new concentration inequality or a PAC-Bayesian
bound for CVAR). Given a random variable X in X (arbitrary for now), we define

Z ∶= f(X) (16)

and the auxiliary random variable:

Y ∶= Z ⋅ E[q⋆ ∣X] = f(X) ⋅ E[q⋆ ∣X], where q⋆ ∈ argmax
q∈Qα E[Zq], (17)

andQα as in (2). In the next lemma, we show two crucial properties of the random variable Y—these
will enable the reduction mentioned at the end of Section 3:

Lemma 4. Let α, δ ∈ (0,1) and X1, . . . ,Xn be i.i.d. random variables in X . Then, (I) the random
variable Y in (17) and Yi ∶= Zi ⋅ E[q⋆ ∣ Xi], i ∈ [n], where Zi ∶= f(Xi), are i.i.d. and satisfy
E[Y ] = E[Yi] = Cα[Z], for all i ∈ [n]; and (II) with probability at least 1 − δ,

(E[q⋆ ∣X1], . . . ,E[q⋆ ∣Xn])⊺ ∈ Q̃α, where Q̃α is as in (11). (18)

The random variable Y introduced in (17) will now be useful since due to (18) in Lemma 4, we have,
for α, δ ∈ (0,1); Z as in (16); and i.i.d. random variables X,X1, . . . ,Xn ∈ X ,

P [ 1

n

n∑
i=1

Yi ≤ C̃α[Z]] ≥ 1 − δ, where Yi = Zi ⋅ E[q⋆ ∣Xi] (19)

and C̃α[Z] as in (12). We now present a concentration inequality for the random variable Y in (17);
the proof, which can be found in Appendix A, is based on a version of the standard Bernstein’s
moment inequality [Cesa-Bianchi and Lugosi, 2006, Lemma A.5]:

Lemma 5. Let X, (Xi)i∈[n] be i.i.d. random variables in X . Further, let Y be as in (17), and
Yi = f(Xi) ⋅ E[q⋆ ∣Xi], i ∈ [n], with q⋆ as in (17). If {f(x) ∣ x ∈ X} ⊆ [0,1], then for all η ∈ [0, α],

E [exp(nη ⋅ (EP [Y ] − 1

n

n∑
i=1

Yi − ηκ(η/α)
α

Cα[Z]))] ≤ 1, where Z = f(X),
and κ(x) ∶= (ex − 1 − x)/x2, for x ∈ R.

Lemma 5 will be our starting point for deriving the PAC-Bayesian bound in Theorem 1.
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4.3 Exploiting the Donsker-Varadhan Formula

In this subsection, we instantiate the results of the previous subsections with f(⋅) ∶= `(⋅, h), h ∈H,
for some loss function `∶H ×X → [0,1]; in this case, the results of Lemmas 3 and 5 hold for

Z = Zh ∶= `(h,X), (20)

for any hypothesis h ∈H. Next, we will need the following result which follows from the classical
Donsker-Varadhan variational formula [Csiszár, 1975, Donsker and Varadhan, 1976]:
Lemma 6. Let δ ∈ (0,1), γ > 0 and ρ0 be any fixed (prior) distribution over H. Further, let{Rh ∶ h ∈ H} be any family of random variables such that E[exp(γRh)] ≤ 1, for all h ∈ H. Then,
for any (posterior) distribution ρ̂ overH, we have

P [Eh∼ρ̂[Rh] ≤ KL(ρ̂∥ρ0) + ln 1
δ

γ
] ≥ 1 − δ.

In addition to Zh in (20), define Yh ∶= `(h,X) ⋅ E[q⋆ ∣ X] and Yh,i ∶= `(h,Xi) ⋅ E[q⋆ ∣ Xi], for
i ∈ [n]. Then, if we set γ = ηn and Rh = EP [Yh] −∑ni=1 Yh,i/n − ηκ(η/α)Cα[Zh]/α, Lemma 5
guarantees that E[exp(γRh)] ≤ 1, and so by Lemma 6 we get the following result:
Theorem 7. Let α, δ ∈ (0,1), and η ∈ [0, α]. Further, let X1, . . . ,Xn be i.i.d. random variables inX . Then, for any randomized estimator ρ̂ = ρ̂(X1∶n) overH, we have, with Ẑ ∶= Eh∼ρ̂[`(h,X)],

Eh∼ρ̂[Cα[`(h,X)]] ≤ Ĉα[Ẑ](1 + εn) + ηκ(η/α) Eh∼ρ̂[Cα[`(h,X)]]
α

+ KL(ρ̂∥ρ0) + ln 1
δ

ηn
, (21)

with probability at least 1 − 2δ on the samples X1, . . . ,Xn, where εn is defined in (11).

If we could optimize the RHS of (21) over η ∈ [0, α], this would lead to our desired bound in
Theorem 1 (after some rearranging). However, this is not directly possible since the optimal η depends
on the sampleX1∶n through the term KL(ρ̂∥ρ0). The solution is to apply the result of Theorem 7 with
a union bound, so that (21) holds for any estimator η̂ = η̂(X1∶n) taking values in a carefully chosen
grid G; to derive our bound, we will use the grid G ∶= {α2−1, . . . , α2−N ∣ N ∶= ⌈1/2 log2(n/α)⌉} .
From this point, the proof of Theorem 1 is merely a mechanical exercise of rearranging (21) and
optimizing η̂ over G, and so we postpone the details to Appendix A.

5 New Concentration Bounds for CVAR

In this section, we show how some of the results of the previous section can be used to reduce the
problem of estimating Cα[Z] to that of estimating a standard expectation. This will then enable us to
easily obtain concentration inequalities for Ĉα[Z] even when Z is unbounded. We note that previous
works [Bhat and Prashanth, 2019, Kolla et al., 2019] used sophisticated techniques to deal with the
unbounded case (sometimes achieving only sub-optimal rates), whereas we simply invoke existing
concentration inequalities for empirical means thanks to our reduction.

The key results we will use are Lemmas 3 and 4, where we instantiate the latter with X = R and
f ≡ id, in which case:

Y = Z ⋅ E[q⋆ ∣ Z], and q⋆ ∈ argmax
q∈Qα E[Zq]. (22)

Together, these two lemmas imply that, for any α, δ ∈ (0,1), i.i.d. random variables Z1, . . . , Zn,

Cα[Z] − Ĉα[Z] − ∣Z(⌈nα⌉)∣ εn ≤ E[Y ] − 1

n

n∑
i=1

Yi, (23)

with probability at least 1 − δ, where εn is as in (11) and Z(1), . . . , Z(n) are the decreasing order
statistics of Z1, . . . , Zn ∈ R. Thus, getting a concentration inequality for Ĉα[Z] can be reduced to
getting one for the empirical mean ∑ni=1 Yi/n of the i.i.d. random variables Y1, . . . , Yn. Next, we
show that whenever Z is a sub-exponential [resp. sub-Gaussian] random variable, essentially so is Y .
But first we define what this means:
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Definition 8. Let I ⊆ R, b > 0, and Z be a random variable such that, for some σ > 0,

E[exp (η ⋅ (Z − E[Z]))] ≤ exp (η2σ2/2) , ∀η ∈ I,
Then, Z is (σ, b)-sub-exponential [resp. σ-sub-Gaussian] if I = (−1/b,1/b) [resp. I = R].
Lemma 9. Let σ, b > 0 and α ∈ (0,1). Let Z be a zero-mean real random variable and let Y be as
in (22). If Z is (σ, b)-sub-exponential [resp. σ-sub-Gaussian], then

E[exp(ηY )] ≤ 2 exp(η2σ2/(2α2)), ∀η ∈ (−α/b,α/b) [resp. η ∈ R]. (24)

Note that in Lemma 9 we have assumed that Z is a zero-mean random variable, and so we still need
to do some work to derive a concentration inequality for Ĉα[Z]. In particular, we will use the fact
that Cα[Z − E[Z]] = Cα[Z] − E[Z] and Ĉα[Z − E[Z]] = Ĉα[Z] − E[Z], which holds since Cα
and Ĉα are coherent risk measures, and thus translation equivariant (see Definition 14). We use this
in the proof of the next theorem (which is in Appendix A):
Theorem 10. Let σ, b > 0, α, δ ∈ (0,1), and εn be as in (11). If Z is a σ-sub-Gaussian random
variable, then with G[Z] ∶= Cα[Z] − Ĉα[Z] and tn ∶= ∣Z(⌈nα⌉) − E[Z]∣ ⋅ εn, we have

P [G[Z] ≥ t + tn] ≤ δ + 2 exp(−nα2t2/(2σ2)), ∀t ≥ 0; (25)
otherwise, if Z is (σ, b)-sub-exponential random variable, then

P [G[Z] ≥ t + tn] ≤ δ + { 2 exp (−nα2t2/(2σ2)) , if 0 ≤ t ≤ σ2/(bα);
2 exp (−nαt/(2b)) , if t > σ2/(bα).

We note that unlike the recent results due to Bhat and Prashanth [2019] which also deal with the
unbounded case, the constants in our concentration inequalities in Theorem 10 are explicit.

When Z is a σ-sub-Gaussian random variable with σ > 0, an immediate consequence of Theorem 10
is that by setting t = √

2σ2 ln(2/δ)/(nα2) in (25), we get that, with probability at least 1 − 2δ,

Cα[Z] − Ĉα[Z] ≤ σ
α

√
2 ln 1

δ

n
+ ∣Z(⌈nα⌉) − E[Z]∣ ⋅ ⎛⎜⎝

√
2 ln 1

δ

αn
+ ln 1

δ

3αn

⎞⎟⎠ . (26)

A similar inequality holds for the sub-exponential case. We note that the term ∣Z(⌈nα⌉) − E[Z]∣ in
(26) can be further bounded from above by

nα⌊nα⌋ Ĉα[Z] − EP̂n[Z] + ∣E[Z] − EP̂n[Z]∣ . (27)

This follows from the triangular inequality and facts that Ĉα[Z] ≥ 1
nα ∑⌊nα⌋

i=1 Z(i) ≥ ⌊nα⌋
nα

Z(⌈nα⌉) (see
e.g. Lemma 4.1 in Brown [2007]), and Ĉα[Z] ≥ EP̂n[Z] [Ahmadi-Javid, 2012]. The remaining
term ∣ EP [Z] − EP̂n[Z]∣ in (27) which depends on the unknown P can be bounded from above using
another concentration inequality.

Generalization bounds of the form (4) for unbounded but sub-Gaussian or sub-exponential `(h,X),
h ∈H, can be obtained using the PAC-Bayesian analysis of [McAllester, 2003, Theorem 1] and our
concentration inequalities in Theorem 10. However, due to the fact that α is squared in the argument
of the exponentials in these inequalities (which is also the case in the bounds of Bhat and Prashanth
[2019], Kolla et al. [2019]) the generalization bounds obtained this way will have the α outside the
square-root “complexity term”—unlike our bound in Theorem 1.

We conjecture that the dependence on α in the concentration bounds of Theorem 10 can be improved
by swapping α2 for α in the argument of the exponentials; in the sub-Gaussian case, this would
move α inside the square-root on the RHS of (26). We know that this is at least possible for bounded
random variables as shown in Brown [2007], Wang and Gao [2010]. We now recover this fact
by presenting a new concentration inequality for Ĉα[Z] when Z is bounded using the reduction
described at the beginning of this section.
Theorem 11. Let α, δ ∈ (0,1), and Z1∶n be i.i.d. rvs in [0,1]. Then, with probability at least 1 − 2δ,

Cα[Z] − Ĉα[Z] ≤
√

12Cα[Z] ln 1
δ

5αn
∨ 3 ln 1

δ

αn
+ Cα[Z] ⎛⎜⎝

√
2 ln 1

δ

αn
+ ln 1

δ

3αn

⎞⎟⎠ . (28)
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The proof is in Appendix A. The inequality in (28) essentially replaces the range of the random
variable Z typically present under the square-root in other concentration bounds [Brown, 2007, Wang
and Gao, 2010] by the smaller quantity Cα[Z]. The concentration bound (28) is not immediately
useful for computational purposes since its RHS depends on Cα[Z]. However, it is possible to
rearrange this bound so that only the empirical quantity Ĉα[Z] appears on the RHS of (28) instead
of Cα[Z]; we provide the means to do this in Lemma 13 in the appendix.

6 Conclusion and Future Work

In this paper, we derived a first PAC-Bayesian bound for CVAR by reducing the task of estimating
CVAR to that of merely estimating an expectation (see Section 4). This reduction then made it easy to
obtain concentration inequalities for CVAR (with explicit constants) even when the random variable
in question is unbounded (see Section 5).

We note that the only steps in the proof of our main bound in Theorem 1 that are specific to CVAR
are Lemmas 2 and 3, and so the question is whether our overall approach can be extended to other
coherent risk measures to achieve (4).

In Appendix B, we discuss how our results may be extended to a rich class of coherent risk measures
known as ϕ-entropic risk measures. These CRMs are often used in the context of robust optimization
Namkoong and Duchi [2017], and are perfect candidates to consider next in the context of this paper.

9



Broader Impact

Coherent risk measures (including conditional value at risk) have been gaining significant traction
in the machine learning community recently, as they allow for capturing in a much richer way the
behaviour and performance of algorithms’ outputs. This comes at the expense of a much harder
theoretical analysis and such measures are not supported by as many guarantees than the traditional
mean risk (expectation of the loss). We provide in this paper one of the few generalisation bounds for
CVAR and we believe this will shed light on the advantages of using CVAR in machine learning. We
intend our contributions to be of prime interest to theoreticians, but also to practitioners.
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A Proofs

A.1 Proof of Lemma 2

Proof Let ϕ(⋅) ∶= ι[0,1/α](⋅), where for a set C ⊆ R, ιC(x) = 0 if x ∈ C; and +∞ otherwise. From
(12), we have that C̃α[Z] is equal to

P ∶= sup
q∶∣ Ei∼π[qi]−1∣≤εn Ei∼π[Ziqi − ϕ(qi)], (29)

where we recall that π = (1, . . . ,1)⊺/n ∈ Rn. The Lagrangian dual D of (29) is given by

D ∶= inf
η,γ≥0

⎧⎪⎪⎨⎪⎪⎩η − γ + (η + γ)εn + sup
q∶0≤qi≤1/α,i∈[n]{Ei∼π[(Zi − η + γ)qi − ϕ(qi)]}⎫⎪⎪⎬⎪⎪⎭ ,

= inf
η,γ≥0

⎧⎪⎪⎨⎪⎪⎩η − γ + (η + γ)εn + Ei∼π
⎡⎢⎢⎢⎣ sup

0≤x≤1/α{(Zi − η + γ)x − ϕ(x)}⎤⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ ,= inf

η,γ≥0
{η − γ + (η + γ)εn + Ei∼π[ϕ⋆(Zi − η + γ)]} , (30)

= inf
µ∈R{µ + ∣µ∣εn + Ei∼π[ϕ⋆(Zi − µ)]} , (31)

where (30) is due to {x ∈ R ∣ ϕ(x) < +∞} = [0,1/α], and (31) follows by setting µ ∶= η − γ and
noting that the inf in (30) is always attained at a point (η, γ) ∈ R2≥0 satisfying η ⋅ γ = 0, in which case
η + γ = ∣µ∣; this is true because by the positivity of εn, if η, γ > 0, then (η + γ)εn can always be made
smaller while keeping the difference η − γ fixed. Finally, since the primal problem is feasible—q = π
is a feasible solution—there is no duality gap (see the proof of [Beck and Teboulle, 2003, Theorem
4.2]), and thus the RHS of (31) is equal to P in (29). The proof is concluded by noting that the
Fenchel dual of ϕ satisfies ϕ⋆(z) = 0 ∨ (z/α), for all z ∈ R. ∎
A.2 Proof of Lemma 3

Proof Let µ̂ be the argmin in µ ∈ R of the RHS of (3). By Lemma 2, we have

C̃α[Z] = inf
µ∈R{µ + ∣µ∣εn + Ei∼π[Zi − µ]+

α
} ,

≤ µ̂ + ∣µ̂∣εn + Ei∼π[Zi − µ̂)]+
α

,

= Ĉα[Z] + ∣µ̂∣εn. (by definition of µ̂) (32)

The inequality in (15) follows from (32) and the fact that µ̂ = Z(⌈nα⌉) (see proof of [Brown, 2007,
Proposition 4.1]).

Now we show (14) under the assumption that Zi ≥ 0, for all i ∈ [n]. Note that by definition
Ĉα[Z] = µ̂ + 1

α
Ei∼π[Zi − µ̂]+, and so µ̂ ≤ Ĉα[Z]. Furthermore, since α ∈ (0,1) and Zi ≥ 0, for

i ∈ [n], the RHS of (3) is a decreasing function of µ on ] −∞,0], and thus µ̂ ≥ 0 (since µ̂ is the
minimizer of (3)). Combining the fact that 0 ≤ µ̂ ≤ Ĉα[Z] with (32) completes the proof. ∎
A.3 Proof of Lemma 4

Proof The first claim follows by the fact that Xi, i ∈ [n], are i.i.d., and an application of the total
expectation theorem. Now for the second claim, let ∆ ∶= ∣ EP̂n[q⋆ ∣X] − 1∣. Since q⋆ is a density, the
total expectation theorem implies

∆ = ∣ EP̂n[q⋆ ∣X] − E[E[q⋆ ∣X]]∣,
13



and so by Bennett’s inequality (see e.g. Theorem 3 in Maurer and Pontil [2009]) applied to the
random variable E[q⋆ ∣X], we get that, with probability at least 1 − δ,

∆ ≤
√

2VAR[E[q⋆ ∣X]] ln 1
δ

n
+ ∥ E[q⋆ ∣X]∥∞ ln 1

δ

3n
,

≤
√

2 E[E[q⋆ ∣X]2] ln 1
δ

n
+ ∥ E[q⋆ ∣X]∥∞ ln 1

δ

3n
,

≤
√

2∥ E[q⋆ ∣X]∥∞ ln 1
δ

n
+ ∥ E[q⋆ ∣X]∥∞ ln 1

δ

3n
,

where the last inequality follows by the fact that E[E[q⋆ ∣ X]2] ≤ E[E[q⋆ ∣ X]] ⋅ ∥ E[q⋆ ∣ X]∥∞ =∥ E[q⋆ ∣ X]∥∞, which holds since E[q⋆ ∣ X] ≥ 0 and E[E[q⋆ ∣ X]] = E[q⋆] = 1. The proof is
concluded by the facts that ∥ E[q⋆ ∣ X]∥∞ ≤ ∥q⋆∥∞ (by Jensen’s inequality); ∥q∥∞ ≤ 1/α, for all
q ∈ Qα by definition; and q⋆ ∈ Qα. ∎
A.4 Proof of Lemma 5

We need the following lemma in the proof of Lemma 5:
Lemma 12. Let S,S1, . . . , Sn be i.i.d. random variable such that S ∈ [0,B], B > 0. We have,

EP [exp(nη EP [S] − η n∑
i=1

Si − nη2κ(ηB) ⋅ EP [S2])] ≤ 1, (33)

for all η ∈ [0,1/B], where κ(η) ∶= (eη − η − 1)/η2.

Proof The desired bound follows by the version of Bernstein’s moment inequality in [Cesa-Bianchi
and Lugosi, 2006, Lemma A.5] and [Mhammedi et al., 2019, Proposition 10-(b)]. ∎
Proof of Lemma 5 By Lemma 4, the random variables Y,Y1, . . . , Yn are i.i.d., and so the result
of Lemma 12 applies; this means that (33) holds for (S,S1, . . . , Sn) = (Y,Y1, . . . , Yn) and B =
b ≥ ∥Y ∥∞. Thus, to complete the proof it suffices to bound ∥Y ∥∞ and ∥Y ∥2

2 = E[Y 2] from above.
Starting with E[Y 2], and recalling that Z = f(X) ∈ [0,1] by assumption, we have:

E[Y 2] = E[Z2 ⋅ E[q⋆ ∣X]2],≤ E[Z ⋅ E[q⋆ ∣X]] ⋅ ∥Z ⋅ E[q⋆ ∣X]∥∞, (Hölder)≤ Cα[Z] ⋅ ∥Z ⋅ E[q⋆ ∣X]∥∞, (Lemma 4)≤ Cα[Z]/α, (Z ≤ 1, q⋆ ≤ 1/α)
where the fact that q⋆ ≤ 1/α follows simply from q⋆ ∈ Qα and the definition of Qα. We also have∥Y ∥∞ = ∥Z ⋅ E[q⋆ ∣X]∥∞ ≤ ∥Z∥∞ ⋅ ∥ E[q⋆ ∣X]∥∞,≤ ∥q⋆∥∞, (Z ≤ 1 & Jensen)≤ 1/α,
again the last inequality follows from q⋆ ∈ Qα and the definition of Qα. ∎
A.5 Proof of Theorem 7

Proof Let h ∈H and α, δ ∈ (0,1), and define

Rh ∶= Cα[Zh] − 1

n

n∑
i=1

Yi − ηκ(η/α)
α

Cα[Zh], (34)

where Yi ∶= `(h,Xi) ⋅ E[q⋆ ∣ Xi], i ∈ [n], where q⋆ is as in (17) with Z as in (20). By Lemma 4,
Cα[Zh] = EP [Y ], where Y ∶= `(h,X) ⋅ E[q⋆ ∣ X]. Thus, by Lemma 5 with Z = Zh, we have
EP [exp(nηRh)] ≤ 1. Applying Lemma 6 with Rh as in (34) and γ = nη, yields,

Eh∼ρ̂[Cα[`(h,X)]] ≤ 1

n

n∑
i=1

`(ρ̂,Xi) ⋅ E[q⋆ ∣Xi] + ηκ(η/α) Eh∼ρ̂[Cα[`(h,X)]]
α

+ KL(ρ̂∥ρ0) + ln 1
δ

ηn
, (35)
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with probability at least 1 − δ. Now invoking Lemmas 3 and 4 (in particular (18)), yields

1

n

n∑
i=1

`(ρ̂,Xi) ⋅ E[q⋆ ∣Xi] ≥ Ĉα[Ẑ] ⋅ (1 + εn).
with probability at least 1 − δ, where Ẑ ∶= Eh∼ρ̂[`(h,X)]. Combining this with (35) via a union
bound yields the desired bound. ∎
A.6 Proof of Theorem 1

To prove Theorem 1, we will need the following lemma:

Lemma 13. Let R, R̂,A,B > 0. If R ≤ R̂ +√
RA +B, then

R ≤ R̂ +√
R̂A + 2B +A.

Proof If R ≤ R̂ +√
RA +B, then for all η > 0,

R ≤ R̂ + η
2
R + A

2η
+B,

which after rearranging, becomes,

R ≤ R̂

1 − η/2 + A

2η ⋅ (1 − η/2) + B

1 − η/2 , for η ∉ {0,2}. (36)

The minimizer of the RHS of (36) is given by

η = η⋆ ∶= −A +√
A2 + 4AB + 4AR̂

2(B + R̂) .

Plugging this η into (36), yields,

R ≤ R̂ + A
2
+B + 1

2

√
4AR̂ +A2 + 4AB,

≤ R̂ +A + 2B +√
AR̂, (37)

where (37) follows by the facts that A2 + 4AB ≤ (A + 2B)2 and
√

4R̂A + (A + 2B)2 ≤ √
4R̂A +

A + 2B. ∎
Proof of Theorem 1 Define the grid G by

G ∶= {2−1α, . . . ,2−Nα ∣ N ∶= ⌈1/2 ⋅ log2
n
α
⌉} ,

and let η̂ = η̂(Z1∶n) ∈ G be any estimator. Then, using the fact that κ(x) ≤ 3/5, for all x ≤ 1/2, and

invoking Theorem 7 with a union bound over η ∈ G, and εn ∶= √
2 ln N

δ

αn
+ ln N

δ

3αn
, we get that

Eh∼ρ̂[Cα[`(h,X)]] − Ĉα[Ẑ] ⋅ (1 + εn) ≤ KL(ρ̂∥ρ0) + ln N
δ

η̂n
+ 3η̂

5α
Eh∼ρ̂[Cα[`(h,X)]], (38)

with probability at least 1−2δ, where we recall that Ẑ = Eh∼ρ̂[`(h,X)]. Let η̂ be an estimator which
satisfies

η̂ ∈ [η⋆ ∧ (α/2), 2η⋆] ∩ G, where η⋆ ∶=
¿ÁÁÀ5α ⋅ (KL(ρ̂∥ρ0) + ln N

δ
)

3nEh∼ρ̂[Cα[`(h,X)]] (39)

is the unconstrained minimizer η̂ of the RHS of (38). Since the loss ` has range in [0,1], KL(ρ̂∥ρ0) ≥
0, and (δ, n) ∈]0,1/2[×[2,+∞[, we have η⋆ ≥ √

α/n ≥ minG. This, with the fact that G is in the
form of a geometric progression with common ratio 2 and maxG = α/2, ensures the existence (and
in fact the uniqueness) of η̂ satisfying (39).
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Case 1. Suppose that η⋆ ≤ α/2. In this case, the estimator η̂ in (39) satisfies η⋆ ≤ η̂ ≤ 2η⋆. Plugging
η̂ into (38) yields

Eh∼ρ̂[Cα[`(h,X)]] − Ĉα[Ẑ] ≤ 3

¿ÁÁÀ3 Eh∼ρ̂[Cα[`(h,X)]] ⋅ (KL(ρ̂∥ρ0) + ln N
δ
)

5αn
+ Ĉα[Ẑ] ⋅ εn.

By applying Lemma 13 with R = Eh∼ρ̂[Cα[`(h,X)]], R̂ = Ĉα[Ẑ], A = 27(KL(ρ̂∥ρ0)+ln N
δ )

5αn
, and

B = Ĉα[Ẑ] ⋅ εn, we get

Eh∼ρ̂[Cα[`(h,X)]] − Ĉα[Ẑ] ≤
¿ÁÁÀ27Ĉα[Ẑ] ⋅ (KL(ρ̂∥ρ0) + ln N

δ
)

5αn
+ 2Ĉα[Ẑ] ⋅ εn

+ 27(KL(ρ̂∥ρ0) + ln N
δ
)

5nα
. (40)

Case 2. Suppose now that η⋆ > α/2. In this case, η̂ = α/2. Plugging this into (38) and using the
fact that η⋆ > α/2, yields

Eh∼ρ̂[Cα[`(h,X)]] − Ĉα[Ẑ] ≤ 4(KL(ρ̂∥ρ0) + ln N
δ
)

αn
+ Ĉα[Ẑ] ⋅ εn. (41)

Since Ĉα[Ẑ] ≥ 0 and 4 ≤ 27/5, the RHS of (41) is less than the RHS of (40), which completes the
proof. ∎
A.7 Proof of Lemma 9

Proof Suppose that Z is (σ, b)-sub-exponential. Then,

E[eηZ] ≤ e η2σ22 , ∀∣η∣ ≤ 1/b. (42)

Using that E[q⋆ ∣ Z] ≤ 1/α, we get

∣ηY ∣ ≤ ∣ηZ ∣/α, ∀η ∈ R, (43)

and so, for all ∣η∣ ≤ α/b, we have

E[eηY ] ≤ E[e∣ηY ∣] (43)≤ E[e ηZα ] + E[e− ηZα ] (42)≤ 2e
η2σ2

2α2 .

When Z is σ-sub-Gaussian case, the proof is the same, except that we replace b by 0. ∎
A.8 Proof of Theorem 11

Proof Let X = [0,1] and f ≡ id be the identity map. By invoking Lemmas 3 and 5 with Z = f(X) =
X; and using (19) (which is a consequence of Lemma 4), we get, for all η ∈ [0, α],

EP [exp(nη ⋅ (Cα[Z] − Ĉα[Z](1 + εn) − ηκ(η/α)Cα[Z]
α

))] ≤ 1, (44)

with probability at least 1 − δ, where εn is as in (11). By adding Cα[Z] ⋅ εn to both sides of (44) and
using the fact that κ(x) ≤ 3/5, for all x ≤ 1/2, we get, for all η ∈ [0, α/2],

EP [exp(nη ⋅ (Cα[Z] − Ĉα[Z] − ( 3η

5α
+ εn) Cα[Z]))] ≤ 1, (45)

with probability at least 1 − δ. Let W ∶= Cα[Z] − Ĉα[Z] − ( 3η
5α

+ εn) Cα[Z], and note that by (45),
we have

P [EP [exp(nηW )] ≤ 1] ≥ 1 − δ.
16



Let E be the event that EP [exp(nηW )] ≤ 1. With this, we have, for any δ ∈ (0,1) and all η ∈ [0, α/2],
P [Cα[Z] − Ĉα[Z] ≥ ( 3η

5α
+ εn) Cα[Z] + ln 1

δ

ηn
] = P [enηW ≥ 1

δ
]

= P [enηW ≥ 1

δ
∣E] ⋅ P [E]

+ P [enηW ≥ 1

δ
∣Ec] ⋅ (1 − P [E]),

≤ δ E[enηW ∣ E] + δ, (46)≤ 2δ, (by definition of E) (47)

where (46) follows by Markov’s inequality and (45). Now, we can re-express (47) as

Cα[Z] − Ĉα[Z] ≤ ( 3η

5α
+ εn) Cα[Z] + ln 1

δ

ηn
,

with probability at least 1 − 2δ. By setting η = √
5α ln 1

δ

3nCα[Z] ∧ α/2 (which does not depend on the
samples), we get

Cα[Z] − Ĉα[Z] ≤ εnCα[Z] +
√

12Cα[Z] ln 1
δ

5αn
∨ 3 ln 1

δ

αn
,

with probability at least 1 − 2δ. ∎
A.9 Proof of Theorem 10

Proof Let Z̄ = Z − E[Z]. Suppose that Z is (σ, b)-sub-exponential. In this case, by Lemma 9 the
random variable Y ∶= Z̄ ⋅ E[q⋆ ∣ Z̄] satisfies (24), and so by [Wainwright, 2019, Theorem 2.19], we
have

P [E[Y ] − 1

n

n∑
i=1

Yi ≥ t] ≤ ⎧⎪⎪⎨⎪⎪⎩
2e−nα2t2

2σ2 , if 0 ≤ t ≤ σ2

bα
;

2e−nαt2b , if t > σ2

bα
.

