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1 Introduction

In the past few decades, many plate bending elements based on Reissner-Mindlin theory
have been developed to construct numerical models for thick plate and shell structures.
The existing literature, such as [1, 2], increases the understanding of the problem context.
In [1], the theory of semigroups of linear operators is applied for proving the existence and
uniqueness of solutions for the initial-boundary value problems in the thermoelasticity of
micropolar bodies, and in [2], the theory of semigroups of operators is applied to obtain
the existence and uniqueness of solutions for the mixed initial-boundary value problems
in thermoelasticity of dipolar bodies.

Many works compute all three unknowns (6, w, v) together, and some (see [3-6]) of
them propose numerical techniques and effective formulations to eliminate shear locking
when the thickness of the plate is thin. For instance, using discontinuous Galerkin tech-
niques, [3] develops a locking-free nonconforming element, and in order to prove optimal
error estimates, it uses penalty for 6. But in [4], in order to avoid the locking phenomenon,
it presents a triangular mixed finite element method, which is based on a linked interpo-
lation between deflections and rotations.

Moreover, [7] uses the ideas of discontinuous Galerkin methods to obtain and ana-
lyze two new families of locking-free finite element methods for approximation of the
Reissner-Mindlin plate problem. Following their basic approach, but making different
choices of finite element spaces, [8] develops and analyzes other families of locking-free
finite elements, which can eliminate the need for the introduction of a reduction oper-
ator. A hybrid-mixed finite element model has been proposed in [9], and it is based on
the Legendre polynomials. Duan [10] uses continuous linear elements (enriched with lo-
cal bubbles) to approximate rotation and transverse displacement variables, and an L?
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projector is applied to the shear energy term onto the Raviart-Thomas H(div; 2) finite el-
ement. Moreover, two first-order nonconforming rectangular elements are proposed in
[11], and [12] generalizes these schemes to the quadrilateral mesh. For the first quadrilat-
eral element, both components of the rotation are approximated by the usual conforming
bilinear element and the modified nonconforming rotated Q; element enriched with the
intersected term on each element to approximate the displacement, whereas the second
one uses the enriched modified nonconforming rotated Q; element to approximate both
the rotation and the displacement. Both elements employ a more complicated shear force
space to overcome the shear force locking. In addition, [13] presents four quadrilateral
elements for the Reissner-Mindlin plate model. The elements are the stabilized MITC4
element, the MIN4 element, the Q4BL element, and the FMIN4 element. All elements
introduce a unifying variational formulation and prove the optimal H' error bounds to
be uniform in the plate thickness except for the Q4BL element. The bending behaviors of
composite plate with 3-D periodic configuration are considered in [14], and it designs a
second-order two-scale (SOTS) computational method in a constructive way.

In this paper, the advantage is that only two unknowns (rotation 6 and displacement w)
are computed. The existence and uniqueness of the solution of the variational formulation
will be given. A low-degree mixed finite element method is adopted to solve the problem,
which is based on the use of piecewise linear functions for both rotations and transversal
displacements, and also a bubble (A;A;513) is added to each component of rotations. The
convergence and error estimation for the mixed finite element method are presented by
the use of different norms.

The rest of the paper is organized as follows. In Section 2, the model of Reissner-Mindlin
is be presented. In Section 3, a new mixed variational formulation is given, and also the
existence and uniqueness of the solution are proved. In Section 4, the finite element spaces
are constructed, and the corresponding discrete mixed variational formulation is pre-
sented. In Section 5, the error estimate is demonstrated. In Section 6, a numerical ex-

periment is given to testify the accuracy of the theoretical analysis.

2 The Reissner-Mindlin problem
The Reissner-Mindlin problem with clamped boundary is to find (6, w, y) such that

—divCs(@) -y =0 ing, (1)
divy =g ing, 2)
y=at2(Vo-0) inQ, ®3)
#=0, =0 ondQ, ()

where C is the tensor of bending moduli, 6 represents the rotations, w is the transversal
displacement, and y represents the scaled share stresses. Moreover, A is the share correc-

tion factor, g € L2(Q), ¢ is the thickness, and ¢ is the usual symmetric gradient operator

a0 Lo, 06
_ 0. 20 il
0=y T )
2

M + 3x2 3x2
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The above equations correspond to the minimization of the functional

-2

Jv) = Satmn) + L1V -l g - @), 5)
where

a(6,n) = /QCS(Q):s(n)dx, (6)

and (-, -) is the inner product in L2(£2). The operator : is defined as

e(0): e(n) = e11(0)e11(n) + £12(0)e12(n) + £21(0)€21 (1) + £22(0)€22(n).

