1,091 research outputs found

    Analysis and comparison of resistive, ferroelectric and pyroelectric uncooled bolometers for electronic imaging systems

    Get PDF
    The performance parameters (responsivity (Rv). detectivity (D*), total noise and response time) of resistive, pyroelectric and ferroelectric bolometer detectors are dependent on a large number of key variables including chopping frequercy, the input impedance and voltage noise of the readout circuitry, the structure dependent parameters (particularly thermal conductance and thermal capacitance), and material properties such as dielectric constant, pyroelectric coefficient, loss tangent and thin film thickness. The interrelationship between the key variables and their influence on performance is often complex and not easily discerned for the three major types of thermal detectors: resistive, pyroelectric and ferroelectric bolometers. In this thesis research, the dependence of Rv, D* and total noise on these key parameters were analyzed and written as equations from which computer calculations could easily be made. The analyzed results were used to compare the pertbrmance of the three types of sensors for present-day structure and material characteristics and also for material characteristics and structures that night be developed in the future

    Design and fabrication of optical filters for long wavelength spectroscopy application

    Get PDF
    The design and fabrication of thin film Fabry-Perot interferometer (FPI) for long wavelength spectroscopy application is demonstrated. The system is designed to be integrated in a small portable spectrometer for the measurement of molecular absorption or emission as well as substance that has an infrared signature. A Fabry-Perot interferometer with dielectric mirrors was fabricated using fabrication process on a silicon substrate. The FPI was made of multi thin layers, deposited on silicon (Si) substrate, alternating between high and low refractive-index (n) layers. Si was used as a substrate due to the high precision of etching achievable using conventional VLSI fabrication techniques. Since the wavelength of interest was in the far infrared (5 to 15 micrometers), the layers were selected carefully to minimize the thickness required to meet the quarter-wave optical-thickness criteria for the interferometer. Another criterion that had to be met is the ratio of the refractive indices (n) between the layers. In this study, we have utilized germanium (Ge), which has n value of ~ 4 in the wavelength range of interest, and zinc oxide (ZnO), which has n value average of ~1.8 in the range of interest. Deposition of the layers was carried out using electron beam deposition for Ge and sputtering for ZnO. First the Si substrate was etched precisely to provide the gap needed for the wavelengths on interest and then the dielectric layers were deposited. For example, using Ge thickness of 0.576 µm, ZnO thickness of 1.22 µm, and a gap of 4.77 µm, we have demonstrated a filter transmitting a wavelength of 9.2 micrometers with a full width at half maximum of ~ 0.5 microns using one stack of Ge/ZnO layers. Simulations, using Freesnell software, were consistent with the experimental results. The tuning of the FPI with different cavity distances was demonstrated by measuring the transmission spectrum of the FPI. The transmission measurement was carried out using Fourier Transform Infrared Spectroscopy (FTIR) while the thickness of the layers was confirmed by scanning electron microscopy (SEM)

