5,515 research outputs found

    Porting concepts from DNNs back to GMMs

    Get PDF
    Deep neural networks (DNNs) have been shown to outperform Gaussian Mixture Models (GMM) on a variety of speech recognition benchmarks. In this paper we analyze the differences between the DNN and GMM modeling techniques and port the best ideas from the DNN-based modeling to a GMM-based system. By going both deep (multiple layers) and wide (multiple parallel sub-models) and by sharing model parameters, we are able to close the gap between the two modeling techniques on the TIMIT database. Since the 'deep' GMMs retain the maximum-likelihood trained Gaussians as first layer, advanced techniques such as speaker adaptation and model-based noise robustness can be readily incorporated. Regardless of their similarities, the DNNs and the deep GMMs still show a sufficient amount of complementarity to allow effective system combination

    High-Rate Vector Quantization for the Neyman-Pearson Detection of Correlated Processes

    Full text link
    This paper investigates the effect of quantization on the performance of the Neyman-Pearson test. It is assumed that a sensing unit observes samples of a correlated stationary ergodic multivariate process. Each sample is passed through an N-point quantizer and transmitted to a decision device which performs a binary hypothesis test. For any false alarm level, it is shown that the miss probability of the Neyman-Pearson test converges to zero exponentially as the number of samples tends to infinity, assuming that the observed process satisfies certain mixing conditions. The main contribution of this paper is to provide a compact closed-form expression of the error exponent in the high-rate regime i.e., when the number N of quantization levels tends to infinity, generalizing previous results of Gupta and Hero to the case of non-independent observations. If d represents the dimension of one sample, it is proved that the error exponent converges at rate N^{2/d} to the one obtained in the absence of quantization. As an application, relevant high-rate quantization strategies which lead to a large error exponent are determined. Numerical results indicate that the proposed quantization rule can yield better performance than existing ones in terms of detection error.Comment: 47 pages, 7 figures, 1 table. To appear in the IEEE Transactions on Information Theor

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Hyper-Spectral Image Analysis with Partially-Latent Regression and Spatial Markov Dependencies

    Get PDF
    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.Comment: 12 pages, 4 figures, 3 table

    Caveats for information bottleneck in deterministic scenarios

    Full text link
    Information bottleneck (IB) is a method for extracting information from one random variable XX that is relevant for predicting another random variable YY. To do so, IB identifies an intermediate "bottleneck" variable TT that has low mutual information I(X;T)I(X;T) and high mutual information I(Y;T)I(Y;T). The "IB curve" characterizes the set of bottleneck variables that achieve maximal I(Y;T)I(Y;T) for a given I(X;T)I(X;T), and is typically explored by maximizing the "IB Lagrangian", I(Y;T)βI(X;T)I(Y;T) - \beta I(X;T). In some cases, YY is a deterministic function of XX, including many classification problems in supervised learning where the output class YY is a deterministic function of the input XX. We demonstrate three caveats when using IB in any situation where YY is a deterministic function of XX: (1) the IB curve cannot be recovered by maximizing the IB Lagrangian for different values of β\beta; (2) there are "uninteresting" trivial solutions at all points of the IB curve; and (3) for multi-layer classifiers that achieve low prediction error, different layers cannot exhibit a strict trade-off between compression and prediction, contrary to a recent proposal. We also show that when YY is a small perturbation away from being a deterministic function of XX, these three caveats arise in an approximate way. To address problem (1), we propose a functional that, unlike the IB Lagrangian, can recover the IB curve in all cases. We demonstrate the three caveats on the MNIST dataset
    corecore