URL: http://www.elsevier.nl/locaf:e/entcs/volumelG.htrﬁl 18 pages

Two semantics for Timed Default Concurrent
Constraint Programming !

Simone Tini and Andrea Maggiolo-Schettini

Dipartimento di Informatica, Universita di Pisa, Corso Italia 40,
56125 Pisa, Italy.
email: {tini, maggiolo}@di.unipt.it

Abstract

In this paper we present a general approach to give semantics of synchronous lan-
guages. By applying this approach, we define two semantics for Timed Default
Concurrent Constraint Programming.

1 Introduction

Nondeterministic concurrent process languages are languages for the descrip-
tion of interactive systems, namely systems interacting with their environment
at their own rate. In [8] and [9] Letichevsky and Gilbert present a general the-
ory for such languages. They introduce Action Language as a common model
for nondeterministic concurrent process languages and define two semantics
for it, an intensional semantics and an interactive semantics. The intensional
semantics of a program gives its behavior by abstracting from the behavior
of the environment. The idea of interactive semantics is that the meaning
of a program is a transformation of its environment, which corresponds to
inserting the program into the environment. If a notion of behavior of the en-
vironment is defined, then the interactive semantics of a program is a function
from behaviors of the environment to behaviors of the environment.

In this paper, following [8] and [9], we present a general theory of the class
of synchronous languages [2,5]. Synchronous languages have been developed
to program reactive systems [7], namely systems which interact continuously
with their environment at a rate controlled by this. Execution in a reactive sys-
tem proceeds in bursts of activity. In each phase, the environment stimulates

1 Research partially supported by ESPRIT Working Group “Concurrent Constraint Pro-
gramming for Time Critical Applications” (COTIC), Project Number 23677, and by
MURST Progetto “Tecniche Formali per la Specifica, I’Analisi, la Verifica, la Sintesi e
la Trasformazione di Sistemi Software”.

@1998 Published by Elsevier Science B. V. Open access under CC BY -NC-ND license


http://creativecommons.org/licenses/by-nc-nd/3.0/

- 4484 AL AVAAVUNIV LV

the system with an input and the system reacts computing a response. The
environment, which does not evolve during reactions, expects that responses
are computed in a bounded time. Synchronous languages are based on the so
called synchronous hypothesis [4], namely the assumption that the system is
able to instantaneously react to prompts from its environment. This amounts
to saying that the underlying machine is infinitely fast and takes no time
to execute operations involved in instructions sequencing, process handling
and interprocess communication. The synchronous hypothesis is an abstrac-
tion which relies on the idea that both the environment and the system are
discrete and the system is faster than the environment. In order to make
the synchronous hypothesis realistic, efficient implementations of synchronous
languages into automata and hardware components have been proposed. As
demonstrated in [3], implementations in hardware realized by directly trans-
lating programs into circuits are more efficient than implementations obtained
by translating firstly programs into automata and then automata into circuits.
Differently with respect to interactive systems where there is a perfect symme-
try between system and environment, a reactive system and its environment
are clearly two distinct entities, each having its own role. This is the main
reason for which the results in [8,9] are not directly applicable to the class of
synchronous languages.

Our aim is to endow synchronous languages with both an intensional and
an interactive semantics. The domain of the intensional semantics is an al-
gebra of behaviors which is parametric w.r.to an algebra of actions. When a
particular language is considered, both the set of actions and the relations over
them must be instantiated. The intensional semantics permits to consider the
structure of a reactive system at the wanted level of detail, by choosing ap-
propriate equivalences over the algebra of behaviors. As an example, suppose
that one wants to directly translate a program into hardware components, as
in [3]. In this case, as the concurrent structure of programs is reflected in the
circuits, one wants a semantics that gives an account of such structure. On
the contrary, if programs are translated into sequential automata, where con-
currency disappears, it is reasonable to have a set of axioms over the algebra
of behaviors such that the intensional meaning of a program is equivalent to
the intensional meaning of a sequential program.

The domain of the interactive semantics is an algebra of transformations of
behaviors of the environment. To give the interactive meaning of a program
it is therefore necessary to define what the behavior of the environment is.
To this purpose, we consider an algebra of behaviors of the environment over
an algebra of its actions. The interactive semantics stresses how programs
interact with the environment, abstracting from details such as their concur-
rent structure and communication among subprograms. Two programs have
the same interactive meaning iff they cannot be distinguished by any environ-
ment. We define a function from the domain of the intensional semantics to
the domain of the interactive semantics such that the interactive meaning of a

2



- 4484 AL AVAAVUNIV LV

program can be obtained by applying this function to its intensional meaning.

Our approach offers a uniform algebraic framework in which different syn-
chronous languages can be compared: constructs of languages can be charac-
terized, expressiveness of different languages can be established, equivalences
of programs in the different formalisms can be proved.

The synchronous formalism we are interested in is Timed Default Concur-
rent Constraint Programming (¢deccp) introduced in [12-14]. We obtain an
intensional semantics for tdecp by an instantiation of the algebra of actions.
As tdcep is implemented by sequential automata, we choose a set of axioms
over the algebra of behaviors such that the intensional meaning of a program
is a behavior that does not reflect its concurrent structure. This semantics is
shown to agree with the operational semantics of [12]. We define a function
such that the interactive meaning of a tdccp agent is obtained by applying this
function to its intensional meaning.