3 New mixed variational formulation

The classical variational formulation of the Reissner-Mindlin problem is to find (8, w, y) €
(H3(R2))* x Hy(2) x (L*(R2))? such that

a®,m) - (y,n) =0, V¥ne(H\Q), (7)
(y,Vu) = (g,v), YveHyRQ), (8)
WPy, 1) - (Vo 1) +(6,7) =0, V¥ e (I3(Q)". 9)

In the former work on the Reissner-Mindlin problem, the three unknowns were just
computed with this classical variational formulation (7)-(9). We will derive a new format,
which contains only two unknowns.

In (9), instead of T € (L*(2))?, it suffices to take n € (H3(2))?, that is,

_ _ 2
(v,m) = A2 (Va,n) = a2(0,1),  Vn € (Hy(R))™ (10)

Inserting (10) into (7), we have

/QCE(Q) ce(0)dx + M_Z/S;Q -Odx — 172 /Q n-Vodx=0, Vne (H(l)(Q))z. (11)
Thus, Vv € (L*(2))? for all v € H}(R2). Let T = Vv in (9). Then

(v, Vv) = At 2(Vw, V) + At72(0,Vu) =0, Vv € Hy(R). (12)
Inserting (12) into (8), we have

A2, VU) + ATA Ve, Vu) = (g,v), Yv e Hy(Q). (13)

Combining (11) with (13) and letting
a1(6,n) =a®,n) + \t72(0,n) = / Ce(0):6(0)dx + At’Z/ 0 -0 dx,
Q Q

blnw) = -1 /

n - Vodx, c(w,v) = At‘Z/ Vo - Vudx,
Q Q
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g(v)zfg-vdx,
Q
we get the new mixed variational formulation: find (9, ) € (H(2))? x H}(S2) such that

a(6,n) +b(n,0) =0, Vne (H)RQ)’, (14)

b(0,v) + c(w,v) =g(v), Yve H(l)(Q). (15)

For the new mixed variational formulation, it is obvious that the bilinear forms of a4(, -)
are (H}(2))?-elliptic and continuous:

a1(0,0) = a(0,0) + 1t 2(0,0)

=/Cs(@):s(@)dx+)\t’2/0-9dx
Q

Q

2
>allfl, V0 e (Hy(R),

where « is a positive constant, and this result follows by the Korn-inequality (see [15]).
This means that a; (-, -) are (H}(£2))-elliptic. Moreover,

a1(0,m) = a(®,n) + 1t7*(6,n)

:/Cs(@):e(n)dx+kt‘2/9-ndx
Q

Q

2
<alblulnll, V6,1 € (Hy(R))",

where o is a positive constant, and this gives the continuity of a;(-,-) in (H}(2))* x
(H(Q)*.

Differently from the former works on the Reissner-Mindlin problem, the pattern pre-
sented here contain only two variables 6 and . Once 6 and w are found, y can be obtained
from (3). On the other hand, the new variational formulation (14)-(15) does not include to
the classical mixed finite element model (see [16]), so we need to prove the existence and
uniqueness of the solution of this new formulation.

Theorem 1 The new mixed variational formulation (14)-(15) has a unique solution.

Proof The new mixed variational formulation (14)-(15) can be derived from (7)-(9), so the
solution of (7)-(9) is a solution of (14)-(15). Therefore, the remaining work is to verify the
uniqueness of the solution.

