
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano
Accepted Manuscript

Constraint LTL Satisfiability Checking without Automata

Marcello M. Bersani, Achille Frigeri, Angelo Morzenti,
Matteo Pradella, Matteo Rossi, Pierluigi San Pietro

PII: S1570-8683(14)00061-5
DOI: 10.1016/j.jal.2014.07.005
Reference: JAL 339

To appear in: Journal of Applied Logic

Received date: 30 December 2013
Accepted date: 20 July 2014

Please cite this article in press as: M.M. Bersani et al., Constraint LTL Satisfiability Checking
without Automata, Journal of Applied Logic (2014), http://dx.doi.org/10.1016/j.jal.2014.07.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://core.ac.uk/display/55250432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jal.2014.07.005

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Language of constraints . 5

2.2 Syntax of CLTLB . 5

2.3 Semantics . 6

2.4 CLTLB with automata . 7

2.4.1 Completion property . 9

3 Satisfiability of CLTLB(D) without automata 11
3.1 Bounded Satisfiability Problem . 11

3.2 Avoiding explicit symbolic valuations 12

3.3 An encoding for BSP without automata 13

3.4 Correctness of the BSP encoding . 16

4 Bounded Satisfiability of CLTLB(IPC∗) 22
4.1 Simplifying the condition of existence of arithmetical models 33

5 Complexity and Completeness 35

6 Applications of k-bounded satisfiability 39

7 Related works 40

8 Conclusions and further developments 42

1

Constraint LTL Satisfiability Checking without Automata

Marcello M. Bersani, Achille Frigeri, Angelo Morzenti, Matteo Pradella,

Matteo Rossi, Pierluigi San Pietro

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy

Abstract

This paper introduces a novel technique to decide the satisfiability of formulae writ-

ten in the language of Linear Temporal Logic with both future and past operators and

atomic formulae belonging to constraint system D (CLTLB(D) for short). The tech-

nique is based on the concept of bounded satisfiability, and hinges on an encoding

of CLTLB(D) formulae into QF-EUD, the theory of quantifier-free equality and un-

interpreted functions combined with D. Similarly to standard LTL, where bounded

model-checking and SAT-solvers can be used as an alternative to automata-theoretic ap-

proaches to model-checking, our approach allows users to solve the satisfiability prob-

lem for CLTLB(D) formulae through SMT-solving techniques, rather than by checking

the emptiness of the language of a suitable automaton. The technique is effective, and

it has been implemented in our Zot formal verification tool.

Keywords: Satisfiability, Constraint LTL, Bounded Satitisfiability Checking

1. Introduction

Finite-state system verification has attained great successes, both using automata-

based and logic-based techniques. Examples of the former are the so-called explicit-

state model checkers [1] and symbolic model checkers [2]. However, some of the

best results in practice have been obtained by logic-based techniques, such as Bounded

Model Checking (BMC) [3]. In BMC, a finite-state machine A (typically, a version of

Büchi automata) and a desired property P expressed in Propositional Linear Temporal

Logic (PLTL) are translated into a Boolean formula φ to be fed to a SAT solver. The

translation is made finite by bounding the number of time instants. However, infinite

behaviors, which are crucial in proving, e.g., liveness properties, are also considered

by using the well-known property that a Büchi automaton accepts an infinite behavior

if, and only if, it accepts an infinite periodic behavior. Hence, chosen a bound k > 0,

a Boolean formula φk is built, such that φk is satisfiable if and only if there exists

an infinite periodic behavior of the form αβω , with |αβ| ≤ k, that is compatible with

system A while violating property P . This procedure allows counterexample detection,

�This research was partially supported by Programme IDEAS-ERC, Projects 227977-SMScom and PRIN

2010LYA9RH-006.

Preprint submitted to Elsevier July 24, 2014

but it is not complete, since the violations of property P requiring “longer” behaviors,

i.e., of the form αβω with |αβ| > k, are not detected. However, in many practical

cases it is possible to find bounds large enough for representing counterexamples, but

small enough so that the SAT solver can actually find them in a reasonable time.

Clearly, the BMC procedure can be used to check satisfiability of a PLTL formula,

without considering a finite state system A. This has practical applications, since a

PLTL formula can represent both the system and the property to be checked (see, e.g.,

[4], where the translation into Boolean formulae is made more specific for dealing with

satisfiability checking and metric temporal operators). We call this case Bounded Satis-
fiability Checking (BSC), which consists in solving a so-called Bounded Satisfiability

Problem: Given a PLTL formula P , and chosen a bound k > 0, define a Boolean

formula φk such that φk is satisfiable if, and only if, there exists an infinite periodic

behavior of the form αβω , with |αβ| ≤ k, that satisfies P .

More recently, great attention has been devoted to the automated verification of

infinite-state systems. In particular, many extensions of temporal logic and automata

have been proposed, typically by adding integer variables and arithmetic constraints.

For instance, PLTL has been extended to allow formulae with various kinds of arith-

metic constraints [5, 6]. This has led to the study of CLTL(D), a general framework ex-

tending the future-only fragment of PLTL by allowing arithmetic constraints belonging

to a generic constraint system D. The resulting logics are expressive and well-suited to

define infinite-state systems and their properties, but, even for the bounded case, their

satisfiability is typically undecidable [7], since they can simulate general two-counter

machines when D is powerful enough (e.g., Difference Logic).

However, there are some decidability results, which allow in principle for some

kind of automatic verification. Most notably, satisfiability of CLTL(D) is decidable (in

PSPACE) when D is the class of Integer Periodic Constraints (IPC∗) [8], or when it

is the structure (D,<,=) with D ∈ {N,Z,Q,R} [9]. In these cases, decidability is

shown by using an automata-based approach similar to the standard case for LTL, by

reducing satisfiability checking to the verification of the emptiness of Büchi automata.

Given a CLTL(D) formula φ, with D as in the above cases, it is possible to define an

automaton Aφ such that φ is satisfiable if, and only if, the language recognized by Aφ

is not empty.

These results, although of great theoretical interest, are of limited practical rele-

vance for what concerns a possible implementation, since the involved constructions

are very inefficient, as they rely on the complementation of Büchi automata.

In this paper, we extend the above results to a more general logic language, called

CLTLB(D), which is an extension of PLTLB (PLTL with Both future and past oper-

ators) with arithmetic constraints in constraint system D, and define a procedure for

satisfiability checking that does not rely on automata constructions.

The idea of the procedure is to determine satisfiability by checking a finite number

of k-satisfiability problems. Informally, k-satisfiability amounts to looking for ulti-

mately periodic symbolic models of the form αβω , i.e., such that prefix αβ of length k
admits a bounded arithmetic model (up to instant k). Although the k-bounded problem

is defined with respect to a bounded arithmetical model, it provides a representation

of infinite symbolic models by means of ultimately periodic words. When CLTLB(D)

has the property that its ultimately periodic symbolic models, of the form αβω , al-

3

ways admit an arithmetic model, then the k-satisfiability problem can be reduced to

satisfiability of QF-EUD (the theory of quantifier-free equality and uninterpreted func-

tions combined with D). In this case, k-satisfiability is equivalent to satisfiability over

infinite models.

There are important examples of constraint systems D, such as for example IPC∗, in

which determining the existence of arithmetical models is achieved by complementing

a Büchi automaton AC . In this paper we define a novel condition, tailored to ultimately

periodic models of the form αβω , which is proved to be equivalent to the one captured

by automaton AC . Thanks to this condition, checking for the existence of arithmetical

models can be done in a bounded way, without resorting to the construction (and the

complementation) of Büchi automata. This is the key result that makes our decision

procedure applicable in practice.

Symmetrically to standard LTL, where bounded model-checking and SAT-solvers

can be used as an alternative to automata-theoretic approaches to model-checking,

reducing satisfiability to k-satisfiability allows us to determine the satisfiability of

CLTLB(D) formulae through Satisfiability Modulo Theories (SMT) solvers, instead

of checking the emptiness of a Büchi automaton. Moreover, when the length of all

prefixes αβ to be tested is bounded by some K ∈ N, then the number of bounded

problems to be solved is finite. Therefore, we also prove that k-satisfiability is com-
plete with respect to the satisfiability problem, i.e., by checking at most K bounded

problems the satisfiability of CLTLB(D) formulae can always be determined.

To the best of our knowledge, our results provide the first effective implementation

of a procedure for solving the CLTLB(D) satisfiability problem: we show that the

encoding into QF-EUD is linear in the size of the formula to be checked and quadratic

in the length k. The procedure is implemented in the Zot toolkit1, which relies on

standard SMT-solvers, such as Z3 [10].

The paper is organized as follows. Section 2 describes CLTL(D) and CLTLB(D),

and their main known decidability results and techniques. Section 3 defines the k-

satisfiability problem, introduces the bounded encoding of CLTLB(D) formulae, and

shows its correctness. Section 4 introduces a novel, bounded condition for checking the

satisfiability of CLTLB(D) formulae when D is IPC∗, and discusses some cases under

which the encoding can be simplified. Section 5 studies the complexity of the defined

encoding and proves that, provided that D satisfies suitable conditions, there exists a

completeness threshold. Section 6 illustrates an application of the CLTLB logic and the

Zot toolkit to specify and verify a system behavior. Section 7 describes relevant related

works. Finally, Section 8 concludes the paper highlighting some possible applications

of the implemented decision procedure for CLTLB(D).