2 Timed Concurrent Constraint Programming

In this section we recall Timed Default Concurrent Constraint Programming.
For clarity, we firstly present Concurrent Constraint Programming (cep) ([11]).

Concurrent Constraint Programming replaces the traditional notion of a
store as a valuation of variables with the notion of a store consisting of pieces
of information which restrict the possible values of variables. A program con-
sists in a multiset of agents which run concurrently and interact by adding
information to the store (tell operation) and querying the store about validity
of some information in it (ask operation). It is not possible to subtract infor-
mation from the store, which is therefore supposed to increase monotonically.
Agents run asynchronously and ask operations are used for synchronization,
as, if a query is not answered positively, the inquiring agent waits until there
is enough information in the store to entail the information required.

We give now the notion of constraint system. A constraint system D is
a system of partial information consisting of a set of primitive constraints
(first order formulas) or tokens D, closed under conjunction and existential
quantification, and an inference relation F relating tokens to tokens. We use
a,a',b...and aq,as, ... torange over tokens. The entailment relation induces,
through symmetric closure, the logical equivalence relation ~. Formally:

Definition 2.1 A constraint system is a structure (D, A\, b, Var,{3x | X €
Var}) such that:

* D is a set of tokens closed under conjunction (A). The entailment relation
FC D x D satisfies:
-akFa
- a1 Fas and as N as - aq tmplies ay A az - ay
caiNagFar and ag A ag F oay
- a1 F as and a1 - a3 implies that a; F as A as

3



- 4484 AL AVAAVUNIV LV

o Var is an infinite set of variables. For each variable X € Var, dx : D — D
18 an operation satisfying usual laws on existential quantification:
-ab HXG
: HX(al VAN E!Xa2) ~ E!Xal VAN HXCL2
. Hleya =~ ElyElXa
- a1 F ay tmplies that dxa F dxas

e I is decidable.

The last condition is necessary to have an operational semantics which is
effective.

A constraint is an entailment closed subset of D. For any set of tokens S, we
let £(S) stand for the constraint {a € D|3{as,...,a,} C S st. ayA...Na, F
a}. For any token a, £(a) denotes £({a}).

The set of constraints ordered by inclusion (C) form a complete algebraic
lattice with least upper bounds induced by A, least element true = {a | Va' €
D.d' - a} and greatest element false = D.

We present now the combinators considered in ccp. In the following U, V, Uy,
...range over agents.

Tell. Agent “a” adds token a to the store.

Ask. Agent “if a then U” queries the store about the validity of token a. If
the store entails a then if @ then U behaves as U. If the store does not entail
a then if a then U waits until a is entailed by the store.

Parallel Composition. Agent “(U;,Us)” is the parallel asynchronous com-
position of U; and Us,.

Hiding. Agent “new X in U” behaves as U, provided that X is local to U.
This means that all assumptions on X must be generated by some evolution
of U and that the external world cannot see X.

We obtain Default Concurrent Constraint Programming (decp) by consid-
ering also defaults for negative information. A new combinator is defined as
follows.

Negative ask. Agent “if a else U” queries the store about the validity of
token a. If the store does not entail a then if a else U behaves as U. If the
store entails a then the computation of if a else U terminates.

Starting with an initial store, an agent U is supposed to evolve by adding
tokens to the store, until no more information is produced that is not entailed
by the store. In this case we say that U converges on such store. In order to
give the operational semantics of dccp we consider configurations, which are
multisets of agents, and binary transition relations —, indexed by token b,
over configurations. Token b is the guess about the final store. This means that
the operational semantics computes the result of an agent running in a given
store only if the final store is known beforehand. The nondeterminism which
arises can be bounded for finite agents and made effective by backtracking.
For any configuration I, let us denote by o(I") the subset of all tokens in T
In order to give the operational semantics of agent U starting with an initial



- 4484 AL AVAAVUNIV LV

store, we consider the configuration I' = (U, A), where A is the set of tokens
in the initial store. In this case, token a is in o(T") either if a is an agent in U
or if @ is in A. The relation —; is defined below:

o) Fa bt a
T ffathenU =, T.U T, faelselU =, .U

I, new X in U —, ', U[Y/X] (Y not free in U,T)
F7 (Ula U2) _>b Fa U17 U2-

We do not need any rule for the combinator Tell, as if agent a is in configu-
ration I', then token a is in o(T").

For any agent U and input token a, the function r, defined as follows gives
the set of possible output tokens b:

ro(U)(a) ={be D|3W € D.(U,a) =3 T 4w, b =a(l), EI?b' ~ b}.

Here }7 are the new local variables in o(T") introduced during the derivation.

In [12] a denotational semantics is defined and proved to be fully abstract
w.r.to the operational semantics described above.

Timed Default Concurrent Constraint Programming enriches dccp with
a notion of discrete time. Concretely, the temporal construct “next U” is
introduced. The intuitive meaning is that next U imposes the constraints of
U at the time instant after the current one. The operational meaning is that if
next U is invoked at time ¢, then a copy of U is invoked at time ¢t+1. According
to the synchronous hypothesis principle, combinators derived from decp do not
consume time. How a tdeccp agent U works can be explained as follows. At
each instant of time the environment adds an input token to the empty store
and U reacts instantaneously by enriching the store and by computing the
agent to be activated at the next instant of time. The reaction consists in
running a dccp program. The store is completely discharged between two
instants of time.

