
p � �

URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

Two semantics for Timed Default Concurrent
Constraint Programming �

Simone Tini and Andrea Maggiolo�Schettini

Dipartimento di Informatica� Universit�a di Pisa� Corso Italia ���

����� Pisa� Italy	

e mail� ftini� maggiolog�di�unipi�it

Abstract

In this paper we present a general approach to give semantics of synchronous lan�

guages� By applying this approach� we de�ne two semantics for Timed Default

Concurrent Constraint Programming�

� Introduction

Nondeterministic concurrent process languages are languages for the descrip�

tion of interactive systems� namely systems interacting with their environment

at their own rate� In ��� and ��� Letichevsky and Gilbert present a general the�

ory for such languages� They introduce Action Language as a common model

for nondeterministic concurrent process languages and de�ne two semantics

for it� an intensional semantics and an interactive semantics� The intensional

semantics of a program gives its behavior by abstracting from the behavior

of the environment� The idea of interactive semantics is that the meaning

of a program is a transformation of its environment� which corresponds to

inserting the program into the environment� If a notion of behavior of the en�

vironment is de�ned� then the interactive semantics of a program is a function

from behaviors of the environment to behaviors of the environment�

In this paper� following ��� and ���� we present a general theory of the class

of synchronous languages �	�
�� Synchronous languages have been developed

to program reactive systems ���� namely systems which interact continuously

with their environment at a rate controlled by this� Execution in a reactive sys�

tem proceeds in bursts of activity� In each phase� the environment stimulates

� Research partially supported by ESPRIT Working Group �Concurrent Constraint Pro�

gramming for Time Critical Applications� �COTIC�� Project Number ��	

� and by

MURST Progetto �Tecniche Formali per la Speci�ca� l�Analisi� la Veri�ca� la Sintesi e

la Trasformazione di Sistemi Software�

c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Tini and Maggiolo

the system with an input and the system reacts computing a response� The

environment� which does not evolve during reactions� expects that responses

are computed in a bounded time� Synchronous languages are based on the so

called synchronous hypothesis ���� namely the assumption that the system is

able to instantaneously react to prompts from its environment� This amounts

to saying that the underlying machine is in�nitely fast and takes no time

to execute operations involved in instructions sequencing� process handling

and interprocess communication� The synchronous hypothesis is an abstrac�

tion which relies on the idea that both the environment and the system are

discrete and the system is faster than the environment� In order to make

the synchronous hypothesis realistic� ecient implementations of synchronous

languages into automata and hardware components have been proposed� As

demonstrated in ���� implementations in hardware realized by directly trans�

lating programs into circuits are more ecient than implementations obtained

by translating �rstly programs into automata and then automata into circuits�

Di�erently with respect to interactive systems where there is a perfect symme�

try between system and environment� a reactive system and its environment

are clearly two distinct entities� each having its own r�ole� This is the main

reason for which the results in ����� are not directly applicable to the class of

synchronous languages�

Our aim is to endow synchronous languages with both an intensional and

an interactive semantics� The domain of the intensional semantics is an al�

gebra of behaviors which is parametric w�r�to an algebra of actions� When a

particular language is considered� both the set of actions and the relations over

them must be instantiated� The intensional semantics permits to consider the

structure of a reactive system at the wanted level of detail� by choosing ap�

propriate equivalences over the algebra of behaviors� As an example� suppose

that one wants to directly translate a program into hardware components� as

in ���� In this case� as the concurrent structure of programs is re�ected in the

circuits� one wants a semantics that gives an account of such structure� On

the contrary� if programs are translated into sequential automata� where con�

currency disappears� it is reasonable to have a set of axioms over the algebra

of behaviors such that the intensional meaning of a program is equivalent to

the intensional meaning of a sequential program�

The domain of the interactive semantics is an algebra of transformations of

behaviors of the environment� To give the interactive meaning of a program

it is therefore necessary to de�ne what the behavior of the environment is�

To this purpose� we consider an algebra of behaviors of the environment over

an algebra of its actions� The interactive semantics stresses how programs

interact with the environment� abstracting from details such as their concur�

rent structure and communication among subprograms� Two programs have

the same interactive meaning i� they cannot be distinguished by any environ�

ment� We de�ne a function from the domain of the intensional semantics to

the domain of the interactive semantics such that the interactive meaning of a

	

Tini and Maggiolo

program can be obtained by applying this function to its intensional meaning�

Our approach o�ers a uniform algebraic framework in which di�erent syn�

chronous languages can be compared� constructs of languages can be charac�

terized� expressiveness of di�erent languages can be established� equivalences

of programs in the di�erent formalisms can be proved�

The synchronous formalism we are interested in is Timed Default Concur�

rent Constraint Programming �tdccp� introduced in ��	����� We obtain an

intensional semantics for tdccp by an instantiation of the algebra of actions�

As tdccp is implemented by sequential automata� we choose a set of axioms

over the algebra of behaviors such that the intensional meaning of a program

is a behavior that does not re�ect its concurrent structure� This semantics is

shown to agree with the operational semantics of ��	�� We de�ne a function

such that the interactive meaning of a tdccp agent is obtained by applying this

function to its intensional meaning�

� Timed Concurrent Constraint Programming

In this section we recall Timed Default Concurrent Constraint Programming�

For clarity� we �rstly present Concurrent Constraint Programming �ccp� �������

Concurrent Constraint Programming replaces the traditional notion of a

store as a valuation of variables with the notion of a store consisting of pieces