2. Preliminaries

This section presents an extension to Kamp’s [11] PLTLB, by allowing formulae

over a constraint system. As suggested in [5], and unlike the approach of [12], the

atomic formulae of this logic are Boolean atoms or atomic arithmetical constraints.

1http://zot.googlecode.com

4

2.1. Language of constraints

Let V be a finite set of variables; a constraint system is a pair D = (D,R) where

D is a specific domain of interpretation for variables and constants and R is a family

of relations on D. An (atomic) D-constraint is a term of the form R(x1, . . . , xn),
where R is an n-ary relation of R on domain D and x1, . . . , xn are variables. A

D-valuation is a mapping v : V → D, i.e., an assignment of a value in D to each

variable. A D-constraint is satisfied by a D-valuation v, written v |=D R(x1, . . . , xn),
if (v(x1), . . . , v(xn)) ∈ R.

In Section 4, we consider D to be (D,<,=), where D ∈ {N,Z,Q,R} and <
is a strict total order on D. When domain D is discrete, we can endow D with the

congruence modulo c over D that allows formulae of the form x ≡c d and x ≡c y+ d,

where c, d ∈ D, to be part of the language of constraints. We call this extension

IPC∗, by borrowing its name from the original definition in [13]. We consider here the

quantifier-free version of the constraint system, which has the same expressive power

of the quantified one [13, Lemma 1]. Given a set of D-constraints C, we write v |=D C
when v |=D γ for every γ ∈ C.

2.2. Syntax of CLTLB

CLTLB(D) is defined as an extension of PLTLB, where atomic formulae are re-

lations from R over arithmetic temporal terms defined in D. The resulting logic is

actually equivalent to the quantifier-free fragment of first-order LTL over signature R.

Let x be a variable over D and c be a constant in D; arithmetic temporal terms (a.t.t.)

are defined as:

α := c | x | Xα | Yα.

In CLTLB(D), a.t.t.’s may appear in atomic D-constraints. The syntax of (well formed)

formulae of CLTLB(D) is recursively defined as follows:

φ := R(α1, . . . , αn) | φ ∧ φ | ¬φ | Xφ | Yφ | φUφ | φSφ

where αi’s are a.t.t.’s, R ∈ R; X, Y, U, and S are the usual “next”, “previous”, “until”,

and “since” operators from LTL.

Note that X and X are two distinct operators. Intuitively, if φ is a formula, Xφ has

the standard PLTL meaning, while Xα denotes the value of a.t.t. α in the next time

instant. The same holds for Y and Y, which refer to the previous time instant. Each

relation symbol is associated with a natural number denoting its arity. As we will see

in Section 3.4, we can treat separately 0-ary relations, i.e., propositional letters, whose

set is denoted by R0. We also write CLTLB(D,R0) to denote the language CLTLB

over the constraint system D whose 0-ary relations are exactly those in R0. CLTL(D)
is the future-only fragment of CLTLB(D).

The depth |α| is defined for a.t.t.’s over variables as the total amount of temporal

shift needed in evaluating α:

|x| = 0, |Xα| = |α|+ 1, |Yα| = |α| − 1.

The depth of a.t.t.’s over constants is 0.

5

Let φ be a CLTLB(D,R0) formula, x a variable of V and Γx(φ) the set of all

a.t.t.’s occurring in φ in which x appears. We define the “look-forwards” �φ�x and

“look-backwards” 	φ
x of φ relatively to x as:

�φ�x = max
αi∈Γx(φ)

{0, |αi|}, 	φ
x = min
αi∈Γx(φ)

{0, |αi|}.

The definitions above naturally extend to V by letting �φ� = maxx∈V {�φ�x}, 	φ
 =
minx∈V {	φ
x}. Hence, �φ� (φ
) is the largest (smallest) depth of all the a.t.t.’s of φ,

representing the length of the future (past) segment needed to evaluate φ in the current

instant.

2.3. Semantics
The semantics of CLTLB(D,R0) formulae is defined with respect to a strict linear

order (Z, <) representing time. Truth values of propositions in R0, and values of

variables belonging to V are defined by a pair (π, σ) where σ : Z × V → D is a

function which defines the value of variables at each position in Z and π : Z → ℘(R0)
is a function associating a subset of the set of propositions with each element of Z.

Function σ is extended to terms as follows:

σ(i, α) =

{
σ(i+ |α|, xα), xα is the variable in V occurring in α

cα cα is the constant in D occurring in α.

By definition of σ(i, α), it is obvious that XYx = YXx = x; hence, we may as-

sume, with no loss of generality, that a.t.t.’s do not contain alternated occurrences of

the operators X and Y. Moreover, for every constant c, Xc = Yc = c.
The semantics of a CLTLB(D,R0) formula φ at instant i ≥ 0 over a linear structure

(π, σ) is recursively defined by means of a satisfaction relation |= as follows, for every

formulae φ, ψ and for every a.t.t. α:

(π, σ), i |= p iff p ∈ π(i) for p ∈ R0

(π, σ), i |= R(α1, . . . , αn) iff (σ(i, α1), . . . , σ(i, αn)) ∈ R for R ∈ R \ R0

(π, σ), i |= ¬φ iff (π, σ), i �|= φ

(π, σ), i |= φ ∧ ψ iff (π, σ), i |= φ and (π, σ), i |= ψ

(π, σ), i |= Xφ iff (π, σ), i+ 1 |= φ

(π, σ), i |= Yφ iff (π, σ), i− 1 |= φ and i > 0

(π, σ), i |= φUψ iff ∃ j ≥ i : (π, σ), j |= ψ and

(π, σ), n |= φ ∀n : i ≤ n < j

(π, σ), i |= φSψ iff ∃ 0 ≤ j ≤ i : (π, σ), j |= ψ and

(π, σ), n |= φ ∀n : j < n ≤ i.

A formula φ ∈ CLTLB(D,R0) is satisfiable if there exists a pair (π, σ) such that

(π, σ), 0 |= φ; in this case, we say that (π, σ) is a model of φ, π is a propositional
model and σ is an arithmetic model. By introducing as primitive the connective ∨,

the dual operators “release” R, “trigger” T and “previous” Z are defined as: φRψ ≡

6

¬(¬φU¬ψ), φTψ ≡ ¬(¬φS¬ψ) and Zφ ≡ ¬Y¬φ; by applying De Morgan’s rules,

we may assume every CLTLB formula to be in positive normal form, i.e., negation may

only occur in front of atomic propositions and relations.

2.4. CLTLB with automata
The satisfiability problem for a CLTLB formula φ consists in determining whether

there exists a model (π, σ) for φ such that (π, σ), 0 |= φ. In this section, we recall

some known results where the propositional part π of (π, σ) is either missing or can

be eliminated (hence, with a slight abuse of notation we will write σ, 0 |= φ instead of

(π, σ), 0 |= φ).

Hereafter, we restrict D to be the structure defined by IPC∗, or by (D,<,=), where

D ∈ {N,Z,Q,R}. For such constraint systems a decision procedure based on Büchi

automata is studied in [9]. The presented notions are essential to develop our decision

procedure without automata construction. We remark that, although for convenience

we admit the use of constants in the syntax of CLTLB formulae, they can be replaced

by variables associated with suitable constraints, as done in [9].

Let φ be a CLTLB(D) formula and terms(φ) be the set of arithmetic terms of the

form Xix for all 0 ≤ i ≤ �φ� and of the form Yix for all 1 ≤ i ≤ −	φ
 and for

all x ∈ V . Let const′(φ) = {m, . . . ,M} be the set of constants occurring in φ,

where m,M ∈ D are the minimum and maximum constants. If domain D is discrete,

we extend const′(φ) to the set const(φ) = [m,M] of all values between m and M ,

following [13]. If domain D is Q or R, then we assume that constants are in D ∩ Q

and we fix const(φ) = const′(φ).

Definition 1. Let A be a set of variables and fresh : terms(φ) → A be an injective

function mapping each a.t.t of φ to a fresh variable in set A. Let C be a set of D-

constraints over terms(φ) and const(φ). Function fresh is naturally extended to (any)

set C, by mapping each a.t.t. α ∈ terms(φ) in C to fresh(α) and each constant to

itself. A set C of D-constraints over terms(φ) and const(φ) is satisfiable if there

exists a D-valuation v : A → D, such that v |=D fresh(C), i.e., the satisfiability of C
over v considers all a.t.t.’s as fresh variables.

Definition 2. Given a valuation v for elements of A, we call Cv the set of all D-

constraints over terms(φ) and const(φ) such that v |=D fresh(Cv). A symbolic
valuation sv for φ is a set of D-constraints over terms(φ) and const(φ) for which

there is a valuation v such that sv = Cv . We indicate by SV (φ) the set of all symbolic

valuations of a formula φ.