An agent tdeep may be also a procedure call p(Vi, ..., V,), with p a proce-
dure name and each V; is an agent. The procedure p is defined as p(zy, ..., z,) =
U, where z; is an agent variable and U is an agent. It is possible to have re-
cursive definitions of the form
p(z1, ..., 2,) =U

Pm(Z1, .. 2n) = Un,

where calls of procedures py,...,p, may appear in the body of Uy, ..., U,.
In this case, the variables zy, ..., x, must be in the scope of a next, namely
recursion is guarded. This is needed to have computation bounded by the size
of the program in each time step. To ensure that at run-time there are only

5



- 4484 AL AVAAVUNIV LV

boundedly many different procedure calls, it is required that any recursive
procedure call takes exactly the same parameters as the procedure definition.

We give now the operational semantics of tdccp. We consider configurations
consisting of multisets of agents and a binary relation ~» over configurations
such that I' ~» I'" means that if agents in I" are active at the current instant of
time, then agents in IV are activated at the next instant of time. To define the
relation ~» we need a set of rules to compute both the output at the current
instant of time and the agents to be activated at the next instant of time. To
this purpose, let us consider configurations consisting of pairs whose elements
are a multiset of agents currently active and a “continuation”, which is the
multiset of agents that will be activated at the subsequent time. We define
binary transition relations —, over such configurations analogously to what
is done for decp. Each relation — relates two configurations which are active
at the same instant of time. The rules for such relation are the following:

o) Fa bt a

(T, if a then U),A) —, ((I',U), A) (T, if a else U),A) —, ((I',U), A)
((Fv (Ulv U2))7 A) b ((F, U17 U2)7 A)
(T, next U),A) —, (T, (U, A))
(T, new X in U),A) —, (I, U[Y/X]),A) (Y not free in U,T)
(T, p(Vi, ..., Vo)), A) = (T, U[V1 /1, . .., Vi /x0]), A).

In the last rule we assume that p(xq,...,2z,) = U is the definition of the
procedure p. As expected, the only rule which modifies the second component
of configurations is the rule for next.

We can now define the binary transition relation ~» over configurations

consisting in multisets of agents. The relation ~» is computed by exploiting
the relation —, as stated by the following rule:

Jb € D.(T,0) —; (T",A) A4 o(l")=b

_>
I'~ new Y in A

5
As in the case of dccp, Y are the variables introduced during the computation.
Given an agent U and a sequence of tokens s as input, the sequence of outputs
s' can be computed by the function rt, defined as follows:

rto(U)(s) = {s'| || = Is| = n,U < Uy
Vi<n (UZ, S(Z)) ~ Uit
s'(i) = ro(Ui)(s(9))}
The output at each instant of time is computed by relations —.
In [12] it is argued that, according to the semantics above, a program may

have zero or more evolution paths. An agent U has no evolution path for input
a if and only if (U,a) %+. In this case the agent has a non reactive behavior

6



- 4484 AL AVAAVUNIV LV

and fails. As an example, let us consider the agent U = (if X =1 else Y =
1, if Y =1 then X =1). If U is executed in the empty store, U, 7. An
agent U has more than one evolution path for input a if either (U,a) ~ Uy
and (U, a) ~ U, for Uy # Us, or |r,(U)(a)| > 1. In this case we say that the
agent has a mon deterministic behavior. As an example, let us consider the
agents Uy = if X =1lelse X =2and U, = if X =2else X =1. Let us
consider the agent U = (Uy, Us). If the store entails neither token X = 1 nor
token X = 2, then there is a nondeterministic choice between adding X =1
or X =2 to the store.

An agent is said to be determinate iff it has exactly one evolution path for

each input token. An algorithm for checking determinacy of agents is given in
[12].

Example 2.2 As a running example we use a simplified specification of the
central locking system for a two-door car given in [10]. Doors can be either
locked or unlocked. Doors can be locked and unlocked either from outside the
car with a key or from inside the car by pushing a button. The system consists
of three components: a central controller and a controller for each of the two
doors. Here we specify only the central controller. In [10] the complete sys-
tem is specified. The central controller can be in three internal states: Ready,
Lock and Unlock. When state Ready is active, then the central controller is
waiting for a signal to lock or unlock the doors. We assume that when the
doors are locked either from outside or from inside the car, a signal ldoors is
received by the central controller which sends signals lleft and Iright to the
controllers of the left and right door respectively. Then the central controller
moves to the state Lock; it returns to the state Ready when the two door con-
trollers send signals lack and rack respectively. Analogously, when the central
controller is in state Ready and it receives the signal udoors, it sends to the
door controllers the signals uleft and uright, and moves to the state Unlock;
it returns to the state Ready when it receives the lack and rack signals. The
tdccp agents corresponding to the central controller is the agent U = Ready,
where Ready is a procedure without parameters defined as follows:

Ready = (if ldoors then (lleft,lright, next Lock),
if ldoors else if udoors then (uleft, uright, next Unlock),
if ldoors else if udoors else next Ready).

Lock = (if lack A rack then next Ready,
if lack A rack else next Lock).

Unlock = (if lack A rack then next Ready,
if lack A rack else next Unlock).



