85 research outputs found

    Numerical results for mimetic discretization of Reissner-Mindlin plate problems

    Full text link
    A low-order mimetic finite difference (MFD) method for Reissner-Mindlin plate problems is considered. Together with the source problem, the free vibration and the buckling problems are investigated. Full details about the scheme implementation are provided, and the numerical results on several different types of meshes are reported

    Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory

    Full text link
    In this paper, we present an effectively numerical approach based on isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT) for geometrically nonlinear analysis of laminated composite plates. The HSDT allows us to approximate displacement field that ensures by itself the realistic shear strain energy part without shear correction factors. IGA utilizing basis functions namely B-splines or non-uniform rational B-splines (NURBS) enables to satisfy easily the stringent continuity requirement of the HSDT model without any additional variables. The nonlinearity of the plates is formed in the total Lagrange approach based on the von-Karman strain assumptions. Numerous numerical validations for the isotropic, orthotropic, cross-ply and angle-ply laminated plates are provided to demonstrate the effectiveness of the proposed method

    Adaptive modeling of plate structures

    Full text link
    V disertaciji se ukvarjamo z različnimi vidiki modeliranja ploskovnih konstrukcij s končnimi elementi. Modeliranje plošč je nekoliko specifično in je zaradi kompleksnosti in pojavov, ki jih opisuje, bistveno prispevalo k razvoju same metode končnih elementov. Danes je na voljo več uveljavljenih modelov plošč in pripadajočih končnih elementov, ki uporabniku nudijo široko množico možnosti, iz katere lahko izbira. Prav široka možnost izbire predstavlja tudi največjo težavo, saj je težje določiti, kateri model je primernejši in tudi, katera mreža končnih elementov je za dan problem optimalna. Glavni cilj disertacije je raziskati ključne korake v procesu prilagodljivega modeliranja plošč, ki omogoča samodejno določitev optimalnega modela za dan problem. Ker je prilagodljivo modeliranje odvisno od zanesljivih ocen napak, je večji del disertacije posvečen metodam za izračun diskretizacijske in modelske napake. Na praktičnih primerih smo preučili nekaj najbolj uveljavljenih metod za oceno napake. V nasprotju z ocenami napake diskretizacije, je modelsko napako mnogo težje določiti. Posebna pozornost je bila zato namenjena metodi uravnoteženja rezidualov, ki ima potencial tudi na področju ocene modelske napake. V tem smislu to delo predstavlja pomemben prispevek k področju računanja modelske napake za plošče. Koncept prilagodljivega modeliranja ploskovnih konstrukcij je bil preskušen na hierarhični družini končnih elementov za plošče - od tankih plošč do modelov višjega reda, ki upoštevajo deformacije po debelini. Ravno dobro vzpostavljena hierarhija v družini končnih elementov se je pokazala za ključno pri zanesljivi oceni modelske napake. Prilagodljivo modeliranje ploskovnih konstrukcije je bilo preskušeno na nekaj zahtevnejših primerih. Območje je bilo najprej modeliranjo z najbolj grobim modelom na sorazmerno redki mreži. Z uporabo informacije o napaki začetnega izračuna je bil zgrajen nov model. Primerjava izračuna na novem modelu z začetnim računom je pokazala, da je predlagan način prilagodljivega modeliranja sposoben nadzorovati porazdelitev napake, kakor tudi zajeti vse pomembnejše po- jave, ki so značilni za modeliranje plošč.The thesis deals with adaptive finite element modeling of plate structures. The finite element modeling of plates has grown to a mature research topic, which has contributed significantly to the development of the finite element method for structural analysis due to its complexity and inherently specific issues. At present, several validated plate models and corresponding families of working and efficient finite elements are available, offering a sound basis for an engineer to choose from. In our opinion, the main problems in the finite modeling of plates are nowadays related to the adaptive modeling. Adaptive modeling should reach much beyond standard discretization (finite element mesh) error estimates and related mesh (discretization) adaptivity. It should also include model error estimates and model adaptivity, which should provide the most appropriate mathematical model for a specific region of a structure. Thus in this work we study adaptive modeling for the case of plates. The primary goal of the thesis is to provide some answers to the questions related to the key steps in the process of adaptive modeling of plates. Since the adaptivity depends on reliable error estimates, a large part of the thesis is related to the derivation of computational procedures for discretization error estimates as well as model error estimates. A practical comparison of some of the established discretization error estimates is made. Special attention is paid to what is called equilibrated residuum method, which has a potential to be used both for discretization error and model error estimates. It should be emphasized that the model error estimates are quite hard to obtain, in contrast to the discretization error estimates. The concept of model adaptivity for plates is in this work implemented on the basis of equilibrated residuum method and hierarchic family of plate finite element models. The finite elements used in the thesis range from thin plate finite elements to thick plate finite elements. The latter are based on a newly derived higher order plate theory, which includes through the thickness stretching. The model error is estimated by local element-wise compu- tations. As all the finite elements, representing the chosen plate mathematical models, are re-derived in order to share the same interpolation bases, the difference between the local com- putations can be attributed mainly to the model error. This choice of finite elements enables effective computation of the model error estimate and improves the robustness of the adaptive modeling. Thus the discretization error can be computed by an independent procedure. Many numerical examples are provided as an illustration of performance of the derived plate elements, the derived discretization error procedures and the derived modeling error procedure. Since the basic goal of modeling in engineering is to produce an effective model, which will produce the most accurate results with the minimum input data, the need for the adaptive modeling will always be present. In this view, the present work is a contribution to the final goal of the finite element modeling of plate structures: a fully automatic adaptive procedure for the construction of an optimal computational model (an optimal finite element mesh and an optimal choice of a plate model for each element of the mesh) for a given plate structure. vii

    A discontinuous Galerkin formulation for nonlinear analysis of multilayered shells refined theories

    Get PDF
    A novel pure penalty discontinuous Galerkin method is proposed for the geometrically nonlinear analysis of multilayered composite plates and shells, modelled via high-order refined theories. The approach allows to build different two-dimensional equivalent single layer structural models, which are obtained by expressing the covariant components of the displacement field through-the-thickness via Taylor’s polynomial expansion of different order. The problem governing equations are deduced starting from the geometrically nonlinear principle of virtual displacements in a total Lagrangian formulation. They are addressed with a pure penalty discontinuous Galerkin method using Legendre polynomials trial functions. The resulting nonlinear algebraic system is solved by a Newton–Raphson arc-length linearization scheme. Numerical tests involving plates and shells are proposed to validate the method, by comparison with literature benchmark problems and finite element solutions, and to assess its features. The obtained results demonstrate the accuracy of the method as well as the effectiveness of high-order elements
    corecore