The satisfiability of a set of D-constraints, for the constraint systems D considered

in this work, is decidable [9]. Given a symbolic valuation sv and a D-constraint ξ over

a.t.t.’s, we write sv
sym

ξ if for every D-valuation v′ such that v′ |=D fresh(sv) then we

have v′ |=D fresh(ξ). We assume that the problem of checking sv
sym

ξ is decidable.

The satisfaction relation
sym

can also be extended to infinite sequences ρ : N → SV (φ)
(or, equivalently, ρ ∈ SV (φ)ω) of symbolic valuations; it is the same as |= for all

temporal operators except for atomic formulae:

ρ, i
sym

ξ iff ρ(i)
sym

ξ.

7

Then, given a CLTLB(D) formula φ, we say that a symbolic model ρ symbolically
satisfies φ (or ρ is a symbolic model for φ) when ρ, 0

sym

φ.

In the rest of this section, we consider CLTLB(D) formulae that do not include

arithmetic temporal operator Y. This is without loss of generality, as Property 3 will

show.

Definition 3. A pair of symbolic valuations (sv1, sv2) for φ is locally consistent if, for

all R in D, for all ii, . . . , in:

R(Xi1x1, . . . ,X
inxn) ∈ sv1 iff R(Xi1−1x1, . . . ,X

in−1xn) ∈ sv2

with ij ≥ 1 for all j ∈ [1, n]. A sequence of symbolic valuations sv0sv1 . . . is locally
consistent if all pairs (svi, svi+1), i ≥ 0, are locally consistent.

A locally consistent infinite sequence ρ of symbolic valuations admits an arithmetic
model, if there exists a D-valuation sequence σ such that σ, i |= ρ(i), for all i ≥ 0. In

this case, we write σ, 0 |= ρ.

We recall some fundamental results of CLTL(D), which nonetheless hold also for

CLTLB(D).

The following proposition draws a link between the satisfiability by sequences of

symbolic valuations and by sequences of D-valuations.

Proposition 1 ([9]). A CLTL(D) formula φ is satisfiable if, and only if, there exists a
symbolic model for φ which admits an arithmetic model, i.e., there exist ρ and σ such
that ρ, 0

sym

φ and σ, 0 |= ρ.

Following [9], for constraint systems of the form (D,<,=), where < is a strict

total ordering on D, it is possible to represent a symbolic valuation sv by its labeled

directed graph Gsv = (terms(φ) ∪ const(φ), τ), τ ⊆ terms(φ) ∪ const(φ) × {<,=
} × terms(φ) ∪ const(φ), such that (x,∼, y) ∈ τ if, and only if, x ∼ y ∈ sv. This

construction extends also to any locally consistent sequence ρ of symbolic valuations:

It is possible to represent ρ via a graph Gρ, obtained by superimposition of the graphs

corresponding to the symbolic evaluations ρ(i). Formally, Gρ = ((V ∪ const(φ)) ×
N, τρ), where ((x, i),∼, (y, j)) ∈ τρ if, and only if, either i ≤ j and (x ∼ Xj−iy) ∈
ρ(i), or i > j and (Xi−jx ∼ y) ∈ ρ(j).

An infinite path d : N → (V ∪ const(φ)) × N in Gρ, is called a forward (resp.

backward) path if:

1. for all i ∈ N, there is an edge from d(i) to d(i+1) (resp., an edge from d(i+1)
to d(i));

2. for all i ∈ N, if d(i) = (x, j) and d(i+ 1) = (x′, j′), then j ≤ j′.

A forward (resp. backward) path is strict if there exist infinitely many i for which there

is a <-labeled edge from d(i) to d(i + 1) (resp., from d(i + 1) to d(i)). Intuitively,

a (strict) forward path represents a sequence of (strict) monotonic increasing values

whereas a (strict) backward path represents a sequence of (strict) monotonic decreasing

values.

Given a CLTL(D) formula φ, it is possible [9] to define a Büchi automaton Aφ

recognizing the symbolic models of φ, thus reducing the satisfiability of φ to the

8

non-emptiness of Aφ. The idea is that automaton Aφ accepts the intersection of the

following languages, which defines exactly the language of symbolic models of φ:

(1) the language of symbolic models ρ for φ;

(2) the language of sequences of locally consistent symbolic valuations;

(3) the language of sequences of symbolic valuations which admit an arithmetic

model.

Language (1) is accepted by the Vardi-Wolper automaton As of φ [14], while lan-

guage (2) is recognized by the automaton A� = (SV (φ), sv0,−→, SV (φ)), where the

states are SV (φ), all accepting; sv0 is the initial state; and the transition relation is

such that svi
svi−−→ svi+1 if, and only if, all pairs (svi, svi+1) are locally consistent [9].

If the constraint system we are considering has the completion property (defined

next), then all sequences of locally consistent symbolic valuations admit an arithmetic

model, and condition (3) reduces to (2).

2.4.1. Completion property
Each automaton involved in the definition of Aφ has the function of “filtering”

sequences of symbolic valuations so that: 1) they are locally consistent, 2) they satisfy

an LTL property and 3) they admit an arithmetic model. For some constraint systems,

admitting an arithmetic model is just a consequence of local consistency. A constraint

system D has the completion property if, given:

(i) a symbolic valuation sv over a finite set of terms terms(φ) ∪ const(φ),

(ii) a subset A′ ⊆ fresh(terms(φ))

(iii) a valuation v′ over A′ such that v′ |=D fresh(sv ′), where sv ′ is the subset of

constraints in sv which uses only variables in A′

then there exists a valuation v over fresh(terms(φ)) extending v′ such that v |=D
fresh(sv). An example of such a relational structure is (R, <,=).

Let (D,<,=) be a relational structure. We say that D is dense, with respect to

the order <, if for each d, d′ ∈ D such that d < d′, there exists d′′ ∈ D such that

d < d′′ < d′, whereas D is said to be open when for each d ∈ D, there exist two

elements d′, d′′ ∈ D such that d′ < d < d′′.

Lemma 1 (Lemma 5.3, [9]). A relational structure D = (D,<,=), where D is infinite
and < is a total order, satisfies the completion property if, and only if, domain D is
dense and open.

The following result relies on the fact that for D every locally consistent sequence

of symbolic valuations admits an arithmetic model.

Proposition 2. Let D be a relational structure satisfying the completion property and
φ be a CLTL(D) formula. Then, the language of sequences of symbolic valuations
which admit an arithmetic model is ω-regular.

9

In this case the automaton Aφ that recognizes exactly all the sequences of symbolic

valuations which are symbolic models of φ is defined by the intersection (à la Büchi)

Aφ = As ∩ A�.

In general, however, language (3) may not be ω-regular. In some cases, however,

it is possible to build an automaton AC which captures a sufficient and necessary con-

dition on sequences of symbolic valuations guaranteeing the existence of a sequence σ
such that σ, 0 |= ρ. More precisely, for some constraint systems it is possible, given

a formula φ, to build an automaton AC recognizing sequences of symbolic valuations

such that the language of automaton Aφ = As ∩A� ∩AC is empty if, and only if, φ is

unsatisfiable.

For the constraint systems considered in this paper, AC can effectively be built.

In particular, if the constraint system is of the form (D,<,=), with D ∈ {N,Z},

automaton AC recognizes sequences ρ of symbolic valuations that satisfy the following

property:

Property 1. There do not exist vertices u and v in the same symbolic valuation in Gρ

satisfying all the following conditions:

1. there is an infinite forward path d from u;
2. there is an infinite backward path e from v;
3. d or e are strict;
4. for each i, j ∈ N, whenever d(i) and e(j) belong to the same symbolic valuation,

there exists an edge, labeled by <, from d(i) to e(j).

Informally, Property 1 guarantees that in the model, for every pair of an infinite

forward path and an infinite backward path, there is a position such that, from that point

on, the elements on the forward path are greater than the elements on the backward

path.

A fundamental lemma, on which Proposition 3 below relies, shows that, for con-

straint system (D,<,=), ultimately periodic sequences of symbolic valuations that

satisfy Property 1 admit an arithmetic model.

Lemma 2 ([9]). Let (D,<,=), with D ∈ {N,Z}, be a constraint system and let ρ be
a locally consistent, ultimately periodic sequence of symbolic valuations of the form
ρ = αβω ∈ SV (φ)ω . Then, σ, 0 |= ρ (i.e., ρ admits an arithmetic model σ) if, and
only if, ρ satisfies Property 1.

Therefore, the satisfiability problem can be solved by checking the emptiness of

the language recognized by the automaton Aφ = As∩A�∩AC , where AC recognizes

sequences of symbolic valuations satisfying Property 1.

Proposition 3 ([9]). Consider D = (D,<,=), with D ∈ {N,Z}. A CLTL(D) formula
φ is satisfiable if, and only if, the language L (Aφ) is not empty.