- 4484 AL AVAAVUNIV LV

3 Algebras of behaviors

In this section we define the domain of the intensional semantics of syn-
chronous languages.
Let us consider the 2-sorted signature ¥ = (5, ) such that:

« S={A, B}

e Q0 =ActU{0,6 :— A} U{O,A := B}U{-: AxB —= B}U{f;: A—
AlieI}U{ps :B— Blic I}U{+,|: Bx B — B}, where Act is a set
of constants of sort A.

Sorts A and B are the sort of actions and the sort of (reactive) behaviors, re-
spectively. The intuition is that each action in A corresponds to a reaction of
a reactive system. Actions are temporally atomic, in correspondence with in-
stantaneous executions or reactions. We assume the set Act as a parameter of
our definition, which must be instantiated when a particular language is con-
sidered. We assume the empty action 6 and the disaster action 0 to represent
the reaction that does not affect the environment and the reaction that causes
a failure, respectively. We consider a composition function v : A x A — A
satisfying the following requirements:

« for every =,y € A: v(z,y) = v(y, v)

» for every z,y,z € A: 1(v(2,9),2) = v(z,7(y,2))
o for every z € A: y(z,z) =z, y(z,d) = z and y(z,0) = 0.

For each pair of actions z,y corresponding to two reactions in two different
sequential components of a system, y(z,y) corresponds to the compound re-
action.

The carrier set of behaviors constitute the domain of the intensional se-
mantics. We assume the following operations:

e -: Ax B — B is the prefixing. The behavior o - p consists in the action o at
the current instant of time followed by the behavior p at the next instant of
time. Operation - is needed to model sequencing operators like the operator
next in tdccp.

* +: B x B — B is the alternate composition. The behavior p + ¢ may be
either p or ¢. If we consider languages having an operator of nondetermin-
istic internal choice, such as Statecharts [6], then + models such operator.
If we consider languages without any operator of nondeterministic inter-
nal choice, such as tdccp, then the operation 4+ models the external choice,
namely a choice completely dependent on the environment.

* ||: B x B — B is the merge. Behavior p || ¢ is the synchronous running of
p and ¢. Operation || is needed to model operators of parallel composition.
We assume the empty behavior A and the disaster behavior O satisfying the
equations A =§ - A and O =0 - O, respectively.
Finally, we consider a family (f;);c; of renaming functions, f; : A — A.

8



- 4484 AL AVAAVUNIV LV

u+v = v+ u (A1)  pp(u+v) = pg(u)+ps(v)  (A6)
(wto)+w = ut(+w) (A2 pple-w) = 8(0) pplu) (A7)
u+0 = u (A3)  Op(z) = fi(z) (A8)
0 = 0-u (A (u+v)|w = ullwtv]w (A9)
A = §-A (A5) ul|(v+w) = ullv+ulw (A10)
zoully-v = vy (ulv) (Al

Table 1

The set of axioms Fgq.

This family of functions is needed in order to model operators like hiding of
tdcep. Given a function f;, ¢ € I, we define the operations 6y, : A — A and
ps, - B — B, such that 0y,(c) = f;(o) for each o0 € A and py, is the extension
of 6y, to behaviors.

We assume the set of axioms Fq over ¥ in Table 1, where variables are
intended to be universally quantified. Our convention is that z,y... range
over actions and u,v ... range over behaviors. We denote by Mods(Eq) the
class of ¥-algebras that are models of Ejq.

As we shall see in the following, axioms A9-A11 imply that each term ¢ of
sort B can be rewritten into a term t' = ZK” o; - t;, where o; is an action and
t; a term, ¢ < n. This result is standard in a non truly-concurrent approach.
This is reasonable for synchronous languages oriented to their implementa-
tion by means of automata. The choice of axioms should be different if one
wanted a semantics oriented to implementation in hardware. As an example,
let us assume a program P in a deterministic synchronous language having
the operator “|” of parallel composition. If the language is translated into
automata, as in the case of tdeep, then P and P|P are implemented by the
same automaton, and therefore if the behavior p is the intensional meaning
of P, it is reasonable to have p = p || p. On the contrary, if the language is
compositionally translated into hardware, the circuits corresponding to P and
P|P are different and therefore it is less reasonable to have p = p || p.

All terms of sort B are interpreted as infinite behaviors. This corresponds
to the fact that reactive systems do not terminate. In order to have cyclic
behaviors, we need recursive specifications.

A recursive equation over (X, Eq) is an equation of the form:

u = s(u)

where s(u) is a term of sort B containing the variable u.
A solution of a recursive equation u = s(u) in a Y-algebra in Mods(Eq) is a
behavior p such that p = s(p), namely p satisfies the equation in the ¥-algebra.
In this case we say that p substitutes u.

A recursive specification E over (X, Eq) is a set of recursive equations over

9



- 4484 AL AVAAVUNIV LV

(3, Eq). For a set of variables U, it holds that for each « € U there is an
equation of the form

u = $,(U)

and one of the variables in U is called the root variable.

A solution of a recursive specification E in a Y-algebra in Mods(Eq) is a
behavior p such that there is a set of behaviors satisfying the equations in the
Y-algebra, and p substitutes the root variable.

Given a recursive specification £ and a recursion variable u, we denote by
< u|E > the behavior that substitutes w.

As usual, we are interested in guarded recursive specifications.

Let s be a term of sort B containing a variable u of sort B. An occurrence
of u is guarded in s if s has a subterm of the form o - ¢, where ¢ € Act and
t is a term of sort B containing the considered occurrence. The term s is
completely guarded if all occurrences of all variables are guarded. A recursive
specification E is completely guarded if all right hand sides of all equations in
E are completely guarded terms.