    Optical surfaces for mid-infrared sensing

    Get PDF
    The mid-infrared (mid-IR) spectral region, with wavelengths between 3 and 15 µm, is known for a wide range of applications ranging from spectroscopic sensing to thermal imaging. However, despite the strong technological interest, optoelectronic devices in the mid-IR are expensive and often inferior in performance compared to their visible and near-IR counterparts. In this thesis, we combine ultrathin materials, e.g. graphene, and novel substrates to develop optical surfaces for applications in the mid-IR.First, we demonstrate a novel uncooled photodetector, combining graphene with a ferroelectric (pyroelectric) substrate. More specifically, we develop a graphene on z-cut lithium niobate (LiNbO3) pyro-resistive platform that supports dynamic tunablity of the responsivity. We also develop a model to identify the key parameters that influence the performance of such detectors and can therefore provide guidelines to improve their performance. Second, we introduce ultra-thin yttria-stabilized zirconia (YSZ), a ceramic material, as a novel platform for IR nano-optics. In particular, we combine YSZ substrates with metallic nanostructures and graphene to demonstrate plasmonic, polarizing and transparent heating devices, which enable high temperature processing and can withstand harsh environments thanks to the high thermal and chemical stabilities of YSZ. Additionally, the mechanical flexibility of YSZ substrates also makes them ideally suited for manufacturing foldable or bendable devices and for low cost large-scale roll-to-roll fabrication processes. Finally, we investigate for the first time electrostatically tunable graphene nano-hole array surfaces by performing a detailed experimental study of structures with periods as low as 100 nm. We obtain a clear plasmonic response from these surfaces in the range 1300-1600 cm-1. We also demonstrated for the first time that these tunable nanostructures can be fabricated by scalable nano-imprint technique. Such large area plasmonic nanostructures are suitable for industrial applications, for example, surface-enhanced infrared absorption (SEIRA) sensing. This is because they combine an easy design, extreme field confinement and the possibility to excite multiple plasmon modes for multiband sensing, a feature not readily available in nanoribbons or other localized resonant geometries. The results contained in this thesis are particularly relevant with regard to extending the use of materials, such as graphene combined with specific substrates (LiNbO3 or zirconia), to mid-IR photodetection, enhanced absorption and molecular sensing.La región espectral del infrarrojo medio (mid-IR), de longitudes de onda entre los 3 y los 15µm, se conoce por su vasto número de aplicaciones: desde la detecciónespectroscópica hasta la imagen térmica. No obstante, a pesar de su gran interéstecnológico, los dispositivos optoelectrónicos en el mid-IR son caros y, a menudo,con rendimientos inferiores al compararlos con sus homólogos en la región visibley en el infrarrojo cercano. En esta tesis, combinamos materiales ultrafinos(e.g. grafeno) con nuevos substratos para desarrollar superficies ópticas conaplicaciones en el mid-IR.Primero, mostramos los resultados de un fotodetector innovador, que nonecesita ser enfriado, fabricado combinando grafeno con un substrato ferroeléc-trico (piroeléctrico). Más específicamente, desarrollamos un artefacto de grafenodispuesto sobre niobato de litio (LiNbO3) cortado en la dirección z, que admiteuna modulación dinámica de su capacidad de respuesta. También desarrollamosun modelo matemático con el propósito de identificar los parámetros claves queinfluyen en el rendimiento de estos fotodetectores y, en consecuencia, propor-cionar una serie de pautas para mejorarlo. En segundo lugar, introducimos la circonita estabilizada con óxido de itrioultrafina (YSZ) como material cerámico vanguardista en el campo de la nanoóp-tica en el IR. En particular, combinamos substratos de YSZ con nanoestructurasmetálicas y grafeno para demostrar la idoneidad de dispositivos plasmónicos,transparentes y polarizadores, que posibilitan el procesamiento a alta temper-atura y que pueden soportar condiciones ambientales más duras gracias a laexcelente estabilidad térmica y química de la YSZ. Además, la flexibilidad delos substratos de YSZ hace de éstas, unas estructuras ideales para la manufactura de dispositivos flexibles y plegables, cuyo proceso rollo-a-rollo de fabricacióna gran escala es de bajo coste. Finalmente, investigamos por vez primera las superficies de grafeno modu-ladas electrostáticamente con patrones de nano-orificios, cuyos periodos llegana distancias tan pequeñas como los 100 nm, por medio de un exhaustivo estudioexperimental. A través del mismo, obtenemos una respuesta plasmónica claraen el rango de los 1300-1600cm-1. También demostramos por primera vez, queestas nanoestrucutras modulables pueden ser fabricadas mediante técnicas es-calables de nanoimpresión. Las grandes dimensiones de dichas nanoestructurasplasmónicas, las hacen plenamente apropiadas para aplicaciones industrialescomo, por ejemplo, la detección por absorción infrarroja amplificada de super-ficie (SEIRA, por sus siglas en inglés). Esto ocurre debido a que combinan undiseño simple, con un confinamiento extremo del campo y con la posibilidad deexcitar diferentes modos plasmónicos, lo que es de gran utilidad para la detec-ción multi-banda, una característica difícil de conseguir con cintas de grafeno uotras geometrías localizadas resonantes. Los resultados integrados en esta tesisson particularmente relevantes con respecto a la extensión de la utilización demateriales como el grafeno en combinación con substratos específicos (LiNbO3o circonita) para la fotodetección en el mir-IR, la absorción amplificada y ladetección molecular.Postprint (published version

    Functional-Material-Based Touch Interfaces for Multidimensional Sensing for Interactive Displays: A Review

    Get PDF
    Multidimensional sensing is a highly desired attribute for allowing human-machine interfaces (HMIs) to perceive various types of information from both users and the environment, thus enabling the advancement of various smart electronics/applications, e.g., smartphones and smart cities. Conventional multidimensional sensing is achieved through the integration of multiple discrete sensors, which introduces issues such as high energy consumption and high circuit complexity. These disadvantages have motivated the widespread use of functional materials for detecting various stimuli at low cost with low power requirements. This work presents an overview of simply structured touch interfaces for multidimensional (x-y location, force and temperature) sensing enabled by piezoelectric, piezoresistive, triboelectric, pyroelectric and thermoelectric materials. For each technology, the mechanism of operation, state-of-the-art designs, merits, and drawbacks are investigated. At the end of the article, the author discusses the challenges limiting the successful applications of functional materials in commercial touch interfaces and corresponding development trends

    Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications

    Get PDF
    Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors

    Optical surfaces for mid-infrared sensing

    Get PDF
    The mid-infrared (mid-IR) spectral region, with wavelengths between 3 and 15 µm, is known for a wide range of applications ranging from spectroscopic sensing to thermal imaging. However, despite the strong technological interest, optoelectronic devices in the mid-IR are expensive and often inferior in performance compared to their visible and near-IR counterparts. In this thesis, we combine ultrathin materials, e.g. graphene, and novel substrates to develop optical surfaces for applications in the mid-IR.First, we demonstrate a novel uncooled photodetector, combining graphene with a ferroelectric (pyroelectric) substrate. More specifically, we develop a graphene on z-cut lithium niobate (LiNbO3) pyro-resistive platform that supports dynamic tunablity of the responsivity. We also develop a model to identify the key parameters that influence the performance of such detectors and can therefore provide guidelines to improve their performance. Second, we introduce ultra-thin yttria-stabilized zirconia (YSZ), a ceramic material, as a novel platform for IR nano-optics. In particular, we combine YSZ substrates with metallic nanostructures and graphene to demonstrate plasmonic, polarizing and transparent heating devices, which enable high temperature processing and can withstand harsh environments thanks to the high thermal and chemical stabilities of YSZ. Additionally, the mechanical flexibility of YSZ substrates also makes them ideally suited for manufacturing foldable or bendable devices and for low cost large-scale roll-to-roll fabrication processes. Finally, we investigate for the first time electrostatically tunable graphene nano-hole array surfaces by performing a detailed experimental study of structures with periods as low as 100 nm. We obtain a clear plasmonic response from these surfaces in the range 1300-1600 cm-1. We also demonstrated for the first time that these tunable nanostructures can be fabricated by scalable nano-imprint technique. Such large area plasmonic nanostructures are suitable for industrial applications, for example, surface-enhanced infrared absorption (SEIRA) sensing. This is because they combine an easy design, extreme field confinement and the possibility to excite multiple plasmon modes for multiband sensing, a feature not readily available in nanoribbons or other localized resonant geometries. The results contained in this thesis are particularly relevant with regard to extending the use of materials, such as graphene combined with specific substrates (LiNbO3 or zirconia), to mid-IR photodetection, enhanced absorption and molecular sensing.La región espectral del infrarrojo medio (mid-IR), de longitudes de onda entre los 3 y los 15µm, se conoce por su vasto número de aplicaciones: desde la detecciónespectroscópica hasta la imagen térmica. No obstante, a pesar de su gran interéstecnológico, los dispositivos optoelectrónicos en el mid-IR son caros y, a menudo,con rendimientos inferiores al compararlos con sus homólogos en la región visibley en el infrarrojo cercano. En esta tesis, combinamos materiales ultrafinos(e.g. grafeno) con nuevos substratos para desarrollar superficies ópticas conaplicaciones en el mid-IR.Primero, mostramos los resultados de un fotodetector innovador, que nonecesita ser enfriado, fabricado combinando grafeno con un substrato ferroeléc-trico (piroeléctrico). Más específicamente, desarrollamos un artefacto de grafenodispuesto sobre niobato de litio (LiNbO3) cortado en la dirección z, que admiteuna modulación dinámica de su capacidad de respuesta. También desarrollamosun modelo matemático con el propósito de identificar los parámetros claves queinfluyen en el rendimiento de estos fotodetectores y, en consecuencia, propor-cionar una serie de pautas para mejorarlo. En segundo lugar, introducimos la circonita estabilizada con óxido de itrioultrafina (YSZ) como material cerámico vanguardista en el campo de la nanoóp-tica en el IR. En particular, combinamos substratos de YSZ con nanoestructurasmetálicas y grafeno para demostrar la idoneidad de dispositivos plasmónicos,transparentes y polarizadores, que posibilitan el procesamiento a alta temper-atura y que pueden soportar condiciones ambientales más duras gracias a laexcelente estabilidad térmica y química de la YSZ. Además, la flexibilidad delos substratos de YSZ hace de éstas, unas estructuras ideales para la manufactura de dispositivos flexibles y plegables, cuyo proceso rollo-a-rollo de fabricacióna gran escala es de bajo coste. Finalmente, investigamos por vez primera las superficies de grafeno modu-ladas electrostáticamente con patrones de nano-orificios, cuyos periodos llegana distancias tan pequeñas como los 100 nm, por medio de un exhaustivo estudioexperimental. A través del mismo, obtenemos una respuesta plasmónica claraen el rango de los 1300-1600cm-1. También demostramos por primera vez, queestas nanoestrucutras modulables pueden ser fabricadas mediante técnicas es-calables de nanoimpresión. Las grandes dimensiones de dichas nanoestructurasplasmónicas, las hacen plenamente apropiadas para aplicaciones industrialescomo, por ejemplo, la detección por absorción infrarroja amplificada de super-ficie (SEIRA, por sus siglas en inglés). Esto ocurre debido a que combinan undiseño simple, con un confinamiento extremo del campo y con la posibilidad deexcitar diferentes modos plasmónicos, lo que es de gran utilidad para la detec-ción multi-banda, una característica difícil de conseguir con cintas de grafeno uotras geometrías localizadas resonantes. Los resultados integrados en esta tesisson particularmente relevantes con respecto a la extensión de la utilización demateriales como el grafeno en combinación con substratos específicos (LiNbO3o circonita) para la fotodetección en el mir-IR, la absorción amplificada y ladetección molecular