In the next section, we provide a way for checking the satisfiability of CLTLB(D)

formulae that does not require the construction of automata As, A� and AC . Our

approach takes advantage of the semantics of CLTLB(D) for building models of for-

mulae through a semi-symbolic construction. We use a reduction to a Satisfiability

10

Modulo Theories (SMT) problem which extends the one proposed for Bounded Model

Checking [15]. In the automata-based construction, the definition of automaton Aφ

may be prohibitive in practice and requires to devise alternative ways that avoid the

exhaustive enumeration of all its states. In fact, the size of As is exponential in the

size of the formula; moreover, when the constraint system is (Z, <,=) (which does not

have the completion property) the automaton AC is defined by complementing, e.g.

through Safra’s algorithm, automaton A¬C recognizing symbolic sequences satisfying

the negation of Property 1 [9]. However, in many cases the complete construction of

Aφ is useless, since to show the satisfiability of a formula one can just exhibit an ulti-

mately periodic model, whose length may be much smaller than the size of Aφ. On the

other hand, proving unsatisfiability is comparable in complexity building Aφ, because

it requires to verify that no ultimately periodic model αβω can be constructed for a size

|αβ| equal to the size of Aφ.

Motivated by the arguments above, we define the bounded satisfiability problem,

which consists in looking for a ultimately periodic symbolic model αβω such that its

prefix αβ has fixed length (which is an input of the problem) and admits a finite arith-

metic model σk. Since symbolic valuations partition the space of variable valuations,

an assignment of values to terms uniquely identifies a symbolic valuation (see next

Lemma 3). For this reason, we do not need to precompute the set SV (φ) and instead

we enforce the periodicity between a pair of sets of relations, those defining the first

and last symbolic valuations in β. We show that, when a formula φ is boundedly sat-

isfiable, then it is also satisfiable. We provide a (polynomial-space) reduction from

the bounded satisfiability problem to the satisfiability of formulae in the quantifier-free

theory of equality and uninterpreted functions QF-EUF combined with D.

3. Satisfiability of CLTLB(D) without automata

In this section, we introduce our novel technique to solve the satisfiability problem

of CLTLB(D) formulae without resorting to an automata-theoretic construction.

First, we provide the definition of the k-satisfiability problem for CLTLB(D) for-

mulae in terms of the existence of a so-called k-bounded arithmetic model σk, which

is the basis to provide a finite representation of infinite symbolic models by means of

ultimately periodic words. This allows us to prove that k-satisfiability is still represen-

tative of the satisfiability problem as defined in Section 2.3. In fact, for some constraint

systems, a bounded solution can be used to build the infinite model σ for the formula

from the k-bounded one σk and from its symbolic model. We show in Section 3.4 that

a formula φ is satisfiable if, and only if, it is k-satisfiable and its bounded solution σk

can be used to derive its infinite model σ. In case of negative answer to a k-bounded

instance, we cannot immediately deduce the unsatisfiability of the formula. However,

we prove in Section 5 that for every formula φ there exists an upper bound K, which

can effectively be determined, such that if φ is not k-satisfiable for all k in [1,K] then

φ is unsatisfiable.

3.1. Bounded Satisfiability Problem
We first define the Bounded Satisfiability Problem (BSP), by considering bounded

symbolic models of CLTLB(D) formulae. For simplicity, we consider the set R0 of

11

propositional letters to be empty; later, in Section 3.4 (Property 2), we show that this

is without loss of generality. Informally, a bounded symbolic model is a finite rep-

resentation of infinite CLTLB(D) models over the alphabet of symbolic valuations

SV (φ). We restrict the analysis to ultimately periodic symbolic models, i.e., of the

form ρ = αβω . Without loss of generality, we consider models where α = α′s and

β = β′s for some symbolic valuation s. BSP is defined with respect to a k-bounded
model σk : {	φ
, . . . , k + �φ�} × V → D, a finite sequence ρ′ (with |ρ′| = k + 1) of

symbolic valuations and a k-bounded satisfaction relation |=k defined as follows:

σk, 0 |=k ρ′ iff σk, i |= ρ′(i) for all 0 ≤ i ≤ k.

The k-satisfiability problem of formula φ is defined as follows:

Input A CLTLB(D) formula φ, a constant k ∈ N

Problem Is there an ultimately periodic sequence of symbolic valuations ρ = αβω

with |αβ| = k + 1, α = α′s and β = β′s, such that:

• ρ, 0
sym

φ and

• there is a k-bounded model σk for which σk, 0 |=k αβ?

Since k is fixed, the procedure for determining the satisfiability of CLTLB(D) formulae

over bounded models is not complete: even if there is no accepting run of automaton

Aφ when ρ′ as above has length k, there may be accepting runs for a larger ρ′.

Definition 4. Given a CLTLB(D) formula φ, its completeness threshold Kφ, if it ex-

ists, is the smallest integer such that φ is satisfiable if and only if φ is Kφ-satisfiable.

3.2. Avoiding explicit symbolic valuations
The next, fundamental Lemma 3 and Lemma 4 allow us to avoid the definition of

set SV (φ) and to derive symbolic models for φ through σk. In particular, Lemma 4

shows how to build a sequence of symbolic valuations from σk.

Lemma 3. Let D = (D,R) be a constraint system, φ be a CLTLB(D) formula and v
be a D-valuation extended to terms(φ). Then, there is a unique symbolic valuation sv
such that v |=D sv.

Proof. By contradiction, suppose there are two symbolic valuations, sv and sv′, such

that sv �= sv′, v |=D sv and v |=D sv′. Since sv �= sv′, then there exist a rela-

tion R of arity n ≥ 0 and a tuple (α1, . . . , αn) such that R(α1, . . . , αn) ∈ sv and

R(α1, . . . , αn) �∈ sv′. Since R(α1, . . . , αn) ∈ sv, by definition of symbolic valua-

tion v |=D R(α1, . . . , αn). By definition a symbolic valuation built from v contains

all D-constraints satisfied by v, hence it must also be that R(α1, . . . , αn) ∈ sv′, a

contradiction.

Corollary 1. Let φ be a CLTLB(D) formula, v be a D-valuation extended to terms(φ)
and sv be a symbolic valuation in SV (φ). If v |=D sv then for all relations R ∈ R

sv
sym

R(α1, . . . , αn) iff v |=D R(α1, . . . , αn).

12

Proof. Suppose that sv
sym

R(α1, . . . , αn). By definition of sv
sym

R(α1, . . . , αn), for

every D-valuation v′ over terms(φ) such that v′ |=D sv, then v′ |=D R(α1, . . . , αn)
holds. Therefore, also v |=D R(α1, . . . , αn). The converse is an immediate conse-

quence of the definition of symbolic valuation.

Lemma 4. Let φ be a CLTLB(D) formula and σk be a finite sequence of D-valuations.
Then, there exists a unique locally consistent sequence ρ ∈ SV (φ)k+1 such that
σk, i |= ρ(i), for all i ∈ [0, k].

Proof. By Lemma 3 it follows that, for all i ∈ [0, k], the assignment of variables

defined by σk is such that σk, i |= ρ(i) and ρ(i) is unique. By Corollary 1, values in

σk from position i satisfy a relation R with arguments (α1, . . . , αn) at position i if,

and only if, R belongs to symbolic valuation ρ(i), i.e., ρ(i)
sym

R(α1, . . . , αn) if, and

only if, σk, i |=D R(α1, . . . , αn). In addition, any two adjacent symbolic valuations

ρ(i) and ρ(i + 1) are locally consistent, i.e., both R(Xi1x1, . . . ,X
inxn) ∈ ρ(i) and

R(Xi1−1x1, . . . ,X
in−1xn) ∈ ρ(i + 1). In fact, the evaluation in σk of an arithmetic

term Xijxj in position i is the same as the evaluation of Xij−1xj in position i+1.

3.3. An encoding for BSP without automata
We now show how to encode a CLTLB(D) formula into a quantifier-free formula

in the theory EUF ∪ D (called QF-EUD), where EUF is the theory of Equality and

Uninterpreted Functions. This is the basis for reducing the BSP for CLTLB(D) to

the satisfiability of QF-EUD, as proved in Section 3.4. Satisfiability of QF-EUD is

decidable, provided that D includes a copy of N with the successor relation and that

EUF∪D is consistent, as in our case. The latter condition is easily verified in the case of

the union of two consistent, disjoint, stably infinite theories (as is the case for EUF and

arithmetic). [16] describes a similar approach for the case of Integer Difference Logic

(DL) constraints. It is worth noting that standard LTL can be encoded by a formula

in QF-EUD with D = (N, <), rather than in Boolean logic [17], resulting in a more

succinct encoding.

The encoding presented below represents ultimately periodic sequences of sym-

bolic valuations ρ of the form sv0sv1 . . . svloop−1(svloop . . . svk)
ω . Therefore, we look

for a finite word ρ′ = sv0sv1 . . . svloop−1(svloop . . . svk)svloop of length k + 2 repre-

senting the ultimately periodic model above. Instant k + 1 in the encoding is used

to correctly represent the periodicity of ρ by constraining atomic formulae (proposi-

tions and relations) at positions loop and k + 1. Thanks to the periodicity of suf-

fix (svloop . . . svk), we can solve the BSP by considering the following decompo-

sition αβω = sv0sv1 . . . svloop(svloop+1 . . . svksvloop)
ω where α = α′svloop and

β = β′sv loop with α′ = sv0sv1 . . . svloop−1 and β′ = svloop+1 . . . svk.