(48)

For any real random variables A,B, and C, we have [A ≥ C] Ô⇒ [A ≥ B or B ≥ C], and
so P [A ≥ C] ≤ P [A ≥ B] + P [B ≥ C]. Applying this with A = Cα[Z̄] − Ĉα[Z̄] − ∣Z̄(⌈nα⌉)∣εn,
B = E[Y ] −∑ni=1 Yi/n, and C = t ∈ R. we get:

P [Cα[Z̄] − Ĉα[Z̄] − ∣Z̄(⌈nα⌉)∣ ⋅ εn ≥ t] ≤ P [Cα[Z̄] − Ĉα[Z̄] − ∣Z̄(⌈nα⌉)∣ ⋅ εn ≥ E[Y ] − 1

n

n∑
i=1

Yi]
+ P [E[Y ] − 1

n

n∑
i=1

Yi ≥ t] ,
≤ δ + ⎧⎪⎪⎨⎪⎪⎩

2e−nα2t2

2σ2 , if 0 ≤ t ≤ σ2

bα
;

2e−nαt2b , if t > σ2

bα
,

(49)

where the last inequality follows by (48) and the fact that (23) (with Z replaced by Z̄) holds
with probability at least 1 − δ. Since Cα[Z] [resp. Ĉα[Z]] is a coherent risk measure, we have
Cα[Z̄] = Cα[Z] − E[Z] [resp. Ĉα[Z̄] = Ĉα[Z] − E[Z]], and so the LHS of (49) is equal to

P [Cα[Z] − Ĉα[Z] ≥ t + ∣Z̄(⌈nα⌉)∣ ⋅ εn] .
This with the fact that Z̄(⌈nα⌉) = Z(⌈nα⌉) − E[Z] completes the proof for the sub-exponential case.

When Z is σ-sub-Gaussian case, the proof is the same, except that we replace b by 0 and use the
convention that 0/0 = +∞. ∎
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B Beyond CVAR

First, we give a formal definition of a coherent risk measure (CRM):
Definition 14. We say that R∶L1(Ω) → R ∪ {+∞} is a coherent risk measure if, for any Z,Z ′ ∈L1(Ω) and c ∈ R, it satisfies the following axioms: (Positive Homogeneity) R[λZ] = λR[Z], for
all λ ∈ (0,1); (Monotonicity) R[Z] ≤ R[Z ′] if Z ≤ Z ′ a.s.; (Translation Equivariance) R[Z + c] =
R[Z] + c; (Sub-additivity) R[Z +Z ′] ≤ R[Z] + R[Z ′].
It is known that the conditional value at risk is a member of a class of CRMs called ϕ-entropic risk
measures Ahmadi-Javid [2012]. These CRMs are often used in the context of robust optimization
Namkoong and Duchi [2017], and are perfect candidates to consider next in the context of this paper:
Definition 15. Let ϕ∶ [0,+∞[→ R ∪ {+∞} be a closed convex function such that ϕ(1) = 0. The
ϕ-entropic risk measure with divergence level c is defined as

ERcϕ[Z] ∶= sup
q∈Qcϕ EP [Zq], where

Qcϕ ∶= {q ∈ L1(Ω) ∣ ∃Q ∈MP (Ω), q = dQ/dP ,
Dϕ(Q∥P ) ≤ c } ,

and Dϕ(Q∥P ) ∶= EP [ϕ(q)] is the ϕ-divergence between two distributions Q and P , where Q≪ P

and q = dQ
dP

.

As mentioned above, CVARα[Z] is a ϕ-entropic risk measure; in fact, it is the ϕ-entropic risk
measure at level c = 0 with ϕ(⋅) ∶= ι[0,1/α](⋅), where for a set C ⊆ R, ιC(x) = 0 if x ∈ C; and +∞
otherwise Ahmadi-Javid [2012].

The natural estimator ÊR
c

ϕ[Z] of ERcϕ[Z] is defined by Ahmadi-Javid [2012]

ÊR
c

ϕ[Z] = inf
ν>0,µ∈R{µ + ν EP̂n [ϕ⋆ (Z − µ

ν
− c)]} .

Extending the results of Lemmas 2 and 3 comes down to finding an auxiliary estimator ẼR
c

ϕ[Z] of
ERcϕ[Z] which satisfies (as in Lemma 3) ẼR

c

ϕ[Z] ≤ ÊR
c

ϕ[Z] ⋅ (1 + εn), for some “small” εn, and

1

n

n∑
i=1

Zi ⋅ E[q⋆ ∣ Zi] ≤ ẼR
c

ϕ[Z],
with high probability, where q⋆ ∈ argminq∈Qcϕ E[Zq]. The similarities between the expressions of

ÊR
c

ϕ[Z] and Ĉα[Z] hint that it might be possible to find such an estimator by carefully constructing
a set Q̃cϕ to play the role of the Q̃α in Section 4. We leave such investigations for future work.
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Chapter 7

Concentration Inequalities for
CVaR with Near-optimal Quantile
Level Dependence

In many machine learning applications, practitioners seek more and more to use
measures of risk other than the expectation [Lerasle et al., 2019; Williamson and
Menon, 2019; Laforgue et al., 2019; Khani et al., 2019]. This relatively recent shift is
driven by the desire to guard against potentially catastrophic events which happen
with low enough probability that the mean performance does not capture them.
For example, in the medical field, the average efficacy and safety of a vaccine is not
necessarily the most appropriate measure; in this case, avoiding severe side effects,
even if they are relatively rare, is a priority. Alternative measures of risk are also
often considered in financial applications such as risk-averse portfolio management.
In such applications, decision making relies on the ability to accurately estimate the
true underlying risk. This estimation task becomes challenging as soon as the risk
measure is not the standard expectation which, unlike others, enjoys linearity. Thus,
our work adds to the recent efforts in deriving concentration bounds for alternative
risk measures.

One popular risk measure is the Conditional Value at Risk (CVaR). Given a quan-
tile level α, and a random variable X, CVaRα[X] measures the expectation of X condi-
tioned on X being greater than it’s (1− α)-quantile. The popularity of CVaR is partly
due to the fact that it satisfies some desirable axioms that characterize a larger class
of measures called coherent risk measures [Artzner et al., 1999]:

Definition 7.1. A risk measure R is coherent if for any random variables X, Y it satisfies
sub-additivity (R[X + Y] ≤ R[X] + R[Y]); monotonicity (R[Y] ≤ R[X] for Y ≤ X a.s.);
positive-homogeneity (R[λX] = λR[X], for λ > 0); and translation equi-variance (R[X −
c] = R[X]− c), for any c ∈ R.

The conditional value at risk has the additional desirable property of being law-
invariant, in the sense that if X and Y have the same probability law, then CVaRα[X] =
CVaRα[Y], for any α ∈ [0, 1). What is more, it is known that any law-invariant
coherent risk measure can be written in terms of CVaR. In fact, Kusuoka [2001]

163
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essentially shows that for any law-invariant coherent risk measure R, there exists a
compact setM of measures on [0, 1] such that

R[X] = sup
µ∈M

∫ 1

0
CVaRα[X]dµ(α), (7.1)

for any random variable X. This representation can be used to design new coherent
risk measures simply by choosing the setM. It also provides the possibility to trans-
fer concentration inequalities obtained for CVaR to the larger class of law-invariant
coherent risk measures—offering flexibility to practitioners in risk-sensitive applica-
tions.

Motivated by the desirable properties of CVaR and its ability to parameterize
the family of law-invariant coherent measures, we will focus on deriving tight con-
centration bounds for an estimator of CVaR. We will pay particular attention to the
dependence in α in our bounds—those with optimal dependence in α will be crucial
if one uses them together with the Kusuoka representation in (7.1) (which involves
an integral over α) to transfer concentration inequalities to the class of law-invariant
coherent risk measures. Since CVaRα[X] is the expectation of X, conditioned on
it being greater than its (1− α)-quantile1, one would expect its estimation from n
i.i.d. samples X1, . . . , Xn to discard about a (1− α) fraction of the samples (those that
are below the (1− α)-quantile). As a result, one would expect the concentration rate
of any estimator of CVaR to be at best O(1/

√
αn). Indeed, for bounded random

variables, this rate was previously achieved by Brown [2007]; Wang and Gao [2010].
However, it is not clear if the techniques used in these works can be generalized
beyond the case of bounded random variables. Current CVaR concentration inequal-
ity for the unbounded case (e.g. X is sub-Gaussian or sub-exponential) all have a
sub-optimal dependence in the quantile parameter α, where the concentration rate
becomes 1/(α

√
n) (we discuss this in more detail in the related work’s paragraph

below). This rate can be much worse (for small α) compared with the 1/
√

αn rate
achieved in the bounded case.

Besides seeking a concentration bound for CVaR with the tightest possible depen-
dence in the quantile parameter α, we are also after so-called time-uniform bounds;
these are bounds which hold uniformly for all sample sizes n ≥ 1 simultaneously
given a fixed confidence level δ. Such bounds are desirable in many machine learning
application involving, for example, stopping rules in Bandits [Jamieson et al., 2014],
or risk-monotonicity (see Chapter 8). Techniques used for the expectation to obtain
time-uniform bounds would yield sub-optimal rates (at least in the dependence in α)
when naively applied to CVaR. We address these challenges in this chapter.

Best dependence in α for a simple example. In Section 7.1.2, we work out illus-
trative examples in different settings to get an idea of the best dependence in α we
can expect in the concentration rates. The following Bernoulli example illustrates
the pitfall leading to confidence width 1/(α

√
n) and the optimality of width 1/

√
αn.

1We use the convention in [Brown, 2007; Wang and Gao, 2010; Prashanth and Ghavamzadeh, 2013].
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For p ∈ (0, 1), a Bernoulli-p variable X has CVaRα[X] = (p/α) ∧ 1 at quantile level
α ∈ [0, 1]. Given i.i.d. samples X1, . . . , Xn the natural CVaR estimator Ĉn = ( p̂n/α)∧ 1
is obtained by plugging in the empirical mean p̂n = ∑n

i=1 Xi/n. To judge the quality
of this estimator, we may invoke the Central Limit Theorem (CLT) to find that p̂n/α

closely follows N ( p
α , p(1−p)

nα2 ), leading to confidence intervals for it of order 1/(α
√

n),
which is also tight. At first sight, one may suspect that these transfer to the esti-
mator Ĉn. Yet closer inspection of the case distinction in the definition of CVaRα[X]
reveals that Ĉn concentrates faster (as a function of the quantile level α). The mean
of Ĉn tends to CVaRα[X] in either case. When p > α, its variance tends to zero ex-
ponentially fast. When p < α, its variance tends to p(1−p)

nα2 , (and at most that in the
boundary case p = α). In any case, the variance of the estimator is at most 1/(nα),
and confidence intervals for Ĉn can/should be of order 1/

√
αn.

Related work. A concentration bound for an estimator of CVaR was first pre-
sented by Brown [2007], who considered the case of bounded random variables and
achieved the optimal dependence in α for the upper deviation, but not the lower
deviation. Their work was followed up by that of Wang and Gao [2010] who also
considered the bounded setting and provided the optimal dependence in the param-
eter α. When the random variable is bounded only from one side, the concentration
inequalities due to Thomas and Learned-Miller [2019b] have a sharp empirical per-
formance, though with a sub-optimal dependence on α.

The unbounded case was recently considered by e.g. [Kolla et al., 2019b; Prashanth
et al., 2020] whose analysis relies on a concentration inequality for quantiles. Bhat
and Prashanth [2019] also studied the unbounded setting, basing their analysis on
the concentration of the empirical Cumulative Distribution Function (CDF) around
the true CDF in Wasserstein distance. These works have all considered both light
and heavy-tailed distributions. Mhammedi et al. [2020c] also considered the un-
bounded setting, albeit they restricted their analysis to the sub-Gaussian and sub-
exponential cases. As far as we know, all existing concentration inequalities for esti-
mators of CVaR in the sub-exponential or sub-Gaussian cases have a 1/(α

√
n) term.

Mhammedi et al. [2020c] conjectured that this rate could be improved to 1/
√

αn for
the standard estimator of CVaR. In this chapter, we show that this is possible up to
log-factors in 1/α.

In the context of statistical learning, Soma and Yoshida [2020]; Lee et al. [2020];
Curi et al. [2020] derived generalization bounds where the objective is the CVaR of a
loss instead of the standard expectation. However, these bounds have a sub-optimal
dependence in the quantile α. The first (PAC-Bayesian) generalization bound for
CVaR with an optimal α dependence was presented by Mhammedi et al. [2020c] who,
like us, also considered a reduction to estimating expectations from empirical means.
However, their generalization inequality is restricted to bounded random variables.
Finally, much work has been done in the context of best CVaR-arm identification
in multi-armed bandits [Galichet et al., 2013; Kagrecha et al., 2019a,b; Tamkin et al.,
2019; Torossian et al., 2019; Prashanth et al., 2020; Agrawal et al., 2020b; Baudry et al.,
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2020], as well as for the regret minimisation problems Cassel et al. [2018].

Contributions. In this chapter, we improve almost uniformly on all the results just
mentioned in terms of the dependence on the quantile parameter α in the bounds. We
achieve this by deriving a new reduction (and extending an existing one) for estimat-
ing the conditional value at risk—making CVaR estimation as easy as estimating an
expectation from empirical means. Using the classical Bennett’s inequality in these
reductions, we are able to achieve state-of-the-art concentration bounds for an esti-
mator of CVaR. We recover and improve bounds that have the optimal dependence
in α in the bounded setting, and we present the first bounds with a concentration
rate of 1/

√
αn (up to log factors in 1/α), which hold when the random variable

of interest has light tails (e.g. sub-exponential). This provides a positive answer to a
conjecture posed by [Mhammedi et al., 2020c]. We also tackle the case of heavy-tailed
distributions, achieving the optimal rate where the random variable has a finite sec-
ond moment. What is more, we present a new time-uniform Bernstein inequality
(see Proposition 7.22) which, together with the reductions we derive, allows us to
seamlessly obtain the first time-uniform concentration bounds for CVaR.

As an application, we show how our bounds can be applied in multi-arm bandits
where the goal is to select an arm with the lowest CVaR. We consider both the fixed
confidence and fixed budget settings and provide algorithms with state-of-the-art
guarantees when the random variables are unbounded. Our time uniform bounds
are crucial in the fixed confidence setting to achieve optimal sample complexity. We
achieve the later with a slight extension of the lil’ UCB algorithm by Jamieson et al.
[2014]. For the fixed budget, we use our bounds together with the sequential halving
algorithm to achieve state-of-the-art bounds.

Layout. In Section 7.1, we introduce the setting and notation. In Section 7.2, we
start by presenting the reduction for CVaR estimation, then we state the bounds
we get for the upper and lower deviation bounds in Subsections 7.2.1 and 7.2.2,
respectively. Along the way we instantiate our results to popular settings such as
when X is bounded or sub-exponential. In Section 7.3, we apply our results to
the problem of multi-armed bandits in both the fixed confidence and fixed budget
settings. Additional inequalities which are omitted from Section 7.2 are provided in
Section 7.4. The proofs of the main results are postponed to Section 7.5. We conclude
with a discussion in Section 7.6.

7.1 Preliminaries

Let (Ω,F , P) be a probability space. We denote by MP(Ω) the set of probability
measures that are absolutely continuous with respect to P, i.e. for any Q ∈ MP(Ω),
we have Q� P. Given a random variable X, we denote by PX its probability law, and
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given samples X1, . . . , Xn of X, we denote by P̂n the empirical distribution defined by

P̂n(x) :=
1
n

n

∑
i=1

δXi(x), for all x ∈ R,

where δy is the Dirac delta at y ∈ R. To simplify notation, we will use X1:n :=
(X1, . . . , Xn). The Conditional Value at Risk (CVaR) of a real random variable X at
(upper) quantile level α ∈ (0, 1) is

CVaRα[X] := EPX(x)[X | X ≥ xα], where xα := inf{x : PX([x,+∞)) ≤ α}. (7.2)

For any probability measure µ over the reals and Y ∼ µ, we define CVaRα[µ] :=
CVaRα[Y] (CVaRα[µ] is well defined since CVaR is law-invariant). In particular, we
have CVaRα[PX] = CVaRα[X]. CVaRα[PX] and CVaRα[P̂n] admit the following useful
formulations [Rockafellar and Uryasev, 2013]:

CVaRα[PX] = inf
µ∈R

{
µ +

E[[X− µ]+]

α

}
, (7.3a)

and CVaRα[P̂n] = inf
µ∈R

{
µ +

∑n
i=1[[Xi − µ]+]

αn

}
, (7.3b)

where [x]+ := 0 ∨ x, for x ∈ R. We note that the minimizer µ = xα is the quantile at
upper level α. We also use the dual representation of CVaR [Rockafellar and Uryasev,
2013]:

CVaRα[PX] = sup
Q∈Q

E[XQ], Q :=
{

Q =
dQ
dP
≤ 1

α
, Q ∈ MP(Ω), E[Q] = 1

}
, (7.4a)

CVaRα[P̂n] = sup
Q∈Q̂n

1
n

n

∑
i=1

XiQi, Q̂n :=

{
Q1:n ∈ [0, 1/α]n,

1
n

n

∑
i=1

Qi = 1

}
, (7.4b)

where dQ/dP represents the Radon Nikodym derivative. Here we remark that the
optimizer Q satisfies E[Q | X = x] = 1

α I{x ≥ xα} for x 6= xα, and E[Q | X = xα] ∈
[0, 1/α] (an intermediate value here is referred to as atom splitting). Throughout the
rest of this chapter, we will consider a fixed upper quantile level α ∈ (0, 1) and use
the concise notation:

C[X] := CVaRα[PX] and Ĉn[X] := CVaRα

[
1
n

n

∑
i=1

δXi

]
.

We now discuss some standard distributional assumptions we will make on the ran-
dom variables X whose CVaR we seek to estimate.
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7.1.1 Distributional Assumptions

Apart from the case where X is bounded, we will focus on the following two cases
that include both light and heavy-tailed distributions: for some parameters υ, λ, p >
0,

E[e|X|
p/λ] < υ, (uncentered light tail condition), (7.5)

or E[|X|p] < υ, (uncentered heavy tail condition). (7.6)

For the heavy tailed case in (7.6) it only makes sense to consider p > 1. The condition
in (7.5) covers both the sub-exponential and (uncentered) sub-Gaussian cases; the
sub-exponential [resp. sub-Gaussian] case corresponds to the setting where p = 1
[resp. p = 2] in (7.5). Prashanth et al. [2020]; Bhat and Prashanth [2019] make similar
assumptions with the difference that Bhat and Prashanth [2019] consider the centered
case, where (7.6) hold with |X−E[X]| instead of |X|. In Section 7.6, we discuss how
our approach can be extended to include this case. By an application of Markov’s
inequality, (7.5) and (7.6), imply respectively,

P[|X| ≥ t] ≤ υe−
tp
λ , (7.7)

and P[|X| ≥ t] ≤ υt−p, (7.8)

for all t > 0. It will be more convenient to work with the tail probabilities from (7.7)
and (7.8), instead of the moment inequalities in (7.5) and (7.6).

Remark 7.1. Knowing the parameters v, p, λ is a common assumption in the heavy-tailed
literature, where the uncentred assumption is also typical, see e.g. the trimmed mean estimator
discussed by Bubeck et al. [2013]. Note that one should not think of the modelling assumption
as a tuning knob: for the results to be meaningful the assumptions have to be satisfied for
the distribution in question. For that reason one wants to pick the smallest class for which
one can ensure that it contains the data-generating distribution. In applications, knowledge
of p, v and λ can come either from modelling assumptions or from earlier estimates.

In the following subsection, we work through some examples to build more in-
tuition about CVaR for light and heavy-tailed distributions. The examples will also
help us calibrate our expectations for what dependencies in α we can achieve in the
concentration rates of our CVaR estimators.

7.1.2 Calibrating our Expectations about Empirical CVaR Concentration

In this section, we aim to develop intuition about the concentration behavior of the
empirical CVaR estimator Ĉn[X] by investigating the standard Gaussian, Exponential
and Pareto cases. To simplify matters, we take inspiration from the sandwich pro-
vided by the primal (7.3) and dual (7.4) formulation to study two empirical averages
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with mean CVaRα[X] each, which closely constrain Ĉn[X], namely

L :=
1
n

n

∑
i=1

XiI{Xi ≥ µα}
α

≈ 1
n

n

∑
i=1

XiI{Xi ≥ µ̂α}
α

≤ Ĉn[X]

≤ µα +
1
n ∑n

i=1[Xi − µα]+
α

=: U,

where µ̂α is the minimizer of the objective on the RHS of (7.3). The first and second
sums are indeed approximately equal with high probability; this is at the core of
the proof of our main Theorem 7.3 in the next section, and so we are happy to
take it for granted here. Furthermore, E[L] = E[U] = CVaRα[X] by definition of
CVaR. After this reduction to an i.i.d. problem, it remains to compute the variance
of each term in the outermost sum, and invoke the CLT to get an idea for the correct
confidence widths (or at least those attainable by methods invoking this sandwich
internally). So let’s compute. The standard exponential distribution has (1 − α)-
quantile µα = ln(1/α) and CVaRα[X] = 1 + ln(1/α). The variances are then equal
to

Var[L] =
2 + (1− α)(ln(1/α) + 2) ln(1/α)

α
− 1 and Var[U] =

2
α
− 1. (7.9)

The standard Gaussian distribution has (1− α)-quantile µα = Φ−1(1− α) and CVaRα[X] =
1

2πα e−
1
2 µ2

α . Exact expressions for the variance are unintelligible, but a computer-
assisted symbolic analysis reveals that

Var[L] ∼ 2 ln(1/α)

α
and Var[U] ∼ 1

α ln(1/α)
, (7.10)

where f (α) ∼ g(α) denotes limα→0 f (α)/g(α) = 1. Finally, the standard Pareto
distribution (with density px−1−pI{x ≥ 1}) has α quantile given by µα = α−1/p > 1

and CVaRα[X] = pα−1/p

p−1 (requiring p > 1 to exist). We then find (this requires p > 2)

Var[L] =

p
p−2 + (1− α)p2

α
1+ 2

p (p− 1)2
and Var[U] =

2
p−2 + 2− α

α
1+ 2

p (p− 1)2
. (7.11)

In the Gaussian and Exponential cases, the i.i.d. approximate sandwich L . Ĉn[X] ≤
U; the fact that E[L] = E[U] = CVaRα[X]; and the variance approximations in (7.9)
and (7.10) strongly suggest we should find confidence interval widths for CVaRα[X]
of order 1/

√
αn up to lower-order ln(1/α) factors around Ĉn[X]. We do indeed

derive confidence intervals with such widths in the light tail case (see Section 7.2). In

the Pareto case, (7.11) suggests confidence widths of order α
− 1

2− 1
p , and ours will be

of order α−1, which match α
− 1

2− 1
p for p = 2.

In the next section, we start by presenting the main reductions we use to derive
our new concentration inequalities for an estimator of CVaR. One of these reductions
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leads to a Bernstein-like inequality for CVaR (Theorem 7.3), which is of independent
interest. In Sections 7.2.1 and 7.2.2, we apply our reductions to obtain upper and
lower deviations, respectively, under different distributional assumptions.

7.2 New Concentration Inequalities for CVaR

In this section, we derive new concentration inequalities for an estimator of the CVaR
of a random variable X at quantile level α ∈ (0, 1). We study the cases where X is
bounded (in [0, 1]) or unbounded with a light or heavy-tailed distribution as in (7.7)
and (7.8), respectively, and derive state-of-the-art concentration inequalities with the
optimal dependence in the quantile level α (up to a log-factor) in some of the cases
(as suggested by our examples in Section 7.1.2). We will also derive so-called time-
uniform concentration inequalities which bound the deviation of an estimator of the
CVaR for all sample sizes simultaneously given a fixed confidence.

Behind our results are two simple reductions to estimating expectations from
empirical samples. Reduction #1 [resp. #2] relies on the primal [resp. dual] represen-
tation of CVaR in (7.3) [resp. (7.4)], and is used to derive upper [resp. lower] deviation
bounds. We now describe these reductions:

Reduction #1. The first reduction we use to derive our upper-deviation bounds
relies on the “primal” representation of CVaR given in (7.3). To describe this reduc-
tion, let B > 0 and Z, Z1, . . . , Zn ∈ [−B, B] be i.i.d. random variables. Then, for any
δ ∈ (0, 1), and µα ∈ arg minµ∈R{µ + E[Z − µ]+/α}, we have by (7.3) and Bennett’s
inequality (see e.g. [Maurer and Pontil, 2009, Theorem 3])

Ĉn[Z]
(∗)
≤ µα +

∑n
i=1[Zi − µα]+

αn

(∗∗)
≤ C[Z] +

√
2E[(µα + [Z− µα]+/α)2] ln δ−1

n
− B ln δ

3αn
,

(7.12)

with probability at least 1− δ. The inequality (∗) follows by the representation of
Ĉn[Z] in (7.3), while (∗∗) follows by applying the concentration inequality to the
average of the i.i.d. random variables µα + [Zi − µα]+/α, i ∈ [n], which are bounded
by B/α. The inequality in (7.12) implies that, as long as the random variable Z is
bounded, bounding the expectation E[(µα + [Z− µα]+/α)2] is sufficient to obtaining
an upper deviation bound for Ĉn[Z]. When dealing with an unbounded random
variable X, we will resort to clipping, which will reduce the problem to the bounded
case with Z being the new clipped random variable. However, this requires a careful
choice of the clipping threshold to control the magnitude of the term E[(µα + [Z −
µα]+/α)2] in (7.12), on the one hand, and to control the difference between C[Z] and
C[X], on the other—after all, we want C[X] and not C[Z] to appear on the RHS of our
deviation bounds. We present the choice of thresholds in the next subsection. We
note that the choice of Bennett’s in the current reduction (to get to (7.12)) is crucial
in obtaining the right dependencies in α in the final concentration inequalities. For
example, when the random variable of interest is bounded, Hoeffding’s inequality
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would yield a 1/(α
√

n) rate instead of the optimal 1/
√

αn rate we achieve using
Bennett’s inequality.

Finally, to obtain a time-uniform deviation bound, we will derive a version of
(7.12) that holds for all sample sizes simultaneously given a fixed confidence level δ

(see Proposition 7.22).

Reduction #2. Our second reduction for the lower deviation bounds (which is
slightly more involved than the previous one) builds on a recent technique by Mhammedi
et al. [2020c] that is based on the dual representations of CVaR in (7.4). To describe
this technique, we introduce the implicit (unobserved) random variable Y defined
by:

Y := X ·E[Q? | X], where Q? ∈ arg max
Q∈Q

E[XQ], (7.13)

and Q is as in (7.4a). The reason that this is helpful is that the expectation of Y is the
CVaR of X:

Lemma 7.1. Let α ∈ (0, 1) and X, X1, . . . , Xn be i.i.d. random variables in R and Q? be
as in (7.13). Then, the random variable Y in (7.13) and Yi := Xi ·E[Q? | Xi], i ∈ [n], are
i.i.d. and satisfy

E[Y] = E[Yi] = C[X], for all i ∈ [n].