of information which restrict the possible values of variables� A program con�

sists in a multiset of agents which run concurrently and interact by adding

information to the store �tell operation� and querying the store about validity

of some information in it �ask operation�� It is not possible to subtract infor�

mation from the store� which is therefore supposed to increase monotonically�

Agents run asynchronously and ask operations are used for synchronization�

as� if a query is not answered positively� the inquiring agent waits until there

is enough information in the store to entail the information required�

We give now the notion of constraint system� A constraint system D is

a system of partial information consisting of a set of primitive constraints

��rst order formulas� or tokens D� closed under conjunction and existential

quanti�cation� and an inference relation � relating tokens to tokens� We use

a� a�� b � � � and a�� a�� � � � to range over tokens� The entailment relation induces�

through symmetric closure� the logical equivalence relation �� Formally�

De�nition ��� A constraint system is a structure �D����� V ar� f�X jX �

V arg� such that�

� D is a set of tokens closed under conjunction ���� The entailment relation

�� D �D satis�es�

� a � a

� a� � a� and a� � a� � a� implies a� � a� � a�

� a� � a� � a� and a� � a� � a�

� a� � a� and a� � a� implies that a� � a� � a�

�

Tini and Maggiolo

� V ar is an in�nite set of variables� For each variable X � V ar� �X � D 	 D

is an operation satisfying usual laws on existential quanti�cation�

� a � �Xa

� �X�a� � �Xa�� � �Xa� � �Xa�
� �X�Y a � �Y �Xa

� a� � a� implies that �Xa� � �Xa�

� � is decidable�

The last condition is necessary to have an operational semantics which is

e�ective�

A constraint is an entailment closed subset ofD� For any set of tokens S� we

let E�S� stand for the constraint fa � D j �fa�� � � � � ang � S s�t� a�� � � ��an �

ag� For any token a� E�a� denotes E�fag��

The set of constraints ordered by inclusion ��� form a complete algebraic

lattice with least upper bounds induced by �� least element true � fa j
a� �

D� a� � ag and greatest element false � D�

We present now the combinators considered in ccp� In the followingU� V� U��

� � � range over agents�

Tell� Agent �a� adds token a to the store�

Ask� Agent �if a then U� queries the store about the validity of token a� If

the store entails a then if a then U behaves as U � If the store does not entail

a then if a then U waits until a is entailed by the store�

Parallel Composition� Agent ��U�� U��� is the parallel asynchronous com�

position of U� and U��

Hiding� Agent �new X in U� behaves as U � provided that X is local to U �

This means that all assumptions on X must be generated by some evolution

of U and that the external world cannot see X�

We obtain Default Concurrent Constraint Programming �dccp� by consid�

ering also defaults for negative information� A new combinator is de�ned as

follows�

Negative ask� Agent �if a else U� queries the store about the validity of

token a� If the store does not entail a then if a else U behaves as U � If the

store entails a then the computation of if a else U terminates�

Starting with an initial store� an agent U is supposed to evolve by adding

tokens to the store� until no more information is produced that is not entailed

by the store� In this case we say that U converges on such store� In order to

give the operational semantics of dccp we consider con�gurations� which are

multisets of agents� and binary transition relations 	b� indexed by token b�

over con�gurations� Token b is the guess about the �nal store� This means that

the operational semantics computes the result of an agent running in a given

store only if the �nal store is known beforehand� The nondeterminism which

arises can be bounded for �nite agents and made e�ective by backtracking�

For any con�guration �� let us denote by ���� the subset of all tokens in ��

In order to give the operational semantics of agent U starting with an initial

�

Tini and Maggiolo

store� we consider the con�guration � � �U���� where � is the set of tokens

in the initial store� In this case� token a is in ���� either if a is an agent in U

or if a is in �� The relation 	b is de�ned below�

���� � a
�� if a then U 	b �� U

b �� a
�� if a else U 	b �� U

�� new X in U 	b �� U �Y�X� �Y not free in U���

�� �U�� U��	b �� U�� U��

We do not need any rule for the combinator Tell� as if agent a is in con�gu�

ration �� then token a is in �����

For any agent U and input token a� the function ro de�ned as follows gives

the set of possible output tokens b�

ro�U��a� � fb � D j �b� � D� �U� a�	�

b�
� �	b�� b

�
� ����� ��

Y
b� � bg�

Here
�

Y are the new local variables in ���� introduced during the derivation�

In ��	� a denotational semantics is de�ned and proved to be fully abstract

w�r�to the operational semantics described above�

Timed Default Concurrent Constraint Programming enriches dccp with

a notion of discrete time� Concretely� the temporal construct �next U� is

introduced� The intuitive meaning is that next U imposes the constraints of

U at the time instant after the current one� The operational meaning is that if

next U is invoked at time t� then a copy of U is invoked at time t��� According

to the synchronous hypothesis principle� combinators derived from dccp do not

consume time� How a tdccp agent U works can be explained as follows� At

each instant of time the environment adds an input token to the empty store

and U reacts instantaneously by enriching the store and by computing the

agent to be activated at the next instant of time� The reaction consists in

running a dccp program� The store is completely discharged between two

instants of time�

An agent tdccp may be also a procedure call p�V�� � � � � Vn�� with p a proce�

dure name and each Vi is an agent� The procedure p is de�ned as p�x�� � � � � xn� �

U � where xi is an agent variable and U is an agent� It is possible to have re�

cursive de�nitions of the form

p��x�� � � � � xn� � U�

���

pm�x�� � � � � xn� � Um�

where calls of procedures p�� � � � � pm may appear in the body of U�� � � � � Um�

In this case� the variables x�� � � � � xn must be in the scope of a next� namely

recursion is guarded� This is needed to have computation bounded by the size

of the program in each time step� To ensure that at run�time there are only

Tini and Maggiolo

boundedly many di�erent procedure calls� it is required that any recursive

procedure call takes exactly the same parameters as the procedure de�nition�

We give now the operational semantics of tdccp� We consider con�gurations

consisting of multisets of agents and a binary relation � over con�gurations

such that �� �� means that if agents in � are active at the current instant of

time� then agents in �� are activated at the next instant of time� To de�ne the

relation � we need a set of rules to compute both the output at the current

instant of time and the agents to be activated at the next instant of time� To

this purpose� let us consider con�gurations consisting of pairs whose elements

are a multiset of agents currently active and a �continuation�� which is the

multiset of agents that will be activated at the subsequent time� We de�ne

binary transition relations 	b over such con�gurations analogously to what

is done for dccp� Each relation 	b relates two con�gurations which are active

at the same instant of time� The rules for such relation are the following�

���� � a

���� if a then U���� 	b ���� U����
b �� a

���� if a else U���� 	b ���� U����

���� �U�� U������ 	b ���� U�� U�����

���� next U���� 	b ��� �U����

���� new X in U���� 	b ���� U �Y�X����� �Y not free in U���

���� p�V�� � � � � Vn����� 	b ���� U �V��x�� � � � � Vn�xn������

In the last rule we assume that p�x�� � � � � xn� � U is the de�nition of the

procedure p� As expected� the only rule which modi�es the second component

of con�gurations is the rule for next�

We can now de�ne the binary transition relation � over con�gurations

consisting in multisets of agents� The relation � is computed by exploiting

the relation 	b� as stated by the following rule�

�b � D���� �� 	�

b ��
���� �	b ����� � b

�� new
�

Y in �

As in the case of dccp�
�

Y are the variables introduced during the computation�

Given an agent U and a sequence of tokens s as input� the sequence of outputs

s� can be computed by the function rto de�ned as follows�

rto�U��s� � fs� j js�j � jsj � n� U
def
� U�

i � n �Ui� s�i��� Ui��

s��i� � ro�Ui��s�i��g

The output at each instant of time is computed by relations 	b�

In ��	� it is argued that� according to the semantics above� a program may

have zero or more evolution paths� An agent U has no evolution path for input

a if and only if �U� a� ��� In this case the agent has a non reactive behavior

�

Tini and Maggiolo

and fails� As an example� let us consider the agent U � � if X � � else Y �

�� if Y � � then X � ��� If U is executed in the empty store� U� � ��� An

agent U has more than one evolution path for input a if either �U� a� � U�

and �U� a� � U� for U� �� U�� or jro�U��a�j � �� In this case we say that the

agent has a non deterministic behavior� As an example� let us consider the

agents U� � if X � � else X � 	 and U� � if X � 	 else X � �� Let us

consider the agent U � �U�� U��� If the store entails neither token X � � nor

token X � 	� then there is a nondeterministic choice between adding X � �

or X � 	 to the store�

An agent is said to be determinate i� it has exactly one evolution path for

each input token� An algorithm for checking determinacy of agents is given in

��	��

Example ��� As a running example we use a simpli�ed speci�cation of the

central locking system for a two�door car given in ����� Doors can be either

locked or unlocked� Doors can be locked and unlocked either from outside the

car with a key or from inside the car by pushing a button� The system consists

of three components� a central controller and a controller for each of the two

doors� Here we specify only the central controller� In ���� the complete sys�

tem is speci�ed� The central controller can be in three internal states� Ready�

Lock and Unlock� When state Ready is active� then the central controller is

waiting for a signal to lock or unlock the doors� We assume that when the

doors are locked either from outside or from inside the car� a signal ldoors is

received by the central controller which sends signals lleft and lright to the

controllers of the left and right door respectively� Then the central controller

moves to the state Lock� it returns to the state Ready when the two door con�

trollers send signals lack and rack respectively� Analogously� when the central

controller is in state Ready and it receives the signal udoors� it sends to the

door controllers the signals uleft and uright� and moves to the state Unlock�

it returns to the state Ready when it receives the lack and rack signals� The

tdccp agents corresponding to the central controller is the agent U � Ready�

where Ready is a procedure without parameters de�ned as follows�

Ready � �if ldoors then �lleft� lright�next Lock��

if ldoors else if udoors then �uleft� uright�next Unlock��

if ldoors else if udoors else next Ready��

Lock � �if lack � rack then next Ready�

if lack � rack else next Lock��

Unlock � �if lack � rack then next Ready�

if lack � rack else next Unlock��

�

Tini and Maggiolo

� Algebras of behaviors

In this section we de�ne the domain of the intensional semantics of syn�

chronous languages�

Let us consider the 	�sorted signature � �S�!� such that�

� S � fA�Bg

� ! � Act f�� � �	 Ag fO�� �	 Bg f� � A � B 	 Bg f�fi � A 	
A j i � Ig f	fi � B 	 B j i � Ig f�� k� B � B 	 Bg� where Act is a set