In order to prove this, it suffices to prove that the homogenous problem

a1(0,n) +b(n,w) =0, Vne (Hé(Q))Z, (16)

b,v) +clw,v) =0, Yve H(l)(Q), (17)

has only the zero solution.
Equation (16) can be written as

@ (0,1) = -b(n,®) = A2V, 1), Vn € (H) ()"
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Based on the former proof, the bilinear forms of a;(-,-) are (Hy(2))?-elliptic and con-
tinuous. In addition, for every fixed w € H}(2), At~3(Vw, n) can be seen as a continuous
linear form in (H(l)(Q))Z; in fact,

_ _ 2
M (Vo,n)| < A% Inlloglele < Clnlhelele, Vi e (Hy(R))".

By the Lax-Milgram lemma (see [17]), for every w € Hy(S2), there exists a unique 6 =
0(w) € (Hy(2))? such that

a(6(@),n) = 2(Vo,n), Ve (HYRQ)".

It is easy to see that the function 6 = 6(w) linearly depends on w.
Let n = 6(w) in (16). Then

a(@ (w), G(w)) + A2 (O(a)), G(a))) = A2 (Q(w), Vw) < rt? ||9(a)) ||0,Q w10,

and if w # 0, then 6(w) # 0 since O(w) linearly depends on w. So we get

1 a(f(w),0(w))

”9(60)”0,9 <l|wl,e - 2 16(@) o0 (18)
For (17), 6 = 6(w), so that
b(@(w), U) +c(w,v)=0, VYve Hé(Q). (19)

Equation (19) means w = 0. As a matter of fact, if w # 0, then letting v = Vw in (19), we
get the following estimate:

0=-at2 (9 (w), Va)) + A2 (Vo, Vo)

> M wllg - A7 0(w) ”0,9"‘)'1’9'
Then, combining this inequality with (18), we have the estimate

0> it |olig - 172 [0() | olohe

1 0(w), 0
> )»t_2|w|ig - M_2<|w|1,sz - F%) lwl1e
_ a(0(w),6(w))

16(@)ll0,2
- 161} q
—0(@)lle

= C6()|, gl@la, Yo € Hy(S).

lwl,e

ol

So, there must be @ = 0 and thus 6(w) = 0. This means that the homogenous equation

system (16)-(17) has only the zero solution. That is to say, the new mixed variational for-
mulation (14)-(15) has a unique solution. |
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4 Mixed finite element discretion
We shall introduce a mixed finite element approximation of problem (1)-(4). Let {J;} be
a series of regular triangle partitions of 2. On a generic triangle T € Jj, define the shape
function spaces for approximating 6, w as
2

Py(T) = (Pi(T))” ® ariirahs,

P,(T) = P(T),
where a7 is a vector, P1(T") denotes the set of polynomials of degree <1 on 7, and A;
(i=1,2,3) are the barycentric coordinates.

As is well known, a vector 6 € Py(T) is uniquely determined by the four degrees of free-

dom
/ . 1
%) = {e(ai),z=1,2,3,—/9ds}, (20)
Tl Jr
and a vector w € P,(T) is uniquely determined by the three degrees of freedom
) ={w(a)i=1,2,3}, (21)

where a;, i = 1,2, 3, are the vertices of the triangle 7'
The finite element spaces are defined as follows:

Hy, = {6 :0|7 € Po(T) defined by 7,015 = 0}, (22)

Wi, = {w: w|r € P,(T) defined by 4, w|sq = 0}. (23)

For 6 € Hj, obviously, 6 € C°(R2), and hence 6 € (H}(2))?. Therefore, H, C (H}(S2))>.
Similarly, w, € H}(2). This illustrates that these are conforming element spaces.

In order to prove error estimates, we introduce the new norm
1017 := 27201015 + a8, 6). (24)

Corresponding to the mixed variational formulation, the discrete problem is to find
6y, wy) € Hy x W), such that

a1(0n, ) + b(ny, wp) =0, Yy, € Hy, (25)

b(Oy, vp) + clwp, vy) = g(uy), Yo, € W, (26)

Similarly, for the discrete variational formulation, it is easy to prove that the bilinear
forms of a; (-, -) are V*-elliptic and continuous in Hy, x Hj:

a1(On i) = @O i) + At~ (O 1)
= / Ce(6n) : e(ny) dx + )\t_Z/ O - npdx
Q Q

< N6ullcllnnll«s  YOn,nu € Hy,
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which proves the continuity of a4, (-, -) in Hy x Hy;

a0y, 0) + At (61, Op)

/ Cs(@h):s(eh)dx+kt_2f O - O dx
Q Q

a1(0n, O1)

> 04l V6 € Hp,
where o is a positive constant, which means that a; (-, -) is V*-elliptic in Hj, x Hj.
Theorem 2 The discrete mixed variational formulation (25)-(26) has a unique solution.