The result in Lemma 7.1 is crucial as it shows that the expectation of the random
variable Y in (7.13) is exactly equal to the CVaR of X (this follows by the law of total
expectation). This means that one could attempt to estimate C[X] using the average
∑n

i=1 Yi/n. The challenge here is that (Yi) are implicit random variables, since they
depend on the unknown Q? in (7.13). The trick to overcome this is to bound (with
high probability) the average ∑n

i=1 Yi/n by a quantity that depends only on empirical
samples. This is enabled by the next lemma due to Mhammedi et al. [2020c], where
we use the following notation: for X1:n ∈ Rn and ε > 0, we define

Ĉn[X; ε] := sup
Q1:n∈Q̂n(ε)

1
n

n

∑
i=1

XiQi,

where Q̂n(ε) :=

{
Q1:n ∈ [0, 1/α]n,

∣∣∣∣∣
1
n

n

∑
i=1

Qi − 1

∣∣∣∣∣ ≤ ε

}
. (7.14)

Lemma 7.2. Let α ∈ (0, 1), ε > 0, and n ∈ N. Then, for any X1:n ∈ Rn, and Ĉn[X; ε] as
in (7.14),

Ĉn[X; ε] = inf
µ∈R

{
µ + |µ|ε + ∑n

i=1[Xi − µ]+
αn

}
≤ Ĉn[X] + |X(dαne)| · ε, (7.15)

where X(1), . . . , X(n) are the decreasing order statistics of X1, . . . , Xn.
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Note that from (7.4b), we have Ĉn[X; 0] = Ĉn[X]. To see how Lemma 7.2 can be
used to bound ∑n

i=1 Yi/n observe that, by definition of Ĉn[X; ·] in (7.14), we have for
Q?,i := E[Q? | Xi],

1
n

n

∑
i=1

Yi =
1
n

n

∑
i=1

XiQ?,i ≤ Ĉn[X; ε], for any ε ≥
∣∣∣∣∣
1
n

n

∑
i=1

Q?,i − 1

∣∣∣∣∣ . (7.16)

The next step is to leverage the fact that ∑n
i=1 Q?,i/n concentrates around 1, and so

by applying an appropriate concentration inequality (as we do in this chapter), we
can pick an ε ≤ O(1/

√
αn)—which does not depend on any implicit variables—

for which (7.16) holds with high probability. By combining this with the right-most
inequality in (7.15), we can bound ∑n

i=1 Yi/n from above by Ĉn[X] + |X(dαne)| · εn with
high probability.

What remains to do is to carefully select concentration inequalities to bound
E[Y] − ∑n

i=1 Yi/n and |∑n
i=1 Q?,i/n − 1| in a way to obtain optimal (or close to op-

timal) dependence in α in the final bound. For this, we apply Bennett’s inequality
and a new time-uniform Bernstein inequality (to obtain the time-uniform version of
our bounds) to control the deviations of interest. The next problem is that the er-
ror terms in these bound will depend on the second moment of Y, which in turn
depends on the unknown Q? in (7.13). To overcome this challenge, we show that
E[Y2] ≤ C[X2]/α. Finally, for each of the distribution types we consider (those who
satisfy (7.7) and (7.8)), we derive explicit bounds for C[X2], leading to sharp depen-
dencies in α in the final concentration inequalities (matching our expectations from
Section 7.1.2). We now present our master theorem, which follows from the reduc-
tion just described—the result may be viewed as the CVaR version of the classical
Bernstein inequality:

Theorem 7.3. Let α, δ ∈ (0, 1), B > 0, ρ > 1, and X, X1, X2, · · · ∈ R be i.i.d. random
variables. Further, for c := ∑∞

k=2 2/(k ln2(k)), define φρ(n) := c lnρ(ρn) ln2(lnρ(ρn));

εn :=

√
2 ln δ−1

αn
+

ln δ−1

3n
; and ε′n :=

√
2ρ ln φρ(n)

δ

αn
+

2 ln φρ(n)
δ

3αn
. (7.17)

Then, (I) for any fixed n ∈N, the random variable Z := X · I{|X| ≤ B} satisfies,

P

[
C[Z]− Ĉn[Z; εn] ≤

√
2C[Z2] · ln δ−1

αn
+

B ln δ−1

3αn

]
≥ 1− 2δ, (7.18)

(II) for any increasing (Bn) ⊂ R≥0 and Z(n) := X · I{|X| ≤ Bn},

P


∀n ≥ 1, C[Z(n)]− Ĉn[Z(n); ε′n] ≤

√
2ρC[(Z(n))2] ln φρ(n)

δ

αn
+

2Bn ln φρ(n)
δ

3αn


 ≥ 1− 2δ.

(7.19)
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We stress that (7.18) only holds for a sample size n chosen prior to seeing the data,
whereas (8.16) holds for any n in hindsight. Hence, the latter is a time-uniform con-
centration inequality. The additional price we pay in (8.16) compared with (7.18) is a
O(ln(ln n)/δ) term instead of ln(1/δ). In Section 7.2.2, we will instantiate Theorem
7.3 under different assumptions on the distribution of X.

7.2.1 New Upper Deviation Bounds

In this subsection, we will use Reduction #1 described above to derive new upper
deviation bounds for an estimator of CVaR. To apply the reduction, we need to I)
relate C[Z] to C[X], where Z is a potentially clipped version of X, and II) bound the
term E[(µα + α−1E[[Z− µα]+])2] inside the square-root in (7.12).

Warm up. We start with the case of a bounded random variable X ∈ [0, 1]. In this
case, setting the clipping threshold to the trivial B = 1, we have Z = X, and so C[X] =
C[Z]. It remains to bound E[(µα + α−1E[[Z − µα]+])2]. This task is relatively easy
in the case since by definition of µα (recall that µα ∈ arg minµ∈R{µ + E[Z− µ]+/α})
and the fact that X ∈ [0, 1], we have that µα ∈ [0, 1]. As a result, we get the following
bound

E[(µα + α−1E[[Z− µα]+])
2] ≤ E[µα + α−1E[[Z− µα]+]]/α = C[X]/α,

where the equality follows by (7.3). This together with (7.12), and the time-uniform
Bernstein inequality we derive in Proposition 7.22, yield the following deviation
bounds:

Theorem 7.4. Let α ∈ (0, 1) and X, X1, . . . , Xn be i.i.d. random variables in [0, 1]. Then,
for any δ ∈ (0, 1), with probability at least 1− δ,

Ĉn[X] ≤ C[X] +

√
2C[X] ln δ−1

αn
+

ln δ−1

3αn
. (7.20)

Further, for any ρ > 1, and φρ(·) as in Theorem 7.3, we have with probability at least 1− δ,

∀n ≥ 1, Ĉn[X] ≤ C[X] +

√
2ρC[X] ln φρ(n)

δ

αn
+

2 ln φρ(n)
δ

3αn
. (7.21)

We stress the ease with which we were able to derive these inequalities (in contrast
with e.g. Brown [2007]; Wang and Gao [2010]). Compared to existing bounds, ours
have the advantage that the main square-root error term has a C[X] ∈ [0, 1]. A
similar bound to (7.20), though for the lower deviation, was recently presented by
Mhammedi et al. [2020c]. The bounds in (7.20) and (7.21) can easily be rearranged
(using Lemma A.1) so that the empirical CVaR appears inside the square-root error
term (in place of the unknown C[X]) (a time-uniform version of the corollary is
postponed to Appendix 7.4).
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Corollary 7.5. Let α ∈ (0, 1) and X, X1, . . . , Xn be i.i.d. random variables in [0, 1]. Then,
for any δ ∈ (0, 1), with probability at least 1− δ,

Ĉn[X] ≤ C[X] +

√
2Ĉn[X] ln δ−1

αn
+

8 ln δ−1

3αn
. (7.22)

The unbounded case. We now consider the case of light and heavy-tailed distri-
butions as characterized by (7.7) and (7.8), respectively. To derive similar deviations
bounds as the ones in Theorem 7.4, for an unbounded random variable, we first
need to relate the CVaR of a clipped version of X, which we denote by Z, to that of
X, for an appropriately chosen clipping threshold B. Then, it remains to bound the
expectation E[(µα + α−1E[[Z− µα]+])2] in (7.16). The next two propositions answer
to these needs. We now introduce a function that will be convenient in bounding the
quantities of interest in (7.12) in the light-tailed case:

fp(y) := 2 ln+(υ/y)1/p + υΓ(1/p, ln(υ/y))/(yp), for p, y > 0, (7.23)

where Γ(·, ·) is the incomplete gamma function, and υ is as in (7.5).

Proposition 7.6. Let υ, y > 0 and X be a real random variable. If X satisfies (7.7) with
p, υ, λ > 0, then for Z := X · I{|X| ≤ (λ ln(υ/y))1/p} and µα := inf{µ ∈ R | P[Z ≥ µ]},
we have

|C[Z]−C[X]| ≤ yλ1/p fp(y)/α, and E[(µα + α−1E[[Z− µα]+])
2] ≤ 4λ2/p fp/2(α)/α.

Furthermore, if X satisfies (7.8) with p > 1, then for Z := X · I{|X| ≤ (υ/y)1/p},

|C[Z]−C[X]| ≤ kυ1/py1−1/p

α(p− 1)
, and E[(µα + α−1E[[Z− µα]+])

2 ≤ 4υ(υ/y)2/p−1/α2.

(7.24)

With this proposition and (7.12), we immediately get the following bound for the
light-tailed case:

Theorem 7.7. Let α, δ ∈ (0, 1), λ, p, υ > 0, and X, X1, X2 · · · ∈ R be i.i.d. random variables
such that X satisfies the tail probability inequality in (7.7). Further, let fp(·) be as in (7.23).
Then, for n ≥ 1 and Z := X · I{X ≤ (λ ln(υn))1/p}, we have, with probability at least
1− δ,

Ĉn[Z]−C[X] ≤ 2λ
1
p

√
2 fp/2(α) ln δ−1

αn
+ λ

1
p · fp(1/n)− 1

3 ln
1
p (υn) ln δ

αn
.

A time-uniform version of this inequality is stated in Theorem 7.25. A Taylor series
expansion around y = 0 reveals that fp(y) = O(poly(ln(1/y))), for p > 0, and thus
the deviation in Theorem 7.7 satisfies Ĉn[Z] − C[X] ≤ O(1/

√
αn) up to poly-log-

factors in 1/α. Therefore, the bound in Theorem 7.7 has the optimal dependence on
the quantile level α up to poly-log-factors (see Section 7.1.2). We achieve the same



§7.2 New Concentration Inequalities for CVaR 175

dependence in α for the lower deviation in the next subsection. For a sub-exponential
random variable X—one that satisfies (7.7) with (υ, p) = (1, 1)—we have for ρ ≥ 1,

fp/2(α) = 2(1− 2 ln α + ln2 α) ≤ 2(1− ln α)2, and fp(1/(ρn)) = 1 + 2 ln(ρn).
(7.25)

This combined with Theorem 7.7 leads to the following corollary:

Corollary 7.8. Let α, δ ∈ (0, 1), λ > 0, and X, X1, X2 · · · ∈ R be i.i.d. λ-sub-exponential
random variables, i.e. X satisfies (7.7) with (υ, p) = (1, 1). Then, for Z := X · I{X ≤
λ ln n}, we have

P

[
Ĉn[Z] ≤ C[X] + 4λ · (1− ln α)

√
ln δ−1

αn
+ λ · 3 + 6 ln n− 2 ln n ln δ

3αn

]
≥ 1− δ.

(7.26)

The time-uniform version of (7.26) is also easily obtained from Theorem 7.7 and
(7.25) (see Corollary 7.21 for the statement). Using Proposition 7.6 and (7.12), we
also immediately get the following bound for the heavy-tailed case (a time-uniform
version is stated in Theorem 7.26):

Theorem 7.9. Let α, δ ∈ (0, 1), υ > 0, p > 1, and X, X1, X2 · · · ∈ R be i.i.d. random
variables such that X satisfies the tail probability in (7.8). Then, for n ≥ 1 and Z :=
X · I{X ≤ (−3pυn/ln δ)1/p}, we have, with probability at least 1− δ,

Ĉn[Z]−C[X] ≤ υ
1
p p1+ 1

p

α

(
(1/3)1− 1

p + 2
1
2 3

1
p− 1

2

p− 1

)(
ln δ−1

n

)1− 1
p

.

The dependence in α that we achieve in Theorem 7.9 is the best one we are aware of.
[Prashanth et al., 2020, Theorem 4.1] may at first sight have the same dependence in
α, but their multiplicative presence of the α-quantile µα carries another dependency,
which may be polynomial (and not logarithmic). For example, a Pareto distribution
with density p I{x≥1}

x1+p has quantile µα = α−1/p (see Section 7.1.2).
We now move to lower deviation bounds.

7.2.2 New Lower Deviation Bounds for CVaR

In this subsection, we use our second reduction—in particular, our Master Theorem
7.3—to derive new lower deviation bounds. To apply the theorem for our purposes,
we need to I) relate C[Z] to C[X], where Z is a potentially clipped version of X, and
II) bound the CVaR of Z2. Proposition 7.6 in the previous section already takes care
of I), and so it remains to bound C[Z2].

Warm up. Suppose that the random variable X satisfies X ∈ [0, 1]. In this case, by
setting B ≥ 1 in Theorem 7.3, we get C[Z] = C[X]. What is more, since CVaR is
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monotonic [Rockafellar and Uryasev, 2013], we have C[X2] ≤ C[X]. Finally, using
Lemma 7.1, we have Ĉn[Z; εn] = Ĉn[X; ε] ≤ Ĉn[X] + X(dnαe) · ε, with high probability
for ε equal to εn [resp. ε′n] in (7.17). Plugging these facts into (7.18) and (8.16), we get
the following corollary:

Corollary 7.10. Let α ∈ (0, 1) and X, X1, . . . , Xn be i.i.d. random variables in [0, 1]. Then,
for any δ ∈ (0, 1), with probability at least 1− 2δ,

C[X]− Ĉn[X] ≤
√

2C[X] ln δ−1

αn
+ X(dαne) ·

(√
2 ln δ−1

αn
+

ln δ−1

3αn

)
+

ln δ−1

3αn
. (7.27)

Further, for any ρ > 1, and ε′n and φρ(·) as in Theorem 7.3, we have with probability at least
1− 2δ,

∀n ≥ 1, C[X]− Ĉn[X] ≤

√
2ρC[X] ln φρ(n)

δ

αn
+ X(dαne) · ε′n +

2 ln φρ(n)
δ

3αn
.

The bounds in Corollary 7.10 and (7.21) are the first time-uniform bounds for CVaR
with a ln ln n under the square-root instead of a ln n, and with the optimal depen-
dence in α. We note also that since X ∈ [0, 1], we have C[X] ≤ 1 and X(dαne) ≤ 1, and
so having C[X] and X(dnαe) on the RHS of (7.27) only makes our inequality tighter
than existing bounds which typical have the range of X (in this case 1) multiplying
the error terms. We now present an empirical version of (7.27) which uses Lemma
A.1 to rearrange the bound in Theorem 7.3 (we postpone the time-uniform variant to
Appendix 7.4):

Corollary 7.11. Let α, δ ∈ (0, 1), and X1, . . . , Xn be i.i.d. random variables in [0, 1]. Fur-
thermore, let εn and Ĉn[·; ·] be as in (7.17) and (7.15), respectively. Then, with probability at
least 1− 2δ,

C[X] ≤ Ĉn[X; εn] +

√
2Ĉn[X; εn] · ln δ−1

αn
+

8 ln δ−1

3αn
. (7.28)

We note that, though Ĉn[X; εn] can be evaluated from empirical samples using Lemma
7.1, one could also use the same lemma to bound Ĉn[X; εn] from above by Ĉn[X] +
|X(dαne)| · εn ≤ Ĉn[X](1 + εn). Plugging this into (7.28) would yield a bound in terms
of Ĉn[X] (similar to (7.22)).

The unbounded case. We now derive lower deviation bounds for a random vari-
able that satisfies either (7.7) or (7.8). With Theorem 7.3 and Proposition 7.6 all that
remains to do is to bound C[X2]:

Proposition 7.12. Let υ, y > 0 and fp be as in (7.23). If X satisfies (7.7) with p, υ, λ > 0,
then

C[X] ≤ λ1/p fp(α) and C[Z2] ≤ C[X2] ≤ λ2/p · fp/2(α).
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Furthermore, if X satisfies (7.8) with p > 1, then for Z := X · I{|X| ≤ (υ/y)1/p},

C[X] ≤ (2p− 1)(υ/α)1/p

p− 1
, and C[Z2] ≤ υ(υ/y)2/p−1/α.

Using Proposition 7.12 [resp. 7.6] to bound C[Z2] [resp. |C[Z]−C[X]|], and invoking
our Master Theorem 7.3, we immediately get the following bound for the light-tailed
case:

Theorem 7.13. Let α, δ ∈ (0, 1), λ, p, υ > 0, and X, X1, X2 · · · ∈ R be i.i.d. random
variables such that X satisfies the tail probability in (7.7). Further, let εn be as in Theorem
7.3, and fp(·) as in (7.23). Then, for n ≥ 1 and Z := X · I{X ≤ (λ ln(υn))1/p}, we have,
with probability at least 1− 2δ,

C[X]− Ĉn[Z] ≤ λ
1
p

√
2 fp/2(α) ln δ−1

αn
+ λ

1
p · 3 fp(1/n)− ln

1
p (υn) ln δ

3αn
+ |Z(dαne)| · εn.

(7.29)

A time-uniform version of this inequality is stated in Theorem 7.27. As discussed in
the previous subsection, we have fp(y) = O(poly(ln(1/y))) for small y, and thus the
deviations we present above satisfy C[X]− Ĉn[Z] ≤ O(1/

√
αn) up to poly-log-factors

in 1/α. Therefore, the bounds in Theorem 7.13 have the optimal dependence on the
quantile level α up to poly-log-factors. For a sub-exponential random variable X, the
explicit expressions of fp/2(α) and fp(1/(ρn)), for ρ ≥ 1, are given by (7.25). In this
case, the inequality in (7.29) simplifies (see Corollary 7.20).

Using Proposition 7.12 [resp. 7.6] to bound C[Z2] [resp. |C[Z] − C[X]|], and in-
voking our Master Theorem 7.3, we immediately get the following bound for the
heavy-tailed case (the time-uniform version is stated in Theorem 7.14):

Theorem 7.14. Let α, δ ∈ (0, 1), υ > 0, p > 2, and X, X1, X2 · · · ∈ R be i.i.d. random
variables such that X satisfies the tail probability in (7.8). Further, let εn be as in Theorem
7.3. Then, for n ≥ 1 and Z := X · I{X ≤ (−3pυn/ln δ)1/p}, we have, with probability at
least 1− 2δ,

C[X]− Ĉn[Z] ≤
υ

1
p p1+ 1

p

α

(
(1/3)1− 1

p + 2
1
2 3

1
p− 1

2

p− 1

)(
ln δ−1

n

)1− 1
p

+ |Z(dαne)| · εn. (7.30)

We remark that when the random variable X is supported on R≥0, then one can
use the unclipped estimator Ĉn[X]—which does not depend on the parameters of
the distribution—instead of Ĉn[Z] in all the bounds above. In fact, when X is non-
negative, we have Z ≤ X, and so by monotonicity of CVaR [Rockafellar and Uryasev,
2013], we have C[Z] ≤ C[X]. In this case, one can also replace Z(dnαe) by X(dαne) on
the RHS of the bounds, since Z(dnαe) ≤ X(dαne).

Remark 7.2. The bounds we have presented in Theorem 7.13, Corollary 7.20, and Theorem
7.14 are of the form C[X] ≤ Ĉn[Z] + δn + |Z(dαne)| · εn, with high probability, for a δn > 0
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which converges to zero as n → ∞. For positive random variables, it is possible to rearrange
this bound so that only distribution parameters appear on the right (and no empirical value
such as Z(dαne)). To achieve this, one can use the fact that Z(dnαe) ≤ Ĉn[Z] (see e.g. proof of
Proposition 4.1 in [Brown, 2007]), then rearrange the above inequality to obtain

C[X]− Ĉn[Z] ≤
εn

1 + εn
·C[X] +

δn

1 + εn
≤ C[X] · εn + δn. (7.31)

Now C[X] can be bounded from above using Proposition 7.12 depending on its tail distribu-
tion.

In the next section, we apply some of our new concentration inequalities in the
multi-armed bandit setting.

7.3 Applications

In this section, we show how the bounds we derived in Sections 7.2.1 and 7.2.2 can be
used to achieve state-of-the-art performances in some multi-armed bandit problems.

7.3.1 Best Arm Identification, Fixed Confidence

We now consider the problem of best-arm identification when the performance mea-
sure is the CVaR instead of the mean. At each round t, the learner picks an arm
At ∈ [K], then observes a loss Xt,At , where for every a ∈ [K], Xa, X1,a, X2,a, . . . are
i.i.d. real random variables sampled from some fixed, but unknown distribution PXa

supported on a bounded interval, which we take to be [0, 1] without loss of general-
ity. To simplify notation, we will denote by Pa := PXa for any arm a. Throughout this
section, we will use the short-hand notation

Ca := CVaRα[Pa], (7.32)

for all a ∈ [K], and we let Ĉt,a be any estimator of Ca given t i.i.d. samples. We
assume without loss of generality that C1 < C2 · · · ≤ CK, which means that arm 1
has the lowest CVaR risk, and we define

∆a := Ca −C1. for all 2 ≤ a ≤ K.

Given a round t, we denote by Na(t) the number of times arm a ∈ [K] has been
pulled.

Best CVaR arm identification with fixed confidence. We start by consider the set-
ting of best CVaR-arm identification with a fixed confidence δ. In this setting, one
would like an algorithm that identifies the best CVaR-arm with as few samples as
possible. As far as we know, the best algorithm for this setting when dealing with
means (instead of CVaR) is the lil’ UCB algorithm due to Jamieson et al. [2014]. Their
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algorithm relies on a time-uniform concentration inequality they provide for sub-
Gaussian random variables. Extending their algorithm to the CVaR case requires a
time-uniform concentration bound for CVaR, which we provided in Sections 7.2.1,
7.2.2, and Appendix 7.4. We now state a slightly more general version of the main
result of Jamieson et al. [2014] that accounts for the differences between our concen-
tration bounds and theirs:

Theorem 7.15. Let α ∈ (0, 1), ν, ρ > 1, and τ ∈ N. Let g : (0, 1) → R>0 and for a ∈ [K]
define

Ea(y) :=
{
∀t ≥ τ, |Ca − Ĉa| ≤ ξ(t, y)

}
, with ξ(t, y) :=

√
ρg(α)

t
ln

ln(ρt)
y

, y ∈ (0, 1).

(7.33)

Further, suppose that for some s > 0, P[Ea(y)] ≥ 1− sy, for all y ∈ (0, 1) and a ∈ [K], and
let δ ∈ (0, e−2 ∧ e−4/s). Then, for

κ >

(
ln

2(ν + 1)
ν− 1

+ 2
)

7(1 + ν)2

2(ν− 1)2 , and Gα := ρν2(1 + ν2)g(α),

Algorithm 1 returns the best CVaR arm with probability ≥ 1− (5s + 1)δ− (sδ)1/8 after T
rounds, where

T ≤ 2 + (1 + κ + τ)K + (1 + κ)Gα

K

∑
a=2

8 ln
( s

δ

)
+ ln

(
2
δ ln

(
e
δ ∨

ρGα

δ∆2
a

))

∆2
a

. (7.34)

For completeness, we include the proof of Theorem 7.15 in Appendix 7.5. We note
that Theorem 7.15 requires an estimator of CVaR with a time-uniform concentration
bound of the form (7.33) for some τ ≥ 1. The bound in (7.34) has a linear depen-
dence in the parameter τ, and so τ must not be too large. For all the time-uniform
bounds we present in this chapter, there exits a τ ≤ O(1) such that (7.33) holds for a
specific function g that depends on the parameters of the distribution of X. In fact,
our bounds are already of the form (7.33) except for lower-order terms that become
smaller than the main term ξ(t, δ) for some moderate τ ≤ O(1). We now state a
concentration bound of the form (7.33) for the sub-exponential case after getting rid
of any lower-order terms. The steps in proof of the next theorem can easily be ex-
tended to the case where X satisfies the more general light tail condition in (7.5) (or
the heavy tail condition in (7.6)).

Theorem 7.16. Let α, δ ∈ (0, 1), λ > 0, and X, X1, X2 · · · ∈ R≥0 be i.i.d. λ-sub-exponential
random variables, i.e. X satisfies (7.7) with (υ, p) = (1, 1). Further, let c be as in Theorem
7.3. Then, there exists a τ ≤ O((ln α ln δ)/α), such that for all ρ > 1 and Z(n) := X · I{X ≤
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Algorithm 1 lil UCB for CVaR MAB.
Require: Quantile level α ∈ (0, 1)

Confidence level δ ∈ (0, 1).
Parameters ν, κ > 1.
Initial exploration time τ.

1: for a = 1, . . . , K do
2: Play arm a for τ rounds.
3: Set t = τK + 1, and Na(t) = τ, for all a ∈ [K].

4: Define ξ(s, δ) =
√

ρg(α)
s ln ln(ρs)

δ , for all s ≥ 1.
5: while Na(t) < 1 + κ ∑a′ 6=a Na′(t), for all a ∈ [K] do

6: Define Ĉt,a = infµ>0

{
µ + ∑t−1

s=1
I{As=a}·[Xs,a−µ]+

αt

}
.

7: Sample At ∈ arg mina∈[K]
{

ĈNa(t),a − νξa(t, δ)
}

.
8: Set NAt(t + 1) = NAt(t) + 1 and Na(t + 1) = Na(t), for a 6= At.
9: Set t = t + 1.

λ ln(ρn)}, we have

P


∀n ≥ τ, |Ĉn[Z(n)]−C[X]| ≤ 4λ(1− ln α)

√

2
ρ ln ln(ρn)

δ

αn


 ≥ 1− 2δ

√
c/ ln ρ.

The theorem shows that the condition in (7.33) in Theorem 7.15 holds with s =
2
√

c/ ln ρ and g(α) = 32(1− ln α)2/α. We note that the exact condition that τ needs
to satisfy in Theorem 7.16 is in (7.98).

The combination of Theorems 7.15 and 7.16 implies that Algorithm 1 is the first
algorithm for the fixed confidence CVaR-MAB setting whose sample complexity has
the optimal dependence in the CVaR-risk gaps (∆a) and the quantile level α (up to
log-factors in 1/α) for sub-exponential random variables (this is also true for the
general light tail case in (7.5)).

7.3.2 Best Arm Identification, Fixed Budget

The point of this section is to show that our concentration inequalities for CVaR
modularly slot into generic confidence-interval based algorithms. We follow the
standard Sequential Halving algorithm template introduced by Karnin et al. [2013].
That is, we split the time horizon in ln2 K equal-length phases, in which we sample
the remaining arms uniformly, after which we eliminate the top half (by empirical
CVaR) of the arms (note that for CVaR lower is better). The correct arm is output iff
it is not eliminated in any phase. The best arm is eliminated in a given phase if it
ends up in the top half, meaning that at least half of the remaining arms have to look
better than it; a rare event.

We start our analysis from the following summary of Theorems 7.7 and 7.13:
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Theorem 7.17. Let α, δ ∈ (0, 1), λ > 0, and X, X1, X2 · · · ∈ R≥0 be i.i.d. λ-sub-exponential
random variables, i.e. X satisfies (7.7) with (υ, p) = (1, 1). Then, for Z := X · I{X ≤
λ ln n}, and all n ≥ n0 where

n0 = inf

{
n :

2 + 3 ln(n/α)− ln n ln δ

3αn
≤ (1− ln α)

√
ln δ−1

αn

}
,

we have with probability at least 1− 3δ,

|C[X]− Ĉn[Z]| ≤ 5λ · (1− ln α)

√
ln δ−1

αn
.

The theorem is proved at the very end of the appendix. From here, we invert the
probability bound to find that

P
{
|C[X]− Ĉn[Z]| > ε

}
≤ exp

(
− αnε2

(5λ(1 + ln(1/α)))2 (1− on(1))
)

.

The classical Sequential Halving proof [Lattimore and Szepesvári, 2019, Theorem
33.10] then implies mutatis mutandis:

Corollary 7.18. Consider a K-armed bandit with CVaRα given by C1 ≤ . . . CK (sorted here
for convenience without loss of generality). The probability that Sequential Halving outputs
the wrong arm is at most

3 ln2(K) exp


 −nα(1− on(1))
(5λ(1 + ln(1/α)))24 ln2(K)maxi:∆i>0

i
∆2

i


 ,

where ∆i = Ci −C1 is the suboptimality gap of arm i.

Taking stock, we find that the overall dependence in α is, up to log factors, as if
time were shrunk by a factor α, which indeed matches the intuition that, for every
arm, the 1− α portion of samples below the α-quantile are not informative.

The new section provides some additional concentration inequalities omitted
from Section 7.2.

7.4 Additional Inequalities

In this section, we include some additional concentration inequality for CVaR under
different settings. We start by the time-uniform version of Corollary 7.11:

Corollary 7.19. Let α, δ ∈ (0, 1), and X1, . . . , Xn be i.i.d. random variables in [0, 1]. Further,
let Ĉn[·; ·] be as in (7.15), and ε′n and φρ(·) be as in Theorem 7.3. Then, for ρ > 1,

P


∀n ≥ 1, C[X] ≤ Ĉn[X; εn] +

√
2ρĈn[X; εn] · ln φρ(n)

δ

αn
+

10 ln φρ(n)
δ

3αn


 ≥ 1− 2δ.