In general a ¥-algebra in Modys(Fq) may have zero, one or more solutions
for a guarded recursive specification. There exists a subclass of Mods(Eq) of
algebras having exactly one solution for each guarded recursive specification
(for an argument see [1]). We can consider an arbitrary algebra A4 in this
subclass and we consider the carrier set of behaviors A(B) as domain of the
intensional semantics. In order to have the intensional semantics of a partic-
ular synchronous language, we need to instantiate the set Act of actions, the
family (f;)ies of functions, and the function 7. Given a program P, we shall
denote by Z(P) its intensional semantics.

We say that a behavior p is finitely definable if and only if p is obtained
from constants in ¥ by means of operations in ¥ and guarded recursive spec-
ifications with finitely many equations.

Following [1], we can prove the following proposition.

Proposition 3.1 A finitely definable behavior p can be written in head normal
form as follows:

p:ZUz"pi

<n

where o; 1s an action, o; # 0, and p; s a behavior for each t < n.

The convention is that p =0 if n = 0.

For each process p the head normal form is unique, modulo associativity and
commutativity of +.
Given a behavior p = )
each ¢ < n.

i<n Oi * i, We say that o; - p; is a summand of p for

10



- 4484 AL AVAAVUNIV LV

4 An intensional semantics for tdccp

In this section we define a semantic function Z such that for each tdccp agent
U, Z(U) is its intensional semantics. As said in the previous section, Z(U) is
an element of the carrier set of behaviors of an algebra A in Mods(Eq).

We begin with defining a set of actions Act(D), parametric w.r.to the set
of tokens D, and a function C, and then we instantiate Act to Act(D) and ~y
to C.

Given a token a € D, let @ denote the fact that a is not entailed by the
store. For a subset D' of D, let D' denote the set {@|a € D'}. Moreover, with
abuse of notation, we assume that for each token a € D, @ denotes a.

Definition 4.1 Let D be a set of tokens. We define Act(D) as the set of
tuples (1, 0), such that:

«1€2PD g(inD)Nn(IND)=0
» O is a set of orderings 2" x 2! such that for each <€ O:

- < 18 an wrreflexive ordering relation

- for each C,C" € 2" such that C' C C, if C" < C' then C[C"/C'] < C.

The action (I, Q) corresponds to a reaction of a tdccp agent. If a token a € D
isin [, then a is added to the store by either the environment or the agent. If
@ is in [, then the fact that a is not entailed by the store is among the causes
of the reaction. This motivates the request that £(IN D) N (I N D) = (.

The orderings reflect causality among the tokens in [, so that given < € O,
{a,d"} < {a'} means that o’ is added to the store if both a and a"” are entailed
by the store. On the other hand, {a} < {a'} and {a"} < {a'} means that
either a or a” is sufficient to add o’ to the store.

As an example, let us consider the tdccp agent if a then if b then c. The
action ({a,b,c},{{({a,b},{c})}}) corresponds to the successful request about
entailment of tokens a and b and adding ¢ to the store. The second compo-
nent of the action contains only one ordering. This always holds for actions
corresponding to reactions of sequential components. The action ({a}, ) cor-
responds to the unsuccessful request to the store about the entailment of token
a.

Given an action 0 = (I,0) € Act(D) and an ordering <€ O we denote
by trigger(o, <) the set {a € I| AC € 2' st. C < {a}} and we denote by
added(o, <) the set [ N (trigger(o,<))¢. Now, trigger(o,<) N D is the set of
tokens required to be entailed by the store for enabling the reaction. On the

contrary, trigger(c, <) N D is the set of tokens required not to be entailed by
the store for enabling the reaction. Finally, added(c, <) is the set of tokens
added to the store during the reaction.

Given a set of tokens D' C D, an action ¢ = (I,0) and an ordering <€
O, we say that D' triggers o w.r.to < iff trigger(c,<) N D C &£(D') and

trigger(o, <) N DN E(D') = (. If D' triggers o w.r.to some ordering <, then
11




- 4484 AL AVAAVUNIV LV

the reaction corresponding to o is a reaction to the store D'. Moreover, if
O =0, then D' triggers (I,0) if £(D') D 1IN D and £(D') 21N D.

An action 0 = (I,0) € Act(D) is a basic action if there are disjoint sets
A C DUD and B C D such that:

s |=AUB

« O={<} =<={(4,0)[be B}.

Such a basic action is the reaction to the store A such that, for each token
b € B, the set of tokens that cause b is precisely A. An action corresponding
to a reaction of a sequential tdccp agent is a basic action. As an example, the

action ({a}, {{(0,{a})}}) is the basic action corresponding to the reaction of
agent a.

The definition of function C is quite complex.

Given two orderings <i, <3, we denote by (<; U <3)* the ordering <,
such that <; U <5 C < and such that, if C < C" and C' < C", then C < C"
and, for each C,C", if C' C C and C" < C’, then C[C"/C"] < C.

Definition 4.2 Given actions o1 = (I, 01), 02 = (I, O2) € Act(D), let (I, O)
be the pair such that:

b l:l]_Ul2

e O = {< |F=<1€ 01,3 <€ Oy 8.t. <C (<1 U <9)" and for each =<'
with < C <'C (<1 U <2)" <" has circularities }.