Similarly to the previous arguments, proceeding in exactly the same way (see the proof
of Theorem 1), the existence and uniqueness of the solution of the discrete problem can

be obtained through proving that the homogenous problem has only the zero solution.

5 Error estimation
Subtracting (25) from (14) and subtracting (26) from (15), we obtain the error equations

ﬂl(e _ehr 77h) +b(’7hr60—wh) = 01 V’)h eHhr (27)

b(@ — 6, Uh) + c(a) — Wp, Uh) =0, Vu,eW,. (28)
First of all, the V*-ellipticity and linearity of a;(-,-) in Hy, x H}, ensure the estimate

164 — 1l
< a1(On — 1, O — 1)

= a1(0 — 1, On — i) + a1(On — 6,6 — 1. (29)
Then, for all 6, — n;, € Hy, by (27) we have the equality
a1(0n — 0,0, — i) = b(On — N, @ — wp). (30)
So, inserting (30) into the right-hand side of (29) yields

2
16n =l

< a1(0 = 1w, O — ) + b(Oh — i, @ — wp).
Then, using the continuity of 4, (-, -) and b(-, -), we further get that
160 = 1l < 116 = 1l 16 = mills + 22721160 = mllo,el@ — wpl1g. (31)
Based on the definition of the norm || - ||, we have

A6 = nllog < VAL2(6), — 1l
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Then, inserting this inequality into (31), we get
16 = nullZ < 16 = 7l 168 — 1]l + Vat2)|6 = nall o - opl1.e
$o,
16 = il < 16 = malls + VA2 2|0 — il (32)
Using the triangle inequality, we get the following estimate:

160 = Onlls < 116 = nnlls + 110n — nall
<16 = nulls + 16 = nulls + VA2 0 — wplre

= 206 = myll + VA2 |0 — oyl (33)
Then, we first estimate the second term of (33). Then, for every v, € W},
(v — op, Up — wp) > At o — opli g (34)
Moreover, the linearity of ¢(-, -) and equation (28) ensure the estimate

c(up — wp, vy — wp)
= c(vp — 0, vy — W) + c(w — wp, vy — @)

= c(up — w, vy — wyp) — b0 — Oy, vy, — wp).
Using the Schwarz inequality (see [17]), we get the estimate

c(up — wp, Uy — wi)

-2 -2
<M o - vnhaelvn — olue + A6 = Oullo.elun — wnlie. (35)

Combining (34) and (35) and dividing both sides of the inequalities by |uy, — wy|1,¢ yield
the estimate

lup — wnle < lw—vkl,e + 110 = Oullo,,  Yui € Wi
Then, inserting this inequality into the triangle inequality
lo —wihe < lo-uvihe + |vn—orh,e
we immediately get that

lw - wplye < lo - vl + (lo - vilie + 10 = Oullog)

= 2|w - vplre + 10 - Oulloq- (36)
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Inserting (36) into (33), we have

16 = 6nll«
<20 = mulls + VA2 (2] — vhlig + 116 = Oulloe)

=2[10 = nulls + 2V AL 2|0 = vhl,e + VA2 = Oullo,0) (37)
and then subtracting v/ A£72(|0 — 6;,]|o,@ from both sides of inequality (37), we get

16 = Oull = VAL210 = Onllo

<2[10 = null« + 2V A2 @ — uply,q. (38)

By rationalizing the numerator, from (38) it is easy to get the estimate

a(® — 0,0 — 0p)

<2[160 = null« + 2V AL 2w — Uply,0.
16 = 6nlls + vV At72]16 — Onllo,e

So

a(® — 64,6 — 0y)

< [0 = Oulls + VAL2160 = Opllo][2110 = mall« + 2V 2820 = Up ). (39)