(7.35)
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For a sub-exponential random variable X—one that satisfies (7.7) with (υ, p) =
(1, 1)—the explicit expressions of fp/2(α) and fp(1/(ρn)), for ρ ≥ 1, are given by
(7.25). In this case, the inequality in (7.29) simplifies (see Corollary 7.20). Plugging
these into (7.29) implies the following corollary:

Corollary 7.20. Let α, δ ∈ (0, 1), λ > 0, and X, X1, X2 · · · ∈ R be i.i.d. λ-sub-exponential
random variables, i.e. X satisfies (7.7) with (υ, p) = (1, 1). Then, for εn as in Theorem 7.3
and Z := X · I{X ≤ λ ln n}, we have with probability at least 1− 2δ,

C[X] ≤ Ĉn[Z] + 2λ · (1− ln α)

√
ln δ−1

αn
+ λ · 3 + 6 ln n− ln n ln δ

3αn
+ |Z(dnαe)| · εn.

(7.36)

We now deal with the time-uniform upper and lower deviation bounds when X is
sub-exponential, which is a special case of the finite exponential moment.

Corollary 7.21. Let α, δ ∈ (0, 1), λ > 0, and X, X1, X2 · · · ∈ R be i.i.d. λ-sub-exponential
random variables, i.e. X satisfies (7.7) with (υ, p) = (1, 1). Further, let ε′n and φρ be as in
Theorem 7.3. Then, for ρ > 1 and Z(n) := X · I{X ≤ λ ln(ρn)}, we have with probability
at least 1− 2δ, for all n ≥ 1

C[X] ≤ Ĉn[Z] + 2λ · (1− ln α)

√
ρ ln φρ(n)

δ

αn
+ λ · 3 + 6 ln n + 2 ln n ln φρ(n)

δ

3αn

+ |Z(n)
(dnαe)| · ε

′
n. (7.37)

Furthermore, we have, with probability at least 1− δ, for all n ≥ 1

Ĉn[Z] ≤ C[X] + 2λ · (1− ln α)

√
2ρ ln φρ(n)

δ

αn
+ λ · 3 + 6 ln n + 2 ln n ln φρ(n)

δ

3αn
.

7.5 Proofs

Proof of Lemma 7.2. Let ϕ(·) := ι[0,1/α](·), where for a set C ⊆ R, ιC(x) = 0 if x ∈ C;
and +∞ otherwise. Further, let π := (1, . . . , 1)/n ∈ ∆n. From (7.14), we have

Ĉn[X; ε] = sup
{

Eπ(i)[XiQi − ϕ(Qi)] :
∣∣∣Eπ(i)[Qi]− 1

∣∣∣ ≤ ε
}

.
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By introducing Lagrangian multipliers η, y ≥ 0, we can write

Ĉn[X; ε] = inf
η,y≥0

sup
Q1:n∈[0,1/α]n

{
Eπ(i)[Xi − ϕ(Qi)] + η · (1 + ε−Eπ(i)[Qi])

+y · (Eπ(i)[Qi]− 1 + ε)

}
,

= inf
η,y≥0

{
η − y + (η + y)ε + sup

Q1:n∈[0,1/α]n

{
Eπ(i)[(Xi − η + y)Qi − ϕ(Qi)]

}}
,

= inf
η,y≥0

{
η − y + (η + y)ε + Eπ(i)

[
sup

0≤x≤1/α

{(Xi − η + y)x− ϕ(x)}
]}

,

= inf
η,y≥0

{
η − y + (η + y)ε + Eπ(i)[ϕ

?(Xi − η + y)]
}

, (7.38)

= inf
µ∈R

{
µ + |µ|ε + Eπ(i)[ϕ

?(Xi − µ)]
}

, (7.39)

where (7.38) is due to {x ∈ R | ϕ(x) < +∞} = [0, 1/α], and (7.39) follows by setting
µ := η − y and noting that the inf in (7.38) is always attained at a point (η, y) ∈ R2

≥0
satisfying η · y = 0, in which case η + y = |µ|; this is true because by the positivity of
ε, if η, y > 0, then (η + y)ε can always be made smaller while keeping the difference
η − y fixed. The proof is concluded by noting that the Fenchel dual of ϕ satisfies
ϕ?(z) = 0∨ (z/α), for all z ∈ R. This establishes our first desired inequality:

Ĉn[X; ε] = inf
µ∈R

{
µ + |µ|ε + ∑n

i=1[Xi − µ]+
αn

}
. (7.40)

Now, by letting µ̂ ∈ infµ>0{µ + ∑n
i=1[Xi − µ]+/(αn)}, we have

Ĉn[X; ε] ≤ µ̂ + |µ̂|ε + ∑n
i=1[Xi − µ̂]+

nα
,

= Ĉn + |µ̂|ε, (7.41)

where the last inequality follows by definition of Ĉn. The desired inequality follows
by the fact that µ̂ = X(dnαe)—see e.g. proof of Proposition 4.1 in [Brown, 2007].

Proof of Proposition 7.12. Let µα,i := inf{µ ∈ R | P[Xi ≥ µi] ≤ α}, for i ∈ [2]. By
definition of CVaR, we have, for B > 0

C[X] = E[X | X ≥ µ1],

=
1
α

E[X · I{X ≥ µ1}],

≤ 1
α

E[X · I{µ1 ≤ X ≤ B}] + 1
α

E[X · I{X ≥ B}]

≤ B +
1
α

E[|X| · I{|X| ≥ B}]. (7.42)

Setting B to (λ ln(υ/α))1/p [resp. (υ/α)1/p] when X satisfies (7.7) [resp. (7.8)] and
invoking Lemma A.5 to bound E[|X| · I{|X| ≥ B}]/α implies the desired bounds
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on C[X]. We now bound C[Z2]. We start with the light-tailed case; we have by
monotonicity of CVaR [Rockafellar and Uryasev, 2013]

C[Z2] ≤ C[X2] = E[X2 | X2 ≥ µ2
α,2],

=
1
α

E[X2 · I{X2 ≥ µ2
α,2}]. (7.43)

Now the term on RHS of (7.43) can be bounded from above using lemma A.5 when
X satisfies (7.7) leading to the desired result for the light-tailed case. For the heavy-
tailed setting, i.e. for X satisfying (7.8) and Z := X · I{X ≤ (υ/α)1/p}, we have

C[Z2] ≤ 1
α

E[Z2], (by Lemma A.3)

≤ 1
α
(υ/α)2/p−1E[|Z|p], (by Holder’s inequality) (7.44)

≤ 1
α
(υ/α)2/p−1E[|X|p], (7.45)

≤ υ

α
(υ/α)2/p−1.

This completes the proof.

Proof of Proposition 7.6. Let B > 0. We have by the sub-additivity and monotonicity
of CVaR:

C[Z] = C[X− X · I{X ≥ B}],
≤ C[X] + C[−X · I{X ≥ B}], (CVaR is sub-additive)

≤ C[X] + C[|X| · I{X ≥ B}], (CVaR is monotonic)

≤ C[X] + C[|X| · I{|X| ≥ B}],

≤ C[X] +
1
α

E[|X| · I{|X| ≥ B}]. (7.46)

Similarly, we have

C[X] = C[X− X · I{X ≥ B}],
≥ C[X]−C[X · I{X ≥ B}], (CVaR is sub-additive)

≥ C[X]−C[|X| · I{X ≥ B}], (CVaR is monotonic)

≥ C[X]−C[|X| · I{|X| ≥ B}],

≥ C[X]− 1
α

E[|X| · I{|X| ≥ B}]. (7.47)

Thus, combining (7.46) and (7.47) imply

|C[Z]−C[X]| ≤ 1
α

E[|X| · I{|X| ≥ B}].

Setting B to either (λ ln(υ/y))1/p or (υ/y)1/p, for y > 0, in this inequality and using
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Lemma A.5 to bound the RHS, we obtain the desired bounds on |C[Z]−C[X]|.
We now prove the bounds on E[(µα + α−1E[[Z− µα]+])2]. Let µα,2 := inf{µ ∈ R |

P[|Z| ≥ µ] ≤ α}. By Lemma A.6, we have

E[(µα + α−1E[[Z− µα]+])
2] ≤ 1

α2 E[Z2 · I{Z ≥ µα}] +
3
α2 E[Z2 · I{|Z| ≥ µα,2}].

(7.48)

Now since Z is a clipped version of X, both Z and |Z| satisfy (7.7) whenever X
satisfies (7.7). By this fact, Lemma A.5 and (7.48), we obtain the desired bound on
E[(µα + α−1E[[Z− µα]+])2] for the light-tailed case. We now move to the heavy-tailed
case. By (7.48), we have

E[(µα + α−1E[[Z− µα]+])
2] ≤ 4

α2 E[Z2],

≤ 4
α2 (υ/α)2/p−1E[|Z|p], (by Holder’s inequality)

(7.49)

≤ 4
α2 (υ/α)2/p−1E[|X|p], (7.50)

≤ υ
4
α2 (υ/α)2/p−1.

This completes the proof.

7.5.1 Proof of Theorem 7.3

We start by presenting a time-uniform version of Bernstein inequality (see e.g. Mau-
rer and Pontil [2009]):

Proposition 7.22. Let (Bn) ⊂ R>0 be an increasing sequence, and X, X1, X2, · · · ∈ R be
i.i.d. random variables such that E[X2] ≤ V. Then, for Z := X · I{|X| ≤ Bn}, we have, for
any δ ∈ (0, 1) and ρ > 0, with probability at least 1− δ,

P


∃n ≥ 1,

∣∣∣∣∣
1
n

n

∑
i=1

Zi −E[Z]

∣∣∣∣∣ ≥
√

2ρV ln(φρ(n)/δ)

n
+

2b ln(φρ(n)/δ)

3n


 ≤ δ, (7.51)

where φρ(n) := ln
(

c lnρ(ρn) ln2(lnρ(ρn))
)
= O(ln lnρ n) and c := ∑k≥2

2
k ln2(k)

≈ 4.214.

Proof of Proposition 7.22. Let λ > 0 and Xλ, Xλ
1 , Xλ

2 , . . . be i.i.d. random variables
such that |Xλ

i | ≤ B(λ), where B : R≥0 → R≥0 is any increasing function. By [Howard
et al., 2020, Corollary 1(c)], there exists a positive function s : R≥0 → R≥0 such that

P

[
∃n ≥ 1 :

∣∣∣∣∣
n

∑
i=1

Xλ
i − nE[Xλ]

∣∣∣∣∣ ≥ x + s
( x

λ

)
· (nV − λ)

]
≤ 2 exp

(
− x2

2λ + 2B(λ)x/3

)
,
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which implies that for any δ′ ∈ (0, 1),

E

[
I

{
∃n ≥ 1 :

∣∣∑n
i=1 Xλ

i − nE[Xλ]
∣∣ ≥

√
2nλ ln(2/δ′)

+ B(λ) ln(2/δ′)
3n + s

( x
λ

)
· (nV − λ)

}]
≤ δ′.

(7.52)

For k ≥ 2 and ρ ∈ (0, 1], define λk := Vρk and

πk :=
1

c′k ln2(k)
, where c′ := ∑

k≥2

1
k ln2(k)

≈ 2.107. (7.53)

By setting λ = λk and δ′ = δk :− πkδ in (7.52), we get that

E


I



∃n ≥ 1 :

∣∣∣∑n
i=1 Xλk

i − nE[Xλk ]
∣∣∣ ≥

√
2nλk ln(2/δk)

+ B(λk) ln(2/δk)
3n + s

(
x

λk

)
· (nV − λk)






 ≤ δk.

(7.54)

By summing over k ∈N, we get

δ ≥ E


∑

k≥1
I



∃n ≥ 1 :

∣∣∣∑n
i=1 Xλk

i − nE[Xλk ]
∣∣∣ ≥

√
2nλk ln(2/δk)

+ B(λk) ln(2/δk)
3n + s

(
x

λk

)
· (nV − λk)






 ,

≥ E


I



∃n, k ≥ 1 :

∣∣∣∑n
i=1 Xλk

i − nE[Xλk ]
∣∣∣ ≥

√
2nλk ln(2/δk)

+ B(λk) ln(2/δk)
3n + s

(
x

λk

)
· (nV − λk)






 ,

= 1− P


∀n, k ≥ 1 :

∣∣∣∑n
i=1 Xλk

i − nE[Xλk ]
∣∣∣ ≤

√
2nλk ln(2/δk)

+ B(λk) ln(2/δk)
3n + s

(
x

λk

)
· (nV − λk)


 .

(7.55)

Now, let kn be such that

λkn−1 ≤ nV ≤ λkn . (7.56)

By (7.55) and the fact that λkn ≥ nV, we have that

P

[
∀n :

∣∣∣∣∣
n

∑
i=1

Xλkn
i − nE[Xλkn ]

∣∣∣∣∣ ≤
√

2nλkn ln(2/δkn) +
B(λkn) ln(2/δk)

3n

]
≥ 1− δ.

(7.57)

On the other hand, by (7.56), we have that

kn ≤ lnρ(n) + 1 and λkn ≤ nρV.



§7.5 Proofs 187

Plugging this into (7.57), yields

P

[
∀n :

∣∣∣∣∣
n

∑
i=1

Xλkn
i − nE[Xλkn ]

∣∣∣∣∣ ≤
√

2ρnV ln(φρ(n)/δ) +
B(λkn) ln(φρ(n)/δ)

3n

]
≥ 1− δ,

(7.58)

where φρ(n) := 2c′ · (lnρ(n) + 1) ln2(lnρ(n) + 1). We obtain the desired result by
applying this inequality with Z(n) = Xλkn = X · I{|X| ≤ Bn} and a function B
satisfying B−1(Bn) = λkn (there always exists an increasing function B satisfying this
condition since (Bn) and (λkn) are both increasing sequences).

Using Proposition 7.22, we prove some useful facts on components of the random
variable Y defined in (7.13):

Lemma 7.23. Let α, δ ∈ (0, 1), ρ > 1, and X1, . . . , Xn be i.i.d. random variables in X .
Further, define

Q̂n(ε) :=

{
Q1:n ∈ [0, 1/α]n :

∣∣∣∣∣
1
n

n

∑
i=1

Qi − 1

∣∣∣∣∣ ≤ ε

}
. (7.59)

Then, for Q? as in (7.13), and εn and ε′n as in Theorem 7.3, we have

P
[
(E[Q? | X1], . . . , E[Q? | Xn])

> ∈ Q̂n(εn)
]
≥ 1− δ,

and P
[
∀n ≥ 1 : (E[Q? | X1], . . . , E[Q? | Xn])

> ∈ Q̂n(ε
′
n)
]
≥ 1− δ. (7.60)

Proof of Lemma 7.23. The first claim follows by the fact that Xi, i ∈ [n], are i.i.d.,
and an application of the law of total expectation. Now for the second claim, let
∆ := |EP̂n

[Q? | X]− 1|. Since Q? is a density, the law of total expectation implies that

∆ = |EP̂n
[Q? | X]−E[E[Q? | X]]|, (7.61)

and so by Bennett’s inequality (see e.g. Theorem 3 in Maurer and Pontil [2009])
applied to the random variable E[q? | X], we get that, with probability at least 1− δ,

∆ ≤
√

2ρVar[E[Q? | X]] ln(1/δ)

n
+
‖E[Q? | X]‖∞ ln(1/δ)

3n
,

≤
√

2ρE[E[Q? | X]2] ln(1/δ)

n
+
‖E[Q? | X]‖∞ ln(φρ(n)/δ)

3n
,

≤
√

2ρ‖E[Q? | X]‖∞ ln(1/δ)

n
+
‖E[Q? | X]‖∞ ln(1/δ)

3n
, (7.62)

≤
√

2 ln(1/δ)

αn
+

ln(1/δ)

3αn
, (7.63)

where (7.62) follows by the fact that E[E[Q? | X]2] ≤ E[E[Q? | X]] · ‖E[Q? | X]‖∞ =
‖E[Q? | X]‖∞, which holds since E[Q? | X] ≥ 0 and E[E[Q? | X]] = E[Q?] = 1. Fi-
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nally, (7.63) follows by the facts that ‖E[Q? | X]‖∞ ≤ ‖Q?‖∞ (by Jensen’s inequality),
and ‖Q∞‖∞ ≤ 1/α by definition. This shows the first inequality we are after.

On the other hand, by Proposition 7.22 applied to the random variable E[Q? | X],
we get that, with probability at least 1− δ,

∀n ≥ 1, ∆ ≤
√

2ρVar[E[Q? | X]] ln(φρ(n)/δ)

n
+

2‖E[Q? | X]‖∞ ln(φρ(n)/δ)

3n
,

≤
√

2ρE[E[Q? | X]2] ln(φρ(n)/δ)

n
+

2‖E[Q? | X]‖∞ ln(φρ(n)/δ)

3n
,

≤
√

2ρ‖E[Q? | X]‖∞ ln(φρ(n)/δ)

n
+

2‖E[Q? | X]‖∞ ln(φρ(n)/δ)

3n
, (7.64)

≤
√

2ρ ln(φρ(n)/δ)

αn
+

2‖E[Q? | X]‖∞ ln(φρ(n)/δ)

3αn
, (7.65)

where (7.64) and (7.65) follow by the facts that E[E[Q? | X]2] ≤ ‖Q?‖∞ ≤ 1/α, as
justified before.

By Lemma 7.1 and dual formulation of CVaR in (7.4b) we have the following imme-
diate Corollary:

Corollary 7.24. Let α, δ ∈ (0, 1), ρ > 1, and X1, . . . , Xn be i.i.d. random variables in X .
Further, for Y as in (7.13), and εn and ε′n as in Theorem 7.3, we have

P

[
1
n

n

∑
i=1

Yi ≤ Ĉn[X; εn]

]
≥ 1− δ and P

[
∀i ≥ 1,

1
n

n

∑
i=1

Yi ≤ Ĉn[X; ε′n]

]
≥ 1− δ.

(7.66)

Proof of Theorem 7.3. Let Z := X · I{|X| ≤ B} and

Q? ∈ arg max
Q

E[XQ], where Q :=
{

Q =
dQ
dP
≤ 1

α
, Q ∈ MP(Ω), E[Q] = 1

}
.

(7.67)

Let U = Z ·E[Q? | X], U1 = Z1 ·E[Q? | X1], U2 = Z2 ·E[Q? | X2], . . . are i.i.d., and so
by Bennett’s inequality (see e.g. [Maurer and Pontil, 2009, Theorem 3]), we get that,

P

[
E[U]− 1

n

n

∑
i=1

Ui ≤
√

2E[U2] · ln(1/δ)

n
+

B ln(1/δ)

3αn

]
≤ 1− δ. (7.68)

There are three facts we need to arrive at the desired bound:

1. By the law of total expectation, we have E[U] = C[Z].
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2. We have:

E[U2] = E[Z2 ·E[Q? | X]2],

≤ E[E[Z2 ·Q2
? | X]], (Jensen’s inequality)

= E[Z2 ·Q?]/α, (LTE and Q? ≤ 1/α)

≤ sup
Q∈Q

E[Z2 ·Q]/α,

= C[Z2]/α, (by definition of CVaR)

≤ C[X2]/α,

where the last inequality follows by the fact that 0 ≤ Z2 ≤ X2 and the monotonic-
ity of CVaR.

3. Since 0 ≤ Z ≤ X, we have

Ui ≤ Yi := Xi ·E[Q? | Xi], ∀i ∈ [n]. (7.69)

4. By Corollary 7.24, we have, with probability at least 1− δ,

1
n

n

∑
i=1

Yi ≤ Ĉn[X; εn], (7.70)

where Ĉn[·; ·] is as in (7.15).

Combining these four facts with (7.68), and a applying a union bound implies (7.18).
We now show (8.16). For this, we use the time-uniform Bernstein inequality in Propo-
sition 7.22 (instead of (7.68)), together with Corollary 7.24, the points 1-3 above, and
a union bound.

7.5.2 Proof of Theorem 7.7

We state and prove the following extension of Theorem 7.7:

Theorem 7.25. Let α, δ ∈ (0, 1), λ, p, υ > 0, and X, X1, X2 · · · ∈ R be i.i.d. random
variables such that X satisfies the tail probability in (7.7). Further, let φρ(·) be as in Theorem
7.3, and fp(·) be as in (7.23). Then, for n ≥ 1 and Z := X · I{X ≤ (λ ln(υn))1/p}, we
have, with probability at least 1− δ,

Ĉn[Z]−C[X] ≤ 2λ
1
p

√
2 fp/2(α) ln δ−1

αn
+ λ

1
p · fp(1/n)− 1

3 ln
1
p (υn) ln δ

αn
.

Further, for ρ > 1 and Z(n) := X · I{X ≤ (λ ln(υρn))1/p}, we have, with probability at
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least 1− δ,

∀n ≥ 1, Ĉn[Z(n)]−C[X] ≤ 2λ
1
p

√
2ρ fp/2(α) · ln φρ(n)

δ

αn

+ λ
1
p ·

fp

(
1

ρn

)
+ 2

3 ln
1
p (υρn) ln φρ(n)

δ

αn
.

Proof. The proof follows by (7.12) and the bound on |C[Z]−C[X]| [resp. |C[Z(n)]−
C[X]|] and E[(µα + α−1[Z− µα]+)2] [resp. E[(µα + α−1[Z(n) − µα]+)2]] obtained from
Proposition 7.6.

7.5.3 Proof of Theorem 7.9

We state and prove the following extension of Theorem 7.7:

Theorem 7.26. Let α, δ ∈ (0, 1), υ > 0, p > 2, and X, X1, X2 · · · ∈ R be i.i.d. random
variables such that X satisfies the tail probability in (7.8). Further, let φρ(·) be as in Theorem
7.3. Then, for n ≥ 1 and Z := X · I{X ≤ (−3pυn/ln δ)1/p}, we have, with probability at
least 1− δ,

Ĉn[Z]−C[X] ≤ υ
1
p p1+ 1

p

α

(
(1/3)1− 1

p + 2
1
2 3

1
p− 1

2

p− 1

)(
ln δ−1

n

)1− 1
p

.

Further, for ρ > 1 and Z(n) := X · I{X ≤ ( 3ρpυn
2 ln(φρ(n)/δ)

)1/p}, we have, with probability at
least 1− δ,

∀n ≥ 1, Ĉn[Z(n)]−C[X] ≤ (ρυ)
1
p p1+ 1

p

α

(
(2/3)1− 1

p + ρ
1
2 2

1
2 3

1
p− 1

2

p− 1

)(
ln φρ(n)

δ

n

)1− 1
p

.

Proof. The proof follows by (7.12) and the bound on |C[Z]−C[X]| [resp. |C[Z(n)]−
C[X]|] and E[(µα + α−1[Z− µα]+)2] [resp. E[(µα + α−1[Z(n) − µα]+)2]] obtained from
Proposition 7.6.

7.5.4 Proof of Theorem 7.13

We state and prove the following extension of Theorem 7.13:

Theorem 7.27. Let α, δ ∈ (0, 1), λ, p, υ > 0, and X, X1, X2 · · · ∈ R be i.i.d. random
variables such that X satisfies the tail probability in (7.7). Further, let εn, ε′n and φρ(n) be as
in Theorem 7.3, and fp(·) as in (7.23). Then, for n ≥ 1 and Z := X · I{X ≤ (λ ln(υn))1/p},
we have, with probability at least 1− 2δ,

C[X]− Ĉn[Z] ≤ λ
1
p

√
2 fp/2(α) ln δ−1

αn
+ λ

1
p · 3 fp(1/n)− ln

1
p (υn) ln δ

3αn
+ |Z(dαne)| · εn.
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Further, for ρ > 1 and Z(n) := X · I{X ≤ (λ ln(υρn))1/p}, we have, with probability at
least 1− 2δ, ∀n ≥ 1,

C[X]− Ĉn[Z(n)] ≤ λ
1
p

√
2ρ fp/2(α) ln φρ(n)

δ

αn
+ λ

1
p ·

3 fp

(
1

ρn

)
+ 2 ln

1
p (υn) ln φρ(n)

δ

3αn

+ |Z(n)
(dαne)| · ε

′
n.

Proof. The proof follows by Theorem 7.3 and 1) the bound on C[Z2] [resp. C[(Z(n))2]]
from Proposition 7.12; and 2) the bound on |C[Z]−C[X]| [resp. |C[Z(n)]−C[X]|] from
Proposition 7.6.

7.5.5 Proof of Theorem 7.14

We state and prove the following extension of Theorem 7.14:

Theorem 7.28. Let α, δ ∈ (0, 1), υ > 0, p > 2, and X, X1, X2 · · · ∈ R be i.i.d. random
variables such that X satisfies the tail probability in (7.8). Further, let εn, ε′n and φρ(n) be as
in Theorem 7.3. Then, for n ≥ 1 and Z := X · I{X ≤ (−3pυn/ln δ)1/p}, we have, with
probability at least 1− 2δ,

C[X]− Ĉn[Z] ≤
υ

1
p p1+ 1

p

α

(
(1/3)1− 1

p + 2
1
2 3

1
p− 1

2

p− 1

)(
ln δ−1

n

)1− 1
p

+ |Z(dαne)| · εn.

Further, for ρ > 1 and Z(n) := X · I{X ≤ ( 3ρpυn
2 ln(φρ(n)/δ)

)1/p}, we have, with probability at
least 1− 2δ,

∀n ≥ 1, C[X]− Ĉn[Z(n)] ≤ (ρυ)
1
p p1+ 1

p

α

(
(2/3)1− 1

p + ρ
1
2 2

1
2 3

1
p− 1

2

p− 1

)(
ln φρ(n)

δ

n

)1− 1
p

+ |Z(n)
(dαne)| · ε

′
n.

Proof. The proof follows by Theorem 7.3 and 1) the bound on C[Z2] [resp. C[(Z(n))2]]
from Proposition 7.12; and 2) the bound on |C[Z]−C[X]| [resp. |C[Z(n)]−C[X]|] from
Proposition 7.6.

7.5.6 Proof of Theorem 7.15

We closely follow the steps in the proof of [Jamieson et al., 2014, Theorem 2] with
small modifications. We now introduce two useful inequalities:

Lemma 7.29. For all ρ > 1, t ≥ 1, c > 0, and y ∈ (0, 1], we have

1
t

ln
ln(ρt)

y
≥ c =⇒ t ≤ 1

c
ln

2 ln
(

ρ
cy

)

y
, (7.71)
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and for all s ≥ e, ρ ∈ (1, 2), and 0 < y ≤ δ ≤ e−2, we have

1
t

ln
ln(ρt)

y
≥ c

s
ln

ln(ρs)
δ

=⇒ t ≤ s
c ln(1/δ)

ln
2 ln

(
1
cy

)

y
. (7.72)

Proof. Rearranging the LHS inequality in (7.71) yields,

t ≤ 1
c

ln
ln(ρt)

y
. (7.73)

The LHS inequality in (7.71) also implies that

c ≤ 1
t

ln
ln(ρt)

y
≤ 1

ty
ln(ρt) ≤ ρ

y
ln(ρt)

ρt
≤
√

ρ

y
√

t
, (7.74)

where the last inequality follows by the fact that (ln x)/x ≤ 1/
√

x, for all x > 0.
Rearranging (7.74) yields t ≤ ρ

c2y2 . Plugging this into (7.73) implies (7.71).

We now show (7.72). Note that since s ≥ e and ρ > 1 the LHS inequality in (7.72)
implies that

1
t

ln
ln(ρt)

y
≥ c

s
ln

1
δ

.

Applying (7.71) to this inequality with c set to c/s ln(1/δ) implies that

t ≤ s
c ln(1/δ)

ln
2 ln

(
ρ

yc ln(1/δ)

)

y
. (7.75)

Now since δ ≤ e−2, we have ρ/(ln(1/δ)) ≤ ρ/2 ≤ 1. Plugging this into (7.75) yields
the desired result.

Lemma 7.30. Let g and τ be as in Theorem 7.15. If for some s > 0, P[Ea(y)] ≥ 1− sy, for
all y ∈ (0, 1) and a ∈ [K], then for all δ ∈ (0, 1) and Gα := ρν2(ν + 1)2g(α):

P


∀t ≥ τ,

K

∑
a=2

Na(t) ≤ K + Gα

K

∑
a=2

8 ln
( s

δ

)
+ ln

(
2
δ ln

(
e
δ ∨

ρGα

δ∆2
a

))

∆2
a


 ≥ 1− (s + 1)δ.

