23,193 research outputs found

    Two Variable Logic with Ultimately Periodic Counting

    Get PDF
    We consider the extension of FO² with quantifiers that state that the number of elements where a formula holds should belong to a given ultimately periodic set. We show that both satisfiability and finite satisfiability of the logic are decidable. We also show that the spectrum of any sentence is definable in Presburger arithmetic. In the process we present several refinements to the "biregular graph method". In this method, decidability issues concerning two-variable logics are reduced to questions about Presburger definability of integer vectors associated with partitioned graphs, where nodes in a partition satisfy certain constraints on their in- and out-degrees

    Constraint LTL Satisfiability Checking without Automata

    Get PDF
    This paper introduces a novel technique to decide the satisfiability of formulae written in the language of Linear Temporal Logic with Both future and past operators and atomic formulae belonging to constraint system D (CLTLB(D) for short). The technique is based on the concept of bounded satisfiability, and hinges on an encoding of CLTLB(D) formulae into QF-EUD, the theory of quantifier-free equality and uninterpreted functions combined with D. Similarly to standard LTL, where bounded model-checking and SAT-solvers can be used as an alternative to automata-theoretic approaches to model-checking, our approach allows users to solve the satisfiability problem for CLTLB(D) formulae through SMT-solving techniques, rather than by checking the emptiness of the language of a suitable automaton A_{\phi}. The technique is effective, and it has been implemented in our Zot formal verification tool.Comment: 39 page

    Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy

    Full text link
    It is shown that for any fixed i>0i>0, the Σi+1\Sigma_{i+1}-fragment of Presburger arithmetic, i.e., its restriction to i+1i+1 quantifier alternations beginning with an existential quantifier, is complete for ΣiEXP\mathsf{\Sigma}^{\mathsf{EXP}}_{i}, the ii-th level of the weak EXP hierarchy, an analogue to the polynomial-time hierarchy residing between NEXP\mathsf{NEXP} and EXPSPACE\mathsf{EXPSPACE}. This result completes the computational complexity landscape for Presburger arithmetic, a line of research which dates back to the seminal work by Fischer & Rabin in 1974. Moreover, we apply some of the techniques developed in the proof of the lower bound in order to establish bounds on sets of naturals definable in the Σ1\Sigma_1-fragment of Presburger arithmetic: given a Σ1\Sigma_1-formula Φ(x)\Phi(x), it is shown that the set of non-negative solutions is an ultimately periodic set whose period is at most doubly-exponential and that this bound is tight.Comment: 10 pages, 2 figure

    Undecidability of a weak version of MSO+U

    Get PDF
    We prove the undecidability of MSO on ω-words extended with the second-order predicate U1(X) which says that the distance between consecutive positions in a set X⊆N is unbounded. This is achieved by showing that adding U1 to MSO gives a logic with the same expressive power as MSO+U, a logic on ω-words with undecidable satisfiability. As a corollary, we prove that MSO on ω-words becomes undecidable if allowing to quantify over sets of positions that are ultimately periodic, i.e., sets X such that for some positive integer p, ultimately either both or none of positions x and x+p belong to X

    Energy-Efficient Algorithms

    Full text link
    We initiate the systematic study of the energy complexity of algorithms (in addition to time and space complexity) based on Landauer's Principle in physics, which gives a lower bound on the amount of energy a system must dissipate if it destroys information. We propose energy-aware variations of three standard models of computation: circuit RAM, word RAM, and transdichotomous RAM. On top of these models, we build familiar high-level primitives such as control logic, memory allocation, and garbage collection with zero energy complexity and only constant-factor overheads in space and time complexity, enabling simple expression of energy-efficient algorithms. We analyze several classic algorithms in our models and develop low-energy variations: comparison sort, insertion sort, counting sort, breadth-first search, Bellman-Ford, Floyd-Warshall, matrix all-pairs shortest paths, AVL trees, binary heaps, and dynamic arrays. We explore the time/space/energy trade-off and develop several general techniques for analyzing algorithms and reducing their energy complexity. These results lay a theoretical foundation for a new field of semi-reversible computing and provide a new framework for the investigation of algorithms.Comment: 40 pages, 8 pdf figures, full version of work published in ITCS 201
    • …
    corecore