2,588 research outputs found

    Experiments and simulations on short chain fatty acid production in a colonic bacterial community

    Get PDF
    Understanding how production of specific metabolites by gut microbes is modulated by interactions with surrounding species and by environmental nutrient availability is an important open challenge in microbiome research. As part of this endeavor, we explore interactions between F. prausnitzii, a major butyrate producer, and B. thetaiotaomicron, an acetate producer, under three different in vitro media conditions in monoculture and coculture. In silico Genome-scale dynamic flux balance analysis (dFBA) models of metabolism in the system using COMETS (Computation of Microbial Ecosystems in Time and Space) are also tested for explanatory, predictive and inferential power. Experimental findings indicate enhancement of butyrate production in coculture relative to F. prausnitzii monoculture but defy a simple model of monotonic increases in butyrate production as a function of acetate availability in the medium. Simulations recapitulate biomass production curves for monocultures and accurately predict the growth curve of coculture total biomass, using parameters learned from monocultures, suggesting that the model captures some aspects of how the two bacteria interact. However, a comparison of data and simulations for environmental acetate and butyrate changes suggest that the organisms adopt one of many possible metabolic strategies equivalent in terms of growth efficiency. Furthermore, the model seems not to capture subsequent shifts in metabolic activities observed experimentally under low-nutrient regimes. Some discrepancies can be explained by the multiplicity of possible fermentative states for F. prausnitzii. In general, these results provide valuable guidelines for design of future experiments aimed at better determining the mechanisms leading to enhanced butyrate in this ecosystem.https://www.biorxiv.org/content/10.1101/444760v1https://www.biorxiv.org/content/10.1101/444760v1Othe

    Integrating Ecological and Engineering Concepts of Resilience in Microbial Communities

    Get PDF
    Many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. We argue that the disconnect largely results from the wide variance in microbial community complexity, which range from compositionally simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems that undergo both recoverable and unrecoverable transitions, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the two concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community\u27s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities and suggest that state changes in response to environmental variation may be a key mechanism driving functional resilience in microbial communities

    BowSaw: inferring higher-order trait interactions associated with complex biological phenotypes

    Get PDF
    Machine learning is helping the interpretation of biological complexity by enabling the inference and classification of cellular, organismal and ecological phenotypes based on large datasets, e.g. from genomic, transcriptomic and metagenomic analyses. A number of available algorithms can help search these datasets to uncover patterns associated with specific traits, including disease-related attributes. While, in many instances, treating an algorithm as a black box is sufficient, it is interesting to pursue an enhanced understanding of how system variables end up contributing to a specific output, as an avenue towards new mechanistic insight. Here we address this challenge through a suite of algorithms, named BowSaw, which takes advantage of the structure of a trained random forest algorithm to identify combinations of variables (“rules”) frequently used for classification. We first apply BowSaw to a simulated dataset, and show that the algorithm can accurately recover the sets of variables used to generate the phenotypes through complex Boolean rules, even under challenging noise levels. We next apply our method to data from the integrative Human Microbiome Project and find previously unreported high-order combinations of microbial taxa putatively associated with Crohn’s disease. By leveraging the structure of trees within a random forest, BowSaw provides a new way of using decision trees to generate testable biological hypotheses.Accepted manuscrip

    Integrated community profiling indicates long-term temporal stability of the predominant faecal microbiota in captive cheetahs

    Get PDF
    Understanding the symbiotic relationship between gut microbes and their animal host re- quires characterization of the core microbiota across populations and in time. Especially in captive populations of endangered wildlife species such as the cheetah (Acinonyx jubatus), this knowledge is a key element to enhance feeding strategies and reduce gastrointestinal disorders. In order to investigate the temporal stability of the intestinal microbiota in cheetahs under human care, we conducted a longitudinal study over a 3-year period with bimonthly faecal sampling of 5 cheetahs housed in two European zoos. For this purpose, an integrated 16S rRNA DGGE-clone library approach was used in combination with a series of real-time PCR assays. Our findings disclosed a stable faecal microbiota, beyond intestinal community variations that were detected between zoo sample sets or between animals. The core of this microbiota was dominated by members of Clostridium clusters I, XI and XIVa, with mean concentrations ranging from 7.5-9.2 log10 CFU/g faeces and with significant positive correla- tions between these clusters (P<0.05), and by Lactobacillaceae. Moving window analysis of DGGE profiles revealed 23.3-25.6% change between consecutive samples for four of the cheetahs. The fifth animal in the study suffered from intermediate episodes of vomiting and diarrhea during the monitoring period and exhibited remarkably more change (39.4%). This observation may reflect the temporary impact of perturbations such as the animal’s compro- mised health, antibiotic administration or a combination thereof, which temporarily altered the relative proportions of Clostridium clusters I and XIVa. In conclusion, this first long-term monitoring study of the faecal microbiota in feline strict carnivores not only reveals a remark- able compositional stability of this ecosystem, but also shows a qualitative and quantitative similarity in a defined set of faecal bacterial lineages across the five animals under study that may typify the core phylogenetic microbiome of cheetahs

    Community recovery dynamics in yellow perch microbiome after gradual and constant metallic perturbations

    Get PDF
    Background: The eco-evolutionary processes ruling post-disturbance microbial assembly remain poorly studied, particularly in host-microbiome systems. The community recovery depends not only on the type, duration, intensity, and gradient of disturbance, but also on the initial community structure, phylogenetic composition, legacy, and habitat (soil, water, host). In this study, yellow perch (Perca flavescens) juveniles were exposed over 90 days to constant and gradual sublethal doses of cadmium chloride. Afterward, the exposure of aquaria tank system to cadmium was ceased for 60 days. The skin, gut and water tank microbiomes in control and treatment groups, were characterized before, during and after the cadmium exposure using 16s rDNA libraries and high throughput sequencing technology (Illumina, Miseq). Results: Our data exhibited long-term bioaccumulation of cadmium salts in the liver even after two months since ceasing the exposure. The gradient of cadmium disturbance had differential effects on the perch microbiota recovery, including increases in evenness, taxonomic composition shifts, as well as functional and phylogenetic divergence. The perch microbiome reached an alternative stable state in the skin and nearly complete recovery trajectories in the gut communities. The recovery of skin communities showed a significant proliferation of opportunistic fish pathogens (i.e., Flavobacterium). Our findings provide evidence that neutral processes were a much more significant contributor to microbial community turnover in control treatments than in those treated with cadmium, suggesting the role of selective processes in driving community recovery. Conclusions: The short-term metallic disturbance of fish development has important long-term implications for host health. The recovery of microbial communities after metallic exposure depends on the magnitude of exposure (constant, gradual), and the nature of the ecological niche (water, skin, and gut). The skin and gut microbiota of fish exposed to constant concentrations of cadmium (CC) were closer to the control negative than those exposed to the gradual concentrations (CV). Overall, our results show that the microbial assembly during the community recovery were both orchestrated by neutral and deterministic processes
    • …
    corecore