(7.76)

Proof. Let a ∈ {2, . . . , K} and δ, y ∈ (0, 1). Assume that E1(δ) and Ea(y) hold true
and that At = a. In this case, we have for t ≥ τ,

Ca − ξ(Na(t), y)− νξ(Na(t), δ) ≤ ĈNa(t),a − νξ(Na(t), δ),

≤ ĈN1(t),1 − νξ(N1(t), δ), (because At = a)

≤ C1. (7.77)
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This implies that ∆i ≤ (1 + ν) · ξ(Na(t), y ∧ δ). Thus, using (7.71) with c = Gα/∆2
a,

we get that under the event E1(δ) ∩ Ea(y) ∩ {At = a}:

Na(t) ≤
Gα

∆2
a

ln
2 ln

(
ρGα

∆2
a ·(y∧δ)

)

y ∧ δ
,

≤ Gα

α∆2
a

ln
2 ln

(
ρGαe
∆2

aδy

)

yδ
,

≤ Gα

∆2
a

ln
2 ln

((
e ∨ ρGα

∆2
ay

)
1
δ · e

y

)

yδ
,

≤ Gα

∆2
a

(
ln

2
yδ

+ ln
(

ln
((

e ∨ ρGα

∆2
ay

)
1
δ

)
+ ln

(
e
y

)))
,

≤ Gα

∆2
a

(
ln

2
yδ

+ ln ln
((

e ∨ ρGα

∆2
ay

)
1
δ

)
+ ln ln

(
e
y

))
, (ln sub-additive in R≥1)

=
Gα

∆2
a

ln
2 ln

((
e ∨ ρGα

∆2
a

)
1
δ

)

δ
+

Gα

∆2
a

ln
ln (e/y)

y
,

≤ Gα

∆2
a

ln
2 ln

((
e ∨ ρGα

∆2
a

)
1
δ

)

δ
+

2Gα

∆2
a

ln(1/y), (7.78)

where the last inequality follows by the fact that ln(e/x)/x ≤ 1/x2, for all x ∈ (0, 1).
Define

∇a :=
Gα

∆2
a

ln
(

2
δ

ln
(

e
δ
∨ ρGα

δ∆2
a

))
.

Since Na(t) only increases when arm a is pulled, (7.78) implies that for all t ≥ τ,

Na(t) · I{E1(δ) ∩ Ea(y)} ≤ 1 +∇a +
2Gα

∆2
a

ln(1/y). (7.79)

Now define

Γa := sup{y > 0 : Ea(y) holds}. (7.80)

By assumption, we have P[Γa ≤ y] ≥ 1− ys. Furthermore, (7.79) can be written as

Na(t) · I{E1(δ)} ≤ 1 +∇a +
2Gα

∆2
a

ln(1/Γa).
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Using this inequality and the fact that P[E1(δ)
c] ≤ δs we have for any x > 0,

P

[
∀t ≥ 1,

K

∑
a=2

Na(t) > x +
K

∑
a=2

(∇a + 1)

]
≤ δs

+ P

[
∀t ≥ 1,

K

∑
a=1

Na(t) > x +
K

∑
a=1

(∇a + 1)

∣∣∣∣∣ E1(δ)

]
,

≤ δs + P

[
K

∑
a=1

2Gα

∆2
a

ln(1/Γa) > x

]
. (7.81)

Now define the random variable Za := − 2Gα

∆2
a

ln(sΓa), for a ∈ [K]. Since P[Γa <

y] ≤ ys, we have P[Za > x] ≤ exp(−x/λa), where λa := 2Gα/∆2
a; that is Za is sub-

exponential with parameter λa. Further, since Z1, . . . , ZK are independent, we have
by standard techniques which bound the sum of sub-exponential random variables
Jamieson et al. [2014]:

P

[
K

∑
a=1

Za ≥ z

]
≤ exp

( −z2

4‖λ‖2
2
∨ −z

4‖λ‖∞

)
≤ exp

( −z2

4‖λ‖2
1
∨ −z

4‖λ‖1

)
. (7.82)

Combining (7.81) and (7.82) with x = z + ‖λ‖1 ln s and z = 4‖λ‖1 ln(1/δ) yields

P

[
K

∑
a=2

Na(t) >
K

∑
a=2

(
8θ ln(δ−1s)

α∆2
a

+∇a + 1
)]
≤ δ · (s + 1). (7.83)

Now to the final technical result:

Lemma 7.31. Let ν > 1 and ρ ∈ (1, 2). Further, suppose that for some s > 0, P[Ea(y)] ≥
1− sy, for all y ∈ (0, 1) and a ∈ [K]. If

κ ≥ 1
1− sδ−

√
−(sδ)7/16 ln(sδ)

(
ln 2(ν+1)

ν−1

ln(1/δ)
+ 1

)
(1 + ν)2

(ν− 1)2 , (7.84)

for δ ∈ (0, e−2 ∧ e−4/s), then for all 2 ≤ a ≤ K and τ as in Theorem 7.15, we have

P

[
∀a ∈ [K], ∀t ≥ τ : Na(t) < 1 + κ ∑

a′ 6=a
Na′(t)

]
≥ 1− 4sδ− (sδ)1/8.

Proof. Let a > b and y, δ ∈ (0, 1) with δ such that δ ≤ e−2 ∧ e−4/s. Assuming that
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the event Ea(y) ∩ Eb(δ) ∩ {At = a} holds, we have, for all t ≥ τ,

Ca − ξ(Na(t), y)− νξ(Na(t), δ) ≤ ĈNa(t),a − νξ(Na(t), δ),

≤ ĈNb(t),b − νξ(Nb(t), δ),

≤ Cb − (ν− 1)ξ(Nb(t), δ).

Since Cb ≤ Ca by assumption, the last inequality implies that

(1 + ν)ξ(Na(t), y ∧ δ) ≥ (ν− 1)ξ(Na(t), δ).

Thus, using (7.72) with c = (ν− 1)2/(ν + 1)2, we get under the event Ea(y)∩ Eb(δ)∩
{At = a}:

Na(t) ≤
(1 + ν)2

(ν− 1)2 ln(1/δ)
ln




2 ln
(

(1+ν)2

(ν−1)2(y∧δ)

)

y ∧ δ


 · Nb(t).

Using this together with the fact that Na(t) only increases if the event {At = a} holds,
we get

(Na(t)− 1) · I{Ea(y) ∩ Eb(δ)} ≤
(1 + ν)2

(ν− 1)2 ln(1/δ)
ln




2 ln
(

(1+ν)2

(ν−1)2(y∧δ)

)

y ∧ δ


 · Nb(t).

(7.85)

Now let a > 1 and y = δa−1. Using the fact that ln(1/x)/x ≤ 1/x2, for all x ∈ (0, 1),
we get

2 ln
(

(1+ν)2

(ν−1)2(y∧δ)

)

y ∧ δ
≤ 2(1 + ν)2

(ν− 1)2(y ∧ δ)2 ,

≤ 4(1 + ν)2

(ν− 1)2δ2(a−1)
. (since y = δa−1) (7.86)

As a result, we have

ln
2 ln

(
(1+ν)2

(ν−1)2(y∧δ)

)

y ∧ δ
≤ 2(a− 1)

(
ln

2(1 + ν)

ν− 1
+ ln(1/δ)

)
. (7.87)
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Using (7.87) together with (7.85) and the choice of y = δa−1, we get that for µ > 0

I{Ea(δ
a−1)} · 1

a− 1

a−1

∑
b=1

I{Eb(δ)} > 1− µ =⇒ (1− µ) · (Na(t)− 1) ≤ κ′Nb(t),

(7.88)

where κ′ :=
2(ν + 1)2

(ν− 1)2

(
ln 2(ν+1)

ν−1

ln(1/δ)
+ 1

)
. (7.89)

Thus, using the fact that P[Ea(y)] ≥ 1− ys by assumption, we have for µ > 0

P

[
∃(a, t) ∈ [2..K]× [τ,+∞) : (1− µ)(Na(t)− 1) ≥ κ′ ∑

b 6=a
Nb(t)

]

≤ P

[
∃a ∈ [2..K] :

I{Ea(δa−1)}
a− 1

a−1

∑
b=1

I{Eb(δ)} ≤ 1− µ

]
,

≤
K

∑
a=1
Ea(δ

a−1) +
K

∑
a=1

P

[
1

a− 1

a−1

∑
b=1

I{Eb(δ)} ≤ 1− µ

]
. (7.90)

Now, by denoting δs := sδ and using Hoeffding’s inequality, we can bound the RHS
of (7.90) by

P

[
∃a ∈ [2..K] :

I{Ea(δa−1)}
a− 1

a−1

∑
b=1

I{Eb(δ)} ≤ 1− δs − (µ− δs)

]

≤ ((a− 1)δs) ∧ e−2(a−1)(µ−δs)2
. (7.91)

Thus, if we let b? :=
⌈
δ−7/16

s /2
⌉

and set µ? = δs +
√

δ7/16
s ln(1/δs), we obtain from

(7.90) and (7.91) that

P

[
∃(a, t) ∈ [2..K]× [τ,+∞) : (1− µ?)(Na(t)− 1) ≥ κ′ ∑

b 6=a
Nb(t)

]

≤
K

∑
a=1

(
sδa−1 + ((a− 1)δs) ∧ exp(−2(a− 1)(µ? − δs)

2)
)

,

≤ δs

1− δ
+ δsb2

? +
e−2b?δ7/16

s ln(1/δs)

1− e−2δ7/16
s ln(1/δs)

,

≤ δs

1− δ
+ δsb2

? +
δs

1− e−2δ7/16
s ln(1/δs)

, (7.92)

where the last inequality follows by the definition of b?. Now using the fact that
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ex ≤ 1 + x2, for all x ≤ 0 and the assumption that δs ≤ 1/e, we get from (7.92) that

p := P

[
∃(a, t) ∈ [2..K]× [τ,+∞) : (1− µ?)(Na(t)− 1) ≥ κ′ ∑

b 6=a
Nb(t)

]
,

≤ δs

1− δ
+ δsb2

? +
δs

4δ7/8
s ln2(1/δs)

,

≤ δs

1− δ
+ δsb2

? +
δ1/8

s
4

, (δs ≤ e−1)

≤ 2δs + δs(δ
−7/8
s /2 + 2) + δ1/8

s /4,

≤ 4δs + 3δ1/8
s /4,

≤ 4δs + δ1/8
s .

This completes the proof.

Proof of Theorem 7.15. Lemma 7.31 shows that the stopping condition is never trig-
gered by sub-optimal arms with probability at least 1 − 4sδ − δ1/8. On the other
hand, Lemma 7.30 shows that the total number of time sub-optimal arms are pulled
is, with probability at least 1− (s + 1)δ, bounded as a function of the sub-optimality
gaps, as long as κ satisfies (7.84). Under these two event, the stopping condition
occurs after T such that

T =
K

∑
a=1

Na(T) ≤ Kτ + 2 + (1 + κ)
K

∑
a=2

Na(T),

≤ 2 + (1 + κ + τ)K + (1 + κ)Gα

K

∑
a=2

8 ln
( s

δ

)
+ ln

(
2
δ ln

(
e
δ ∨

ρGα

δ∆2
a

))

∆2
a

.

The proof is completed by noting that

κ ≥ 1
1− sδ−

√
−(sδ)7/16 ln(sδ)

(
ln 2(ν+1)

ν−1

ln(1/δ)
+ 1

)
(1 + ν)2

(ν− 1)2 ,

≥
(

ln
2(ν + 1)

ν− 1
+ 2
)

7(1 + ν)2

2(ν− 1)2 . (7.93)

7.5.7 Proof of Theorem 7.16

Proof. First, note that we have

φρ(n) := c lnρ(ρn) ln2(lnρ(ρn)) ≤ c
ln2 ρ

ln2(ρn). (7.94)
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Therefore, by Theorem 7.16 we have with probability 1− 2δ
√

c/ ln ρ, for all n ≥ 1

C[X] ≤ Ĉn[Z(n)] + δn + |Z(n)
(dαne)| · ε

′
n ≤ Ĉn[Z(n)] + δn + Ĉn[Z(n)] · ε′n,

where δn = 2λ · (1− ln α)

√
2ρ ln ln(ρn)

δ

αn
+ λ

1 + 2 ln(ρn) + 4
3 ln(ρn) ln ln(ρn)

δ

αn
,

Now using (7.31), we get, with probability 1− 2δ
√

c/ ln ρ, for all n ≥ 1

C[X] ≤ Ĉn[Z(n)] + δn + C[X] · ε′n. (7.95)

Plugging the bound on C[X] from Proposition 7.12 into (7.95) and using the fact that
f1(α)) = (1− 2 ln(α)), we get, with probability 1− 2δ

√
c/ ln ρ, for all n ≥ 1,

C[X] ≤ Ĉn[Z(n)] + δn + λ(1− 2 ln α) · ε′n,

≤ Ĉn[Z(n)] + 4λ · (1− ln α)

√
2ρ ln ln(ρn)

δ

αn
+ 2λ

1 + ln(ρn/α) + 2
3 ln(ρn) ln ln(ρn)

δ

αn
,

(7.96)

where the last inequality holds for n ≥ τ, where τ ≤ O((ln α ln δ)/α). Now, by
Corollary 7.21 and (7.94), we have with probability at least 1 − δ

√
c/ ln ρ, for all

n ≥ 1

Ĉn[Z(n)] ≤ C[X] + 2λ · (1− ln α)

√
2ρ ln ln(ρn)

δ

αn
+ λ · 1 + 2 ln(ρn) + 4

3 ln(ρn) ln ln(ρn)
δ

αn
.

(7.97)

Note that there exists τ ≤ O((ln α ln δ)/α), such that

2 + 2 ln(ρn/α) + 4
3 ln(ρn) ln ln(ρn)

δ

αn
≤ 4(1− ln α)

√
2ρ ln ln(ρn)

δ

αn
, for all n ≥ τ. (7.98)

Combining this with (7.96) and (7.97), and applying a union bound, we get,

P


∀n ≥ τ, |Ĉn[Z(n)]−C[X]| ≤ 4

√
2λ(1− ln α)

√
ρ ln ln(ρn)

δ

αn


 ≥ 1− 2δ

√
c/ ln ρ.

This completes the proof.
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7.5.8 Proof of Theorem 7.17

Proof. By Corollary 7.20, we have, with probability at least 1− 2δ,

C[X] ≤ Ĉn[Z] + δn + |Z(dnαe)| · εn,

where δn := 2λ · (1− ln α)

√
ln δ−1

αn
+ λ · 3 + 6 ln n− ln n ln δ

3αn
.

Now using the fact that the random variables are positive and (7.31), we get,

C[X] ≤ Ĉn[Z] + δn + C[X] · εn, (7.99)

with probability at least 1− 2δ. Plugging the bound on C[X] from Proposition 7.12
into (7.99) and using the fact that f1(α)) = (1− 2 ln(α)), we get, with probability at
least 1− 2δ,

C[X] ≤ Ĉn[Z] + 4λ · (1− ln α)

√
ln δ−1

αn
+ λ · 4 + 6 ln(n/α)− 2 ln n ln δ

3αn
. (7.100)

Now, by Corollary 7.8, we have, with probability at least 1− δ,

Ĉn[Z] ≤ C[X] + 4λ · (1− ln α)

√
ln δ−1

αn
+ λ · 3 + 6 ln n− ln n ln δ

3αn
. (7.101)

Therefore, for all n ≥ n0, where

n0 = sup

{
n : λ · 4 + 6 ln(n/α)− 2 ln n ln δ

3αn
≤ 2λ · (1− ln α)

√
ln δ−1

αn

}
,

we have from (7.100) and (7.101) and union bound, with probability at least 1− 3δ,

|C[X]− Ĉn[Z]| ≤ +5λ · (1− ln α)

√
ln δ−1

αn
.

This completes the proof.

7.6 Discussion

Generalization bounds. As mentioned earlier, Mhammedi et al. [2020c] derived
the first PAC-Bayesian generalization bound in the statistical learning setting with
the optimal dependence in α. However, their results are restricted to bounded losses.
The two-sided deviation bounds we presented in 7.2 can easily be combined with the
McAllester’s analysis (see e.g. [McAllester, 2003, Lemma 3]) to generate new PAC-
Bayesian bounds for the unbounded losses (under a light or heavy-tailed distribution
assumption) with a state-of-the-art dependence in α.
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Limitations. One limitation of the concentration inequalities we present in this
chapter for the unbounded setting lies in the moment assumptions we make in (7.5)
and (7.6). Since we have not assumed the random variable X has zero mean, the
assumptions in (7.5) and (7.6) are not translation invariant. For that matter, our esti-
mators of CVaR are also not translation-invariant as they involve clipping. In some
applications, such as in Bandits, it is desirable to have translation-invariant estima-
tors. This can be achieved using the median of means Bubeck et al. [2013] instead
of clipping. It is possible to apply the median of means in the context of our reduc-
tion (e.g. to control the deviation of the implicit random variable Y in (7.13)). While
this would resolve the translation invariance issue, it would lead to a sub-optimal
dependence in the parameter α in the unbounded settings we consider. Finding
translation-invariant estimators for CVaR that have concentrate rates with the opti-
mal dependence in α is an important future direction.



Chapter 8

Risk Monotonicity in Statistical
Learning

Guarantees on the performance of machine learning algorithms are desirable, espe-
cially given the widespread deployment. A traditional performance guarantee often
takes the form of a generalization bound, where the expected risk associated with
hypotheses returned by an algorithm is bounded in terms of the corresponding em-
pirical risk plus an additive error which typically converges to zero as the sample
size increases. However, interpreting such bounds is not always straight forward
and can be somewhat ambiguous. In particular, given that the error term in these
bounds goes to zero, it is tempting to conclude that more data would monotonically
decrease the expected risk of an algorithm such as the Empirical Risk Minimizer
(ERM). However, this is not always the case; for example, Loog et al. [2019] showed
that increasing the sample size by one, can sometimes make the test performance
worse in expectation for commonly used algorithms such as ERM in popular settings
including linear regression. This type of non-monotonic behaviour is still poorly un-
derstood and indeed not a desirable feature of an algorithm since it is expensive to
acquire more data in many applications.

Non-monotonic behaviour of risk curves [Shalev-Shwartz and Ben-David, 2014]—
the curve of the expected risk as a function of the sample size—has been observed in
many previous works [Duin, 1995; Opper and Kinzel, 1996; Smola et al., 2000; Opper,
2001] (see also [Loog et al., 2019] for a nice account of the literature). At least two
phenomena have been identified as being the cause behind such behaviour. The first
one, coined peaking [Krämer, 2009; Duin, 2000], or double descent according to more
recent literature [Belkin et al., 2018; Spigler et al., 2018; Belkin et al., 2019; Dereziński
et al., 2019; Deng et al., 2019; Mei and Montanari, 2019; Nakkiran, 2019; Nakkiran
et al., 2020a; Derezinski et al., 2020; Chen et al., 2020; Cheema and Sugiyama, 2020;
d’Ascoli et al., 2020; Nakkiran et al., 2020b], is the phenomenon where the risk curve
peaks at a certain sample size n. This sample size typically represents the cross-
over point from an over-parameterized to under-parameterized model. For example,
when the number of data points is less than the number of parameters of a model
(over-parameterized model), such as Neural Networks, the expected risk can typ-
ically increase until the number of data points exceeds the number of parameters

201
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(under-parameterized model). The second phenomenon is known as dipping [Loog
and Duin, 2012; Loog, 2015], where the risk curve reaches a minimum at a certain
sample size n and increases after that—never reaching the minimum again even for
very large n. This phenomenon typically happens when the algorithm is trained on
a surrogate loss that differs from the one used to evaluate the risk [Ben-David et al.,
2012].

It is becoming more apparent that the two phenomena just mentioned (double
descent and dipping) do not fully characterize when non-monotonic risk behaviour
occurs. Loog et al. [2019] showed that non-monotonic risk behaviour could hap-
pen outside these settings and formally prove that the risk curve of ERM is non-
monotonic in linear regression with prevalent losses. The most striking aspect of
their findings is that the risk curves in some of the cases they study can display
a perpetual “oscillating” behaviour; there is no sample size beyond which the risk
curve becomes monotone. In such cases, the risk’s non-monotonicity cannot be at-
tributed to the peaking/double descent phenomenon. Moreover, they rule out the
dipping phenomenon by studying the ERM on the actual loss (not a surrogate loss).

The findings of Loog et al. [2019] stress our current lack of understanding of
generalization. This was echoed more particularly by Viering et al. [2019a], who
posed the following question as part of a COLT open problem:

How can we provably avoid non-monotonic behaviour?

Contributions. In this work, we answer the above question by presenting algo-
rithms that are both consistent and risk-monotonic under weak assumptions. We
study the guarantees of our algorithms in the standard statistical learning setting
with bounded losses. For the first variant of our algorithm, we require a finite
Rademacher complexity of the loss composed with the hypothesis class. Under
this condition, we show that the algorithm is risk-monotonic and provide the rate
of convergence of its excess-risk, which matches (up to log-factors) the optimal rate
[Dudley, 1984; Talagrand, 1994; Boucheron et al., 2005; Zhivotovskiy and Hanneke,
2018] one would get without further assumptions on the loss function or the data-
generating distribution1. We present a second variant of the algorithm that is also
risk-monotonic and achieves faster excess-risk rates under the Bernstein condition
[Bartlett and Mendelson, 2006b]. This shows that, as far as excess-risk rates are
concerned, risk-monotonicity comes at virtually no price. Our results exceed the ex-
pectations expressed by Viering et al. [2019a] since these algorithms have monotonic
risk curves for all sample sizes n ≥ 1 as opposed to only for large enough n.

We go a step further by showing that risk-monotonicity in high probability (in-
stead of in expectation) is also possible. In particular, we present an algorithm for
this case which also achieves fast excess-risk rates under the Bernstein condition. In
order to derive these results, we make use of the recent online convex optimization

1Additional assumptions may include mixability/exp-concavity of the loss [Van Erven et al., 2015;
Mehta, 2017], and/or the Bernstein/Tsybakov condition on the data-generating distribution [Bousquet
et al., 2004; Bartlett and Mendelson, 2006a].
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algorithm FreeGrad [Mhammedi and Koolen, 2020] to prove a new time-uniform con-
centration inequality (of independent interest) for non-i.i.d. random variables with
the same conditional mean. This inequality can be viewed as an empirical version of
Freedman’s inequality [Freedman, 1975] or an extension of the empirical Bernstein
inequality [Maurer and Pontil, 2009] to non-i.i.d. random variables with the same
conditional mean. Crucially, given a fixed confidence level, our concentration in-
equality holds for all sample sizes n, simultaneously (hence, the name time-uniform),
which is what we need to achieve risk-monotonicity in high probability.

Approach overview. Given n samples, the key idea behind our approach is to iter-
atively generate a sequence of hypotheses ĥ1, ĥ2, . . . leading up to ĥn, where we only
allow consecutive hypotheses, say ĥk−1 and ĥk to differ if we can guarantee (with
high enough confidence) that the risk associated with ĥk is lower than that of ĥk−1.
To test for this, we compare the empirical losses of ĥk−1 and ĥk, taking into account
the potential gap between empirical and population expectations. Further, we pro-
vide a way of estimating this gap from samples using different types of concentration
inequalities.

Related works. Much work has already been done in efforts to mitigate the non-
monotonic behaviour of risk curves [Viering et al., 2019b; Nakkiran et al., 2020b;
Loog et al., 2019]. For example, in the supervised learning setting with the zero-one
loss, Ben-David et al. [2011] introduced the “memorize” algorithm that predicts the
majority label on any test instance x that was observed during training; otherwise,
a default label is predicted. Ben-David et al. [2011] showed that this algorithm is
risk-monotonic. However, it is unclear how their result could generalize beyond the
particular setting they considered. Risk-monotonic algorithms are also known for the
case where the model is correctly specified (see Loog et al. [2019] for an overview);
in this chapter, we do not make such an assumption.

Closer to our work is that of Viering et al. [2019b] who, like us, also used the
idea of only updating the current predictor for sample size n if it has a lower risk
than the predictor for sample size n − 1. They determine whether this is the case
by performing statistical tests on a validation set (or through cross-validation). They
introduce algorithm wrappers that ensure that the risk curves of the final algorithms
are monotonic with high probability. However, their results are specialized to the 0-1
loss, and they do not answer the question by Viering et al. [2019a] on the existence
of learners that guarantee a monotonic risk in expectation.

Outline. In Section 8.1, we introduce the setting, notation, and relevant definitions.
In Section 8.2, we present our risk-monotonic algorithms that answer to the ques-
tion posed by Viering et al. [2019a]. Section 8.3 is dedicated to the proof of risk-
monotonicity of one of our algorithms. In Section 8.4, we study risk-monotonicity in
high-probability and present an algorithm for this case that is based on a new con-
centration inequality. In Section 8.5, we present an efficient version of our algorithm
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for the case of convex losses. We conclude with a discussion in Section 8.11. All
remaining proofs are differed to Sections 8.6, 8.7, 8.9, and 8.10.

8.1 Preliminaries

In this section, we present our notation and the relevant definitions needed for the
rest of the chapter.

Setting and notation. Let Z [resp. H] be an arbitrary feature [resp. hypothesis]
space, and let ` : H×Z → [0, 1] be a bounded loss function. We denote by P(Z)
the set of probability measures over Z , and by F (Z , R) the set of all bounded mea-
surable functions from Z to R. Data is represented by a random variable Z ∈ Z
which we assume to be distributed according to an unknown distribution P ∈P(Z).
A learning problem is a tuple (P, `,H). We assume throughout that Z1, Z2, . . . are
i.i.d. copies of Z, and we denote by P̂n the empirical distribution defined by

P̂n(·) :=
1
n

n

∑
i=1

δZi(·), n ∈N,

where δz(·) represents the Dirac distribution at z ∈ Z . The empirical and population
risks are

L̂n(h) := EP̂n(Z)[`(h, Z)] and L(h) := EP(Z)[`(h, Z)],

respectively, for n ∈N and h ∈ H. To simplify notation, we write Z1:n := (Z1, . . . , Zn),
for n ∈N, and we let Pn := P× · · · × P be the product distribution over Zn. In what
follows, it will be useful to define the following function class:

` ◦ H := {z 7→ `(h, z) : h ∈ H}.

We adopt standard non-asymptotic big-oh notation; for functions f , g : N→ R≥0, we
write f ≤ O(g) if there exists some universal constant C > 0 such that f (n) ≤ Cg(n),
for all n ∈ N. We also write f ≤ Õ(g), if there exists a C > 0 such that f (n) is less
than Cg(n) up to a multiplicative poly-log-factor in n, for all n ∈N. We now present
a series of standard definitions we require:

Definition 8.1 (Rademacher Complexity). Let Z1, . . . , Zn be i.i.d. random variables in
some set Z . The Rademacher complexity of a function class F ⊆ F (Z , R) is defined by

Rn(F ) := E

[
sup
f∈F

1
n

n

∑
i=1

σi f (Zi)

]
,

where σ1, . . . , σn are i.i.d. Rademacher random variables (i.e. P[σi = ±1] = 1/2, i ∈ [n]).

Definition 8.2 (Consistency). An algorithm that for each sample size n ∈ N and any
unknown distribution P ∈ P(Z) outputs a hypothesis ĥn ∈ H based on i.i.d. samples
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Z1, . . . , Zn ∼ P, is consistent if the risk EP(Z)[`(ĥn, Z)] converges to H-optimal risk

infh∈H
{

EP(Z)[`(h, Z)]
}

in probability as n→ ∞.

Definition 8.3 (Risk-Monotonicity). An algorithm that for each sample size n ∈ N and
any unknown P ∈P(Z) outputs a hypothesis ĥn ∈ H based on i.i.d. samples Z1, . . . , Zn ∼
P, is risk-monotonic if

EPn(Z1:n)[L(ĥn)] ≤ EPn−1(Z1:n−1)
[L(ĥn−1)], for all n ∈N. (8.1)

The notion of monotonicity we just defined corresponds to the strongest notion of
monotonicity considered by Loog et al. [2019]; Viering et al. [2019a], which they refer
to as global Z-monotonicity.

8.2 Risk-Monotonic Algorithms

In this section, we present risk-monotonic algorithms for a bounded loss `. Our
first algorithm requires the Rademacher complexity of the function class ` ◦ H be
finite, while for the second algorithm we assume that the hypothesis class H is finite
and show that risk-monotonicity is possible while achieving fast excess-risk rates
under the Bernstein condition; in subsection 8.2.2, we discuss how the finiteness-of-
H assumption may be removed.