Encoding terms. Given a term α in terms(φ), we associate an arithmetic formula
function α with α, which is a unary function denoted by the same name of the term but

written in boldface. Note that if α is a variable x ∈ V , then α is x. Function α must

obey the following constraints:

α 0 ≤ i < k + 1
Xα′ α(i) = α′(i+ 1)

13

α 0 < i ≤ k + 1
Yα′ α(i) = α′(i− 1)

The conjunction of the above subformulae gives formula |ArithConstraints|k. Im-

plementing |ArithConstraints|k is straightforward. In fact, the assignments of values

to variables are defined by the interpretation of the symbols of the QF-EUD formula.

The values of a variable x at positions before 0 and after k, i.e. in intervals [φ
,−1]
and [k+1, k+�φ�], are defined by means of the values of terms α = Xix and α = Yix.

For instance, the value of x at position 0 > i ≥ 	φ
 is σk(i, x), but it is defined by the

assignment for term α = Yix at position 0.

Encoding formulae. The truth value of a CLTLB formula is defined with respect to

the truth value of its subformulae. Given a subformula θ of φ, we introduce a formula
predicate θ. When the subformula θ holds at instant i then θ(i) holds.

We first define θ for atomic formulae and their negations. Let R be an n-ary relation

of R that appears in φ, and let α1, . . . αn be a.t.t.’s. Let p be a propositional letter. We

define θ for every subformula θ of φ of the form R,¬R, p,¬p as follows (where, if αj

is a constant c ∈ const(φ), then αj is simply c):

θ θ(i)
R(α1, . . . , αn) R(α1(i), . . . ,αn(i))
¬R(α1, . . . , αn) ¬R(α1(i), . . . ,αn(i))

p p(i)
¬p ¬p(i)

When θ is not of the form R,¬R, p,¬p, then θ is a unary predicate letter denoted

by the same name of the formula but written in boldface. As the last position of a path

is fixed to k + 1 and all paths start from 0, formula predicates are actually subsets of

{0, . . . , k + 1}. We define the constraints on formula predicate θ recursively as in the

following tables. For brevity and ease of reading in each row of the second column

the formula predicate associated with the formula in the left column is denoted with θ,

rather than with the boldface name of the formula itself.

θ 0 ≤ i ≤ k + 1
ψ1 ∧ ψ2 θ(i) ⇔ ψ1(i) ∧ψ2(i)
ψ1 ∨ ψ2 θ(i) ⇔ ψ1(i) ∨ψ2(i)

The conjunction of the formulae above is formula |PropConstraints|k. The temporal

behavior of future and past operators is encoded in formula

|TempConstraints|k by using their traditional fixpoint characterizations. More pre-

cisely, |TempConstraints|k is the conjunction of the following formulae, for each

temporal subformula θ:

θ 0 ≤ i ≤ k
Xψ θ(i) ⇔ ψ(i+ 1)

ψ1Uψ2 θ(i) ⇔ (ψ2(i) ∨ (ψ1(i) ∧ θ(i+ 1)))
ψ1Rψ2 θ(i) ⇔ (ψ2(i) ∧ (ψ1(i) ∨ θ(i+ 1)))

14

θ 0 < i ≤ k + 1 i = 0
Yψ θ(i) ⇔ ψ(i− 1) θ(0) ⇔ false
Zψ θ(i) ⇔ ψ(i− 1) θ(0) ⇔ true

ψ1Sψ2 θ(i) ⇔ (ψ2(i) ∨ (ψ1(i) ∧ θ(i− 1))) θ(0) ⇔ ψ2(0)
ψ1Tψ2 θ(i) ⇔ (ψ2(i) ∧ (ψ1(i) ∨ θ(i− 1))) θ(0) ⇔ ψ2(0)

Encoding periodicity. To represent ultimately periodic sequences of symbolic valua-

tions we use a positive integer variable loop ∈ [0, k] that captures the position in which

the loop starts in sv0sv1 . . . svloop−1(svloop . . . svk)
ω . Informally, if the value of vari-

able loop is i, then there exists a loop which starts at i. To encode the loop we require

svloop = svk+1; this is achieved through the following formula |LoopConstraints|k,

which ranges over all relations R ∈ R and all terms in terms(φ), including those that

do not appear in φ: ∧
θ = R(α1, . . . , αn)

R ∈ R, α1, . . . , αn ∈ terms(φ)

θ(loop) ⇔ θ(k + 1).

Last state constraints (captured by formula |LastStateConstraints|k) define the

equivalence between the truth values of the subformulae of φ at position k + 1 and

those at the position indicated by the loop variable, since the former position is repre-

sentative of the latter along periodic paths. These constraints have a similar structure as

those in the Boolean encoding of [17]; for brevity, we consider only the case of infinite

periodic words, as the case of finite words can easily be defined if needed. Hence, last

state constraints are introduced through the following formula (where sub(φ) indicates

the set of subformulae of φ) by adding only one constraint for each subformula θ of φ.∧
θ∈sub(φ) θ(k + 1) ⇔ θ(loop).

Eventualities for U and R. To correctly define the semantics of U and R, their even-
tualities have to be accounted for. Briefly, if ψ1Uψ2 holds at i, then ψ2 eventually

holds in some j ≥ i; if ψ1Rψ2 does not hold at i, then ψ2 eventually does not hold in

some j ≥ i. The Boolean encoding of [17] introduces a propositional variable for each

subformula of the form ψ1Uψ2 or ψ1Rψ2 and for each position in the finite model,

to represent the eventuality of ψ2 implicit in the formula. Instead, in the QF-EUD en-

coding, only one variable jψ1Uψ2 ∈ D is introduced for each subformula ψ1Uψ2 and

only one variable jψ1Rψ2 ∈ D for each subformula ψ1Rψ2.

θ

ψ1Uψ2 θ(k) ⇒ loop ≤ jψ1Uψ2 ≤ k ∧ψ2(jψ1Uψ2)
ψ1Rψ2 ¬θ(k) ⇒ loop ≤ jψ1Rψ2 ≤ k ∧ ¬ψ2(jψ1Rψ2)

The conjunction of the constraints above for all subformulae θ of φ constitutes the

formula |Eventually|k.

The complete encoding |φ|k of φ consists of the logical conjunction of all above

components, together with φ(0).

15

3.4. Correctness of the BSP encoding
To prove the correctness of the encoding defined in Section 3.3, we first introduce

two properties, which reduce CLTLB(D,R0) to CLTLB(D) without Y operators. This

allows us to base our proof on the automata-based construction for CLTLB(D) of [9].

In particular, the two reductions are essential to take advantage of Proposition 2 and

Lemma 2 of Section 2, to define a decision procedure for the bounded satisfiability

problem of Section 3.1. The properties are almost obvious, hence we only provide the

intuition behind their proof (see [18] for full details).

Property 2. CLTLB(D,R0) formulae can be equivalently rewritten into CLTLB(D)
formulae.

According to the definition given in Section 2.2, CLTLB(D) is the language CLTLB

where atomic formulae belong to the language of constraints in D, which may contain

also 0-ary relations. In this case, atomic formulae are propositions p ∈ R0 or relations

R(α1, . . . , αn). Any positive occurrence of an atomic proposition p ∈ R0 in a CLTLB

formula can be replaced by an equality relation of the form xp = 1. Then, a formula

of CLTLB(D,R0) can be easily rewritten into a formula of CLTLB(D) preserving

their equivalence (modulo the rewriting of propositions in R0). We define a rewriting

function np over formulae such that (π′, σ′), 0 |= φ if, and only if, (π, σ), 0 |= np(φ)∧
ψ where σ is the same as σ′ except for new fresh variables xp representing atomic

propositions, and ψ is a formula restricting the values of variables xp to {0, 1}.

For instance, let φ be the formula G(p ⇒ F(Xx < y∧ q)), where the “eventually”

(F) and “globally” (G) operators are defined as usual. The formula obtained by means

of rewriting np is

G(xp = 1 ⇒ F(Xx < y ∧ xq = 1)) ∧G

⎛
⎝ (xp = 1 ∨ xp = 0)

∧
(xq = 1 ∨ xq = 0)

⎞
⎠ .

Note that formula np(φ) does not contain any propositional letters, so in a model

(π, σ) component π associates with each instant the empty set. From now on we will

consider only CLTLB(D) formulae without propositional letters; hence, given a propo-

sitional letter-free formula φ, we will write σ, 0 |= φ instead of (π, σ), 0 |= φ.

Property 3. CLTLB(D) formulae can be equivalently rewritten into CLTLB(D) formu-
lae without Y operators.

Let rw : CLTLB(D) → CLTLB(D) be the following syntactical rewriting, which

transforms every formula φ into an equisatisfiable formula that does not contain any

occurrence of the Y operator. Formula rw(φ) is identical to φ except that, for all i ≥ 0
all a.t.t.’s of the form Xix in φ are replaced by Xi−�φ�x, while all a.t.t.’s of the form Yix
are replaced by X−i−�φ�x (where x is treated as X0x). The latter replacement avoids

negative indexes (since if φ contains a.t.t.’s of the form Yix, then 0 ≤ i ≤ −	φ
).

The rw function can be naturally extended to symbolic valuations (i.e, sets of atomic

constraints) and sequences ρ thereof.

As a consequence, given a CLTLB(D) formula φ, it is easy to see that Y does

not occur in rw(φ). The equisatisfiability of formulae φ and rw(φ) is guaranteed by

16

moving the model σ of 	φ
 instants. We define the sequence of D-valuations σ�φ� as

follows:

σ�φ�(i, x) = σ(i+ 	φ
, x),
for all i ≥ 0 and x ∈ V .

Proposition 4. Let φ be a CLTLB(D) formula, then σ, 0 |= φ iff σ�φ�, 0 |= rw(φ).

Corollary 2. Let ρ ∈ SV (φ)ω be a sequence of symbolic valuations. Then,

σ, 0 |= ρ iff σ�φ�, 0 |= rw(ρ)

ρ, 0
sym

φ iff rw(ρ), 0
sym

rw(φ).

We now have all necessary elements to prove the correctness of our encoding. We

first provide the following three equivalences, which are proved by showing the im-

plications depicted in Figure 1, where As × A� is the automaton recognizing locally

consistent symbolic models of rw(φ):

1. Satisfiability of |φ|k is equivalent to the existence of ultimately periodic runs of

automaton As ×A�.

2. k-satisfiability is equivalent to the existence of ultimately periodic runs of au-

tomaton As ×A�.

3. k-satisfiability is equivalent to the satisfiability of |φ|k.

Then we draw, by Proposition 5, the connection between k-satisfiability and satisfiabil-

ity for formulae over constraint systems satisfying the completion property. In Section

4, thanks to Proposition 6, we extend the result to constraint system IPC∗, which does

not have the completion property.

|φ|k sat

φ k-sat run αβω in As ×A�σ, 0 |= φ

Thm. 2
Thm. 1

Thm. 3Props. 5,6

Figure 1: Proof schema.

Before tackling the theorems of Figure 1, we provide the definition of models for

QF-EUD formulae |φ|k built according to the encoding of Section 3.3. More precisely,

a model M of |φ|k is a pair (D, I) where D is the domain of interpretation of D, and

I maps:

• each function symbol α to a mapping from positions in time into D: I(α) :
N → D;

• each predicate symbol θ to a mapping from positions in time into {true, false},

I(θ) : N → {true, false}.

17

Note that mapping I trivially induces a finite sequence of D-valuations

σk : {	φ
, . . . , k + �φ�} × V → D.

We start by showing that the existence of ultimately periodic runs of automaton

As ×A� implies the satisfiability of |φ|k.

Theorem 1. Let φ ∈ CLTLB(D) with N definable in D together with the successor
relation. If there exists an ultimately periodic run ρ = αβω (|αβ| = k+1) of As×A�

accepting symbolic models of rw(φ), then |φ|k is satisfiable with respect to k ∈ N .

In the following proof, we use the generalized Büchi automaton obtained by the

standard construction of [14], in the version of [9]. We slightly modify the construction

in [9] to consider formulae of the form ψRζ and ψTζ. This is useful to show the

correspondence between the k-bounded satisfiability and the automata-based approach.

Let φ′ be a CLTLB(D) formula (without the Y modality over terms). The closure of

φ′, denoted cl(φ′), is the smallest negation-closed set containing all subformulae of φ′.
An atom Γ ⊆ cl(φ′) is a maximally consistent set, i.e., such that for each subformula

ψ and ζ of φ′:

• ψ ∈ Γ iff ¬ψ ∈ Γ,

• ψ ∧ ζ ∈ Γ iff ψ, ζ ∈ Γ,

• ψ ∨ ζ ∈ Γ iff ψ ∈ Γ or ζ ∈ Γ.

A pair (Γ1,Γ2) of atoms is one-step temporally consistent when:

• for every Xψ ∈ cl(φ′), then Xψ ∈ Γ1 iff ψ ∈ Γ2,

• for every Yψ ∈ cl(φ′), then Yψ ∈ Γ2 iff ψ ∈ Γ1,

• for every Zψ ∈ cl(φ′), then Zψ ∈ Γ2 iff ψ ∈ Γ1,

• if ψUζ ∈ Γ1, then ζ ∈ Γ1 or both ψ ∈ Γ1 and ψUζ ∈ Γ2,

• if ψRζ ∈ Γ1, then {ψ, ζ} ∈ Γ1 or both ζ ∈ Γ1 and ψRζ ∈ Γ2,

• if ψSζ ∈ Γ2, then ζ ∈ Γ2 or both ψ ∈ Γ2 and ψSζ ∈ Γ1,

• if ψTζ ∈ Γ2, then {ψ, ζ} ∈ Γ2 or both ζ ∈ Γ2 and ψTζ ∈ Γ1.

The automaton As = (SV (φ′), Q,Q0, η, F) is then defined as follows:

• Q is the set of atoms;

• Q0 = {Γ ∈ Q : φ′ ∈ Γ and ¬Yψ ∈ Γ for all Yψ ∈ cl(φ′) and Zψ ∈
Γ for all Zψ ∈ cl(φ′) and ψSζ, ψTζ ∈ Γ iff ζ ∈ Γ};

• Γ1
sv−→ Γ2 ∈ η iff

– sv
sym

Γ1

– (Γ1,Γ2) is one-step consistent;

18

• F = {F1, . . . , Fp}, where Fi = {Γ ∈ Q | ψiUζi /∈ Γ or ζi ∈ Γ} and

{ψ1Uζ1, . . . , ψpUζp} is the set of Until formulae occurring in cl(φ′).

Proof. We prove that if there is a run in As×A� accepting symbolic models of rw(φ),
then formula |φ|k is satisfiable (we assume the rewriting obtained through function np,

defined at the beginning of Section 3.4). Suppose there exists an ultimately periodic

symbolic model of length k+1 which is accepted by As×A�. It is a locally consistent

sequence of symbolic valuations, ρ = αβω of the form:

ρ = sv0 . . . svloop−1(svloop . . . svk)
ω

such that ρ ∈ L (As ×A�). Sequence ρ is recognized by a periodic run of As ×A� of

the form2:

υ = (Γ0, sv0) . . . (Γloop−1, svloop−1)((Γloop, svloop) . . . (Γk, svk))
ω.

For each subformula ψiUζi occurring in φ, the subrun

(Γloop−1, svloop−1)(Γloop, svloop) . . . (Γk, svk) visits control states of the set Fi, thus

witnessing the acceptance condition of As. From υ we build run γ of As:

γ = Γ0 . . .Γloop−1(Γloop . . .Γk)
ω.

In particular, ρ is defined by the projection on the alphabet of SV (rw(φ)) of the sub-

formulae occurring in every Γi, for 0 ≤ i ≤ k. Sequence ρ and its accepting run γ
can be translated by means of rw−1 to obtain a symbolic model for φ. In particular,

because ρ, 0
sym

rw(φ) then we obtain, by Corollary 2, rw−1(ρ), 0
sym

φ. Similarly,

by rewriting all formulae in atoms of γ, we obtain an accepting run rw−1(γ) for φ.

The model for |φ|k is given by the truth value of all the subformulae in each rw−1(Γi)
and the values of variables occurring in φ can be defined as explained later. In par-

ticular, we need to complete interpretation I for uninterpreted predicate and functions

formulae: given a position 0 ≤ i ≤ k, for all subformulae θ ∈ cl(φ) we define

• I(θ)(i) = true iff θ ∈ rw−1(Γi),

• I(θ)(i) = false iff ¬θ ∈ rw−1(Γi).

To complete the interpretation of subformulae at position k+1 we can use values from

position loop: I(θ)(k+1) = I(θ)(loop). Note that by taking truth values of subformu-

lae θ ∈ cl(φ) from atoms rw−1(Γi), we obtain all constraints in |propConstraints|k.

The sequence ρ of symbolic valuations is consistent and all the a.t.t.’s in the encoding

of |φ|k can be uniquely defined by considering at each position i a symbolic valuation

rw−1(svi). Consider the sequence ρ′ = sv0 . . . svloop−1(svloop . . . svk)svloop. Fol-

lowing [9, Lemma 5.2], we can build an edge-respecting assignment of values in D
for the finite graph Grw−1(ρ′), which associates, for each variable x ∈ V and for each

2For reasons of clarity, we avoid some details of product automaton As×A�, which are however inessen-

tial in the proof.

19

position 	φ
 ≤ i ≤ k + 1 + �φ�, a value σk(i, x). We exploit assignment σk(i, x) to

define I(α), with α ∈ terms(φ), in the following way (where xα is the variable in α):

I(α)(i) = σk(i+ |α|, xα)

for all 0 ≤ i ≤ k + 1. Then, formulae |ArithConstraints|k are satisfied. Since run

υ is ultimately periodic, then control state (Γloop, svloop) is visited at position k + 1.

It witnesses the satisfaction of |LastStateConstraints|k formulae, which prescribe

that θk+1 iff θloop for all θ ∈ sub(φ). Moreover, by the equality of svk+1 and svloop in

run υ we have that R(α1, . . . , αn) holds at loop if, and only if, it holds at k+ 1, hence

we obtain |LoopConstraints|k. Finally, let us consider |Eventually|k formulae. By

construction, as run υ of As is accepting, if subformula ψUζ belongs to atom Γi, then

there exists a position j ≥ i such that ζ holds in j. Since the model is periodic, if

ψUζ belongs to atom Γk, then k ≤ j ≤ k + |β|, i.e., jψUζ = j − |β| is a position

such that loop ≤ jψUζ ≤ k and ζ ∈ ΓjψUζ
. If ¬(ψRζ) belongs to Γk then there

exists a position j ≥ k such that ¬ζ holds in j. Since the model is periodic, if ¬(ψRζ)
belongs to atom Γk, then k ≤ j ≤ k + |β|, i.e., jψRζ = j − |β| is a position such

that loop ≤ jψRζ ≤ k and ¬ζ ∈ ΓjψRζ
. Hence, the |Eventually|k formulae are

satisfied. The initial atom Γ0 is such that ¬Yϕ ∈ rw−1(Γ0), Zϕ ∈ rw−1(Γ0) and

ψSζ ∈ rw−1(Γ0) iff ζ ∈ rw−1(Γ0) and ψTζ ∈ rw−1(Γ0) iff ζ ∈ rw−1(Γ0) which

witnesses the encoding in |TempConstraints|k for the formulae Yψ, Zψ, ψSζ and

ψTζ which belong to set cl(φ).

We now prove the second implication, which draws the connection between the

encoding and the k-satisfiability problem.

Theorem 2. Let φ ∈ CLTLB(D) with N definable in D together with the successor
relation. If |φ|k is satisfiable, then formula φ is k-satisfiable with respect to k ∈ N.

Proof. We prove the theorem by showing that formula |φ|k defines ultimately periodic

symbolic models ρ = αβω for formula φ such that σk, 0 |=k αβ and ρ, 0
sym

φ. Note

that the encoding of |φ|k defines precisely the truth value of all subformulae θ of φ
in instants i ∈ [0, k]. Then, if |φ|k is satisfiable, given an i ∈ [0, k], the set of all

subformulae

Γi = {ϕ ∈ cl(φ) | if θ(i) holds then ϕ = θ, else ϕ = ¬θ}
is a maximal consistent set of formulae of cl(φ). We have loop ∈ [0, k]. The sequence

of sets Γi for 0 ≤ i ≤ k is an ultimately periodic sequence of maximal consistent

sets due to formulae |LastStateConstraints|k and |LoopConstraints|k. We write

Γ|A to denote the projection of D-constraints in Γ on symbols of the set A; e.g., if

A = {R1, R2} then {R1(x, y), R2(Xx,Yx), θ1, θ2}|A = {R1(x, y), R2(Xx,Yx)}.

The sequence of atoms is

γ = Γ0 . . .Γloop−1 (Γloop . . .Γk)
ω

and such that Γloop|R is equal to the set of relations of Γk+1|R by |LoopConstraints|k
formulae. Moreover, by |LastStateConstraints|k we have Γk+1 = Γloop.

20

By Lemma 4, from the bounded sequence σk of D-valuations induced by I, we

have a unique locally consistent finite sequence of symbolic valuations αβ such that

σk, 0 |=k αβ. Formula |LoopConstraints|k witnesses ultimately periodic sequences

of symbolic valuations ρ because it is defined over the set of relations in R and all

terms of the set terms(φ):

ρ = αβω = sv0 . . . svloop−1(svloop . . . svk)
ω

such that svloop = svk+1.

By structural induction on φ one can prove that for all 0 ≤ i ≤ k + 1, for all

subformulae θ of φ, θ(i) holds (i.e., θ ∈ Γi) if, and only if, ρ, i
sym

θ. Then, since by

hypothesis φ(0) holds, we have that ρ, 0
sym

φ.

The base case is the unique fundamental part of the proof because the inductive

step over temporal modalities is rather standard. Let us consider a relation formula θ of

the form R(α1, . . . , αn) where, for all 1 ≤ j ≤ n, αj ∈ terms(φ)∪const(φ) (the case

when θ is ¬R(α1, . . . , αn) is similar). We have to show that θ(i) holds if, and only if,

svi
sym

θ. As defined in Section 3.3, θ(i) is R(α1(i), . . . ,αn(i)) and, by definition of

I, we have I(αj)(i) = σk(i + |αj |, xαj
). Then, we have that R(α1(i), . . . ,αn(i))

holds if, and only if, σk, i |=k R(α1, . . . , αn); since, as shown in the proof of Lemma

4, σk, i |= R(α1, . . . , αn) if, and only if, the symbolic valuation svi induced by σk at

i includes R(α1, . . . , αn), we have by definition svi
sym

R(α1, . . . , αn).
We omit the inductive step, which is standard and is reported in [17] and [4], since

we use the same operators with the same encodings.

Finally, the next theorem links k-satisfiability with the existence of an ultimately

periodic run in automaton As ×A�.

Theorem 3. Let φ ∈ CLTLB(D) with N definable in D together with the successor
relation. If formula φ is k-satisfiable with respect to k ∈ N, then there exists an
ultimately periodic run ρ = αβω of As ×A�, with |αβ| = k + 1, accepting symbolic
models of rw(φ).

Proof. By definition, if φ is k-satisfiable so is rw(φ), and there is an ultimately peri-

odic symbolic model ρ = αβω such that ρ, 0
sym

rw(φ). By Lemma 4, ρ is locally

consistent because there exists a k-bounded model σk such that σk |=k αβ. Therefore,

ρ ∈ L (As ×A�).

As explained in Section 2.4, each automaton involved in the definition of Aφ has

the function of “filtering” sequences of symbolic valuations so that 1) they are locally

consistent, 2) they satisfy an LTL property and 3) they admit a (arithmetic) model.

As mentioned in Section 2, for constraint systems that have the completion property,

local consistency is equivalent to admitting an arithmetic model. For these constraint

systems, Aφ is exactly automaton As×A�, and from Proposition 2 and Theorem 2 we

obtain the following result.

Proposition 5. Let φ ∈ CLTLB(D) with N definable in D together with the successor
relation and satisfying the completion property. Formula φ is k-satisfiable with respect
to some k ∈ N if, and only if, there exists an arithmetic model σ such that σ, 0 |= φ.

21

Proof. Suppose formula φ is k-satisfiable. Then, by Theorem 3, there is a symbolic

model ρ = αβω such that ρ, 0
sym

rw(φ). By Proposition 2 ρ admits an arithmetic

model σ̂, i.e., such that σ̂, 0 |= rw(φ). By Corollary 2, we have σ̂�φ�, 0 |= φ, so the

desired σ is simply σ̂ translated by 	φ
.

Conversely, if formula φ is satisfiable, then automaton Arw(φ) recognizes a non-

empty language in SV (rw(φ))ω . Hence, there is an ultimately periodic, locally consis-

tent, sequence of symbolic valuations ρ = αβω , with |αβ| = k + 1, which is accepted

by automaton Arw(φ). Then, the k-bounded model σk that shows the k-satisfiability

of φ is built considering prefix αβ, by defining an edge-respecting labeling of graph

Gαβ .

When constraint systems do not have the completion property, the locally consistent

sequence of symbolic models ρ recognized by automaton As × A� may not admit

arithmetic models σ such that σ |= ρ. However, as mentioned in Section 2.4.1, for

some constraint systems D, it is possible to define a condition over symbolic models

which is satisfied by ρ ∈ L (As × A�) if, and only if ρ admits an arithmetic model.

We tackle this issue in the next section.

4. Bounded Satisfiability of CLTLB(IPC∗)

When D is IPC∗, Proposition 5 does not apply since, by Lemma 1, D does not have

the completion property. However, in such cases, as shown by Lemma 2, ultimately

periodic symbolic models of CLTLB formulae admit arithmetic model if, and only if,

they obey the condition captured by Property 1. In this section, we define a simplified

condition of (non) existence of arithmetical models for ultimately periodic symbolic

models of CLTLB formulae, and we show its equivalence with Property 1. Then,

we provide a bounded encoding through QF-EUD formulae (where D embeds N and

the successor function) for the new condition, and we define a specialized version of

Proposition 5. Finally, we introduce simplifications to the encoding that can be applied

in special cases.

Let ρ be a symbolic model for CLTLB(IPC∗) formula φ and let Gρ be the graph

defined as in Section 2.4. To devise the simplified condition equivalent to Property 1,

we associate a set of so-called points with each node of Gρ: For each node, there are

as many points as symbolic valuations including the node. Then, we provide suitable

relations over points. Formally, let Pρ = (V ∪const(φ))×N× [φ
, �φ�] be called the

set of points of ρ. A point p ∈ Pρ is a triple p = (x, j, h), identifying a variable or a

constant x ∈ V ∪ const(φ) at a position h within symbolic valuation ρ(j), i.e., p refers

variable (or constant) x at position j+h of the symbolic model ρ. Denote with var(p)
the variable x, with sv(p) the symbolic valuation j (with sv(p) ≥ 0), and with shift(p)
the position h of x within the j-th symbolic valuation (with shift(p) ∈ [φ
, �φ�]);
Therefore, x(j + h) represents variable x at position h of the j-th symbolic valuation

of ρ.