If (1,0) € Act(D) then C(o1,02) = (I,0), else C(01,02) = 0.

Consider the actions o1 = ({1, 0;) and 02 = (I3, O3) and the pair (I, O) as in
the definition above. If ({,0) is in Act(D), then C(oy,02) is formed by the
union of tokens [ = [y Uls and the orderings that are the maximal subsets of
(<1 U <9)" which are not reflexive, where <; € O; and <3 € Os.

As an example, let us consider the action o7 = ({a, b}, {{({a}, {b})}}) and
the action oy = ({a,b}, {{({b},{a})}}) corresponding to reactions of agents
U; = if a then b and U, = if b then a, respectively. Now, according to Def.
4.2, we have that C(o1, 02) = ({a,b}, {{({a}, {0})}, {({b}, {a})}}). The action
o = C(01, 09) corresponds to a reaction of agent (U, Us). Note that o has two
orderings, each reflecting a different causality relation. The idea is that the
first ordering reflects the fact that the reaction is caused by token a, the second
ordering reflects the fact that the reaction is caused by token b. Assume now
the action o3 = ({a,b}, {{({b},{a})}}) corresponding to a reaction of agent
Us = if b else a. We have that C(o1,03) = 0. This corresponds to the fact
that o; and o3 are incompatible, in the sense that they correspond to two
mutual exclusive reactions. Note that agent (U, Us) is not determinate, as it
cannot react to any store entailing neither a nor b. As an example, we have
that (Uy,Us), 0 +, namely agent (Uy,Us) fails if the environment does not
add any token to the store.

We assume that 0 corresponds to the action (0,0). We assume also that

12



- 4484 AL AVAAVUNIV LV

for each action o, C(0,0) = 0 = C(0,0). It is immediate that the function C
satisfies the requirements for the composition function.

We define now a function pref : D UD x A — A such that if action o cor-
responds to a reaction of agent U, then pref(a, o) and pref(a, o) correspond
to the same reaction of agents if a then U and if a else U, respectively.

Definition 4.3 Given a € DU D then:

* pref(a, (,0)) = (1 U{a}, {{(AU{a}, B —{a})[ (A, B) € <}| <€ O})
s pref(a,0) =0.
According to Def. 4.3, token a must be in trigger(pref(a,o), <) for each
ordering < of pref(a,o). As an example, let us assume the action o =
({b}, {{(0, {b})}}) which, as we will see in the following, corresponds to the re-
action of agent b. If the store entails a, then pref(a, o) = ({a, b}, {{({a},{b})}})
is the action corresponding to the reaction of agent if a then b.

We extend now the function pref to behavior terms. Given a term t =
Y icn Oi - ti of sort B, we have that pref(a,t) = >, pref(a,0;) - ;.

Let us suppose that action o corresponds to a reaction of an agent U.
For each variable X we define a function locy such that locx (o) is the action
corresponding to the same reaction of agent new X in U. If we denote by
Dx the subset of tokens in D having a free occurrence of variable X, then
locx (o) must satisfy two requirements. The first is that no token in Dy is
visible in locx (o), as X is a local variable. The second is that if a token in
Dy is among the causes of o, then locx (o) = 0. The reason is that it is not
possible that the environment adds to the store tokens entailing constraints
on a variable local to an agent.

Definition 4.4 For X € Var, locx : A — A is the function such that:
e locx(l,0) = (I[Y/X],O[Y/X]) if there exists an ordering <€ O such that
no token in Dx is in trigger(o, <) and Y is “fresh”

o locx(l,0) =0 if for each ordering <€ O there exists a token a € Dx such
that a € trigger(o, <)

¢ locx(0) = 0.

We assume that the family of functions (f;);cr is instantiated to the family
of functions (locx) xevar-

We define now a function Z' such that for each tdecp agent U, Z'(U) is a
term of sort B.

Definition 4.5 The functions I' : tdccp — B is inductively defined as fol-
lows:

* T'(a) = ({a}, {{(0,{a}P)}}) - A

13



- 4484 AL AVAAVUNIV LV

if a then U) = ({a},0) - A + pref(a,Z'(U))
if a else U) = ({a},0) - A +pref(a,Z'(U))
next U) = (0,0) - Z'(U)
Uy, Uz) = Z'(Th) || T'(Us)
new X in U) = poey (Z'(U))
pi(Vi, ..., Vo)) =< z;| E >, if we have the guarded recursive definition

Z'(
Z'(
Z'(
Z'(
Z'(
Z'(

p(z1, ..., z,) = U

Pm(T1, ..y xn) = Upy,

and we consider the completely guarded recursive specification E

21 =T (h[Vi/z1, ... Vi)Tn, 21/D1(T1, - oy @0)y e oy 2m /P (1, - - o, T0)])

Zm = L' (UnVi/x1, .., Vo Tn, 21/01(T1, - s Z0)s ooy Zm /P (T, - - oy T0)])
where I'(z;) = z; for each variable z;.