The two algorithms we present in this section are instantiations of Algorithm 2
with different choices of input sequence (δk). Naturally, both algorithms share the
same underlying idea; given a sample size n and the task of generating a hypothesis
ĥn = ĥn(Z1:n), the approach we take is to generate a sequence of hypotheses ĥ1 =
ĥ1(Z1), ĥ2 = ĥ2(Z1:2), . . . , leading up to ĥn, where we only allow two consecutive
hypotheses, say ĥk−1 and ĥk, to differ if we can guarantee that the risk associated
with ĥk is smaller than that of ĥk−1. Doing this ensures that the hypotheses (ĥk) have
non-increasing risk as a function of k. To test whether a hypothesis h̃ has a smaller
risk than ĥ given n sample, we use the fact that

∣∣∣L̂n(h̃)− L(h̃)
∣∣∣ ≤ εn and

∣∣∣L̂n(ĥ)− L(ĥ)
∣∣∣ ≤ εn, (8.2)

with high probability, for some error εn that can be obtained through a concentration
argument of the empirical risk. Using (8.2), we can be sure (with high probability)
that the population risk of h̃ is less than that of ĥ if L̂n(h̃)− L̂n(ĥ) ≤ −2εn. Therefore,
we will essentially set δn = 2εn, for all n ∈N, in Algorithm 2.

In this section, we will apply two different concentration arguments to the empir-
ical risk, leading to two different “gap” sequences (δk), and thus two different algo-
rithm variants. The first algorithm relies on a uniform convergence argument (which
is why we require a finite Rademacher complexity of ` ◦ H). We show that this algo-
rithm is risk-monotonic with an excess-risk rate matching the optimal rate one would
get without imposing further constraints on the loss or the data-generating distribu-
tion. The second (risk-monotonic) variant of our algorithm relies on the empirical
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Bernstein inequality [Maurer and Pontil, 2009]. The resulting expression of the gap
sequence (δk) allows us to show a fast convergence rate of the excess-risk under the
Bernstein condition. We now present the first variant of our algorithm:

Algorithm 2 Greedy Empirical Risk Minimization (GERM).
Require:

Samples Z1, . . . , Zn.
An arbitrary initial hypothesis ĥ0 ∈ H.
A sequence (δk).

1: for k = 1, . . . , n do

2: Set h̃k ∈ arg min
h∈H

k

∑
i=1

`(h, Zi). // ERM computation

3: if
1
k

k

∑
i=1

`(h̃k, Zi)−
1
k

k

∑
i=1

`(ĥk−1, Zi) ≤ −δk then

4: Set ĥk = h̃k.
5: else
6: Set ĥk = ĥk−1.

7: Return ĥn.

8.2.1 Greedy Empirical Risk Minimization via Uniform Convergence

For the variant of Algorithm 2 we consider in this subsection, we require the follow-
ing assumption on the Rademacher complexity of the function class ` ◦ H:

Assumption 8.1. The function class ` ◦ H satisfies Rk(` ◦ H) < +∞, for all k ∈N.

Furthermore, for our algorithm to be consistent, we will also need that Rk(` ◦H)→ 0
as k→ ∞. We will instantiate Algorithm 2 with the sequence (δk) given by:

δk := 4R̄k +
√

2 ln(2k)/k + 2/k, for all k ∈N, (8.3)

where (R̄k) are high-probability upper bounds on the Rademacher complexities
(Rk(` ◦ H)); in particular, we require (R̄k) to satisfy

P [R̄k ≥ Rk(` ◦ H)] ≥ 1− 1/k, for all k ∈N. (8.4)

A candidate sequence (R̄k) that satisfies (8.4), and which can be evaluated using
samples, is given by

R̄k = 0∨ sup
h∈H

{
1
k

k

∑
i=1

σi · `(h, Zi) +

√
2 ln(2k)

k

}
, for k ∈N, (8.5)

where σ1, . . . , σk ∈ {−1,+1} are i.i.d. Rademacher random variables. The fact that the
choice of (R̄k) in (8.5) satisfies (8.4) follows directly from the following proposition
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whose proof (see Section 8.6) is based on a standard application of McDiarmid’s
inequality:

Proposition 8.1. For i.i.d. random variables Z1:n ∈ Z [resp. Rademacher variables σ1:n], we
have,

∀δ ∈ (0, 1), P

[∣∣∣∣∣Rn(` ◦ H)− sup
h∈H

1
n

n

∑
i=1

σi · `(h, Zi)

∣∣∣∣∣ ≤
√

2 ln(2/δ)

n

]
≥ 1− δ.

We now present the first guarantees of GERM (the proofs are postponed to Section
8.3).

Theorem 8.2. Algorithm 2 with (δk) as in (8.3) and (R̄k) satisfying (8.4) is risk-monotonic
according to Definition 8.3.

As discussed above, a candidate choice for R̄k that satisfies the condition of The-
orem 8.2 is given in (8.5). We remark, however, that (R̄k) as selected in (8.5) re-
quires the optimization of an empirical objective over H2, and may be replaced by
a more practical choice, given (8.4) is satisfied. For example, in some settings, a
deterministic upper bound on Rk(` ◦ H) trivially satisfies (8.4) and if available, is
another viable choice for R̄k. For example, in classification with the 0-1 loss, we
have, by Sauer’s Lemma (see e.g. [Bousquet et al., 2004, Lemma 1 and Page 198]),
Rk(` ◦ H) ≤ 2

√
VC(H) · ln(ek)/k, for k ≥ 1. And so, any available bound on the

VC-dimension of H can be used to bound the Rademacher complexity. As another
example, consider a 1-Lipschitz loss and a hypothesis class consisting of L-layer feed-
forward neural network, L ≥ 1, with 1-Lipschitz activation and weight matrices with
Frobenius norm bounded by B. In this case, the Rademacher complexity is bounded
as Rk ≤ r

√
2(2B)L/

√
k, for all k ≥ 1, where r > 0 is the maximum norm of the

observed samples [Neyshabur et al., 2015].
We now show that our algorithm is also consistent under appropriate conditions:

Theorem 8.3. Let ĥn be the output of Algorithm 2 with (δk) as in (8.3) and (R̄k) satisfying
(8.4). Then, for all n, with probability at least 1− 2/n,

EP(Z)[`(ĥn, Z)] ≤ inf
h∈H

{
EP(Z)[`(h, Z)]

}
+ 12R̄n + 3

√
2 ln(2n)

n
+

2
n

. (8.6)

Theorem 8.3 implies that Algorithm 2, with the choices of (δk) and (R̄k) as in the
theorem statement, is consistent whenever the sequence (R̄k) satisfies limk→∞ R̄k = 0
in probability. We also note that if R̄k ≤ O(Rk(` ◦ H) + (ln(k)/k)1/2) with high
probability (this is the case for (R̄k) as in (8.5) by Proposition 8.1), then the rate
achieved in (8.6) matches (up to log-factors) the optimal excess-risk rate3 when no

2The objective in (8.5) can be non-convex even for a convex loss `, and so its optimization can be
NP-hard.

3Technically, the excess-risk lower bound presented in e.g. [Boucheron et al., 2005] is expressed in
terms of the VC-dimension. Bounding the Rademacher complexity in terms of the VC-dimension using
Sauer’s Lemma, see e.g. [Bousquet et al., 2004, Lemma 1 and Page 198], establishes the optimality of
the excess-risk rate we present.
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additional assumptions are made about the loss or the data-generating distribution
[Dudley, 1984; Talagrand, 1994; Boucheron et al., 2005; Zhivotovskiy and Hanneke,
2018]. We formalize this in the next corollary by presenting the excess-risk rate of
Algorithm 2 with the particular choice of sequence (R̄k) in (8.5):

Corollary 8.4. Algorithm 2 with (δk) as in (8.3) and (R̄k) as in (8.5) is risk-monotonic, and
its output ĥn satisfies, for all n, with probability at least 1− 2/n,

EP(Z)[`(ĥn, Z)] ≤ inf
h∈H

{
EP(Z)[`(h, Z)]

}
+ 12Rn(` ◦ H) + 4

√
2 ln(2n)

n
+

2
n

.

The corollary follows directly from Theorems 8.2 and 8.3, and Proposition 8.1.

Remark 8.1. The risk-monotonicity of Algorithm 2 in both variants we consider in this
subsection and the next is ensured by the case distinction in Line 3. Therefore, the ERM
hypothesis h̃k in Line 2 of the algorithm may be replaced by any other consistent hypothesis.
The resulting algorithm will still be risk-monotonic and consistent. The corresponding proofs
are easily extended to this case.

Next, we present the second variant of our algorithm that relies on the empirical
Bernstein inequality instead of uniform convergence to select the gap sequence (δk).
Doing this allows for a better convergence rate of the excess-risk under the Bernstein
condition.

8.2.2 Greedy Empirical Risk Minimization via Empirical Bernstein

In this subsection, we assume that the hypothesis set |H| is finite and instantiate
Algorithm 2 with the sequence (δk) defined by (to see how this choice relates to the
empirical Bernstein inequality see the proof of Lemma 8.16 in Section 8.9)

δk :=

√
2 ∑k

i=1(`(h̃k, Zi)− `(ĥk−1, Zi))2 ln(2k|H|2)
(k− 1)2 +

5 ln(2k|H|2)
k− 1

+
2
k

, (8.7)

k ∈ N, where (h̃k) and (ĥk) are as in Algorithm 2. One way to dispose of the
finiteness assumption of the hypothesis class H is to consider a randomized hypoth-
esis, instead of the ERM in Line 3 of Algorithm 2, and apply existing PAC-Bayesian
bounds to determine the appropriate gap sequence (δk) (the PAC-Bayesian bounds
presented in e.g. [Mhammedi et al., 2019a] lead to a gap sequence that is compatible
with the analysis we carry for the results of this subsection). As noted in Remark
8.1, swapping the ERM for another predictor (randomized or not) need not affect
risk-monotonicity4. We remark that one can also reduce the non-finite case to the
finite one using empirical covers of H [Audibert, 2004a]. We will focus on the setting
where H is finite in favor of exposition and highlighting the fast excess-risk rates
under the Bernstein condition while maintaining risk-monotonicity.

4In the case of randomized predictors, the definition of risk-monotonicity in (8.1) and Line 3 of
Algorithm 2 need be modified to incorporate expectations over the randomness of the predictors.
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The choice of sequence (δk) in (8.7) will allow us to show a fast rate of convergence
of the excess-risk (faster than the one obtained in Corollary 8.4) under the following
Bernstein condition:

Definition 8.4. [Bernstein Condition] The learning problem (P, `,H) satisfies the (β, B)-
Bernstein condition, for β ∈ [0, 1] and B > 0, if for all h ∈ H,

EP(Z)

[
(`(h, Z)− `(h?, Z))2

]
≤ B ·EP(Z) [`(h, Z)− `(h?, Z)]β ,

where h∗ ∈ arg infh∈H EP(Z)[`(h, Z)] is a risk minimizer within the closure of H.

The Bernstein condition [Audibert, 2004b; Bartlett et al., 2006; Bartlett and Mendel-
son, 2006b; Erven et al., 2015; Koolen et al., 2016] essentially characterizes the easiness
of the learning problem. In particular, it implies that the variance of the excess-loss
random variable `(h, Z) − `(h?, Z) vanishes when the risk associated with the hy-
pothesis h ∈ H gets closer to the H-optimal risk L(h?). For bounded loss functions,
the Bernstein condition with β = 0 always holds. The Bernstein condition with
β = 1—also known as the Massart noise condition [Massart and Nédélec, 2006]—
corresponds to the easiest learning setting. It holds, for example, when H is convex
and h 7→ `(h, z) is exp-concave, for all z ∈ Z [Erven et al., 2015; Mehta, 2017] (for
more examples of learning settings where a Bernstein condition holds see [Koolen
et al., 2016, Section 3]). The case where β ∈ (0, 1) interpolates naturally between
these two extreme cases, where intermediate excess-risk rates are achievable. We
start by the statement of risk-monotonicity (the proof is postponed to Section 8.9):

Theorem 8.5. Algorithm 2 with (δk) as in (8.7) is risk-monotonic according to Definition
8.3.

The proof of the theorem is the same as that of Theorem 8.2 except for minor changes.
Note that the algorithm does not require any Bernstein condition to ensure risk-
monotonicity. We only use the condition in the next theorem to show intermediate
excess-risk rates:

Theorem 8.6. Let B > 0 and β ∈ [0, 1], and suppose that the (β, B)-Bernstein condition
holds. Then, the output ĥn of Algorithm 2 with (δk) as in (8.7) satisfies, ∀n, with probability
at least 1− 4/n,

EP(Z)[`(ĥn, Z)] ≤ inf
h∈H

{
EP(Z)[`(h, Z)]

}
+ O

((
ln(n|H|)

n

) 1
2−β

+
ln(n|H|)

n

)
.

We note that the excess-risk rate achieved in Theorem 8.6 interpolates nicely between
the fast Õ((ln |H|)/n) rate achieved when β = 1 (the easiest learning setting), and
the worst-case rate Õ(

√
(ln |H|)/n) achieved when β = 0 (this always holds for

a bounded loss). Crucially, the bound in Theorem 8.6 is, in general, the best one
can hope for up to log-factors (see e.g. [Koolen et al., 2016]). The results of The-
orems 8.3 and 8.6 essentially show that, as far as excess-risk rates are concerned,
risk-monotonicity can be achieved for free.
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Before moving to the notion of risk-monotonicity with high probability in Section
8.4, we first prove one of the main results of the current section. We chose the proof
of Theorem 8.2 as we find it most helpful in understanding how GERM achieves
risk-monotonicity. The rest of the proofs are deferred to Sections 8.6, 8.7, 8.9, and
8.10.

8.3 Proof of Theorem 8.2

In the proofs of Theorems 8.2 and 8.3, we need the following standard uniform
convergence result:

Theorem 8.7 (Bousquet et al. [2004]). Let n ∈ N and Z, Z1, . . . , Zn be i.i.d. random
variables such that Z ∼ P. Further, let F ⊆ F (Z , [0, 1]) be a class of functions bounded
between 0 and 1. Then, for any δ ∈ (0, 1), with probability at least 1− δ,

sup
f∈F

∣∣∣EP(Z)[ f (Z)]−EP̂n(Z)[ f (Z)]
∣∣∣ ≤ 2Rn(F ) +

√
ln(2/δ)

2n
.

From this result and a union bound, we arrive at the following useful corollary:

Corollary 8.8. Let n ∈ N and Z, Z1, . . . , Zn be i.i.d. random variables such that Z ∼ P.
Further, let R̄n > 0 be such that P[R̄n ≥ Rn(` ◦ H)] ≥ 1− 1/n, and define the event

En :=
{∣∣∣L(h)− L̂n(h)

∣∣∣ ≤ εn, for all h ∈ H
}

, where εn := 2R̄n +

√
ln(2n)

2n
.

Then, P[En] ≥ 1− 2/n.

Proof of Theorem 8.2. First, note that by linearity of the expectation it suffices to
show that

EPn(Z1:n)

[
L(ĥn)− L(ĥn−1)

]
≤ 0.

Moving forward, we define ∆n := L(ĥn)− L(ĥn−1). Let εn and En be as in Corollary
8.8 with R̄n being the high probability upper bound on Rn(` ◦ H) that Algorithm 2
has access to (R̄n satisfies (8.4)). By Corollary 8.8, we have P[En] ≥ 1− 2/n. Now, by
the law of the total expectation, we have

E[∆n] = P[{ĥn ≡ ĥn−1}] ·E[∆n | {ĥn ≡ ĥn−1}]
+ P[{ĥn 6≡ ĥn−1}] ·E[∆n | {ĥn 6≡ ĥn−1}],
≤ P[{ĥn ≡ ĥn−1}] ·E[∆n | {ĥn 6≡ ĥn−1}], (8.8)

where the last inequality follows by the fact that if ĥn ≡ ĥn−1, then ∆n = 0. We
note that the expectation in (8.8) is with respect to Pn(Z1:n). Letting pn := P[{ĥn ≡
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ĥn−1}] ∈ [0, 1], we have from (8.8),

E[∆n] ≤ pnP[En] ·E[∆n | {ĥn 6≡ ĥn−1} ∩ En] + pnP[E c
n] ·E[∆n | {ĥn 6≡ ĥn−1} ∩ E c

n],

≤ pnE[∆n | {ĥn 6≡ ĥn−1} ∩ En] + 2pn/n, (8.9)

= pnE[∆n + 2/n | {ĥn 6≡ ĥn−1} ∩ En], (8.10)

where (8.9) follows by the fact that the loss ` takes values in [0, 1] and that P[E c
n] ≤

2/n. Now, if ĥn 6≡ ĥn−1, then by Line 3 of Algorithm 2, we have

L̂n(h̃n) ≤ L̂n(ĥn−1)− δn, (8.11)

where we recall that δn is as in (8.3) (with k = n). Under the event En, we have

L(h̃n)− εn ≤ L̂n(h̃n) and L̂n(ĥn−1) ≤ L(ĥn−1) + εn.

This, in combination with (8.11), implies that under the event En ∩ {ĥn 6≡ ĥn−1},

∆n + 2/n = L(h̃n)− L(ĥn−1) + 2/n ≤ 2/n− δn + 2εn = 0,

where in the last equality we substituted the expression of δn in (8.3) (with k = n).
As a result, we have

EPn(Z1:n)[∆n + 2/n | {ĥn 6≡ ĥn−1} ∩ En] ≤ 0. (8.12)

Combining (8.10) and (8.12) yields the desired result.

8.4 Risk-Monotonicity in High Probability

So far, we have addressed the problem of risk monotonicity in expectation as posed
by Viering et al. [2019a]. Another interesting yet realistic scenario [Viering et al.,
2019b] is to study risk monotonicity for every realization of (Z1, Z2, . . . ) with high
probability (instead of in-expectation).

Definition 8.5 (Strong Risk-Monotonicity). Let δ ∈ (0, 1), and Z, Z1, Z2, . . . be i.i.d. ran-
dom variables such Z ∼ P for some unknown distribution P. An algorithm that for each
n ∈ N outputs a hypothesis ĥn ∈ H based on (Z1, . . . , Zn), is δ-strongly-risk-monotonic if
there exists n0 ≥ 1

P
[
∀n ≥ n0, L(ĥn) ≤ L(ĥn−1)

]
≥ 1− δ. (8.13)

The notion of strong risk monotonicity concerns individual risk curves; the curves of
E[`(ĥn, Z)] (instead of EPn(Z1:n)E[`(ĥn, Z)]) as a function of n, for a given realization
of (Z1, Z2, . . . ). As we will discuss below, a strongly risk-monotonic algorithm can
easily be turned into a risk-monotonic algorithm as per Definition 8.3, albeit for
n ≥ n0 in (8.1) instead of n ∈N.
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We note that compared with the notion of risk monotonicity in Definition 8.3,
strong risk-monotonicity allows for an n0 ≥ 1 beyond which monotonicity is achieved
with high probability. The magnitude of n0 will in general depend on the complexity
of the class H. Here, we make the simplifying assumption that the set |H| is finite,
(as we did in Section 8.2.2) and we will show that (8.13) is achievable for n0 as small
as max{n : 2 ln(

√
n|H|2/δ) ≥ n/2} (this is essentially the smallest sample size for

which the new concentration inequality we use is non-vacuous).
The notion δ-strong risk-monotonicity fits naturally with the following notion of

consistency:

Definition 8.6 (δ-Consistency). Let δ ∈ (0, 1), and Z, Z1, Z2, . . . be i.i.d. random variables
such Z ∼ P for some unknown distribution P. An algorithm that for each n ∈ N outputs
a hypothesis ĥn ∈ H based on (Z1, . . . , Zn), is δ-consistent if limn→∞ EP(Z)[`(ĥn, Z)] =

infh∈H
{

EP(Z)[`(h, Z)]
}

with probability at least 1− δ.

For risk-monotonicity in expectation, we derived the performance gaps (δk) based on
concentration inequalities (Rademacher and empirical Bernstein) to enforce E[L(ĥn)] ≤
E[L(ĥn−1)]. However, these inequalities only hold for a pre-specified sample size n
and are, therefore, not strong enough to guarantee monotonicity for individual risk
curves. To overcome this challenge, we present a new, so-called time-uniform, con-
centration inequality that holds for all sample sizes simultaneously. In the statement
of this result, we will denote by Et−1[·] := E[· | Ft−1], t ≥ 1, where Ft−1 is the
sigma-algebra generated by random variables X1, . . . , Xt−1, with F0 := ∅.

Theorem 8.9. Let γ > 0, δ ∈ (0, 1), and X, X1, X2, · · · ∈ [0, 1] be random variables such
that E[X] = Ei−1[Xi], ∀i ≥ 1. Then, for n0 ≥ sup{n : 2 ln

√
n

γδ ≥ n}:

P

[
∀n > n0,

∣∣∣∣∣E[X]− 1
n

n

∑
i=1

Xi

∣∣∣∣∣ ≤
(√

(γ2/n + V̂n[X]) · ξn + γξn

)
1

1− ξn

]
≥ 1− δ,

where V̂n[X] :=
1
n

n

∑
i=1

(
Xi −

1
n

n

∑
j=1

Xj

)2

and ξn :=
2 ln

√
n

γδ

n
.

We note that the theorem holds for random variables that are not necessarily inde-
pendent, or even identically distributed. Thus, the bound in Theorem 8.9 can be seen
as an empirical (time-uniform) version of Freedman’s inequality [Freedman, 1975],
which is of independent interest5. Moreover, note that the empirical variance appears
inside the square-root, enabling us to achieve fast rates under the Bernstein condi-
tion in a similar way as in Section 8.2.2. We prove Theorem 8.9 by constructing a new
non-negative supermartingale based of the potential function of the recent FreeGrad

algorithm [Mhammedi and Koolen, 2020] for online convex optimization (more on
this in Section 8.7). Our proof technique is very similar to the one introduced in [Jun

5A concentration inequality reminiscent of the one in Theorem 8.9 appeared in Howard et al. [2018].
However, their bound has a Vn under the square-root that is not equal to the empirical variance.
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and Orabona, 2019b]. The only difference is that we use the specific shape of Free-
Grad’s potential function to build our supermartingale. Finally, we note that the
ln n factors present in our new concentration inequality (thanks the ξn terms) can be
improved to ln ln n by carefully ‘mixing’ the FreeGrad supermartingal over different
values of γ > 0 (see also discussion in [Jun and Orabona, 2019b, Section 7.2]).

Choice of sequence (δk). For δ ∈ (0, 1) and k ≥ 1, we define

ξk :=
2
k

ln

(
|H|2
√

k
δ

)
, and n0 := max{n : ξn ≥ 1/2}. (8.14)

With this, and (h̃k) and (ĥk−1) as in Algorithm 2, we let

δk :=

{
4ξk + 2

√
∑k

i=1(`(h̃k, Zi)− `(ĥk−1, Zi))2 · ξk/k, if k > n0;
0, otherwise.

(8.15)

This choice of δk is related to the new concentration inequality in Theorem 8.9, which
we show explicitly in the proof of Lemma 8.19 in Section 8.10. As we shall see
shortly, this choice of δk will not only allow us to ensure monotonicity of individual
risk curves but will also enable us to achieve fast rates under the Bernstein condition
(Definition 8.4). We now present the first guarantee of our Algorithm 2 with the
choice of (δk) as in (8.15):

Theorem 8.10. For any δ ∈ (0, 1), Algorithm 2 with (δk) as in (8.15) is δ-strongly risk-
monotonic according to Definition 8.5.

By modifying the proof of Theorem 8.2 slightly, it is easy to show that by set-
ting δ = 1/k in (8.14) and adding 1/k in the definition of δk in (8.15), the re-
sulting Algorithm 2 is risk-monotonic according to Definition 8.3, albeit only for
n > max{k : 2 ln(|H|2k3/2) ≥ k}, instead of all n ∈ N. This shows that, indeed, the
notion of risk-monotonicity we introduced in Definition 8.6, is in a way stronger than
the one we considered in the previous section. We now bound the excess risk rate of
the new algorithm:

Theorem 8.11. Let δ ∈ (0, 1) and n0 be as in (8.14). Further, let B > 0 and β ∈ [0, 1], and
suppose that the (β, B)-Bernstein condition holds. Then, the output ĥn of Algorithm 2 with
(δk) as in (8.15) satisfies, with probability at least 1− δ, for all n ≥ n0,

EP(Z)[`(ĥn, Z)] ≤ inf
h∈H

{
EP(Z)[`(h, Z)]

}
+ O

(
max

γ∈{β,1}

(
ln(n|H|/δ)

n

) 1
2−γ

)
. (8.16)

It is striking that one can achieve strong risk-monotonicity without compromis-
ing fast excess risk rates under the Bernstein condition. We note that the Bernstein
condition (for β > 0) is not needed for the instantiation of Algorithm 2 in Theorem
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8.11 to be δ-consistent (Definition 8.6). Indeed, since ` is bounded, the Bernstein con-
dition is satisfied for β = 0. Thus, substituting this into (8.16) and taking the limit as
n→ ∞ implies the required condition for δ-consistency.

In the next section, we present an efficient version of GERM for the case of convex
losses.

8.5 An Efficient Algorithm for Convex Losses

In this subsection, we present an efficient risk-monotonic algorithm for the case
where the function h 7→ `(h, z) is convex, for all z ∈ Z . In contrast with GERM
(Algorithm 2), the algorithm we present here (Algorithm 3) does not require n-ERM
computations.

For simplicity of the exposition, we assume in the subsection that H in a convex
bounded subset of Rd, albeit much of the techniques we present here also work if H
is an unbounded subset of a Banach space. We will denote by D := suph,h′∈H ‖h− h′‖
the diameter of the setH, where ‖ · ‖ represents the Euclidean norm. Moving forward,
we require the notions of sub-differential set and sub-gradients; for any z ∈ Z , the sub-
differential of a function h 7→ `(h, z) at h̃ ∈ H is defined by

∂h`(h̃, z) :=
{

g ∈ Rd : `(h, z) ≥ `(h̃, z) + g>(h− h̃), ∀h ∈ H
}

. (8.17)

Any element g ∈ ∂h`(h̃, z) is a sub-gradient of h 7→ `(h, z) at h̃. We assume that the
loss ` is G-Lipschitz in the first argument; that is

‖g‖ ≤ G, for all g ∈ ∂h`(h̃, z).

Let A be an online learning algorithm which operates in rounds; at each round i, A
outputs h̃i ∈ Rd then receives a vector gi ∈ Rd. We assume that for any sequence
(gi) ⊂ Rd such that ∀i, ‖gi‖ ≤ G, and some G > 0, the outputs (h̃i) of A satisfy

n

∑
i=1

g>i (h̃i − h) ≤ 2GD
√

n, for all h ∈ H, (8.18)

The LHS of (8.18) is the regret of Algorithm A against the comparator h ∈ H. An exam-
ple of algorithm A which satisfies the regret bound in (8.18) is the Online Gradient
Descent (OGD) algorithm (see e.g. Hazan [2016b]). Using the proof steps of Theorems
8.3 and (8.1), and standard online-to-batch conversion techniques (see e.g. Cutkosky
[2019a]), we get the following result (which we state without proof):

Claim 8.12. Let H ⊂ Rd be a bounded convex set with diameter D > 0, and suppose that `
is convex and G-Lipschitz in the first argument. Then, given

• a sequence (R̄k) ⊂ R≥0 satisfying P[R̄k ≥ Rk(` ◦H)] ≥ 1− 1/k, for all k ∈N, and

• an algorithm A with a regret bound as in (8.18),
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Algorithm 3 is risk-monotonic and its output ĥn satisfies ∀n ≥ 1, with probability at least
1− 2/n,

EP(Z)[`(ĥn, Z)] ≤ inf
h∈H

{
EP(Z)[`(h, Z)]

}
+ 12R̄n + 3

√
2 ln(2n)

n
+

2
n

. (8.19)

Algorithm 3 An efficient risk-monotone algorithm for convex losses.
Require:

Samples Z1, . . . , Zn.
An arbitrary initial hypothesis ĥ0 in H
An online learning algorithm A operating on H.
A sequence (R̄n).

1: Set h̆0 = h̃0 = ĥ0

2: Set S0 = 0
3: Send 0 to A

4: for k = 1, . . . , n do
5: Get h̆k from A

6: Set h̃k = ((k− 1)h̃k−1 + h̆k)/k.
7: Send gk ∈ ∂h`(h̃k, Zk) to A.
8: Set δk = 2R̄k +

3
2

√
2 ln(2k)/k + 3/k.

9: if
1
k

k

∑
i=1

`(h̃k, Zi)−
1
k

k

∑
i=1

`(ĥk−1, Zi) ≤ −δk then

10: Set ĥk = h̃k
11: else
12: Set ĥk = ĥk−1

13: Return ĥn.

As we did in Corollary 8.4 in the previous subsection, if we instantiate Algorithm
3 with (R̄k) as in (8.5), we can essentially replace the term R̄n on the RHS of (8.19)
by Rn(` ◦ H); in this case, Algorithm 3 achieves the standard Rademacher risk rate
when no additional assumptions on the learning problem are made.

The next sections are dedicated to the proofs of the results of this chapter. We
start by the proof of Proposition 8.1.