of constants of sort A�

Sorts A and B are the sort of actions and the sort of �reactive� behaviors� re�

spectively� The intuition is that each action in A corresponds to a reaction of

a reactive system� Actions are temporally atomic� in correspondence with in�

stantaneous executions or reactions� We assume the set Act as a parameter of

our de�nition� which must be instantiated when a particular language is con�

sidered� We assume the empty action � and the disaster action � to represent

the reaction that does not a�ect the environment and the reaction that causes

a failure� respectively� We consider a composition function
 � A � A 	 A

satisfying the following requirements�

� for every x� y � A�
�x� y� �
�y� x�

� for every x� y� z � A�
�
�x� y�� z� �
�x�
�y� z��

� for every x � A�
�x� x� � x�
�x� �� � x and
�x� �� � ��

For each pair of actions x� y corresponding to two reactions in two di�erent

sequential components of a system�
�x� y� corresponds to the compound re�

action�

The carrier set of behaviors constitute the domain of the intensional se�

mantics� We assume the following operations�

� � � A�B 	 B is the pre�xing� The behavior � �p consists in the action � at

the current instant of time followed by the behavior p at the next instant of

time� Operation � is needed to model sequencing operators like the operator
next in tdccp�

� � � B � B 	 B is the alternate composition� The behavior p � q may be

either p or q� If we consider languages having an operator of nondetermin�

istic internal choice� such as Statecharts ���� then � models such operator�

If we consider languages without any operator of nondeterministic inter�

nal choice� such as tdccp� then the operation � models the external choice�

namely a choice completely dependent on the environment�

� k� B � B 	 B is the merge� Behavior p k q is the synchronous running of

p and q� Operation k is needed to model operators of parallel composition�

We assume the empty behavior � and the disaster behavior O satisfying the

equations � � � �� and O � � �O� respectively�

Finally� we consider a family �fi�i�I of renaming functions� fi � A 	 A�

�

Tini and Maggiolo

u� v � v � u �A�	 �fi�u� v	 � �fi�u	 � �fi�v	 �A
	

�u� v	 � w � u� �v �w	 �A�	 �fi�x � u	 � �fi�x	 � �fi�u	 �A�	

u�O � u �A	 �fi�x	 � fi�x	 �A�	

O � � � u �A�	 �u� v	 k w � u k w � v k w �A�	

� � � �� �A�	 u k �v � w	 � u k v � u k w �A��	

x � u k y � v � ��x� y	 � �u k v	 �A��	

Table �

The set of axioms Eq�

This family of functions is needed in order to model operators like hiding of

tdccp� Given a function fi� i � I� we de�ne the operations �fi � A 	 A and

	fi � B 	 B� such that �fi��� � fi��� for each � � A and 	fi is the extension

of �fi to behaviors�

We assume the set of axioms Eq over in Table �� where variables are

intended to be universally quanti�ed� Our convention is that x� y � � � range

over actions and u� v � � � range over behaviors� We denote by Mod��Eq� the

class of �algebras that are models of Eq�

As we shall see in the following� axioms A��A�� imply that each term t of

sort B can be rewritten into a term t� �
P

i�n �i � ti� where �i is an action and

ti a term� i � n� This result is standard in a non truly�concurrent approach�

This is reasonable for synchronous languages oriented to their implementa�

tion by means of automata� The choice of axioms should be di�erent if one

wanted a semantics oriented to implementation in hardware� As an example�

let us assume a program P in a deterministic synchronous language having

the operator �j� of parallel composition� If the language is translated into

automata� as in the case of tdccp� then P and P jP are implemented by the

same automaton� and therefore if the behavior p is the intensional meaning

of P � it is reasonable to have p � p k p� On the contrary� if the language is

compositionally translated into hardware� the circuits corresponding to P and

P jP are di�erent and therefore it is less reasonable to have p � p k p�

All terms of sort B are interpreted as in�nite behaviors� This corresponds

to the fact that reactive systems do not terminate� In order to have cyclic

behaviors� we need recursive speci�cations�

A recursive equation over � � Eq� is an equation of the form�

u � s�u�

where s�u� is a term of sort B containing the variable u�

A solution of a recursive equation u � s�u� in a �algebra in Mod��Eq� is a

behavior p such that p � s�p�� namely p satis�es the equation in the �algebra�

In this case we say that p substitutes u�

A recursive speci�cation E over � � Eq� is a set of recursive equations over

�

Tini and Maggiolo

� � Eq�� For a set of variables U � it holds that for each u � U there is an
equation of the form

u � su�U�

and one of the variables in U is called the root variable�
A solution of a recursive speci�cation E in a �algebra in Mod��Eq� is a
behavior p such that there is a set of behaviors satisfying the equations in the
 �algebra� and p substitutes the root variable�

Given a recursive speci�cation E and a recursion variable u� we denote by
� ujE � the behavior that substitutes u�

As usual� we are interested in guarded recursive speci�cations�

Let s be a term of sort B containing a variable u of sort B� An occurrence
of u is guarded in s if s has a subterm of the form � � t� where � � Act and
t is a term of sort B containing the considered occurrence� The term s is
completely guarded if all occurrences of all variables are guarded� A recursive

speci�cation E is completely guarded if all right hand sides of all equations in
E are completely guarded terms�

In general a �algebra in Mod��Eq� may have zero� one or more solutions
for a guarded recursive speci�cation� There exists a subclass of Mod��Eq� of
algebras having exactly one solution for each guarded recursive speci�cation
�for an argument see ����� We can consider an arbitrary algebra A in this
subclass and we consider the carrier set of behaviors A�B� as domain of the
intensional semantics� In order to have the intensional semantics of a partic�
ular synchronous language� we need to instantiate the set Act of actions� the
family �fi�i�I of functions� and the function
� Given a program P � we shall
denote by I�P � its intensional semantics�

We say that a behavior p is �nitely de�nable if and only if p is obtained
from constants in by means of operations in and guarded recursive spec�
i�cations with �nitely many equations�

Following ���� we can prove the following proposition�

Proposition ��� A �nitely de�nable behavior p can be written in head normal
form as follows�

p �
X

i�n

�i � pi

where �i is an action� �i �� �� and pi is a behavior for each i � n�

The convention is that p �O if n � ��
For each process p the head normal form is unique� modulo associativity and
commutativity of ��
Given a behavior p �

P
i�n

�i � pi� we say that �i � pi is a summand of p for
each i � n�

��

Tini and Maggiolo

� An intensional semantics for tdccp

In this section we de�ne a semantic function I such that for each tdccp agent

U � I�U� is its intensional semantics� As said in the previous section� I�U� is

an element of the carrier set of behaviors of an algebra A in Mod��Eq��

We begin with de�ning a set of actions Act�D�� parametric w�r�to the set

of tokens D� and a function C� and then we instantiate Act to Act�D� and

to C�

Given a token a � D� let a denote the fact that a is not entailed by the

store� For a subset D� of D� let D� denote the set fa j a � D�g� Moreover� with

abuse of notation� we assume that for each token a � D� a denotes a�

De�nition ��� Let D be a set of tokens� We de�ne Act�D� as the set of

tuples �l�O�� such that�

� l � 	D�D� E�l �D� � �l �D� � �

� O is a set of orderings 	l � 	l such that for each �� O�

� � is an irre�exive ordering relation

� for each C�C � � 	l such that C � � C� if C �� � C � then C�C ���C �� � C�

The action �l�O� corresponds to a reaction of a tdccp agent� If a token a � D

is in l� then a is added to the store by either the environment or the agent� If

a is in l� then the fact that a is not entailed by the store is among the causes

of the reaction� This motivates the request that E�l �D� � �l �D� � ��

The orderings re�ect causality among the tokens in l� so that given �� O�

fa� a��g � fa�g means that a� is added to the store if both a and a�� are entailed

by the store� On the other hand� fag � fa�g and fa��g � fa�g means that

either a or a�� is sucient to add a� to the store�

As an example� let us consider the tdccp agent if a then if b then c� The

action �fa� b� cg� ff�fa� bg� fcg�gg� corresponds to the successful request about