The initial action of Z'(a) says that the token a is added to the store during
the reaction. The behavior term Z'( if a then U) is the alternate compo-
sition of two behavior terms: the initial action of the first corresponds to
the negative response by the store about the entailment of token a, the sec-
ond is obtained from Z'(U) by adding a among the causes of its first action.
The behavior term Z'( if a else U) is defined analogously. The behavior term
Z'( next U) is obtained by prefixing Z'(U) with the action 6. The behavior
term Z'((Uy, Us)) corresponds to the merge of Z'(U; ) and Z'(Us). The behavior
term Z'( new X in U) is obtained by applying the operation pj,e, to Z'(U).
The behavior term Z'(p;(V1, ..., V,)) is defined as follows. A recursive speci-
fication E is constructed by starting from the guarded recursive definition of
P1,---,Pm- We replace each agent variable z; by V;, 1 <1 < n, and we replace
pi(Vi, ..., Vy,) by the behavior variable z;, 1 < i < m. Then we apply Z' to the
right hand sides of the equations. As the recursive definition of pq,...,p,, is
guarded, then E is completely guarded. Now, Z'(p;(V1, ..., Vo)) =< z; | E >.

We give now the definition of Z.
Definition 4.6 Given a tdccp agent U, we define Z(U) as A(Z'(U)).

Note that function Z is well defined, as A has precisely one solution for each
completely guarded recursive specification.

Example 4.7 Let us consider the tdccp agent U defined in Example 2.2.
The intensional semantics of U is A(< ready|E >), where E is the following
recursive specification:

ready = ({ldoors,lleft, lright}, {{({ldoors},{lleft}), ({ldoors}, {lright})}})-
14



- 4484 AL AVAAVUNIV LV

lock

+ ({ldoors, udoors, uleft, uright}, {{({{doors, udoors}, {uleft}),
({ldoors,udoors}, {uright})}}) - unlock

+ ({ldoors, udoors},0) - ready

lock = ({lack A rack},0) - ready + ({lack A rack},0) - lock

unlock = ({lack A rack},0) - ready + ({lack A rack},0) - unlock.

The following propositions demonstrate that our semantics is well defined
with respect to the operational semantics in [12].

Proposition 4.8 Given an agent U and a token a, we have that (U,a) ~ U’
and rt,(U)(a) = b" if and only if T'(U) has a summand o-Z'(U"), where either
a triggers o w.r.to an ordering < and b’ =~ HE(G A (added(c,<))), provided

-
that Z are the fresh variables in o, or o = (I,0), a triggers o and b’ ~ a.

Proof. By structural induction over U. a

Proposition 4.9 Given an agent U with T'(U) = >, _, 0i - Z'(U;), then U is
determinate if and only if for each set of tokens D' C D there exists precisely
one o;, © < n, such that either D' triggers o; = (I;,0), or D' triggers o; w.r.to
an ordering <;.

Proof. Follows directly from Prop. 4.8. O

As an example, let us assume U = (U1, Us), where U; = if X =1 else X = 2
and Uy = if X =2 else X = 1. We have that Z'(U) = 01 - A+05- A+ 03 A,
where oy = ({X =1, X =2}, {{{{X =1},{X =2})}}), 00 = ({X =2,X =
1L{{{{X =2}L{X =1})}}) and 03 = ({X = 1,X = 2},0). As 0 triggers
both oy w.r.to {({X =1},{X = 2})} and oy w.r.to {({X =2}, {X = 1})},
U is not determinate.

5 An interactive semantics for tdccp

In this section we define the domain of the interactive semantics for syn-
chronous languages and we explain how the interactive semantics of a program
can be obtained from its intensional semantics. Then we give the interactive
semantics of tdccp.

We assume an algebra of environment actions F' and an algebra of envi-
ronment behaviors F over F. We consider the constants 0,4d, O, A and the
operations + and - as in ¥ and the axioms A1-A5 as in Table 1. Operation
+ corresponds to the nondeterministic choice and operation - corresponds to
the sequencing. However, one may consider further operations.

In the case of tdecp we assume that F' = {6,0} U Act'(D), where Act'(D) is
the set of actions (I, O) in Act(D) such that the empty set of tokens triggers

15



- 4484 AL AVAAVUNIV LV

(I,0) w.r.to some ordering < in O. The idea is that an action f € F, with
f = (I,0), corresponds to prompting the reactive system by adding [ to the
empty store.

We consider the reaction function react : F x A — F such that react(f, o)
is the action f “enriched” by the reaction corresponding to ¢. The function
react describes the transformation of the action of the environment due to the
interaction with the reactive system.

The function react induces an equivalence relation ~ over A such that two
~-equivalent actions cannot be distinguished by the environment:

oy ~ oy it Vf € F react(f,01) = react(f, os).
We require that the function react satisfies the following conditions:

» ~ is a congruence, namely if oy ~ o9 then for each o we have y(oy,0) ~
v(02,0) and for each f; we have f;(o1) ~ fi(02)

o 0 =0 iff for each f € F react(f,o) =0
o o~ ¢ iff for each f € F react(f,o) = f.

The interactive semantics R(P) of a program P is a transformation from
environment behaviors to environment behaviors. According to this idea, we
consider the algebra of behavior transformations of the type ¢ : E — FE.

The algebra of behavior transformations has the same type of the alge-
bra of behaviors defined in the previous sections. We consider the signature
Y = (S5,Q) and we replace the constants O and A by ¢ and I, respectively.
The identity transformation I is such that I(e) = e, for each e € F, and the
zero transformation ¢q is such that ¢y(e) = O, for each e € E.