8.6 Estimating the Rademacher Complexity

In this section, we derive an estimator of the Rademacher complexity of a class F
consisting of functions taking values in the interval [0, 1]. We will be using McDi-
armid’s inequality:

Theorem 8.13 (McDiarmid [1989]). Let c > 0 and X1, . . . , Xn be independent random
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variables taking values in a set A, and assume that f : An → R satisfies,

sup
x1,...,xn,x′i∈A

∣∣ f (x1, . . . , xn)− f (x1, . . . , xi−1, x′i , xi+1, . . . , xn)
∣∣ ≤ c, ∀i ∈ [n]. (8.20)

Then, for every t > 0, P[| f (X1, . . . , Xn)−E[ f (X1, . . . , Xn)]| ≥ t] ≤ 2 exp(−2t2/(nc2)).

Lemma 8.14. For A := {±1} × Z , the function f : An → R defined by

f ((σ1, z1), . . . , (σn, zn)) := sup
h∈H

1
n

n

∑
i=1

σi · `(h, zi),

satisfies (8.20) with c = 2/n and xi := (σi, zi), i ∈ [n].

Proof. For any i ∈ [n] and x1 = (σ1, z1), . . . , xn = (σn, zn), x′i = (σ′i , z′i) ∈ A, we have

∣∣ f (x1, . . . , xn)− f (x1, . . . , xi−1, x′i , xi+1, . . . , xn)
∣∣ ≤ sup

h∈H

1
n
∣∣σi · `(h, zi)− σ′i · `(h, z′i)

∣∣ ,

≤ 2
n

,

where the last inequality follows by the fact that the loss ` takes values in [0, 1] and
σi ∈ {±1}, for all i ∈ [n]. This completes the proof.

Proof of Proposition 8.1. By definition of the Rademacher inequality, we have

Rn(` ◦ H) = E

[
sup
h∈H

1
n

n

∑
i=1

σi · `(h, Zi)

]
. (8.21)

Thus, the desired inequality follow directly by McDiarmid’s inequality (Theorem
8.13) and Lemma 8.14.

8.7 Proof of the New Concentration Bound (Theorem 8.9)

To prove Theorem 8.9, we will construct a non-negative supermartingale with the
help of the recent FreeGrad algorithm [Mhammedi and Koolen, 2020]. Our proof
technique is very similar to the one introduced in [Jun and Orabona, 2019b], except
that we use the specific shape of FreeGrad’s potential function to build our super-
martingale.

For γ > 0, n ∈N, and random variables Y, Y1, Y2, . . . , we define

Mn :=
γ2
√

Vn
· exp

( |Sn|2
2Vn + 2|Sn|

)
, where

{
Sn := ∑n

i=1 Yi;

Vn := γ2 + ∑n
i=1 Y2

i .
(8.22)

In what follows, we will denote by Et−1[·] := E[· | Ft−1], t ≥ 1, where Ft−1 is the
sigma-algebra generated by the random variables Y1, . . . , Yt−1.
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Proposition 8.15. For γ > 0, and any random variables Y, Y1, Y2, · · · ∈ [−1, 1] satisfying
Ei−1[Yi] = E[Y] = 0, for all i ∈ [n], the sequence (Mn) defined in (8.22) is a non-negative
supermartingale; that is, Mn ≥ 0, for all n ≥ 1, and

En[Mn+1] ≤ Mn, for all n ≥ 1.

Before we present the proof of this theorem, we first give a short background on
FreeGrad (the reader may also refer to Chapter 4):

FreeGrad. FreeGrad is an algorithm for unconstrained online convex optimization—
it is a so-called parameter-free algorithm. The algorithm operates in rounds, where
at each round t, FreeGrad outputs ŵt in some convex set W , say Rd, then observes
a vector gt ∈ Rd, typically the sub-gradient of a loss function at round t. The al-
gorithm guarantees a regret bound of the form ∑T

t=1 g>t (ŵt − w) ≤ Õ(‖w‖√VT),
for all w ∈ W , where VT := ∑T

t=1 ‖gt‖2. What is more, FreeGrad’s outputs (ŵt)
ensure that a certain potential function—whose form is reminiscent of (8.22) with Yi
[resp. | · |] replaced by gi [resp. ‖ · ‖]—is non-increasing (see [Mhammedi and Koolen,
2020, Theorem 5]). In the proof of Proposition 8.15, we will reason about the outputs
of FreeGrad in one dimension (i.e. d = 1) in response to the input (gt) ≡ (Yt).

One way to prove Proposition 8.15 is to show that FreeGrad is a betting algo-
rithm that bets fractions smaller than one of its current wealth at each round. In this
case, Proposition 8.15 would follow from existing results due to, for example, Jun
and Orabona [2019b]. However, for the sake of simplicity, we decided to present a
proof that does not explicitly refer to bets.

Proof of Proposition 8.15. By [Mhammedi and Koolen, 2020, Theorem 5], FreeGrad’s
outputs (ŵi) in response to (Yi) and initial scale γ > 06 guarantee,

ŵn+1 ·Yn+1 + Mn+1 ≤ Mn, for all n ∈N, (8.23)

where (Mn) are as in (8.22). Re-arranging this inequality, yields

En[Mn+1 −Mn] ≤ −En[ŵn+1 ·Yn+1] = −ŵn+1 ·En[Yn+1] = 0,

where the penultimate equality follows by the fact that ŵn+1 is a deterministic func-
tion of the history up to round n, inclusive, and the last equality follows by the
assumption that En[Yn+1] = 0.

Proof of Theorem 8.9. Let γ > 0 and δ ∈ (0, 1). By Proposition 8.15 and Ville’s in-
equality (a generalization of Markov’s inequality for supermartingales—see Lemma
B.6), we have

P[∃n ≥ 1, Mn ≥ γ/δ] ≤ δE[M0]/γ = δ. (8.24)

6Technically, FreeGrad also requires a sequence of hints (ht) that provides upper bounds on (|Yt|).
Since Yi ∈ [−1, 1], these hints can all be set to γ > 0.
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Further, for Yi := Xi −E[X] and ∆n := |∑n
i=1 Yi/n|, ξn := 2

n ln
√

n
γδ , and the notation in

(8.22), we have

∆n ≥
(√

(γ2/n + V̂n[X]) · ξn + γξn

)
1

1− ξn

=⇒ ∆2
n

γ2/n + V̂n[X] + ∆2
n + ∆n

≥ ξn,

=⇒ ∆2
n

γ2/n + V̂n[X] + ∆2
n + ∆n

≥
2 ln

√
Vn

γδ

n
, (8.25)

=⇒ |Sn|2
2Vn + 2|Sn|

≥ ln
√

Vn

γδ
, (8.26)

=⇒ Mn ≥ γ/δ. (8.27)

where (8.25) follows by the fact that |Xi| ≤ 1, and (8.26) follows by the the bias
variance decomposition: we have Vn/n = γ2/n + V̂n[X] + ∆2

n. Thus, (8.27) implies
that

δ ≥ P[∃n ≥ n0, Mn ≥ γ/δ]

≥ P
[
∃n ≥ n0, ∆n ≥

(√
(γ2/n + V̂n[X]) · ξn + γξn

)
1

1− ξn

]
≤, (8.28)

where the first inequality follows by (8.24).

8.8 Proof of Theorem 8.3

Proof. Let εn and En be as in Corollary 8.8 with R̄n being the high probability
upper bound on Rn(` ◦ H) that Algorithm 2 has access to (R̄n satisfies (8.4)). By
Corollary 8.8, we have P[En] ≥ 1− 2/n. For the rest of this proof, we will condition
on the event En.

By definition of h̃n in Algorithm 2 and Corollary 8.8, we have

L(h̃n) ≤ L̂n(h̃n) + εn, (under the event En)

= inf
h∈H

L̂n(h) + εn, (h̃n is the ERM)

≤ inf
h∈H

L(h) + 2εn. (under the event En) (8.29)

We now consider two cases pertaining to the condition in Line 3 of Algorithm 2:



§8.9 Proofs of Theorems 8.5 and 8.6 219

Case 1. Suppose that the condition in Line 3 of Algorithm 2 is satisfied for k = n.
In this case,

L(ĥn)] = L(h̃n),

≤ inf
h∈H

L(h) + 2εn. (by (8.29)) (8.30)

Case 2. Suppose the condition in Line 3 does not hold for k = n. This means
ĥn ≡ ĥn−1, and so

L(h̃n) ≥ L̂n(h̃n)− εn, (under the event En)

> L̂n(ĥn)− δn − εn, (condition in Line 3 is false)

≥ L(ĥn)− δn − 2εn. (under the event En) (8.31)

Thus, by combining (8.29) and (8.31), we get

L(ĥn) ≤ inf
h∈H

L(h) + 4εn + δn. (8.32)

From (8.30) and (8.32), we conclude that with probability P[En] ≥ 1− 2/n:

EP(Z)[`(ĥn, Z)] ≤ inf
h∈H

{
EP(Z)[`(h, Z)]

}
+ 4εn + δn,

which implies the desired result.

8.9 Proofs of Theorems 8.5 and 8.6

We start by presenting a sequence of intermediate results needed in the proofs of
Theorems 8.5 and 8.6.

8.9.1 Intermediate Results

The proofs of all the results in this subsection are postponed to Subsection 8.9.3.
We begin by a result pertaining to the concentration of the empirical risk using the
empirical Bernstein inequality [Maurer and Pontil, 2009]:

Lemma 8.16. Let ` : H × Z → [0, 1] and suppose that H is a finite set. Further, let
Z, Z1, . . . , Zn be i.i.d. random variables such that Z ∼ P. Then, for all δ ∈ (0, 1), with
probability at least 1− δ,

L(h)− L(h′) ≤ L̂n(h)− L̂n(h′) +

√
2 ∑n

i=1(`(h, Zi)− `(h′, Zi))2 ln(2|H|2/δ)

(n− 1)2

+
5 ln(2|H|2/δ)

n− 1
, (8.33)

for all h, h′ ∈ H.
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The next lemma provides a way of bounding the square-root term in (8.33) under the
Bernstein condition:

Lemma 8.17. Let ` : H×Z → [0, 1], where H is a finite set. Further, let β ∈ [0, 1], B > 0,
n ∈N, and suppose that the (β, B)-Bernstein condition holds. Then, for any δ ∈ (0, 1), with
probability at least 1− δ,

√
24 ∑n

i=1(`(h, Zi)− `(h?, Zi))2 ln(2|H|2/δ)

(n− 1)2 ≤ L(h)− L(h?)
2

+ O

(
max

β′∈{1,β}

(
ln(|H|/δ)

n

) 1
2−β′
)

, (8.34)

for all h ∈ H, where h? ∈ arg infh∈HL(h).

Using the previous two lemmas, we derive the excess-risk rate of ERM under the
Bernstein condition:

Lemma 8.18. Let ` : H × Z → [0, 1], where H is a finite set. Further, let β ∈ [0, 1],
B > 0, and suppose that the (β, B)-Bernstein condition holds. Then, the ERM h̃n ∈
arg infh∈HEP̂n(Z)[`(h, Z)] satisfies, with probability at least 1− 2/n,

L(h̃n)− L(h?) ≤ O

((
ln(n|H|)

n

) 1
2−β

+
ln(n|H|)

n

)
.

8.9.2 Proofs of Theorems 8.5 and 8.6

In what follows, it will be useful to define the event

En :=
{

L(h̃n)− L(ĥn−1) ≤ L̂n(h̃n)− L̂n(ĥn−1) + εn

}
, n ∈N, (8.35)

where εn :=

√
2 ∑n

i=1(`(h̃n, Zi)− `(ĥn−1, Zi))2 ln(2n|H|2)
(n− 1)2 +

5 ln(2n|H|2)
n− 1

, (8.36)

and (h̃k) and (ĥk) are as in Algorithm 2 with the choice of (δk) in (8.7). We note that
by Lemma 8.16, we have P[En] ≥ 1− 1/n ≥ 1− 2/n, for all n. We begin by the proof
of risk-monotonicity:

Proof of Theorem 8.5. Let ∆n := L(ĥn) − L(ĥn−1). Using the definitions of En, εn,
and δn as in (8.35), (8.36), and (8.7) (with k = n), respectively, and following exactly
the same steps as in the proof of Theorem 8.2, we arrive at

E[∆n] ≤ E[∆n | {ĥn 6≡ ĥn−1} ∩ En] + 2/n. (8.37)

Now, if ĥn 6≡ ĥn−1, then by Line 3 of Algorithm 2, we have

L̂n(h̃n) ≤ L̂n(ĥn−1)− δn, (8.38)
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Under the event En, we have

L(h̃n)− L(ĥn−1) ≤ L̂n(h̃n)− L̂n(ĥn−1) + εn.

This, in combination with (8.38), implies that under the event En ∩ {ĥn 6≡ ĥn−1},

∆n + 2/n = L(h̃n)− L(ĥn−1) + 2/n,

≤ 2/n− δn + εn,

= 0,

where in the last equality we substituted the expression of δn in (8.7) (with k = n).
As a result,

EPn(Z1:n)[∆n + 2/n | {ĥn 6≡ ĥn−1} ∩ En] ≤ 0. (8.39)

Combining (8.37) and (8.39) yields the desired result.

Proof of Theorem 8.6. Let εn and δn be as in (8.36) and (8.7) (with k = n), respec-
tively. We consider two cases pertaining to the condition in Line 3 of Algorithm
2:

Case 1. Suppose that the condition in Line 3 of Algorithm 2 is satisfied for k = n.
In this case, we have, by Lemma 8.18,

L(ĥn)− L(h?) = L(h̃n)− L(h?) ≤ O

((
ln(n|H|)

n

) 1
2−β

+
ln(n|H|)

n

)
, (8.40)

with probability at least 1− 2/n.

Case 2. Now suppose the condition in Line 3 does not hold for k = n. This means
that ĥn ≡ ĥn−1, and so

L̂n(ĥn)− L̂n(h̃n) ≤ δn. (8.41)
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Using this and Lemma 8.16, we have, with probability at least 1− 1/n,

L(ĥn) = L(h̃n) + (L(ĥn)− L(h̃n)),

≤ L(h̃n) + L̂n(ĥn)− L̂n(h̃n) + εn, (Lemma 8.16)

≤ L(h̃n) + δn + εn, (by (8.41))

ĥn≡ĥn−1
= L(h̃n) +

√
8 ∑n

i=1(`(h̃n, Zi)− `(ĥn, Zi))2 ln(2n|H|2)
(n− 1)2

+
10 ln(2n|H|2)

n− 1
+

2
n

,

≤ L(h̃n) +

√
16 ∑n

i=1(`(h̃n, Zi)− `(h?, Zi))2 ln(2n|H|2)
(n− 1)2 +

10 ln(2n|H|2)
n− 1

+
2
n

+

√
16 ∑n

i=1(`(ĥn, Zi)− `(h?, Zi))2 ln(2n|H|2)
(n− 1)2 , (8.42)

where to obtain the last inequality, we used the fact that (a− c)2 ≤ 2(a− b)2 + 2(b−
c)2 and

√
a + b ≤ √a +

√
b for all a, b, c ∈ R≥0. Now, by (8.42), Lemma 8.17, and a

union bound, we obtain, with probability at least 1− 2/n,

L(ĥn)− L(h?) ≤ L(h̃n)− L(h?) +
L(h̃n)− L(h?)

2
+

L(ĥn)− L(h?)
2

+
2
n

+ O

(
max

β′∈{1,β}

(
ln(n|H|)

n

) 1
2−β′
)
+

10 ln(2n|H|2)
n− 1

,

which, after re-arranging, becomes

L(ĥn)− L(h?)
2

≤ 3(L(h̃n)− L(h?))
2

+ O

(
max

β′∈{1,β}

(
ln(n|H|)

n

) 1
2−β′
)

+
10 ln(2n|H|2)

n− 1
+

2
n

. (8.43)

Combining (8.43) with Lemma 8.18, and applying a union bound, we get, with prob-
ability at least 1− 4/n,

L(ĥn)− L(h?) ≤ O

((
ln(n|H|)

n

) 1
2−β

+
ln(n|H|)

n

)
. (8.44)

The combination of (8.40) and (8.44) lead to the desired result.

8.9.3 Proofs of Intermediate Results

Proof of Lemma 8.16. The proof follows by the empirical Bernstein inequality [Mau-
rer and Pontil, 2009, Corollary 5] with the function f : (H×H)×Z → [0, 1] defined
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by

f ((h, h′), z) =
(
`(h, z)− `(h′, z) + 1

)
/2.

In particular, [Maurer and Pontil, 2009, Corollary 5] implies that, for any δ ∈ (0, 1),
with probability at least 1− δ,

EP(Z)[ f ((h, h′), Z)] ≤ EP̂n(Z)[ f ((h, h′), Z)] +

√
2V̂n · ln(2|H|2/δ)

n− 1
+

7 ln(2|H|2/δ)

3(n− 1)
,

(8.45)

for all h, h′ ∈ H, where V̂n is the sample variance:

V̂n :=
1

n(n− 1) ∑
1≤i<j≤n

( f ((h, h′), Zi)− f ((h, h′), Zj))
2,

=
1

4n(n− 1) ∑
1≤i<j≤n

(`(h, Zi)− `(h′, Zi)− `(h, Zj) + `(h′, Zj))
2,

=
n

4(n− 1)
EP̂n(Z)

[(
`(h, Z)− `(h′, Z)−EP̂n(Z′)[`(h, Z′)− `(h′, Z′)]

)2
]

,

=
n

4(n− 1)

(
EP̂n(Z)

[(
`(h, Z)− `(h′, Z)

)2
]
−EP̂n(Z′)[`(h, Z′)− `(h′, Z′)]2

)
,

≤ n
4(n− 1)

EP̂n(Z)

[(
`(h, Z)− `(h′, Z)

)2
]

. (8.46)

Plugging (8.46) into (8.45) and multiplying the resulting inequality by 2, leads to the
desired inequality.

Proof of Lemma 8.18. To simplify notation, we define

ε′n :=

√
2 ∑n

i=1(`(h̃n, Zi)− `(h?, Zi))2 ln(2n|H|2)
(n− 1)2 +

5 ln(2n|H|2)
n− 1

, n ∈N.

By Lemma 8.16, we have, with probability at least 1− 1/n,

L(h̃n) = L(h?) + (L(h̃n)− L(h?)),

≤ L(h?) + L̂n(h̃n)− L̂n(h?) + ε′n, (Lemma 8.16)

≤ L(h?) + ε′n, (h̃n is the ERM)

= L(h?) +

√
2 ∑n

i=1(`(h̃n, Zi)− `(h?, Zi))2 ln(2n|H|2)
(n− 1)2 +

5 ln(2n|H|2)
n− 1

. (8.47)

By applying Lemma 8.17 to bound the middle term on the RHS of (8.47), we get with
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probability at least 1− 2/n,

L(h̃n) = L(h?) +
L(h̃n)− L(h?)

2
+ O

(
max

β′∈{1,β}

(
ln(n|H|)

n

) 1
2−β′
)
+

5 ln(2n|H|2)
n− 1

,

= L(h?) +
L(h̃n)− L(h?)

2
+ O

(
max

β′∈{1,β}

(
ln(n|H|)

n

) 1
2−β′
)

. (8.48)

After rearranging (8.48), we obtain the desired result.

Proof of Lemma 8.17. Let c := 24. We use the fact that
√

xy ≤ (νx + y/ν)/2, for all
ν > 0, and apply it to the LHS of (8.34) with

ν =
η · (n− 1)

8n
, x =

1
n− 1

n

∑
i=1

(`(h̃n, Zi)− `(ĥn−1, Zi))
2, and y =

c ln(2|H|2/δ)

n− 1
,

which leads to, for all η > 0,

rn,δ(h) :=

√
c ∑n

i=1(`(h, Zi)− `(h?, Zi))2 ln(2|H|2/δ)

(n− 1)2 ,

≤ η

16n

n

∑
i=1

(`(h, Zi)− `(h?, Zi))
2 +

4nc ln(2|H|2/δ)

(n− 1)2η
,

≤ η

16n

n

∑
i=1

(`(h, Zi)− `(h?, Zi))
2 +

8c ln(2|H|2/δ)

(n− 1)η
, (8.49)

where the last inequality follows by the fact that n ≤ 2(n− 1), for all n > 1. Let

Cβ :=
(
(1− β)1−βββ

) β
1−β

+ 3/2(2B)
1

1−β .

By combining (8.49) and Lemma B.7, we get, for any δ ∈ (0, 1) and η ∈ [0, 1/2], with
probability at least 1− δ,

∀h ∈ H, rn,δ(h) ≤ (L(h)− L(h?))/2 + Cβ · η
1

1−β /4 +
ln(|H|/δ)

2nη
+

8c ln(2|H|2/δ)

(n− 1)η
,

≤ (L(h)− L(h?))/2 + Cβ · η
1

1−β /4 +
(16c + 1/2) ln(2|H|2/δ)

n · η ,

(8.50)

where the last inequality follows by the fact that n ≤ 2(n− 1) and |H| ≥ 1. Now,
minimizing the RHS of (8.50) over η ∈ (0, 1/2) and invoking Lemma B.8, we get, for
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any δ ∈ (0, 1), with probability at least 1− δ,

rn,δ(h) ≤
L(h)− L(h?)

2
+

Cβ · (3− 2β)

4(1− β)

(
4(1− β)(16c + 1/2) ln(2|H|2/δ)

Cβ · n

) 1
2−β

+
2(16c + 1/2) ln(2|H|2/δ)

n
,

≤ L(h)− L(h?)
2

+
C

1−β
2−β

β · (3− 2β)

4(1− β)

(
4(1− β)(16c + 1/2) ln(2|H|2/δ)

n

) 1
2−β

+
2(16c + 1/2) ln(2|H|2/δ)

n
, (8.51)

for all h ∈ H. Combining (8.51) with the fact that β 7→ C
1−β
2−β

β is bounded in [0, 1), we
get the desired result.

8.10 Proofs of Theorems 8.10 and 8.11

We start by presenting a sequence of intermediate results needed in the proofs of
Theorems 8.5 and 8.6.

8.10.1 Intermediate Results

The proofs of all the results in this subsection are postponed to Subsection 8.10.3. We
now present a bound on the risk difference L(h)− L(h′), for any h, h′ ∈ H, using our
new time-uniform empirical Bernstein inequality in Theorem 8.9. For this, we recall
the definition

ξk :=
2
k

ln

(
|H|2
√

k
δ

)
, and n0 := max{n : ξn ≥ 1/2}. (8.52)

for k ≥ 1, δ ∈ (0, 1).

Lemma 8.19. Let γ > 0, δ ∈ (0, 1), and ` : H × Z → [0, 1], where H is a finite set.
Further, let (ξk) and n0 be as in (8.52). Then for i.i.d. random variables Z, Z1, . . . , Zn, we
have, with probability at least 1− δ,

L(h)− L(h′) ≤ L̂n(h)− L̂n(h′) + 2

√
∑n

i=1(`(h, Zi)− `(h′, Zi))2 · ξn

n
+ 4ξn, (8.53)

for all h, h′ ∈ H and all n ≥ n0.

The next lemma provides a way of bounding the square-root term in (8.53) under the
Bernstein condition:

Lemma 8.20. Let δ ∈ (0, 1) and ` : H×Z → [0, 1], where H is a finite set. Further, let
B > 0, n ∈N, and suppose that the (β, B)-Bernstein condition holds. Then, for (ξk) and n0



226 Risk Monotonicity in Statistical Learning

as in (8.52), we have, with probability at least 1− δ,
√

25 ∑n
i=1(`(h, Zi)− `(h′, Zi))2 · ξn

n
≤ L(h)− L(h?)

2

+ O

(
max

β′∈{1,β}

(
ln(n|H|/δ)

n

) 1
2−β′
)

, (8.54)

for all h ∈ H and n ≥ n0, where h? ∈ arg infh∈HL(h).

Using the previous two lemmas, we derive the excess-risk rate of ERM under the
Bernstein condition:

Lemma 8.21. Let H be a finite set and ` : H × Z → [0, 1]. Further, let β ∈ [0, 1],
B > 0, and suppose that the (β, B)-Bernstein condition holds. Then, the ERM h̃n ∈
arg infh∈HEP̂n(Z)[`(h, Z)] satisfies,

P

[
∀n ≥ n0, L(h̃n)− L(h?) ≤ O

((
ln(n|H|/δ)

n

) 1
2−β

+
ln(n|H|/δ)

n

)]
≥ 1− δ,

where n0 is as in (8.52).

8.10.2 Proofs of Theorems 8.10 and 8.11

For (δk) and n0 as in (8.15) and (8.52), respectively, it will be useful to define the event

E :=
{
∀n ≥ n0, L(h̃n)− L(ĥn−1) ≤ L̂n(h̃n)− L̂n(ĥn−1) + δn

}
, (8.55)

where (h̃k) and (ĥk) are as in Algorithm 2 with the choice of (δk) in (8.15). Ob-
serve that by Lemma 8.19, we have P[E ] ≥ 1− δ. We begin by the proof of risk-
monotonicity:

Proof of Theorem 8.10. Let ∆n := L(ĥn)− L(ĥn−1). Using the definitions of E and δk
as in (8.55) and (8.15) (with k = n), respectively, we have

∆n = (L(h̃n)− L(ĥn−1)) · I{ĥn 6≡ ĥn−1}+ (L(ĥn)− L(ĥn−1)) · I{ĥn ≡ ĥn−1},
= (L(h̃n)− L(ĥn−1)) · I{ĥn 6≡ ĥn−1}. (8.56)

Now, when ĥn 6≡ ĥn−1, then by Line 3 of Algorithm 2, we have

L̂n(h̃n) ≤ L̂n(ĥn−1)− δn. (8.57)

Using this and (8.56), we have that under the event E ,

∀n ≥ n0, L(h̃n)− L(ĥn−1) ≤ L̂n(h̃n)− L̂n(ĥn−1) + δn ≤ 0.

This, combined with the fact that P[E ] ≥ 1− δ (Lemma 8.19) completes the proof.
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Proof of Theorem 8.11. Let n0 be as in (8.52). Further, let δn be as in (8.15) (with
k = n) and E be as in (8.55). It will be convenient to also consider the events:

E ′ :=

{
∀n ≥ n0, L(h̃n)− L(h?) ≤ O

((
ln(n|H|/δ)

n

) 1
2−β

+
ln(n|H|/δ)

n

)}
,

E ′′ :=




∀n ≥ n0,

√
25 ∑n

i=1(`(h, Zi)− `(h′, Zi))
2ξn

n
≤ L(h)− L(h?)

2

+O


maxβ′∈{1,β}

(
ln n|H|

δ

n

) 1
2−β′







.

We note that by Lemmas 8.19, 8.20, and 8.21, we have

min(P[E ], P[E ′], P[E ′′]) ≥ 1− δ. (8.58)

For the rest of this proof, we will assume the event E ∩ E ′ ∩ E ′′ holds, and let n ≥ n0.
We consider two cases pertaining to the condition in Line 3 of Algorithm 2:

Case 1. Suppose that the condition in Line 3 of Algorithm 2 is satisfied for k = n.
In this case, we have by the assumption that E ′ is true:

L(ĥn)− L(h?) = L(h̃n)− L(h?) ≤ O

((
ln(n|H|/δ)

n

) 1
2−β

+
ln(n|H|/δ)

n

)
, (8.59)

Case 2. Now suppose the condition in Line 3 does not hold for k = n. This means
that ĥn ≡ ĥn−1, and so

L̂n(ĥn)− L̂n(h̃n) ≤ δn. (8.60)

Thus, by the assumption that E ′ is true, we have,

L(ĥn) = L(h̃n) + (L(ĥn)− L(h̃n)),

≤ L(h̃n) + L̂n(ĥn)− L̂n(h̃n) + δn, (E is true)

≤ L(h̃n) + 2δn, (by (8.60))

= L(h̃n) + 4

√
∑n

i=1(`(h̃n, Zi)− `(ĥn, Zi))2 · ξn

n
+ 8ξn, (ĥn ≡ ĥn−1)

≤ L(h̃n) + 4

√
2 ∑n

i=1(`(h̃n, Zi)− `(h?, Zi))2 · ξn

n
+ 8ξn

+

√
2 ∑n

i=1(`(ĥn, Zi)− `(h?, Zi))2 · ξn

n
, (8.61)
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where to obtain the last inequality, we used the fact that (a− c)2 ≤ 2(a− b)2 + 2(b−
c)2 and

√
a + b ≤ √a +

√
b for all a, b, c ∈ R≥0. Now, by (8.61) and the assumption

that E ′′ holds, we have

L(ĥn)− L(h?) ≤ L(h̃n)− L(h?) +
L(h̃n)− L(h?)

2
+

L(ĥn)− L(h?)
2

+ 4ξn

+ O

(
max

β′∈{1,β}

(
ln(n|H|/δ)

n

) 1
2−β′
)

,

which, after re-arranging, becomes

L(ĥn)− L(h?)
2

≤ 3(L(h̃n)− L(h?))
2

+ O

(
max

β′∈{1,β}

(
ln(n|H|/δ)

n

) 1
2−β′
)
+ 4ξn.

