2,422 research outputs found

    Timed Soft Concurrent Constraint Programs: An Interleaved and a Parallel Approach

    Full text link
    We propose a timed and soft extension of Concurrent Constraint Programming. The time extension is based on the hypothesis of bounded asynchrony: the computation takes a bounded period of time and is measured by a discrete global clock. Action prefixing is then considered as the syntactic marker which distinguishes a time instant from the next one. Supported by soft constraints instead of crisp ones, tell and ask agents are now equipped with a preference (or consistency) threshold which is used to determine their success or suspension. In the paper we provide a language to describe the agents behavior, together with its operational and denotational semantics, for which we also prove the compositionality and correctness properties. After presenting a semantics using maximal parallelism of actions, we also describe a version for their interleaving on a single processor (with maximal parallelism for time elapsing). Coordinating agents that need to take decisions both on preference values and time events may benefit from this language. To appear in Theory and Practice of Logic Programming (TPLP)

    A Calculus for Orchestration of Web Services

    Get PDF
    Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent, reactive, and distributed systems. In this paper, we follow this approach and introduce CWS, a process calculus expressly designed for specifying and combining service-oriented applications, while modelling their dynamic behaviour. We show that CWS can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We illustrate the specification style that CWS supports by means of a large case study from the automotive domain and a number of more specific examples drawn from it

    A Time-Triggered Constraint-Based Calculus for Avionic Systems

    Full text link
    The Integrated Modular Avionics (IMA) architec- ture and the Time-Triggered Ethernet (TTEthernet) network have emerged as the key components of a typical architecture model for recent civil aircrafts. We propose a real-time constraint-based calculus targeted at the analysis of such concepts of avionic embedded systems. We show our framework at work on the modelisation of both the (IMA) architecture and the TTEthernet network, illustrating their behavior by the well-known Flight Management System (FMS)

    Concurrent Constraint Calculi: a Declarative Paradigm for Modeling Music Systems.

    Get PDF
    Concurrent constraint programming (CCP) has emerged as a simple but powerful paradigm for concurrent systems; i.e. systems of multiple agents that interact with each other as for example in a collection of music processes (musicians) performing a particular piece. The ntcc calculus is a CCP formalism for modeling temporal reactive systems. In ntcc, processes can be constrained by temporal requirements such as delays, time-outs and pre-emptions. Thus, the calculus integrates two dimensions of computation: a horizontal dimension dealing with partial information (e.g., note > 60) and a vertical one in which temporal requirements come into play (e.g., a process must be executed at any time within the next ten time units). We shall show that the above integration is remarkably useful for modeling complex musical processes, in particular for music improvisation. For example, for the vertical dimension one can specify that a given process can nondeterministically choose any note satisfying a given constraint. For the horizontal dimension one can specify that the process can nondeterministically choose the time to play the note subject to a given time upper bound. This nondeterministic view is particularly suitable for processes representing a musician's choices when improvising. Similarly, the horizontal dimension may supply partial information on a rhythmic pattern that leaves room for variation while keeping a basic control. We shall also illustrate how implementing a weaker ntcc model of a musical process may greatly simplify the formal verification of its properties. We argue that this modeling strategy provides a "runnable specification" for music problems that eases the task of formally reasoning about them

    A Rewriting Logic Approach to Stochastic and Spatial Constraint System Specification and Verification

    Full text link
    This paper addresses the issue of specifying, simulating, and verifying reactive systems in rewriting logic. It presents an executable semantics for probabilistic, timed, and spatial concurrent constraint programming ---here called stochastic and spatial concurrent constraint systems (SSCC)--- in the rewriting logic semantic framework. The approach is based on an enhanced and generalized model of concurrent constraint programming (CCP) where computational hierarchical spaces can be assigned to belong to agents. The executable semantics faithfully represents and operationally captures the highly concurrent nature, uncertain behavior, and spatial and epistemic characteristics of reactive systems with flow of information. In SSCC, timing attributes ---represented by stochastic duration--- can be associated to processes, and exclusive and independent probabilistic choice is also supported. SMT solving technology, available from the Maude system, is used to realize the underlying constraint system of SSCC with quantifier-free formulas over integers and reals. This results in a fully executable real-time symbolic specification that can be used for quantitative analysis in the form of statistical model checking. The main features and capabilities of SSCC are illustrated with examples throughout the paper. This contribution is part of a larger research effort aimed at making available formal analysis techniques and tools, mathematically founded on the CCP approach, to the research community.Comment: arXiv admin note: text overlap with arXiv:1805.0743
    • …
    corecore