Using the Korn and Poincaré inequalities (see[18]) in (39), we immediately get the esti-

mate
160 = nl3 g < ClIO = Oull[ 116 = Ml + VAE2|w = Unle]. (40)
Dividing by |6 — 0|1, and using the equivalence of the norms || - ||, and | - |1,q, we re-

duce (40) to
160 = Ohlue < C[116 = mall« + VAL 2|0 = Upla],  1n € Hyyup € Wi (41)
Moreover, since n,, € H, and v, € W), are arbitrary in (41), we derive

6~ Oha < C[inf 10— mill. + VAL inf |- vihie]
npeHy v, eW),

< C[l16 = 81l + Vit 2o - Tyl q]
< C[16 - MBli0 + VAE2(6 = TLllo + VAt 2w — Tolg].

Then, utilizing the standard interpolation theory and also the inverse inequality (see[17])

in this inequality, we get

10 = Ohle < C[Al0 |2, + VAE2H )50 + VAt 2h|wlg]
< C(L+VAt2h)h|6lsq + CVAL2hlwlsq. (42)
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Inserting (42) into (36), we get

| —wpli,e < 2|lo —vkl,e + 110 = Okllo,e
= 2|w-uvuhe+Cl0 - O4l10

<2|w-vl,e + C(L+ VAt 2h)hlB]sq + CV AL 2h|w|y0. (43)
Because vy, € W), is arbitrary in (43),

| — oyl

<C inf |o-vuhe+CA+Var2h)h0lra + CVAL2h|wlyg
h

vpeW)

<Clw- Hha)|1,9 + C(]. + vV )»tfzh)hleh_g + Con At*2h|a)|2,9. (44)
Then, we immediately get the following estimate by using the interpolation theory:

o — wpl,e < Chlwlyg + C(L+ VAt 2h)h|flsq + CVAE2h|olg
< C(L+ VAt 2h)h|blag + C(1+ VAt 2)h|wlyq. (45)

We finally obtain estimates (42) and (45) by the following convergence theorem.

Theorem 3 Let (6, w) be the solution of the mixed variational formulation (14)-(15), and
let (O, wy) be that of the discrete problem (25)-(26). Then, the following estimates hold:

10 = ulia < C(1+ VAE2R)h|O o0 + CVAE 2 hl w0,
|0 - wnha < C(1+ VAL 2h)hlOlo0 + C(1+ Vat2)hlwlsg.

In this paper, the constants C in all previous estimates are different from each other and
also are independent of 4.

6 Numerical experiments
In this section, we give an example to verify the theoretical analysis.

To check the convergence rate, we construct the following exact solutions for the two-
dimensional Reissner-Mindlin model. Assume that the domain Q = [0,1]%. Now let

0=y’ (r-1%2(x - 1)*2x - 1),2°(x - 1>y - 1*(2y - 1],

2£2
51 -k%)

= %xsﬁ(x -1)3(y-1)%- [y - 1’x(x - 1)(55> = 5x +1)

+x°(x = 1)°y(y - 1)(55* - 5y +1)].

The corresponding g(x,y) is

121
(1-k)

+a(x—1)(57° -5y +1)[26*(x = 1)* + (52° = 5 + 1)y(y - 1)},

glx,y) = z {(5x2 —5x + l)y(y - 1)[x(x - 1)(5)/2 -5y + 1) + 2)/2()/ - 1)2]

where k = 0.3.
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Table 1 Error results of the rotations 0

Steplength 47" 8! 167" 3271 647" 128"
16 -Ohl1.0 00010  62835e-004  29050e-004  1.2380e-004  56950e-005  2.7729e-005
Order - 06818 1.1131 1.2305 1.1202 1.0383

Table 2 Error results of transversal displacement @

Steplength 47" 8! 1671 3271 647" 12871
lw-whl 20672e-004  1.2562e-004  56141e-005  23292e-005  1.0569e-005  5.1228e-006
Order - 0.7186 11619 1.2692 1.1400 1.0449

Now for the regular triangle partitions of 2, where the step lengths are 7 = 471, 1 = 871,
h=1671, h =327, h = 6471, h = 12871, we use the shape functions given in Section 4 to
approximate 6, w, and the errors and orders are given in Tables 1 and 2, where A = 3.5,
t=0.1.
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