(8.62)

Combining (8.62) with the assumption that E ′ holds, we get

L(ĥn)− L(h?) ≤ O

((
ln(n|H|/δ)

n

) 1
2−β

+
ln(n|H|/δ)

n

)
.

This, together with (8.58) and a union bound yields the desired result.

8.10.3 Proofs of Intermediate Results

Proof of Lemma 8.19. The proof follows by our new time-uniform concentration in-
equality in Theorem 8.9 with the function f : (H×H)×Z → [0, 1] defined by

f ((h, h′), z) =
(
`(h, z)− `(h′, z) + 1

)
/2.

The choice (ξk) and n0 in (8.52) ensures that
√

ξn/n ≤ ξn and 1− ξn ≥ 1/2 for all
n ≥ n0. Thus, Theorem 8.9 implies that, for any δ ∈ (0, 1), with probability at least
1− δ,

EP(Z)[ f ((h, h′), Z)] ≤ EP̂n(Z)[ f ((h, h′), Z)] + 2
√

V̂n · ξn + 4ξn, (8.63)
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for all h, h′ ∈ H and n ≥ n0, where V̂n is the (biased) sample variance:

V̂n :=
1
n2 ∑

1≤i<j≤n
( f ((h, h′), Zi)− f ((h, h′), Zj))

2,

=
1

4n2 ∑
1≤i<j≤n

(`(h, Zi)− `(h′, Zi)− `(h, Zj) + `(h′, Zj))
2,

=
1
4

EP̂n(Z)

[(
`(h, Z)− `(h′, Z)−EP̂n(Z′)[`(h, Z′)− `(h′, Z′)]

)2
]

,

=
1
4

(
EP̂n(Z)

[(
`(h, Z)− `(h′, Z)

)2
]
−EP̂n(Z′)[`(h, Z′)− `(h′, Z′)]2

)
,

≤ 1
4

EP̂n(Z)

[(
`(h, Z)− `(h′, Z)

)2
]

. (8.64)

Plugging (8.64) into (8.63) and multiplying the resulting inequality by 2, leads to the
desired inequality.

Proof of Lemma 8.21. Let (ξk) and n0 be as in (8.52), and E be as in (8.55). Further,
consider the event E ′′ defined in the proof of Theorem 8.11. To simplify notation, we
define

δ′n := 2

√
∑n

i=1(`(h̃n, Zi)− `(h?, Zi))2 · ξn

n
+ 4ξn, n ∈N.

We recall that by Lemmas 8.19 and 8.20, we have

min(P[E ], P[E ′′]) ≥ 1− δ. (8.65)

For the rest of this proof, we will assume the event E ∩ E ′′ holds, and let n ≥ n0. By
the assumption that E holds, we have

L(h̃n) = L(h?) + (L(h̃n)− L(h?)),

≤ L(h?) + L̂n(h̃n)− L̂n(h?) + δ′n, (E is true)

≤ L(h?) + δ′n, (h̃n is the ERM)

= L(h?) + 2

√
∑n

i=1(`(h̃n, Zi)− `(h?, Zi))2 · ξn

n
+ 4ξn. (8.66)

Now by the assumption that E ′′ holds, we can bound the middle term on the RHS of
(8.66), leading to

L(h̃n) = L(h?) +
L(h̃n)− L(h?)

2
+ O

(
max

β′∈{1,β}

(
ln(n|H|/δ)

n

) 1
2−β′
)
+ 4ξn,

= L(h?) +
L(h̃n)− L(h?)

2
+ O

(
max

β′∈{1,β}

(
ln(n|H|/δ)

n

) 1
2−β′
)

. (8.67)
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Combining (8.67) with (8.65), and applying a union bound, we obtain the desired
result.

Proof of Lemma 8.20. Let (ξk) and n0 be as in (8.52), and n ≥ n0. We use the fact
that
√

xy ≤ (νx + y/ν)/2, for all ν > 0, and apply it to the LHS of (8.54) with

ν =
η

8
, x =

1
n

n

∑
i=1

(`(h̃n, Zi)− `(ĥn−1, Zi))
2, and y = 25ξn,

which leads to, for all η > 0, and c = 25,

rn(h) :=

√
c ∑n

i=1(`(h, Zi)− `(h?, Zi))2 · ξn

n
,

≤ η

16n

n

∑
i=1

(`(h, Zi)− `(h?, Zi))
2 +

4cξn

η
,

≤ η

16n

n

∑
i=1

(`(h, Zi)− `(h?, Zi))
2 +

8c ln(
√

n|H|2/δ)

nη
, (8.68)

where in the last inequality we have substituted the expression of ξn in (8.52). Now,

let Cβ :=
(
(1− β)1−βββ

) β
1−β + 3/2(2B)

1
1−β . By combining (8.68) and Lemma B.7, we

get, for any δ ∈ (0, 1) and η ∈ [0, 1/2], with probability at least 1− δ,

∀h ∈ H, ∀n ≥ n0, rn(h) ≤ (L(h)− L(h?))/2 + Cβ · η
1

1−β /4 +
ln(|H|/δ)

2nη

+
8c ln(

√
n|H|2/δ)

nη
,

≤ (L(h)− L(h?))/2 + Cβ · η
1

1−β /4

+
(8c + 1/2) ln(

√
n|H|2/δ)

n · η , (8.69)

Now, minimizing the RHS of (8.69) over η ∈ (0, 1/2) and invoking Lemma B.8, we
get, for any δ ∈ (0, 1), with probability at least 1− δ,

rn(h) ≤
L(h)− L(h?)

2
+

Cβ · (3− 2β)

4(1− β)

(
4(1− β)(8c + 1/2) ln(

√
n|H|2/δ)

Cβ · n

) 1
2−β

+
2(16c + 1/2) ln(

√
n|H|2/δ)

n
,

≤ L(h)− L(h?)
2

+
C

1−β
2−β

β · (3− 2β)

4(1− β)

(
4(1− β)(8c + 1/2) ln(

√
n|H|2/δ)

n

) 1
2−β

+
2(8c + 1/2) ln(

√
n|H|2/δ)

n
, (8.70)
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for all h ∈ H and all n ≥ n0. Combining (8.70) with the fact that β 7→ C
1−β
2−β

β is bounded
in [0, 1), we get the desired result.

8.11 Summary and Future Work

In this chapter, we derived the first consistent and risk-monotonic algorithms for a
general statistical learning setting with bounded losses. By definition, Risk-monotonicity
avoids double descent, making GERM the first algorithm that provably mitigates the
latter under the general setting we consider in this chapter. Surprisingly, GERM is
able to achieve this without necessarily compromising on its excess-risk rate.

Computational considerations. From a computational perspective, the main set-
back of Algorithm 2 is that returning the final hypothesis ĥn requires performing
n-ERM computations to evaluate the intermediate hypotheses (h̃k)k∈[n]. Neverthe-
less, in practice, ERM solutions for sample sizes k and k + 1 may be close to each
other, and this fact may be leveraged to efficiently generate the ERM sequence (h̃k).
When the loss ` is convex in the first argument, it is possible to efficiently generate
the final predictor ĥn using tools from online convex optimization (see Section 8.5).
However, in general it is unclear whether risk-monotonicity can be achieved without
the (greedy) for-loop procedure of Algorithm 2.

We note also that if one only wants a decreasing risk after some sample size s ∈N

then computing the hypotheses (ĥk)k<s is unnecessary. In this case, the for-loop in
Algorithm 2 need only start at k = s; the resulting hypotheses would satisfy the
monotonicity condition in (8.1) for all n ≥ s (the proofs of Theorems 8.2 and 8.5 can
easily be modified to show this).

Extensions. Some important questions remain open along the axes of assumptions.
In particular, can we remove the boundedness condition on the loss while retaining
risk-monotonicity? Lifting the boundedness assumption may be key in resolving
another COLT open problem [Grünwald and Kotłowski, 2011] regarding achievable
risk rates of log-loss Bayesian predictors7. Our results build foundations for these
avenues, which are promising subjects for future work.

7We remark that their setting is slightly different from ours, in that their predictors may be improper,
i.e. not within the hypothesis class H.
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Chapter 9

Conclusion

In this thesis, we have explored different aspects of adaptivity in machine learning.
We started by looking at adaptivity in online learning—a prominent learning setting
in machine learning. Specifically, we considered the online convex optimization set-
ting with either bounded or unbounded decision sets. For the former, we developed
an algorithm based on MetaGrad that fully adapts to virtually all parameters of in-
terest in the bounded OCO setting, such as curvature, Lipschitz constant, and time
horizon.

In the unbounded setting, we have derived two scale-free and parameter-free
algorithms (FreeGrad and Matrix-FreeGrad) with state-of-the-art regret guarantees. We
also showed that it is possible to be scale-free and parameter-free simultaneously at
the cost of an additional term in the regret that scales with ‖w‖3. Furthermore, we
proved a lower bound that shows that this term cannot be avoided in general.

In the statistical learning setting, we have presented new data-dependent gen-
eralization bounds that have the advantage of becoming small when the learning
algorithm used is stable or whenever the problem at hand is “easy” (as characterized
by the Bernstein condition). We have also derived sharp concentration inequali-
ties and generalization bounds for the CVaR—an alternative risk measure used in
risk-sensitive applications—by reducing CVaR estimation to estimating an expecta-
tion from empirical means. Finally, by leveraging some ideas from Chapter 5 (data-
dependent bounds), we devised the first algorithm in the general statistical learning
setting with bounded losses that not only has a monotonic risk curve, but whose
excess risk converges at a fast rate under the Bernstein “easiness” condition.

In the next section, we outline some interesting future research directions.

9.1 Future Work

Online learning in full-information. In Chapter 4, we derived a regret lower-
bound for any scale-free algorithm which insists on a root-T-type regret in the
unbounded OCO setting (T denotes the length of the horizon). This lower bound
includes a penalty involving the cubed norm of the comparator. In recent works
[Jun and Orabona, 2019b; Van der Hoeven, 2019b], it was observed that this penalty
is not needed in a practical stochastic setting where the norm of the losses may
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only be unbounded through stochastic noise. However, strong assumptions on the
underlying noise distributions were made in these works to arrive at this result.
Whether the cubed norm penalty can be avoided in general remains an interesting
open question [Orabona and Cutkosky, 2020]. A positive answer would have several
important implications. For example, an algorithm, say A, which avoids the penalty
mentioned above, can be used together with modern online-to-batch conversion tech-
niques [Cutkosky, 2019a] to produce the first algorithm for stochastic optimization
that can adapt to the norm of the function minimizer. Algorithm A can also be use-
ful in differential privacy, in particular, Local Differential Privacy (LDP) [Jun and
Orabona, 2019b; Van der Hoeven, 2019b] (see also Chapter 1).

While studying the online convex optimization setting is a good starting point for
understanding and characterizing the fundamental limits of adaptivity in machine
learning, there are many practical applications where the objective function is non-
convex (e.g. when training deep NNs). Developing parameter-free algorithms for the
online non-convex optimization setting is an exciting future work direction [Orabona
and Cutkosky, 2020].

Online learning in partial information. Despite existing reductions to online learn-
ing [Lykouris et al., 2018], various questions remain open around the fundamental
limits of adaptivity in specific bandit settings. An important open problem here is
that of contextual bandit model selection [Foster et al., 2020], where the goal is to
select the best model out of a set of candidates using a number of samples that scales
only with the complexity of the best model. Another problem involving adaptivity
(with a more practical motivation) is that of achieving a small-loss bound in contex-
tual bandits using only an ERM oracle [Agarwal et al., 2017].

Stepping up from the bandit setting to reinforcement learning, an interesting fu-
ture research direction would be to extend the result due to Mhammedi et al. [2020a]
to the case where the dynamics of the latent state are locally (instead of globally)
linear. Achieving this would constitute a significant breakthrough in continuous
control.

Closing the gap between theory and practice in statistical learning. The gap be-
tween the theoretical and observed generalization performance of NNs remains elu-
sive [Nagarajan and Kolter, 2019]. Closing this gap is an important goal towards
understanding and improving current algorithms. Although PAC-Bayesian bounds
may be tighter than alternatives in some cases, they have a major drawback. They
do not allow for deterministic algorithms; those who output hypotheses that are de-
terministic functions of the observed samples. Instead, the output is required to be a
non-degenerate distribution over hypotheses; a degenerate distribution will blow up
the generalization bound due to the presence of a KL term between this (posterior)
distribution and some prior. However, this restriction seems to be merely an artifact
of the analysis rather than a real phenomenon. In practice, good generalization is
witnessed for algorithms that output point predictors; for example, those obtained
from the last iterate of stochastic gradient descent. Understanding this gap between
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theory and practice and ultimately deriving non-vacuous generalization bounds for
deterministic algorithms is an important goal.

Generalization bounds for coherent risk measures. For the goal of obtaining gen-
eralization bounds for alternative risk measures, deriving a PAC-Bayesian bound for
CVaRα (as we did in Chapter 6) is only scratching the surface. In fact, there exists
a larger family of risk measures for which generalization bounds do not exist. Co-
herent Risk Measures (CRM) is one such family of measures that possess properties
that make it desirable in many machine learning applications. In fact, Williamson
and Menon [2019] showed that these risk measures are good candidate objectives to
optimize to ensure a certain degree of fairness when learning from data. I conjecture
that the choice of a risk measure can become part of the learning process itself, in
the same way as the choice of the loss can be made part of this process [Walder and
Nock, 2020]. In this case, having generalization bounds for CRMs will be crucial.
The results presented in Chapters 6 and 7 may be a good starting point towards this
goal.



236 Conclusion



Appendix

Appendices

A Technical Results for Chapter 7

Lemma A.1. Let R, R̂, A, B > 0. If R ≤ R̂ +
√

RA + B, then

R ≤ R̂ +
A
2
+ B +

√
AR̂ + A2/4 + AB,

≤ R̂ +
√

R̂A + 2B + A.

Proof. If R ≤ R̂ +
√

RA + B, then for all η > 0,

R ≤ R̂ +
η

2
R +

A
2η

+ B,

which after rearranging, becomes,

R ≤ R̂
1− η/2

+
A

2η · (1− η/2)
+

B
1− η/2

, for η /∈ {0, 2}. (1)

The minimizer of the RHS of (1) is given by

η = η? :=
−A +

√
A2 + 4AB + 4AR̂
2(B + R̂)

.

Plugging this η into (1), yields,

R ≤ R̂ +
A
2
+ B +

1
2

√
4AR̂ + A2 + 4AB,

≤ R̂ + A + 2B +
√

AR̂, (2)

where (2) follows by the facts that

A2 + 4AB ≤ (A + 2B)2 and
√

4R̂A + (A + 2B)2 ≤
√

4R̂A + A + 2B.
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Lemma A.2. For a random variable Z, c > 0, and p ∈N, we have

E[Zp · I{Z ≥ c}] = υp · P[Z ≥ c] +
∫ +∞

υp
P[Zp ≥ u]du.

Proof. Let Y := Zp ·Z ≥ . Since Y ≥ 0, we have

E[Y] =
∫ +∞

0
P[Y ≥ u]du,

=
∫ υp

0
P[Y ≥ u]du +

∫ +∞

υp
P[Y ≥ u]du,

=
∫ υp

0
P[Z ≥ u]du +

∫ +∞

υp
P[Zp · I{Z ≥ c} ≥ u]du,

= υp · P[Z ≥ c] +
∫ +∞

υp
P[Zp ≥ u]du.

Lemma A.3. For α > 0 and a non-negative random variable X, we have C[X] ≤ E[X]/α.

Proof. For µα := inf{µ ∈ R : P[X ≥ µ] ≤ α}, we have

C[X] = E[X | X ≥ µ] = E[X · I{X ≥ µ}]/α ≤ E[X]/α,

where the last inequality follows by positivity of X.

Lemma A.4. For a random variable X, we have

|C[X]| ≤ C[|X|].

Proof. By (7.4a), there exists a set Q ⊂ {Ω → R} such that C[X] = supQ∈QE[XQ].
Therefore, by Jensen’s inequality, we have

|C[X]| = sup
Q∈Q
|E[XQ]| ≤ sup

Q∈Q
E[|X|Q] = C[|X|].

Lemma A.5. Let υ, y > 0, α ∈ (0, 1), and X be a real random variable. Further, let
µα,i := inf{µ ∈ R | P[Xi ≥ µi] ≤ α}, for i ∈ [2]. If X satisfies (7.7) with p, λ > 0, then for
i ∈ [2], y > 0, and f as in (7.23)

E[|X| · I{|X| ≥ (λ ln(υ/y))1/p}] ≤ yλ1/p ·
(

ln(υ/y)1/p + υΓ(1/p, ln(υ/y))/(yp)
)

,

and E[X2 · I{Xi ≥ µi
α,i}] ≤ αλ2/p fp/2(α).

Furthermore, if X satisfies (7.8) with p > 2, then for i ∈ [2] and y > 0,

E[|X| · I{|X| ≥ (υ/y)1/p}] ≤ py(υ/y)1/p

p− 1
. (3)
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Proof. We start with the case of finite exponential moment. Let µα,i, i ∈ [2], be as in
the lemma statement. By Lemma A.2, we have

E[|X| · I{|X| ≥ (λ ln(υ/y))1/p}] ≤ y(λ ln(υ/y))1/p +
∫ +∞

(λ ln(υ/y))1/p
P[|X| ≥ u]du,

≤ y(λ ln(υ/y))1/p + υ
∫ +∞

(λ ln(υ/y))1/p
e−

up
λ du,

≤ y(λ ln(υ/y))1/p + υλ1/pΓ(1/p, ln(υ/y))/p.

Similarity, by Lemma A.2,

E[X2 · I{Xi ≥ µi
α,i}] = E[X2 · I{µi

α,i ≤ Xi ≤ (λ ln(υ/α))i/p}]
+ E[X2 · I{Xi ≥ (λ ln(υ/α))i/p}],

≤ E[X2 · I{µi
α,i ≤ Xi ≤ (λ ln(υ/α))i/p}]

+ E[X2 · I{X2 ≥ (λ ln(υ/α))2/p}],

≤ 2α(λ ln(υ/α))2/p +
∫ +∞

(λ ln(υ/α))2/p
P[X2 ≥ u]du,

≤ 2α(λ ln(υ/α))2/p + υ
∫ +∞

(λ ln(υ/α))2/p
e−

up/2
λ du,

≤ 2α(λ ln(υ/α))2/p + 2υλ2/pΓ(2/p, ln(υ/α))/p.

We now move to case where X has a finite pth order moment for p > 2. As above,
by Lemma A.2,

E[|X| · I{|X| ≥ (υ/y)1/p}] ≤ y(υ/y)1/p +
∫ +∞

(υ/y)1/p
P[|X| ≥ u]du,

≤ y(υ/y)1/p + υ
∫ +∞

(υ/y)1/p
u−pdu,

≤ y(υ/y)1/p +
y(υ/y)1/p

p− 1
,

=
p

p− 1
y(υ/y)1/p.

Lemma A.6. Let α ∈ (0, 1) and Z be a real random variable. Then, for µα := inf{µ ∈ R |
P[Z ≥ µ]} and µα,2 := inf{µ ∈ R | P[|Z| ≥ µ]}, we have

E[(µα + α−1E[[Z− µα]+])
2] ≤ 1

α2 E[Z2 · I{Z ≥ µα}] +
3
α2 E[Z2 · I{|Z| ≥ µα,2}].

Proof of Lemma A.6. Let µα,2 := inf{µ ∈ R | P[|Z| ≥ µ] ≤ α}. Using the fact that
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|µα| ≤ µα,2 and expanding the square term, we get

E[(µα + [Z− µα]+/α)2] = µ2
α +

2µαE[[Z− µα]+]

α
+

1
α2 E[[Z− µα]

2
+],

= µ2
α + 2µα(C[Z]− µα) +

1
α2 E[(Z− µα)

2 · I{Z ≥ µα}],

= µ2
α + 2µα(C[Z]− µα) +

1
α2 E[Z2 · I{Z ≥ µα}]

− 2µα

α2 E[Z · I{Z ≥ µα}] +
µ2

α · P[Z ≥ µα]

α2 ,

= −µ2
α + 2µαC[Z] +

1
α2 E[Z2 · I{Z ≥ µα}]−

2µαC[Z]
α

+
µ2

α

α
,

≤ 1
α2 E[Z2 · I{Z ≥ µα}] +

4µα,2|C[Z]|
α

+
(µα,2)2

α
,

≤ 1
α2 E[Z2 · I{Z ≥ µα}] +

2µα,2C[|Z|]
α

+
(µα,2)2

α
, (4)

≤ 1
α2 E[Z2 · I{Z ≥ µα}] +

3C[|Z|]2
α

, (5)

where (4) follows by Lemma A.4, and (5) follows by the fact that µα,2 ≤ C[|Z|]. Now,
by the dual formulation of CVaR in (7.4a), we have

C[|Z|]2 =

(
sup
Q∈Q

E[|Z|Q]

)2

,

≤ sup
Q∈Q

E[|Z|2Q2], (Jensen’s inequality)

≤ sup
Q∈Q

E[|Z|2Q]/α, (By def. of Q in (7.4a))

= C[Z2]/α,

=
1
α2 E[Z2 · I{|Z| ≥ µα,2}].

Combining this with (5) yields the desired result.

B Technical Results for Chapter 8

In this appendix, it will be convenient to adopt the ESI notation [Koolen et al., 2016]:

Definition B.1 (Exponential Stochastic Inequality (ESI) notation). Let η > 0, and X, Y
be any two random variables. We define

X Eη Y ⇐⇒ X−Y Eη 0 ⇐⇒ E
[
eη(X−Y)

]
≤ 1.

In what follows, we denote by Xh(Z) := `(h, Z) − `(h∗, Z), h ∈ H, the excess-loss
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random variable, where h∗ is the risk minimizer within H. Let

Φη :=
1
η

ln EP(Z)

[
e−ηXh(Z)

]
(6)

be the normalized cumulant generating function of Xh(Z). We note that since the loss `
takes values in the interval [0, 1], we have

Xh(z) ∈ [−1, 1], for all (h, z) ∈ H×Z .

We now present some existing results pertaining to the excess-loss random variable
Xh(Z) and its normalized cumulant generating function, which will be useful in the
proof of Theorem 8.5:

Lemma B.1 (Koolen et al. [2016]). Let h ∈ H, Xh, and Φη be as above. Then, for all η ≥ 0,

αη · Xh(Z)2 − Xh(Z) Eη Φ2η + αη ·Φ2
2η , where αη :=

η

1 +
√

1 + 4η2
.

Lemma B.2 (Koolen et al. [2016]). If the (β, B)-Bernstein condition holds for (β, B) ∈
[0, 1]×R>0, then for Φη as in (6), it holds that

Φη ≤ (Bη)
1

1−β , for all η ∈ (0, 1].

Lemma B.3 (Cesa-Bianchi and Lugosi [2006]). For Φη as in (6), it holds that

Φη ≤
η

2
, for all η ∈ R.

Lemma B.4 (Cesa-Bianchi and Lugosi [2006]). The excess-loss random variable Xh(Z)
satisfies

Xh(Z)−EP(Z)[Xh(Z)] Eη η ·EP(Z)[Xh(Z)2], for all η ∈ [0, 1].

The following useful proposition is imported from [Mhammedi et al., 2019a]:

Proposition B.5. [ESI Transitivity and Chain Rule] (a) Let Z1, . . . , Zn be any random
variables on Z (not necessarily independent). If for some (γi)i∈[n] ∈ (0,+∞)n, Zi Eγi 0, for
all i ∈ [n], then

n

∑
i=1

Zi Eνn 0, where νn :=

(
n

∑
i=1

1
γi

)−1

(so if ∀i ∈ [n], γi = γ > 0 then νn = γ/n).

(b) Suppose now that Z1, . . . , Zn are i.i.d. and let f : Z × ⋃n
i=1Z i → R be any real-valued

function. If for some η > 0, f (Zi; z<i) Eη 0, for all i ∈ [n] and all z<i ∈ Z i−1, then
∑n

i=1 f (Zi; Z<i) Eη 0.

To proof of our time-uniform concentration in Theorem 8.9, we will require the fol-
lowing generalization of Markov’s inequality (we state the version found in Howard
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et al. [2020]):

Lemma B.6 (Ville’s inequality). If (Mn)n≥0 is a non-negative supermartingale, then for
any a > 0,

P[∃n ≥ 1 : Mn ≥ a] ≤ M0

a
.

The upcoming lemmas will help us bound the sequences of gaps (δk) in (8.7) and
(8.15) under the Bernstein condition.

Lemma B.7. Let β ∈ [0, 1], B > 0, n ∈ N. Further, let Z, Z1, . . . , Zn ∈ Z be i.i.d. random
variables and suppose that the (β, B)-Bernstein condition holds for the loss ` : H × Z →
[0, 1], where H is a finite set. Then, for any η ∈ [0, 1/2] and δ ∈ (0, 1), with probability at
least 1− δ,

∀h ∈ H, ∀n ≥ 1,
η

n

n

∑
i=1

(`(h, Zi)− `(h?, Zi))
2 ≤ 8(L(h)− L(h?))

+ 4Cβ · η
1

1−β +
8 ln(|H|/δ)

nη
, (7)

where h? ∈ arg infh∈HL(h) and Cβ :=
(
(1− β)1−βββ

) β
1−β + 3/2(2B)

1
1−β .

Proof. Let δ ∈ (0, 1) and define Xh(z) := `(h, z) − `(h∗, z), for z ∈ Z . For any
η ∈ [0, 1/2] and h ∈ H our strategy is to show that, under the (β, B)-Bernstein
condition,

Mn := exp

(
η2

n

∑
i=1

Xh(Zi)
2/8− nηEP(Z)[Xh(Z)] + nCβ · η

2−β
1−β /2

)
, (8)

is a non-negative supermartingale. After that, invoking Ville’s inequality (Lemma
B.6) and applying a union bound over h ∈ H implies the desired result.

Under the (β, B)-Bernstein condition, Lemmas B.1-B.3 imply, for all η ∈ [0, 1/2]
and i ≥ 1,

η · Xh(Zi)
2/4 Eη Xh(Zi) + 3/2 (2Bη)

1
1−β , (9)

where we used the fact that αη = η

1+
√

1+4η2
≥ η/4, for all 0 ≤ η ≤ 1/2 (αη is involved

in Lemma B.1). Now, due to the Bernstein inequality (Lemma B.4), we have for all
η ∈ [0, 1/2] and i ≥ 1,

Xh(Zi) Eη EP(Z)[Xh(Z)] + η ·EP(Z)[Xh(Z)2],

Eη EP(Z)[Xh(Z)] + η ·EP(Z)[Xh(Z)]β, (by the Bernstein condition)

Eη 2EP(Z)[Xh(Z)] + c
β

1−β

β · η 1
1−β , where cβ := (1− β)1−βββ. (10)
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The last inequality follows by the fact that zβ = cβ · infν>0{z/ν + ν
β

1−β }, for z ≥ 0 (in
our case, we set ν = cβη to get to (10)). By chaining (9) with (10) using Proposition
B.5-(a), we get:

η · Xh(Zi)
2/4 E η

2
2EP(Z)[Xh(Z)] + c

β
1−β

β · η 1
1−β + 3/2(2Bη)

1
1−β .

E η
2

2EP(Z)[Xh(Z)] + Cβ · η
1

1−β . (11)

Since the random variables Z1, . . . , Zn are i.i.d., (11) implies that Mn in (8) is a non-
negative supermartingale. Thus, by Ville’s inequality in Lemma B.6, we have, for any
δ ∈ (0, 1) and h ∈ H,

δ ≥ P[∃n ≥ 1, Mn ≥ δ−1],

= P

[
∃n ≥ 1, η

n

∑
i=1

Xh(Zi)
2 ≥ 8nEP(Z)[Xh(Z)] + 4nCβ · η

1
1−β +

2 ln δ−1

η
≥ 8 ln δ−1

η

]
.

From this, a union bound over h ∈ H implies the desired result.

Lemma B.8. For A, B > 0, we have

inf
η∈(0,1/2)

{
Aη

1
1−β + B/η

}
≤ A(3− 2β)

1− β

(
(1− β)B

A

) 1
2−β

+ 2B. (12)

Proof. The unconstrained minimizer of the LHS of (12) is given by

η? :=
(
(1− β)B

A

) 1−β
2−β

.

If η? ≤ 1/2, then

inf
η∈(0,1/2]

{
Aη

1
1−β + B/η

}
≤ Aη

1
1−β
? + B/η? =

A(2− β)

1− β

(
(1− β)B

A

) 1
2−β

. (13)

Now if η? > 1/2, we have (1/2)
1

1−β <
(
(1−β)B

A

) 1
2−β

, and so, we have

inf
η∈(0,1/2]

{
Aη

1
1−β + B/η

}
≤ A(1/2)

1
1−β + 2B,

≤ A
(
(1− β)B

A

) 1
2−β

+ 2B. (14)

By combining (13) and (14) we get the desired result.
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