    'THz Torch' wireless communications links

    Get PDF
    The low-cost 'THz Torch’ technology, which exploits the thermal infrared spectrum (ca. 10 to 100 THz), was recently introduced to provide secure low data rate communications links across short ranges. In this thesis, the channel model for 'THz Torch’ wireless communications links is redeveloped from a thermodynamics perspective. Novel optimization-based channel estimators are also proposed to calibrate parameters in the channel model. Based on these theoretical advances, a cognitive 'THz Torch’ receiver, which combines conventional digital communications with state-of-the-art deep learning techniques, is presented to achieve cognitive synchronization and demodulation. The newly reported 'THz Torch’ wireless link is capable of bypassing the thermal time constant constraints normally associated with both the thermal emitter and sensor, allowing truly asynchronous data transfer with direct electronic modulation. Experimental results obtained in both laboratory environments and field trials demonstrate step-change improvements in channel range, bit rate, bit error rate and demodulation speed. This work represents a paradigm shift in modulation-demodulation with a thermal-based physical layer and offers a practical solution for implementing future ubiquitous secure 'THz Torch’ wireless communications links. The cognitive receiver concept also has wide-ranging implications for future communications and sensor technologies, making them more resilient when operating in harsh environments.Open Acces

    Laser Pulses Characterization with Pyroelectric Sensors

    Get PDF
    There are many industrial and medical applications of CO2 (λ=10.6 μm) and Nd:YAG (λ=1.06 μm) infrared lasers for which the quality of the process are tightly connected to the characteristic of the laser pulse. These two types of lasers deliver pulses with duration, repetition frequency and power that can be controlled by means of a programmable electronic control unit. An open-loop control generally optimize the process performances by availing of a laser system model. However, this method cannot control that during the operation the laser source and the optical delivering system could deteriorate; moreover the laser beam characteristics and laser pulse temporal envelope could change by several factors like power supply variations, optical beam misalignments, dirty deposits on mirrors, changes in laser efficiency and many others

    Characterizationn of Polumer-Based MEMS Pyroelectic Infrared Detector

    Get PDF
    AFRL/MLPJE had developed a novel thermal sensing material termed protein-impregnated-polymer (PIP). Thus far, a proof-of-concept has been demonstrated using a macro-sized pixel (0.64 mm2) as a bolometric detector. In an effort to better characterize this novel thermal sensing material, experimental data was used to determine figures of merit (FOMs) comparative to off-the-shelf thermal detectors. Microelectromechanical (MEMS) pixels were designed and used as the support structure for an inkjet-deposited droplet of the PIP. During the material characterization, two observations were made: PIP is a pyroelectric material, and the polymer (polyvinyl alcohol (PVA)) without the protein was found to be more suited for measurements taken on the micro-scaled pixels. Both PVA and PVA doped with carbon black (PVA-CB) were the materials focused on in this research, with the latter being the material used for FOM characterization. Pyroelectric coefficients for PVA and PVA-CB were found to be 755.11 nC/(cm2 K), and 108.32 nC/(cm2 K), respectively, which are both two orders of magnitude higher than values for current pyroelectric polymers. A responsivity of 1.66 x 104 V/W, thermal time constant of 3.59 sec, noise equivalent power of 21.3 nW, and a detectivity of 1.93 x 105 cm √Hz/W were the FOMs found in this thesis. Although the calculated FOMs are not stellar in comparison to current thermal detector technology, this material shows much promise. The shortfalls in FOMs could potentially be attributed to a poor pixel design. This thesis plants the scientific seed in cultivating a thermal imaging focal plane array (FPA) using a newly found pyroelectric polymer
    corecore