entailment of tokens a and b and adding c to the store� The second compo�

nent of the action contains only one ordering� This always holds for actions

corresponding to reactions of sequential components� The action �fag� �� cor�

responds to the unsuccessful request to the store about the entailment of token

a�

Given an action � � �l�O� � Act�D� and an ordering �� O we denote

by trigger����� the set fa � l j � �C � 	l s�t� C � fagg and we denote by

added����� the set l � �trigger������c� Now� trigger����� �D is the set of

tokens required to be entailed by the store for enabling the reaction� On the

contrary� trigger����� �D is the set of tokens required not to be entailed by

the store for enabling the reaction� Finally� added����� is the set of tokens

added to the store during the reaction�

Given a set of tokens D� � D� an action � � �l�O� and an ordering ��

O� we say that D� triggers � w�r�to � i� trigger����� � D � E�D�� and

trigger����� �D � E�D�� � �� If D� triggers � w�r�to some ordering �� then

��

Tini and Maggiolo

the reaction corresponding to � is a reaction to the store D
�� Moreover� if

O � �� then D
� triggers �l�O� if E�D�� � l �D and E�D�� �� l �D�

An action � � �l�O� � Act�D� is a basic action if there are disjoint sets

A � D D and B � D such that�

� l � A B

� O � f�g� �� f�A� b� j b � Bg�

Such a basic action is the reaction to the store A such that� for each token

b � B� the set of tokens that cause b is precisely A� An action corresponding

to a reaction of a sequential tdccp agent is a basic action� As an example� the

action �fag� ff��� fag�gg� is the basic action corresponding to the reaction of

agent a�

The de�nition of function C is quite complex�

Given two orderings ������ we denote by ��� ���
� the ordering ��

such that �� ���� and such that� if C � C
� and C

� � C
��� then C � C

��

and� for each C�C
�� if C � � C and C

�� � C
�� then C�C ��

�C
�� � C�

De�nition ��� Given actions �� � �l��O��� �� � �l��O�� � Act�D�� let �l�O�

be the pair such that�

� l � l� l�

� O � f� j � ��� O�� � ��� O� s�t� �� ��� ���
� and for each ��

with ����� ��� ���
� �� has circularities g�

If �l�O� � Act�D� then C���� ��� � �l�O�� else C���� ��� � ��

Consider the actions �� � �l��O�� and �� � �l��O�� and the pair �l�O� as in

the de�nition above� If �l�O� is in Act�D�� then C���� ��� is formed by the

union of tokens l � l� l� and the orderings that are the maximal subsets of

��� ���
� which are not re�exive� where �� � O� and �� � O��

As an example� let us consider the action �� � �fa� bg� ff�fag� fbg�gg� and

the action �� � �fa� bg� ff�fbg� fag�gg� corresponding to reactions of agents

U� � if a then b and U� � if b then a� respectively� Now� according to Def�

��	� we have that C���� ��� � �fa� bg� ff�fag� fbg�g� f�fbg� fag�gg�� The action

� � C���� ��� corresponds to a reaction of agent �U�� U��� Note that � has two

orderings� each re�ecting a di�erent causality relation� The idea is that the

�rst ordering re�ects the fact that the reaction is caused by token a� the second

ordering re�ects the fact that the reaction is caused by token b� Assume now

the action �� � �fa� bg� ff�fbg� fag�gg� corresponding to a reaction of agent

U� � if b else a� We have that C���� ��� � �� This corresponds to the fact

that �� and �� are incompatible� in the sense that they correspond to two

mutual exclusive reactions� Note that agent �U�� U�� is not determinate� as it

cannot react to any store entailing neither a nor b� As an example� we have

that �U�� U��� � ��� namely agent �U�� U�� fails if the environment does not

add any token to the store�

We assume that � corresponds to the action ��� ��� We assume also that

�	

Tini and Maggiolo

for each action �� C��� �� � � � C��� ��� It is immediate that the function C

satis�es the requirements for the composition function�

We de�ne now a function pref � DD�A	 A such that if action � cor�

responds to a reaction of agent U � then pref�a� �� and pref�a� �� correspond

to the same reaction of agents if a then U and if a else U � respectively�

De�nition ��� Given a � D D then�

� pref�a� �l�O�� � �l fag� ff�A fag� B � fag� j �A�B� ��g j �� Og�

� pref�a� �� � ��

According to Def� ���� token a must be in trigger�pref�a� ����� for each

ordering � of pref�a� ��� As an example� let us assume the action � �

�fbg� ff��� fbg�gg� which� as we will see in the following� corresponds to the re�

action of agent b� If the store entails a� then pref�a� �� � �fa� bg� ff�fag� fbg�gg�

is the action corresponding to the reaction of agent if a then b�

We extend now the function pref to behavior terms� Given a term t �P
i�n

�i � ti of sort B� we have that pref�a� t� �
P

i�n
pref�a� �i� � ti�

Let us suppose that action � corresponds to a reaction of an agent U �

For each variable X we de�ne a function locX such that locX��� is the action

corresponding to the same reaction of agent new X in U � If we denote by

DX the subset of tokens in D having a free occurrence of variable X� then

locX��� must satisfy two requirements� The �rst is that no token in DX is

visible in locX���� as X is a local variable� The second is that if a token in

DX is among the causes of �� then locX��� � �� The reason is that it is not

possible that the environment adds to the store tokens entailing constraints

on a variable local to an agent�

De�nition ��� For X � V ar� locX � A	 A is the function such that�

� locX�l�O� � �l�Y�X��O�Y�X�� if there exists an ordering �� O such that

no token in DX is in trigger����� and Y is �fresh	

� locX�l�O� � � if for each ordering �� O there exists a token a � DX such

that a � trigger�����

� locX��� � ��

We assume that the family of functions �fi�i�I is instantiated to the family

of functions �locX�X�V ar�

We de�ne now a function I � such that for each tdccp agent U � I ��U� is a

term of sort B�

De�nition ��� The functions I � � tdccp 	 B is inductively de�ned as fol

lows�

� I ��a� � �fag� ff��� fag�gg� ��

��

Tini and Maggiolo

� I �� if a then U� � �fag� �� ��� pref�a� I ��U��

� I �� if a else U� � �fag� �� ��� pref�a� I ��U��

� I �� next U� � ��� �� � I ��U�

� I ��U�� U�� � I ��U�� k I
��U��

� I �� new X in U� � 	locX �I
��U��

� I ��pi�V�� � � � � Vn�� �� zi jE �� if we have the guarded recursive de�nition

p��x�� � � � � xn� � U�

�
�
�

pm�x�� � � � � xn� � Um

and we consider the completely guarded recursive speci�cation E

z� � I ��U��V��x�� � � � � Vn�xn� z��p��x�� � � � � xn�� � � � � zm�pm�x�� � � � � xn���
�
�
�

zm � I ��Um�V��x�� � � � � Vn�xn� z��p��x�� � � � � xn�� � � � � zm�pm�x�� � � � � xn���

where I ��zi� � zi for each variable zi�

The initial action of I ��a� says that the token a is added to the store during
the reaction� The behavior term I �� if a then U� is the alternate compo�
sition of two behavior terms� the initial action of the �rst corresponds to
the negative response by the store about the entailment of token a� the sec�
ond is obtained from I ��U� by adding a among the causes of its �rst action�
The behavior term I �� if a else U� is de�ned analogously� The behavior term
I �� next U� is obtained by pre�xing I ��U� with the action �� The behavior
term I ���U�� U��� corresponds to the merge of I ��U�� and I ��U��� The behavior
term I �� new X in U� is obtained by applying the operation 	locX to I ��U��
The behavior term I ��pj�V�� � � � � Vn�� is de�ned as follows� A recursive speci�
�cation E is constructed by starting from the guarded recursive de�nition of
p�� � � � � pm� We replace each agent variable xi by Vi� � � i � n� and we replace
pi�V�� � � � � Vn� by the behavior variable zi� � � i � m� Then we apply I � to the
right hand sides of the equations� As the recursive de�nition of p�� � � � � pm is
guarded� then E is completely guarded� Now� I ��pi�V�� � � � � Vn�� �� zi jE ��

We give now the de�nition of I�

De�nition ��� Given a tdccp agent U � we de�ne I�U� as A�I ��U���

Note that function I is well de�ned� as A has precisely one solution for each
completely guarded recursive speci�cation�

Example ��	 Let us consider the tdccp agent U de�ned in Example 	�	�
The intensional semantics of U is A�� readyjE ��� where E is the following
recursive speci�cation�

ready � �fldoors� lleft� lrightg� ff�fldoorsg� flleftg�� �fldoorsg� flrightg�gg��

��

Tini and Maggiolo

lock

� �fldoors� udoors� uleft� urightg� ff�fldoors� udoorsg� fuleftg��

�fldoors� udoorsg� furightg�gg� � unlock
� �fldoors� udoorsg� �� � ready

lock � �flack � rackg� �� � ready � �flack � rackg� �� � lock

unlock � �flack � rackg� �� � ready � �flack � rackg� �� � unlock�

The following propositions demonstrate that our semantics is well de�ned

with respect to the operational semantics in ��	��

Proposition ��
 Given an agent U and a token a� we have that �U� a�� U �

and rto�U��a� � b� if and only if I ��U� has a summand � � I ��U ��� where either

a triggers � w�r�to an ordering � and b� � ��
Z

�a � �added�������� provided

that
�

Z are the fresh variables in �� or � � �l� ��� a triggers � and b� � a�

Proof� By structural induction over U � �

Proposition ��� Given an agent U with I ��U� �
P

i�n
�i � I

��Ui�� then U is

determinate if and only if for each set of tokens D� � D there exists precisely

one �i� i � n� such that either D� triggers �i � �li� ��� or D
� triggers �i w�r�to

an ordering �i�

Proof� Follows directly from Prop� ���� �

As an example� let us assume U � �U�� U��� where U� � if X � � else X � 	

and U� � if X � 	 else X � �� We have that I ��U� � �� ����� ����� ���
where �� � �fX � �� X � 	g� ff�fX � �g� fX � 	g�gg�� �� � �fX � 	� X �

�g� ff�fX � 	g� fX � �g�gg� and �� � �fX � �� X � 	g� ��� As � triggers
both �� w�r�to f�fX � �g� fX � 	g�g and �� w�r�to f�fX � 	g� fX � �g�g�
U is not determinate�

� An interactive semantics for tdccp

In this section we de�ne the domain of the interactive semantics for syn�

chronous languages and we explain how the interactive semantics of a program

can be obtained from its intensional semantics� Then we give the interactive

semantics of tdccp�

We assume an algebra of environment actions F and an algebra of envi�

ronment behaviors E over F � We consider the constants �� ��O�� and the

operations � and � as in and the axioms A��A
 as in Table �� Operation

� corresponds to the nondeterministic choice and operation � corresponds to
the sequencing� However� one may consider further operations�

In the case of tdccp we assume that F � f�� �gAct��D�� where Act��D� is
the set of actions �l�O� in Act�D� such that the empty set of tokens triggers

�

Tini and Maggiolo

�l�O� w�r�to some ordering � in O� The idea is that an action f � F � with
f � �l�O�� corresponds to prompting the reactive system by adding l to the
empty store�

We consider the reaction function react � F �A	 F such that react�f� ��
is the action f �enriched� by the reaction corresponding to �� The function
react describes the transformation of the action of the environment due to the
interaction with the reactive system�

The function react induces an equivalence relation � over A such that two
��equivalent actions cannot be distinguished by the environment�

�� � �� i�
f � F react�f� ��� � react�f� ����

We require that the function react satis�es the following conditions�

� � is a congruence� namely if �� � �� then for each � we have
���� �� �

���� �� and for each fi we have fi���� � fi����

� � � � i� for each f � F react�f� �� � �

� � � � i� for each f � F react�f� �� � f �

The interactive semantics R�P � of a program P is a transformation from
environment behaviors to environment behaviors� According to this idea� we
consider the algebra of behavior transformations of the type � � E 	 E�

The algebra of behavior transformations has the same type of the alge�
bra of behaviors de�ned in the previous sections� We consider the signature
 � �S�!� and we replace the constants O and � by �� and I� respectively�
The identity transformation I is such that I�e� � e� for each e � E� and the
zero transformation �� is such that ���e� � O� for each e � E�
Given the transformations � and � and the action �� we consider the trans�
formations � � � such that�

�� � ���e� e��� �� � ���e� � �� � ���e�� for each e� e� � E

�� � ���f � e�� react�f� �� � ��e� for each f � F� e � E

and the transformation �� � such that�

��� ���e� � ��e� � ��e� for each e � E�

Then we consider the transformation 	fi��� as completely de�ned by axioms
A��A� in Table �� Finally� we consider the transformation � k � as completely
de�ned by axioms A��A�� in Table ��

It is immediate to prove the following proposition�

Proposition ��� The algebra of transformations satis�es the set of equations

in Table �� where O and � are replaced by �� and I� respectively�

Let A be the �algebra in Mod��Eq� such that A�B� is the domain of
the intensional semantics� We consider the homomorphism trans of A to
the algebra of transformations such that trans��� � I� trans�O� � �� and
trans��� � � for each action ��

Note that for each transformation � there exists a head normal form

��

Tini and Maggiolo

P
i�n

�i � �i such that � �
P

i�n
�i � �i� This head normal form is unique

modulo equivalence relation � over actions and commutativity and associa�

tivity of �� This fact and the property of congruence of � imply that the

homomorphism trans is well de�ned�

We de�ne R�P � as follows�

De�nition ��� Given a program P � we de�ne R�P � as trans�I�P ���

In order to give an interactive semantics of a language it is sucient to de�ne

its intensional semantics and to instantiate the function react�

Now� in the case of tdccp� let us take the function react de�ned as follows�

De�nition ��� The function react� F � A	 F is such that�

react�f� �� �

��
�
C�f� �� if C�f� �� � Act

�
�D�

� otherwise�

We can prove the following proposition�

Proposition ��� The equivalence � induced by function react is a congru

ence w�r�to functions C and locX � X � V ar�

If we consider the function react as in Def�
��� we have immediately the

interactive semantics of tdccp�

Example ��� Let us consider the agent U of Example 	�	� In Example ���

we have de�ned its intensional semantics I�U�� Let � � R�U� � trans�I�U��

be the interactive semantics of U � As an example� if we assume the behavior

of the environment e� �

�fldoorsg� ff��� fldoorsg�gg����� ����flack� rackg� ff��� flackg�� ��� frackg�gg��

e
�

�
� then we have that ��e�� �

�fldoors� lleft� lrightg� ff��� fldoorsg�� �fldoorsg� flleftg�� �fldoorsg� flrightg�gg��

�lack � rack� �� � �flack� rackg� ff��� flackg�� ��� frackg�gg� � ��e
�

�
��

This shows how the agent U interacts with the environment�

References

��� Baeten� J�C�M� and Weijland� W�P�� Process Algebra� Cambridge Tracts in
Theoretical Computer Science� ��� �����

��� Benveniste� A� and Berry� G� editors� Another Look at Real�Time Systems�
Special Issue of Proceedings of the IEEE� September �����

�� Berry� G�� A Hardware Implementation of Pure Esterel� Sadhana� Academic
Proceedings in Engineering Sciences� Indian Academic of Sciences� ��� �����
pp� ������

��� Berry� G� and Gonthier� G�� The Esterel Synchronous Programming Language�
Design� Semantics� Implementation� Science of Computer Programming� ���

��

Tini and Maggiolo

����� pp� �������

��� Halbwachs� N�� Synchronous Programming of Reactive Systems� The Kluwer

International Series in Engineering and Computer Science� Kluwer Academic

Publishers� ����

�
� Harel� D�� Statecharts� A Visual Formalism for Complex Systems� Science of

Computer Programming� �� ����� pp� �������

��� Harel� D� and Pnueli� A�� On the Development of Reactive Systems� In K�R�

Apt� editor� Logic and Models of Concurrent Systems� NATO� ASI��� Springer�

����� pp� ��������

��� Letichevsky� A� and Gilbert� D�� Towards an Interactive Semantics

of Nondeterministic Concurrent Programming Languages� Presented at

the Second workshop of the INTAS������� project �E�cient Symbolic

Computing�� St Petersburg� Russia� October ���
�

��� Letichevsky� A� and Gilbert� D�� A General Theory of Action Languages�

Cybernetics and System Analysis� �� ����� pp� �
���

���� Philipps� J� and Scholz� P�� Compositional Speci�cation of Embedded System

with Statecharts� Proc� of Theory and Practise of Software Development�

TAPSOFT ���� Lecture Notes in Computer Science ����� Springer� �����

���� Saraswat� V�A�� Concurrent Constraint Programming� The MIT Press� ����

���� Saraswat� V�A�� Jagadeesan� R� and Gupta� V�� Timed Default Concurrent

Constraint Programming� Journal of Symbolic Computation� ��� ���
� pp� ���
�

��� Saraswat� V�A�� Jagadeesan� R� and Gupta� V�� Default Timed Concurrent

Constraint Programming� Proc� of Twenty Second ACM Symposium on

Principles of Programming Languages� San Francisco� �����

���� Saraswat� V�A�� Jagadeesan� R� and Gupta� V�� Programming in Timed

Concurrent Constraint Languages� In B� Mayoh� E� Tougu� J� Penjain editors�

Computer and System Sciences� NATO� ASI���� Springer� ����� pp� ��������

��

