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Abstract  21 

Understanding how production of specific metabolites by gut microbes is modulated by 22 

interactions with surrounding species and by environmental nutrient availability is an important 23 

open challenge in microbiome research. As part of this endeavor, this work explores interactions 24 

between F. prausnitzii, a major butyrate producer, and B. thetaiotaomicron, an acetate producer, 25 

under three different in vitro media conditions in monoculture and coculture.  In silico Genome-26 

scale dynamic flux balance analysis (dFBA) models of metabolism in the system using 27 

COMETS (Computation of Microbial Ecosystems in Time and Space) are also tested for 28 

explanatory, predictive and inferential power.  Experimental findings indicate enhancement of 29 

butyrate production in coculture relative to F. prausnitzii monoculture but defy a simple model 30 

of monotonic increases in butyrate production as a function of acetate availability in the medium.  31 

Simulations recapitulate biomass production curves for monocultures and accurately predict the 32 

growth curve of coculture total biomass, using parameters learned from monocultures, 33 

suggesting that the model captures some aspects of how the two bacteria interact.  However, a 34 

comparison of data and simulations for environmental acetate and butyrate changes suggest that 35 

the organisms adopt one of many possible metabolic strategies equivalent in terms of growth 36 

efficiency. Furthermore, the model seems not to capture subsequent shifts in metabolic activities 37 

observed experimentally under low-nutrient regimes. Some discrepancies can be explained by 38 

the multiplicity of possible fermentative states for F. prausnitzii.  In general, these results 39 

provide valuable guidelines for design of future experiments aimed at better determining the 40 

mechanisms leading to enhanced butyrate in this ecosystem. 41 

 42 

 43 
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Importance  44 

Studies associating butyrate levels with human colonic health have inspired research on 45 

therapeutic microbiota consortia that would optimize butyrate production if implanted in the 46 

human colon.  Faecalibacterium prausnitzii is commonly observed in human fecal samples and 47 

produces butyrate as a product of fermentation.  Previous studies indicate that Bacteroides 48 

thetaiotaomicron, also commonly found in human fecal samples, may enhance butyrate 49 

production in F. prausnitzi when the two species are co-localized.  This possibility is 50 

investigated here under different environmental conditions using experimental methods paired 51 

with computer simulations of the whole metabolism of bacterial cells.  Initial findings indicate 52 

that interactions between these two species result in enhanced butyrate production.  However, 53 

results also paint a nuanced picture, suggesting the existence of a multiplicity of equivalently 54 

efficient metabolic strategies and complex interactions between acetate and butyrate production 55 

in these species that appear highly dependent on specific environmental conditions.    56 

 57 

Introduction 58 

 It is increasingly recognized that metabolites produced by the resident microbiota of the 59 

colon have a major influence on host physiology (1). Dietary substrates dramatically influence 60 

the amount and type of these metabolites produced (2). For instance, fermentation of 61 

carbohydrates produces a number of bioactive compounds, most notably short chain fatty acids 62 

(SCFA) such as butyrate, that have been demonstrated to shape the gut microenvironment, serve 63 

as an energy source for the colonic epithelium, and influence disease through anti-inflammatory, 64 

lipogenic, and anti-apoptotic effects (3–6).  65 
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 The production of metabolites in a microbial community has been suggested to be 66 

heavily modulated by interactions among its members. These interactions manifest in a variety of 67 

modes, ranging from competitive or predatory to commensal and mutualistic exchanges (7). 68 

Additionally, many microbes in nature exist in spatially defined structures (8), such as the 69 

mucosal layer of the gut. Spatial assortment of cells creates locally heterogeneous 70 

subpopulations with varying access to resources that can also modulate inter- and intra-71 

community behavior (9). A major goal of ongoing efforts in human microbiome research (10) is 72 

to gain enough predictive and quantitative understanding of inter-microbial interactions (11) and 73 

of the metabolic interplay between microbiota and host (12) to be able to understand the effects 74 

of the microbiome on human health.  These capabilities could greatly facilitate successful design 75 

of therapeutic strategies for microbiome-related diseases.  76 

 Efforts towards safely, effectively and reliably engineering microbial communities (9) 77 

to improve human health are, however, limited by insufficient understanding of the nature of the 78 

mechanisms underlying microbial interactions and the way these interactions affect microbiome 79 

dynamics. Anaerobic in vitro, in vivo and ex vivo experiments capable of probing systems similar 80 

to the human colonic environment are difficult and expensive.  Previous work uncovering 81 

fundamental properties of SCFA-producing bacteria and their symbiotic partners has used 82 

Faecalibacterium prausnitzii as a model system (13–21). This is motivated by the high 83 

prevalence of F. prausnitzii as a commensal bacterium in the human large intestine (22) and the 84 

role it plays as one of the major butyrate producers (23).  Among the bacteria used for coculture 85 

studies, a common gut commensal, Bacteroides thetaiotaomicron, has been chosen in both 86 

experimental (24) and computational (25) analyses of SCFA production.  In particular, 87 

experimental efforts to grow F. prausnitzii in coculture with B. thetaiotaomicron have suggested 88 
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enhancement of butyrate production in coculture relative to F. prausnitzii monoculture (24). 89 

However, the data in this study was obtained only for a single time point and no information on 90 

the dynamics of the biomass or butyrate production was provided.  In general, to our knowledge, 91 

no comparison has been previously made between experimentally measured time-courses of the 92 

biomass of these species and their respective metabolic dynamics, when grown individually and 93 

in co-culture.  94 

 In parallel, computational work based on metabolic network analyses has led to the 95 

construction of genome scale models for each of these bacterial species, and to a computational 96 

assessment of their metabolic capabilities (26–28). The modeling approach used in these studies, 97 

often referred to as constraint-based modeling (or stoichiometric modeling) is based on 98 

simplifying assumptions about the intracellular dynamics of metabolism.  It enables quantitative 99 

predictions of the intracellular and exchange fluxes, in addition to the growth rate of different 100 

species.  In particular, flux balance analysis (FBA) (29), can be used to calculate the flow of 101 

metabolites through a metabolic network, making it possible to predict the growth rate of an 102 

organism or the rate of production of important metabolites (30)  ( see also (31) for a 103 

comprehensive review of different approaches).  While the reconstructed networks and the 104 

modeling tools used for making these predictions vary widely in accuracy and predictive power, 105 

the formal representation of metabolism into these mathematical structures and codification of 106 

multi-level processes into algorithms have sparked a revolution in systems biology of 107 

metabolism, enabling precise hypothesis testing, and the formulation of genome-scale based 108 

community modeling. In the context of human gut microbiome studies and inter-species 109 

interactions, modeling work has been shown in particular to provide insight into the stability of 110 

biofilm forming communities (25). 111 
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 In order to make comparisons between computational predictions and experimental 112 

time-course data, it is important to be able to connect detailed knowledge of the intracellular 113 

metabolism of individual organisms to the dynamic metabolic changes occurring in the 114 

surrounding environment.  An extension of FBA capable of these types of calculations is 115 

dynamic FBA (or dFBA)(32). Harcombe et al. (33) developed a computational framework 116 

specifically designed to help predict the spatio-temporal behavior of synthetic microbial 117 

consortia. This system, known as Computation of Microbial Ecosystems in Time and Space 118 

(COMETS) (33), generates predictions of biomass growth curves as well as detailed time 119 

dynamics of the concentrations of all nutrients and metabolites in the environment. COMETS 120 

has been shown to accurately predict the behavior of small artificial ecosystems.  121 

 Despite the availability of these experimental data and computational tools, many 122 

fundamental features of the interactions between F. prausnitzii and B. thetaiotaomicron, as well 123 

as our capacity to predict clinically relevant variables, remain unexplored.  While previous 124 

studies have computationally and experimentally analyzed the metabolic capabilities of each of 125 

these bacteria individually (26, 27) and the dependence of these and other bacteria upon different 126 

oxygen levels (25), no direct comparison of experimental and computational time course data for 127 

this consortium under varying conditions has been presented before.  In particular, no attempt 128 

has been made to recapitulate or predict these time-courses with dynamic computational models.  129 

   130 

 Here, we provide novel insight into the F. prausnitzii - B. thetaiotaomicron model 131 

system by combining new experimental measurements of bacterial biomass and environmental 132 

metabolites with COMETS-based computer simulations. We performed a series of anaerobic in 133 

vitro experiments involving monocultures and cocultures of F. prausnitzii and B. 134 

thetaiotaomicron grown in three different media, and found increased butyrate production in co-135 
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culture relative to monoculture under high glucose and acetate concentrations. Upon fitting of six 136 

parameters for metabolic uptake kinetics in monocolture, COMETS simulations were able to 137 

recapitulate biomass time courses in monoculture and predict combined biomass time courses for 138 

coculture. Model predictions for butyrate, however, portray a more complex picture.  Accurate 139 

predictions of initial butyrate production rate do not hold at longer times due to the existence of 140 

multiple alternative optima in the flux states and the history-dependence of the dynamical 141 

predictions. Strong sensitivity of the butyrate production curves to specific concentrations of 142 

nutrients, including phosphate, provide insight into the complexity of these metabolic exchanges, 143 

and valuable guidance for future experimental and modeling work.   144 

 145 

Results 146 

In vitro and in silico coculture biomass dynamics under different nutrient limitations  147 

 We initially characterized anaerobic growth of B. thetaiotaomicron and F. prausnitzii 148 

individually and in coculture, under different levels of carbon availability (low, medium, high, 149 

see Methods).  In addition to glucose, acetate was added proportionally, mimicking the 150 

fermentative activity of the rest of the microbiota (13). The presence of acetate in the medium 151 

also allowed us to assess how, even in the absence of B. thetaiotaomicron, F. prausnitzii 152 

responds to varying acetate availability.   153 

 Monoculture growth for B. thetaiotaomicron appears sensitive to the amount of carbon 154 

provided (Fig. 1).  Growth rate and yield increase in medium acetate/glucose medium compared 155 

to low acetate/glucose concentrations.  No clear increase in biomass occurred when carbon 156 

abundance was increased from medium to high levels.  The amount of F. prausnitzii biomass in 157 

monoculture appears insensitive to increase in initial acetate/glucose levels. The combined 158 
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biomass growth curves of the coculture (measured as a collective OD) closely tracks OD curves 159 

of B. thetaiotaomicron, suggesting a prominent role of this bacterium in the consortium. This 160 

observation is consistent with previous experiments (3) in which the combined coculture biomass 161 

OD of B. adolescentis and F. prausnitzii mirrors the OD of the B. adolescentis monoculture, 162 

suggesting that some features of that consortium may be similar to the one studied here, even 163 

across different spatial scales and environmental settings.  164 

 In parallel to the experimental measurements, we implemented in silico simulations of 165 

the same monocultures and cocultures, using  previously published genome-scale metabolic 166 

models for the two bacteria (26, 27). In particular, we used COMETS (33) to test whether (i) 167 

parameters from the literature, combined with minimal fitting of unknown parameters, would 168 

recapitulate the observed monoculture behavior and (ii) models tuned for monoculture 169 

experiments would be adequate to predict the outcome of the coculture experiment.  170 

 Superimposed on the experimental data, Fig. 1 shows the biomass dynamics as 171 

simulated in COMETS. The monoculture simulations were supplemented with empirical 172 

knowledge of uptake KM and fitting of Vmax values.  After selecting initial kinetic parameter 173 

values based on previously determined corresponding parameters for the phosphotransferase 174 

(PTS) transporter (21, 34), a sensitivity analysis allowed us to identify Vmax values that provide 175 

best fit of growth curves to monoculture (Fig. 2). This calibration step, similar to that previously 176 

performed in (35), produces simulated OD curves that broadly agree with the experimentally 177 

measured points (see root-mean-squared error (RMSE) in Table 1).  Using these parameters for 178 

COMETS simulations of cocultures at the experimentally estimated initial biomass abundances, 179 

coculture predictions track coculture experimental data closely, as shown by predictive RMSE 180 

values (Table 1).   181 
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 182 

Coculture conditions impact the average rate of butyrate production in experiments 183 

 Throughout all of our experiments, in addition to monitoring the overall OD, we 184 

measured the extracellular aboundance of butyrate and acetate. In Fig. 3, the average amount of 185 

butyrate produced by F. prausnitzii in coculture appears higher than monoculture in the medium 186 

and high initial acetate/glucose concentrations, but not in the low concentration conditions. In 187 

low acetate/glucose conditions the butyrate production rate in coculture appears suppressed 188 

relative to the one in monoculture.  Box's approach in (36), applying ANOVA to summary 189 

statistics describing growth curves, was used to quantify the statistical significance of the 190 

difference in butyrate production curves across different treatments, i.e.: (i) monoculture vs. 191 

coculture conditions (mono/co) and (ii) the three different initial acetate/glucose initial 192 

concentrations (initial glu/ac).  Tables 2 and 3 show that the average rate of butyrate production 193 

in F. prausnitzii is significantly altered in mono vs. coculture conditions but not across the 194 

different initial abundances of acetate and glucose. The initial acetate/glucose concentrations, but 195 

not mono vs. coculture conditions, significantly change the average rate of acetate production 196 

from B. thetaiotaomicron.      197 

 Interpretation of the above assessments of butyrate and acetate production is limited by 198 

the lack of experimental knowledge of the precise amount of biomass of each species in the 199 

coculture experiments. In particular, in absence of further laborious organism-specific data, it is 200 

impossible to determine whether significant changes in the level of the butyrate curves are due to 201 

F. prausnitzii producing more butyrate at the cellular level in the coculture, or whether the 202 

increase is due to an increase in F. prausnitzii total biomass, enabled by coculture conditions, or 203 

both.  Under these circumstances, COMETS-predicted biomass estimates for each species from 204 
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coculture simulations (Fig. 6B) enabled hybrid computational-experimental estimates of 205 

biomass-normalized butyrate (Fig. 6A) and acetate (Fig. S2) production curves.    206 

 Trends of significance in Tables 5 and 6 for the normalized curves are similar to those 207 

for the unnormalized curves, with several exceptions.  The average rate of both SCFAs are 208 

significantly affected by mono vs. coculture conditions in the normalized curves.  These results 209 

imply that B. thetaiotaomicron stimulates butyrate production in F. prausnitzii on a per cell basis 210 

rather than by stimulating F. prausnitzii biomass production.  B. thetaiotaomicron biomass-211 

normalized acetate production curves are not significantly changed in average rate by initial 212 

glucose/acetate levels, in contrast to the non-normalized curves. As a note of caution, it is 213 

important to stress that the normalization relative to untested predicted abundances of individual 214 

species in co-culture should be considered putative. At the same time, it could be viewed as a 215 

valuable strategy for integrating experimental and computational data towards the formulation of 216 

new hypotheses. 217 

 218 

The multiplicity of fermentation states with optimal efficiency influences SCFA time-course 219 

predictability 220 

  Figure 3 shows that COMETS accurately recapitulates the early stages of 221 

accumulation of extracellular butyrate.  After 5 hours of growth, however, the picture becomes 222 

more complex.  Simulation results at these times suggest that the regulation of butyrate and 223 

lactate pathways may play a major role in the final outcome of the secreted butyrate.  To 224 

understand these results, the butyrate fermentation process in F. prausnitzii was revisited with 225 

additional computational analyses, specifically focused on alternative fermentation pathways.  226 

Three competing fermentation pathways exist in the curated metabolic network of F. prausnitzii.  227 

Pyruvate is fermented to one of the three products (27): (i) lactate, by D-lactate dehydrogenase 228 
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(reaction ID: LDHD), (ii) formate, by pyruvate-formate lyase (reaction ID: PFL) or (iii) butyrate, 229 

by butyryl-CoA:acetate CoA-transferase (reaction ID: BTCOAACCOAT).  Butyryl-CoA in turn 230 

is produced from acetyl-CoA (reaction ID: BTCOADH) and acetyl-CoA is converted from 231 

pyruvate by pyruvate:ferredoxin oxidoreductase (reaction ID: POR4i). The balance of metabolic 232 

flow through these three closely coupled fermentation pathways can significantly impact the 233 

production of butyrate in F. prausnitzii, depending on environmental conditions.  234 

As shown in Figs. 3 and S4, and described in the methods section, COMETS, in its 235 

standard formulation, switches among these competing pathways. In particular, Figure S3 shows 236 

that F. prausnitzii switches from predominantly butyrate production activity at time zero to 237 

lactate secretion after 5 hours. This switch coincides with the transition from a single solution 238 

point of the FBA optimization at the early stages of the growth, to conditions where the FBA 239 

optimization algorithm has the freedom of choosing between a multitude of flux solution points, 240 

all corresponding to the same biomass growth rate. This multiplicity of equivalently efficient 241 

steady states (multiple alternative optima, also described in (37)) is best highlighted by 242 

systematically imposing, at each time point, additional features in the dFBA solution process. In 243 

particular, in analogy with flux variability analysis (38), we re-run the COMETS simulations by 244 

adding a secondary objective function at each time point.  After maximizing for growth, the 245 

algorithm fixes the growth rate to the identified maximum, and subsequently searches for the 246 

solution that maximizes or minimizes the secretion flux of one of the organic acids, such as 247 

butyrate. Correspondingly, the butyrate secretion flux can be represented in the form of two 248 

curves of butyrate concentration extremes (Fig. 3). Notably, in most of the cases, the 249 

experimentally measured butyrate concentrations occupy a place between these two extremes. 250 

Nutrient limitations seem to be a strong determinant of this multiplicity of alternative optima. 251 
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The system is particularly sensitive to phosphate concentration, as shown in Figs. 4 and S4, and 252 

is probably due to the strong coupling to phosphate in all butyrate producing pathways. These 253 

simulation results therefore suggest that regulation of the fermentation pathways in F. prausnitzii 254 

influence butyrate production under different environmental conditions.   255 

 The simulated acetate production shown in Fig. 5 tracks experimental time courses for 256 

both  B. thetaiotaomicron and F. prausnitzii monoculture, particularly in the medium and high 257 

inital acetate/glucose conditions.  Simulated time courses fall within error bars for average 258 

experimental observations for all time points on the curves. The early stages of the coculture 259 

simulations also closely track experiments.  After 5 simulated hours, however, opposite trends in 260 

acetate concentrations appear to mirror the discrepancies with experiment in the butyrate 261 

simulations. While the experiments show depletion, the simulations result in buildup of acetate 262 

in the late stages of the simulations. This inconsistency is also potentially explainable by a 263 

metabolic switch in F. prausnitzii, resulting in less acetate consumption to produce butyrate.  264 

 265 

Discussion 266 

 We analyzed experimentally and computationally the possible effects of a symbiotic 267 

partner (B. thetaiotaomicron) and of environmental conditions (amount of glucose and acetate) 268 

on the biomass of the gut bacterium F.prausnitzii, as well as its capacity to produce butyrate. In 269 

monoculture, F. prausnitzii seems to continue producing butyrate even after the cells reach 270 

stationary phase (at around 10 hours), suggesting that maintenance processes keep fueling the 271 

butyrate production pathways. Another feature of the monoculture is the relatively low 272 

sensitivity of biomass and butyrate production to glucose and acetate concentrations. In contrast, 273 

biomass and butyrate seem to more strongly depend on the environment in the presence of B. 274 
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thetaiotaomicron in the coculture experiments (Figure 3), although this difference is not 275 

statistically significant, based on ANOVA.  276 

 The possibility of metabolic cross-feeding between F. prausnitzii and B. 277 

thetaiotaomicron has been suggested in previous studies (24). In some of these studies, acetate 278 

production by B. thetaiotaomicron is proposed to mediate the interaction between the two 279 

bacteria, facilitating an increased butyrate production by F. prausnitzii. While it is likely that 280 

indeed acetate plays a key role in the interaction between the two bacteria, the results of our 281 

study suggest a more complex mode of interaction: First, the statistically significant increase in 282 

butyrate production we observe in coculture does not seem to increase monotonically with the 283 

amount of glucose and acetate, suggesting that either the two carbon sources are saturated (24), 284 

or that acetate exchange is not the only factor dominating butyrate production.  Second, as 285 

demonstrated by our COMETS dFBA simulations, the stoichiometry of F. prausnitzii suggests 286 

that multiple alternative growth optima are possible (depending on whether or not other nutrients 287 

– most notably phosphate – are limiting in the medium). These different optima can differ 288 

substantially in their combination of fermentation products, thus making the stoichiometry-based 289 

prediction of a specific rate of butyrate production impossible. Instead, only a range of 290 

production rates can be predicted at any given time. This hypothesized degree of freedom in 291 

fermentative pathways could in principle be used by F. prausnitzii to modulate its metabolic 292 

activity and its butyrate production rate in response to external signals. Future studies using 293 

dFBA for studying F. prausnitzii could use additional constraints (e.g. total flux capacity (38) or 294 
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regulatory information (38)) to refine the predictions, and to systematically test the effect of 295 

different nutrient limitations and growth media on butyrate production. 296 

 In this work, COMETS predictions were also used to estimate relative biomass amount 297 

of the two species in coculture, in the absence of experimental observations.  Although the 298 

accuracy of the COMETS relative biomass estimates were not confirmed using experimental 299 

data, its ability to predict the total biomass in coculture using parameters learned from 300 

monoculture conditions lends credence to these estimates.  Follow-up experiments to fully vet 301 

model accuracy in determining relative biomass in consortia would be invaluable towards 302 

building confidence in hybrid computational-experimental approaches like the one demonstrated 303 

here.  304 

  305 

Methods and Materials 306 

COMETS Simulation Configuration  The metabolic network models we use in this work for 307 

Bacteroides thetaiotaomicron strain VPI-5482 and Faecalibacterium prausnitzii strain A2-165 308 

were published and made publicly available by Heinken et al. in (26) and (27). The COMETS 309 

simulation framework is implemented in Java and described in (33). R and Matlab scripts 310 

transform COMETS outputs to time-course plots. The 3D volume in these simulations contains 5 311 

mL of isotropic medium and biomass.  COMETS’ ability to model spatial differences in 312 

microbial systems is not explored in these preliminary simulations. Similarly, the dFBA settings, 313 

other than the ones mentioned below, were set at their default values as implemented in 314 

COMETS. The FBA parsimonious optimization was performed using the GUROBI optimizer, 315 

with a primary maximization of the biomass growth rate and a secondary minimization of the 316 

absolute values sum of the metabolic fluxes. The butyrate secretion analysis also included 317 
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additional maximization and/or minimization of butyrate, lactate and formate uptake. Simulation 318 

run time was 24 hours, with each time step set to 0.01 hour.  The death rate was set to zero.  319 

 The uptake of nutrients was modeled as a saturation Michaelis-Menten curve with two 320 

adjustable parameters, maximum uptake flux, Vmax, and the Michaelis constant KM.  Our choice 321 

of parameters for the uptake curve was guided by values provided in the original publications of 322 

the models and as reported in the literature (39, 40). The glucose uptake in F. prausnitzii, for 323 

example, is governed by PTS transporter (27) with reported KM values up to 8.7 mM (34). These 324 

starting values for the uptake parameters where additionally fine-tuned by fitting the single-325 

species simulations results for the OD to the corresponding experimental curves. Error! 326 

Reference source not found. shows the fitting procedure for B. thetaiotaomicron and F. 327 

prausnitzii respectively. In the case of B. thetaiotaomicron a single value for the maximum 328 

uptake parameter was sufficient to fit the growth curves. The accepted value minimized the 329 

composite reduced chi-squared for all three growth conditions. In the case of F. prausnitzii, we 330 

used two values for the maximum uptake. Starting with the value for KM we fitted the glucose 331 

and acetate uptake, and then performed a fine tuning for the rest of the metabolites/nutrients. 332 

Parameter values are shown in Table 6. 333 

 Metabolic activity in the F. prausnitzii model showed a nutrient concentration 334 

dependent shift, most sensitive to phosphate depletion, from butyrate producing pathway, to a 335 

lactate producing one, shown in Fig. S3. This shift is characterized by a single solution point of 336 

the FBA optimization sequence, both for minimized and maximized butyrate secretion, at high 337 

values of phosphate concentration, shown in Fig. S4, corresponding to the initial time in the 338 

dFBA simulation.  As the substrate is depleted of the nutrients, the system obtains multiple 339 

optimal solution points, with the difference in the butyrate production depending on the 340 
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secondary optimization of butyrate secretion (Fig. S4) providing a range of possible butyrate 341 

secretion rates at the later stages of the dFBA simulations. The complete set of input as well as 342 

simulations output files can be found in the supplement. COMETS is available to download at 343 

comets.bu.edu.      344 

 345 

ANOVA Methodology  Box’s method (36) for describing and quantifying differences in growth 346 

curves was implemented as follows. The average rate/level statistic is computed as the average 347 

of the measurements from the first time point concentration measurement subtracted from the 348 

average of the measurements from the last divided by the total time.  The rate of butyrate 349 

production for each time bin was computed similarly and the average rate was subtracted from 350 

these for the set of rate deviations that define the shape statistic.   351 

 We use the Bonferonni corrected significance level of 0.0042 in this study with twelve 352 

comparisons (six per metabolite) to conservatively approximate the 0.05 significance level in 353 

single comparisons. The small number of replicates in our study (3 replicates), results in 354 

relatively low power for ANOVA tests.  Insignificant results in our ANOVA analysis may 355 

therefore derive from low power, randomness or some combination of the two (41) for both the 356 

shape and level ANOVA results. Additionally, violations of homogeneous measurement 357 

covariance matrices and/or normally distributed prediction errors with zero mean could also 358 

result in pessimistically biased significance estimates.  In particular, violation of homogeneous 359 

covariance matrices may negatively bias shape ANOVA results (42).  ANOVA results for level 360 

have been shown to be robust to violations of this assumption (43).  361 

 We did not test our data for violations of these two conditions because tests for normality 362 

and equal variance are themselves inconclusive with small sample sizes.  Given that violations of 363 
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homogeneous measurement covariance matrices can negatively bias significance results in shape 364 

ANOVA, the insignificant results in this study should be probed further with larger sample sizes.  365 

Because level ANOVA results have been shown to be robust to violations of homogeneous 366 

measurement covariance matrices (43), we are confident in the finding of significant differences 367 

between monoculture and coculture metabolite production curves in level/average rate. As is 368 

always the case, however, follow-up studies with larger sample sizes would be advised to both 369 

test reproducibility and lend more power to ANOVA results.  370 

 371 
In Vitro Experimental Configuration/OD600 Analysis  Bacteria were cultured in Yeast 372 

Casitone (YC) medium, with three different concentrations of supplemented acetic acid/glucose. 373 

“Low” condition: 5.551mM acetic acid,  .1%  glucose.  “Medium” condition: 27.754mM acetic 374 

acid, .5% glucose.  “High” condition: 55.507mM acetic acid,  1%  glucose.  All media were 375 

adjusted to pH 6.8 before autoclaving. 376 

 Bacterial cultures were started in anaerobic conditions from glycerol stocks stored at -377 

80°C in 3mL of “Medium” YC medium.  After overnight culture, OD600 was measured, and the 378 

cultures were diluted to the nominal OD starting points in 5mL of the three different YC 379 

formulations. 380 

The following cultures were started with the initial OD600 values as noted: 381 

OD600 ~.02 B. thetaiotamicron monoculture 382 

OD600 ~.08 F. prausnitzii monoculture 383 

OD600 ~.02 B. thetaiotamicron AND OD600 ~.08 F. prausnitzii coculture 384 

 A baseline 200µL aliquot was taken from each culture, measured by OD600, and stored 385 

at -80 for later MS analysis.  Subsequent 200µL aliquots were collected and measured by OD600 386 
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at 2, 4, 6, 8, 10 and 24 hours and stored for later analysis. The above procedure was repeated in 387 

triplicate, yielding three observations per time point. 388 

 389 

MSMS Analysis   A flow injection analysis electrospray ionization mass spectrometry (FIA ESI 390 

MSMS) method was used for quantitative detection of short chain fatty acids (SCFA). Acetic, 391 

propionic, butyric and succinic acid were derivatized with 3-nitrophenylhydrazine in the 392 

presence of N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide and pyridine and detected by a 393 

mass spectrometer as a 3-nitrophenylhydrozones in MRM (multiple reaction monitoring) MSMS 394 

mode, as described by J. Han et al. (44).  To increase precision and robustness of the method, 3-395 

methylbutyric-2-2-d2 acid , acetic acid-2-13C and propionic acid -1-13C  were used as an 396 

internal standards. Quantitation was done by external standards calibration, where instrument 397 

response for the analyte was measured as a ratio between analyte’s and internal standard’s peak 398 

areas. The FIA technique did not utilize LC column but rather a direct injection of the sample 399 

into an ESI probe of the mass spectrometer and this decreased time of analysis per sample to two 400 

minutes. The FIA ESI MSMS for the detection of SCFA is sensitive with the limit of detection 401 

for acetic, propionic, butyric and succinic acids at 4, 3, 0.6 and 1.4µM respectively. The 402 

accuracy of the method was between 98-102%. 403 

 404 

Reagents   LC MS grade acetonitrile and water were purchased from VWR (Radnor, PA, USA). 405 

N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide HCl, 3-nitrophenylhydrazine HCl, pyridine, 406 

acetic acid, propionic acid, butyric acid, succinic acid, acetic acid 13C, and propionic acid 13C 407 

were purchased from Sigma-Aldrich (St Luis, MO, USA). 3-methylbutyric-2-2-d2 acid was 408 

purchased from CDN Isotopes (Quebec, CN). 409 
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 410 

FIA MS/MS system  An Agilent infinity capillary LC pump  with micro-autosampler and 411 

thermostat ( Agilent Technologies, Santa Clara, CA, USA) coupled to AB Sciex 4000 Q-TRAP  412 

triple- quadrupole mass spectrometer ( AB Sciex, Concord, Ontario, CN) was used for the 413 

analysis. The flow solvent - five percent water and ninety five percent acetonitrile was delivered 414 

to a mass spectrometer ESI probe at the rate of 350µL/min. Samples for flow injection analysis 415 

were derivatized on the Agilent polypropylene 96 well plate and injected into mass spectrometer 416 

with injection volume of 40µL.  Following conditions for the AB Sciex Q-TRAP 4000 were used 417 

for analysis: source temperature 400°C, source gas 40L/min, curtain gas 10L/min, ESI capillary 418 

voltage was set at –4500 volts. Data were acquired in negative polarity multiple reactions 419 

monitoring (MRM) mode for the MRM transitions specified in the Table S1.  420 

 421 

Data Availability 422 

Data files and scripts used to generate the figures presented in this paper can be found in a zipped 423 

directory (Yu_etal_Data_and_Scripts.zip) downloadable at https://github.com/segrelab/Fprau-424 

Btheta-2018. This directory contains the experimental data and script for statistical analysis and 425 

for generating the figures (DATA_AND_FIGURE_SCRIPTS subdirectory), and COMETS input 426 

and output files (SIMULATIONS_INPUTS_AND_OUTPUTS subditrectory). The in silico 427 

experiments were generated using COMETS v.2.5.8, which is freely available at 428 

http://comets.bu.edu. 429 

 430 
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 565 

Tables: 566 

 567 

 Low Medium High 

Coculture 0.110 0.071 0.049 

B. thetaiotaomicron 0.034 0.065 0.112 

F. prausnitzii 0.064 0.094 0.043 
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 568 

Table 1. Table of RMSE between the values in Fig. 1 measured experimentally and predicted by 569 

simulations, for monocultures and coculture in three carbon source conditions as described in the 570 

text.  571 

 572 
 573 
 Acetate Butyrate 
Source Sum Sq. d.f. Mean 

Sq.    
F Prob>F Sum Sq. d.f. Mean Sq.    F Prob>F 

initial glc/ac 21.14 2 10.571 0.47 0.6277 1.3206 2 0.66032 0.69 0.5015 
mono/co 115.13 1 115.131 5.1 0.0261 0.11956 1 0.11945 0.13 0.7237 
initialglc/ac*mono/co 76.86 2 38.43 1.7 0.1877 0.275 2 0.13751 0.14 0.8655 
Error 2304.56 102 22.594   96.9437 102 0.95043   
Total 2517.69 107    98.6588 107    

 574 
Table 2. Analysis of Variance of Shape of Metabolite Curves.  575 

 576 
 577 
 Acetate Butyrate 
Source Sum Sq. d.f. Mean 

Sq.    
F Prob>F Sum Sq. d.f

. 
Mean Sq.    F Prob>

F 
initial glc/ac 20.8263 1 20.8263 17.66 0.0012 0.17635 1 0.17635 4.29 0.0606 
mono/co 1.6629 2 0.8315 0.7 0.5135 2.09982 2 1.04991 25.53 0 
initialglc/ac*mono/co 13.2214 2 6.6107 5.61 0.0191 0.41137 2 0.20568 5 0.0263 
Error 14.1527 12 1.1794   0.49346 12 0.04112   
Total 49.8634 17    3.181 17    

 578 
Table 3. Analysis of Variance of Average Rate of Metabolite Curves. 579 

 580 

 581 
 Acetate Butyrate 
Source Sum Sq. d.f. Mean Sq.    F Prob>F Sum Sq. d.f. Mean 

Sq.    
F Prob>F 

initial glc/ac 1.81E+07 2 9.06E+06 0.08 0.9272 2745098 2 1372549 0.46 0.6328 
mono/co 4.80E+06 1 4.80E+06 0.04 0.8417 25019.6 1 25019.6 0.01 0.9272 
initialglc/ac*mono/co 9.61E+06 2 4.81E+06 0.04 0.9606 953798 2 476899 0.16 0.8526 
Error 1.22E+10 102 1.20E+08   3E+08 102 2985539   
Total 1.23E+10 107    3.1E+08 102    

 582 
Table 4. Analysis of Variance of Average Rate of Metabolite Curves. 583 

 584 
 Acetate Butyrate 
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Source Sum Sq. d.f
. 

Mean Sq.    F Prob>
F 

Sum Sq. d.f. Mean 
Sq.    

F Prob>F 

initial glc/ac 162363.1 1 162363.1 1.57 0.234 11506.9 1 11506.9 0.2 0.6612 
mono/co 3919429.3 2 1959714.6 18.96 0.0002 1156514 2 578257 10.15 0.0026 
initialglc/ac*mono/co 2590821 2 1295410.5 12.53 0.0012 517152 2 258576 5.54 0.0341 
Error 12640529.9 12 103377.5   683892 12 56991   
Total 7913143.3 17    2369065 17    

 585 
Table 5. Analysis of Variance of Average Rate of Biomass-Normalized Metabolite Curves. 586 

 587 

Species Vmax[mmol/hg] Glc./Ac.Vmax[mmol/hg] Km 

[mM] 

Glc./Ac. Km 

[mM] 

B.thetaiotaomicoron 11 11 3 3 

F. prausnitzii 23 10 10 5 

 588 

Table 6. Parameters of the Michaelis-Menten uptake functions. Glucose and acetate uptake 589 

parameters were obtained independently from the rest of the nutrients for the model of F. 590 

prausnitzii. 591 

 592 

Supplemental table legend: 593 

Table S1. AB Sciex 4000-TRAP parameters used for detection of SCFA Q1 – m/z of the analyte 594 

ion detected on the 1rst quadrupole.Q3 – m/z of the anatyte’s fragment ion detected on the third 595 

quadrupole. DP- declustering potential, CE – collision energy. Analytes in red are internal 596 

standards. 597 

 598 

Figure legends: 599 

Figure 1. Optical densities for single species and coculture of F. prausnitzii and B. 600 

thetaiotaomicron, grown in three different media conditions. The simulations (solid curves) were 601 
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obtained by dFBA with the same set of uptake parameters for all media conditions. The columns 602 

correspond to the media conditions while the rows correspond to the cultured species.  603 

 604 

Figure 2. The sensitivity of the OD curves to the values of the maximum nutrient uptake 605 

parameter 𝑉"#$ . The values of the 𝑉"#$  parameter used in the simulations were obtained by 606 

minimizing c2,the sum of the squared deviations of the simulation from the experimental values, 607 

weighted by the measured variance. We used a single value of  𝑉"#$  for the uptake of all 608 

nutrients by the B. thetaiotaomicron model, with the minimum of minimizing c2, shown in panel 609 

A). In the case of F. prausnitzii, we determined two separate values of minimizing c2, one for 610 

glucose and acetate uptake shown on panel B), and another one for the rest of the nutrients, 611 

shown on panel C).   612 

   613 

Figure 3. Experimental and simulated (solid, dot and dash curves) butyrate production 614 

time courses for monocultures and coculture under the three initial glucose/acetate initial 615 

concentrations.  Apparent differences demonstrated in these plots in butyrate production for F. 616 

prausnitzii monoculture vs. coculture and for the three initial concentrations can be tested 617 

statistically using ANOVA on summary statistics describing the curves. The simulated curves 618 

correspond to the maximized (solid curve) and minimized (dash dot curve) butyrate secretion. 619 

 620 

Figure 4. Simulated butyrate production for three starting abundances of phosphate for 621 

the low initial acetate/glucose concentration. Lowering of the phosphate concentration leads to 622 

multiple FBA solutions and difference between secondary minimization and maximization of 623 

butyrate secretion.    624 
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 625 

Figure 5. Experimental and simulated (solid curves) acetate production time courses for 626 

monocultures and coculture under the three initial glucose/acetate initial concentrations.  627 

Apparent differences demonstrated in these plots in butyrate production for F. prausnitzii 628 

monoculture vs. coculture and for the three initial concentrations can be tested statistically using 629 

ANOVA on summary statistics describing the curves. 630 

 631 

Figure 6. A) Butyrate concentration time profile, normalized by the simulated F. 632 

prausnitzii biomass, for coculture and monoculture. B) Simulated species composition. 633 

 634 

Supplemental figure legends: 635 

 Figure S1. Simulated glucose concentration.  636 

 Figure S2. Biomass normalized acetate concentration.  637 

 Figure S3. Simulated fluxes of key reactions in the butyrate fermentation pathway in F. 638 

prausnitzii, for high glucose concentration, at time zero and 5 hours.  639 

 Figure S4. Simulated butyrate secretion fluxes in F. prausnitzii, under secondary 640 

maximization/minimization of butyrate or lactate production, as a function of phosphate 641 

concentration, in low glucose conditions.  642 

 643 

 644 

 645 

 646 
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Figure 1. Optical densities for single species and coculture of F. prausnitzii

and B. thetaiotaomicron, grown in three different media conditions. The

simulations (solid curves) were obtained by dFBA with the same set of

uptake parameters for all media conditions. The columns correspond to the

media conditions while the rows correspond to the cultured species.
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Figure 2. The sensitivity of the OD curves to the values of the maximum nutrient uptake parameter ����. The values of the ���� parameter used in the 

simulations were obtained by minimizing c2,the sum of the squared deviations of the simulation from the experimental values, weighted by the 

measured variance. We used a single value of  ���� for the uptake of all nutrients by the B. thetaiotaomicron model, with the minimum of minimizing 

c2, shown in panel A). In the case of F. prausnitzii, we determined two separate values of minimizing c2, one for glucose and acetate uptake shown on 

panel B), and another one for the rest of the nutrients, shown on panel C). 
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Figure 3. Experimental and simulated (solid, dot and dash curves) butyrate

production time courses for monocultures and coculture under the three initial

glucose/acetate initial concentrations. Apparent differences demonstrated in these

plots in butyrate production for F. prausnitzii monoculture vs. coculture and for

the three initial concentrations can be tested statistically using ANOVA on

summary statistics describing the curves. The simulated curves correspond to the

maximized (solid curve) and minimized (dash dot curve) butyrate secretion.
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Figure 4. Simulated butyrate production for three starting abundances of phosphate

for the low initial acetate/glucose concentration. Lowering of the phosphate

concentration leads to multiple FBA solutions and difference between secondary

minimization and maximization of butyrate secretion.
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Figure 5. Experimental and simulated (solid curves) acetate production time courses for monocultures and coculture

under the three initial glucose/acetate initial concentrations. Apparent differences demonstrated in these plots in

butyrate production for F. prausnitzii monoculture vs. coculture and for the three initial concentrations can be tested

statistically using ANOVA on summary statistics describing the curves.
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A

B

Figure 6. A) Butyrate concentration time profile, normalized by the simulated F. prausnitzii biomass, for coculture and monoculture. 

B) Simulated species composition.
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