Given the transformations ¢ and 1 and the action o, we consider the trans-
formations o - ¢ such that:

(c-¢)(e+e)=(o-d)(e)+ (o-p)(e) for each e, e’ € E
(o-@)(f-e)=react(f,o) - ¢(e) for each f € Fle € E
and the transformation ¢ + 1 such that:
(¢ + ¥)(e) = ¢(e) + 1 (e) for each e € E.

Then we consider the transformation py,(¢) as completely defined by axioms
A6-A8 in Table 1. Finally, we consider the transformation ¢ || ¢ as completely
defined by axioms A9-A11 in Table 1.

It is immediate to prove the following proposition.

Proposition 5.1 The algebra of transformations satisfies the set of equations
in Table 1, where O and A are replaced by ¢o and I, respectively.

Let A be the X-algebra in Mods(Eq) such that A(B) is the domain of
the intensional semantics. We consider the homomorphism trans of A to
the algebra of transformations such that trans(A) = I, trans(O) = ¢y and
trans(o) = o for each action o.

Note that for each transformation ¢ there exists a head normal form

16



- 4484 AL AVAAVUNIV LV

Y icn Oi - ¢; such that ¢ = >, ;- ¢;. This head normal form is unique
modulo equivalence relation ~ over actions and commutativity and associa-
tivity of +. This fact and the property of congruence of ~ imply that the
homomorphism trans is well defined.

We define R(P) as follows.

Definition 5.2 Given a program P, we define R(P) as trans(Z(P)).

In order to give an interactive semantics of a language it is sufficient to define
its intensional semantics and to instantiate the function react.
Now, in the case of tdcep, let us take the function react defined as follows.

Definition 5.3 The function react: F x A — F s such that:
C(f,o) ifC(f,o) € Act'(D)

0 otherwise.

react(f,o) =

We can prove the following proposition.

Proposition 5.4 The equivalence ~ induced by function react is a congru-
ence w.r.to functions C and locx, X € Var.

If we consider the function react as in Def. 5.3, we have immediately the
interactive semantics of tdccp.

Example 5.5 Let us consider the agent U of Example 2.2. In Example 4.7
we have defined its intensional semantics Z(U). Let ¢ = R(U) = trans(Z(U))
be the interactive semantics of U. As an example, if we assume the behavior
of the environment e; —

({Idoors}, {{(0, {idoors})}})-(0,0)-({lack, rack}, {{(0, {lack}), (0, {rack})}})-

ef, then we have that ¢(e;) =
({ldoors,lleft,lright}, {{(0, {ldoors}), ({Idoors},{lleft}), ({ldoors}, {lright})}})-

(lack A rack,0) - ({lack,rack}, {{(0,{lack}), (D, {rack})}}) - #(e}).

This shows how the agent U interacts with the environment.

References

[1] Baeten, J.C.M. and Weijland, W.P.: Process Algebra. Cambridge Tracts in
Theoretical Computer Science, 18, 1990.

[2] Benveniste, A. and Berry, G. editors: Another Look at Real-Time Systems.
Special Issue of Proceedings of the IEEE, September 1991.

[3] Berry, G.: A Hardware Implementation of Pure Esterel. Sadhana, Academic
Proceedings in Engineering Sciences, Indian Academic of Sciences, 17, 1992,
pp- 95-130.

[4] Berry, G. and Gonthier, G.: The Esterel Synchronous Programming Language:
Design, Semantics, Implementation. Science of Computer Programming, 19,

17



- 4484 AL AVAAVUNIV LV

1992, pp. 87-152.

[5] Halbwachs, N.: Synchronous Programming of Reactive Systems. The Kluwer
International Series in Engineering and Computer Science, Kluwer Academic
Publishers, 1993.

[6] Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8, 1987, pp. 231-274.

[7] Harel, D. and Pnueli, A.: On the Development of Reactive Systems. In K.R.
Apt, editor, Logic and Models of Concurrent Systems, NATO, ASI-13, Springer,
1985, pp. 477-498.

[8] Letichevsky, A. and Gilbert, D.: Towards an Interactive Semantics
of Nondeterministic Concurrent Programming Languages. Presented at
the Second workshop of the INTAS-93-1702 project “Efficient Symbolic
Computing”, St Petersburg, Russia, October 1996.

[9] Letichevsky, A. and Gilbert, D.: A General Theory of Action Languages.
Cybernetics and System Analysis, 1, 1998, pp. 16-37.

[10] Philipps, J. and Scholz, P.: Compositional Specification of Embedded System
with Statecharts. Proc. of Theory and Practise of Software Development,
TAPSOFT ’97, Lecture Notes in Computer Science 1214, Springer, 1987.

[11] Saraswat, V.A.: Concurrent Constraint Programming. The MIT Press. 1993.

[12] Saraswat, V.A., Jagadeesan, R. and Gupta, V.: Timed Default Concurrent
Constraint Programming. Journal of Symbolic Computation, 11, 1996, pp. 1-46.

[13] Saraswat, V.A., Jagadeesan, R. and Gupta, V.: Default Timed Concurrent
Constraint Programming. Proc. of Twenty Second ACM Symposium on
Principles of Programming Languages, San Francisco, 1995.

[14] Saraswat, V.A., Jagadeesan, R. and Gupta, V.: Programming in Timed
Concurrent Constraint Languages. In B. Mayoh, E. Tougu, J. Penjain editors,
Computer and System Sciences, NATO, ASI-131, Springer, 1994, pp. 477-498.

18