Different triples can refer to the same node. For example, variable x in position 2 of

symbolic valuation 4 (i.e., (x, 4, 2)) is the same as x in position 1 of adjacent symbolic

valuation 5 (i.e., (x, 5, 1)), and also of x in position 0 of symbolic valuation 6 (i.e.,

(x, 6, 0)): these points all refer to the node x(6) of Gρ. Figures 2 and 3 show examples

22

of equivalent points. Hence, we need to define an equivalence relation on points, called

local equivalence.

Definition 5. For all points p1 = (x, j, h), p2 = (x, j′, h′) in Pρ, we say that p1 is

locally equivalent to p2 if j + h = j′ + h′, with j, j′ ≥ 0 and h, h′ ∈ [φ
, �φ�].
Note that the set of equivalence classes induced by local equivalence corresponds

to the set of nodes of Gρ.

Definition 6. We define the relation �⊆ Pρ × Pρ. Given p1 = (x, j, h) and p2 =
(y, i,m) of Pρ, p1 � p2 holds if:

1. i+m− (j + h) < −	φ
+ �φ�+ 1

2. j + h ≤ i+m

3. in Gρ there is an edge labeled with < or = from x(j + h) to y(i+m).

Condition 3 symbolically represents the constraint that x(j+h) ≤ y(i+m). Relations

≺,�,�,≈ ⊆ Pρ × Pρ are defined as above by replacing “< or =” with, respectively,

<, “> or =”, >, = in Condition 3.

By Condition 1 of Definition 6, for each relation ∼∈ {�,≺,≈,�,�}, p1 ∼ p2
may hold only if the distance of p1 and p2 is smaller than the size −	φ
 + �φ� + 1 of

a symbolic valuation, i.e., p1 and p2 are “local”, in the sense that they belong either to

the same symbolic valuation (i.e., j = i) or to the common part of “partially overlap-

ping” symbolic valuations (see Figures 2 and 3 for examples of partially overlapping

symbolic valuations). By Condition 2, each relation ∼ is a positional precedence, i.e.,

if p1 ∼ p2 then p2 cannot positionally precede p1. Condition 3 is well defined on

symbolic valuations, since it corresponds to having, in graph Gρ, an arc labeled with

∼ from p1 to p2. The reflexive relations �,� have an antisymmetric property, in the

sense that if p1 � p2 and p2 � p1, then p1 ≈ p2 and p2 ≈ p1 (analogously for �): if

p1 = (x, j, h) and p2 = (y, i,m), then p1 and p2 are at the same position j+h = i+m
and have the same value x(j + h) = y(i+m).

Notice that the relations ∼ are not transitive, because of Condition 1: Each relation

∼ is only “locally” transitive, in the sense that if p1 ∼ p2 and p2 ∼ p3, then p1 ∼ p3 if,

and only if, Condition 1 holds for p1 and p3 (i.e., when also p1, p3 are “local”, which

in general may not be the case).

Definition 7. We say that there is a local forward (resp. local backward) path from

point p1 to point p2 if p1 � p2 (resp., p1 � p2); the path is called strict if p1 ≺ p2
(resp., p1 � p2).

Obviously, given two points p1 = (x, j, h) and p2 = (y, i,m) of Pρ such that

|i+m−(j+h)| < −	φ
+�φ�+1, it must be at least one of p1 � p2, p2 � p1, p1 � p2,

p2 � p1; if both p1 � p2 and p1 � p2 hold, then p1 ≈ p2, hence x(j+h) = y(i+m).
It is immediate to notice that the local equivalence is a congruence for all relations,

e.g., if p1 is locally equivalent to p′1 and p2 is locally equivalent to p′2 then p1 �
p2 iff p′1 � p′2. Figures 2 and 3 depict examples of this fact.

We now extend the relations of Definition 7 to cope with non-overlapping symbolic

valuations.

23

p2

p1, p′1

i− 2 i

y

x ∼

Figure 2: Adjacent and overlapping symbolic valuations ρ(i) (solid line) and ρ(i−2) (dotted line) of length

3 (with −�φ� = �φ� = 1), with p1 = (y, i,−1) and p′1 = (y, i − 2, 1) being locally equivalent. Both

p1
∼
� p2 and p′1

∼
� p2 hold.

Definition 8. Relation
∼
�⊆ Pρ × Pρ, for every ∼∈ {�,≈,�}, denotes the transitive

closure of ∼. Relations
≺
�,

	
�⊆ Pρ × Pρ, are defined as follows, for all p1, p2 ∈ Pρ:

p1
≺
� p2 if there exist p′, p′′ ∈ Pρ such that p1

�
� p′ ≺ p′′ �

� p2;

p1
	
� p2 if there exist p′, p′′ ∈ Pρ such that p1

�
� p′ � p′′ �

� p2.

p2, p′2

p1

i+ 1i

y

x ∼

Figure 3: Adjacent and overlapping symbolic valuations ρ(i) (solid line) and ρ(i+1) (dotted line) of length

3 (−�φ� = �φ� = 1), with points p2 = (x, i, 1) and p′2 = (x, i + 1, 0) being locally equivalent. Both

p1
∼
� p2 and p1

∼
� p′2 hold.

Remark 1. If p1 = (x, j, h) and p2 = (y, i,m), then p1
�
� p2 symbolically represents

the constraint x(j + h) ≤ y(i + m). The other cases of
∼
� are similar. If ∼ is,

respectively, ≺,≈,�,�, then the relation of x(j + h) with y(i +m) is, respectively,

<,=, >,≥. If p1
�
� p2 holds, but p1

≺
� p2 does not, then along the path from p1 to

p2 there are only arcs labeled with ≈, i.e. p1
≈
� p2, which symbolically represents

x(j+h) = y(i+m). As a consequence, if p1
�
� p2 holds, but p1

≺
� p2 does not, then

p1
�
� p2 also holds. The dual properties hold for

�
� and

	
�.

Let ρ = αβω ∈ SV (φ)ω be an ultimately periodic symbolic model of φ. We need

to introduce another equivalence relation, which is useful for capturing properties of

points of symbolic valuations in βω , though it is defined in general. More precisely, we

consider two points p, p′ ∈ Pρ as equivalent when they correspond to the same variable,

in the same position of the symbolic valuation, but in symbolic valuations that are i|β|
positions apart, for some i ≥ 0. In fact, points in βω that are equivalent according to

the definition below have the same properties concerning forward and backward paths.

Definition 9. Two points p, p′ ∈ Pρ are equivalent, written p ≡ p′, when var(p) =
var(p′), sv(p′) = sv(p) + i|β| and shift(p) = shift(p′), for some i ∈ Z.

24

The main result of the section is Formula (1) on page 28, which is based on a

number of intermediate results that are presented in the following. To test for the

condition for the existence of arithmetic models of symbolic model ρ = αβω , one

must represent infinite (possibly strict) forward and backward paths along ρ. To this

end, we devise a condition for the existence of infinite paths, resulting from iterating

suffix β infinitely many times. Without loss of generality, in the following we consider

ultimately periodic models ρ = αβω in which α = α′s and β = β′s, i.e., in which

the last symbolic valuation of prefix α is the same as the last symbolic valuation of

repeated suffix β. We indicate by k+1 the length of αβ, and we number the symbolic

valuations in αβ starting from 0, so that the last element in prefix α is in position

|α| − 1, the first element in suffix β is in position |α|, and the last element of β is in

position k (hence, ρ(|α| − 1) = ρ(k) = s, with k = |αβ| − 1). An infinite forward

(resp. backward) path is represented as a cycle among variables belonging to symbolic

valuations ρ(|α| − 1) and ρ(k), connected through relations
�
� and

≺
� (resp.

�
� and

	
�). Intuitively, in ρ there is an infinite (strict) forward path when there are two points

p, p′ in αβ – with p �= p′ – such that sv(p) = |α| − 1, sv(p′) = k, p ≡ p′, and p
�
� p′

(p
≺
� p′). Now, all results required to obtain Formula (1) equivalent to Property 1 are

provided.

We have the following property, which states that if in ρ = αβω there is a finite

forward path from point p to a point p′′ of the suffix βω , with p ≡ p′′, then there is also

a finite forward path from p to every point p′ between p and p′′ and such that p′ ≡ p.

Lemma 5. Let ρ = αβω ∈ SV (φ)ω be an ultimately periodic word, and β = β′s′β′′

for some β′, β′′ ∈ SV (φ)∗, s′ ∈ SV (φ); let i be the position of s′ in αβ (so ρ(i) = s′).
Let pi, pj be any two points of Pρ such that sv(pi) = i, sv(pj) = j, pi ≡ pj and
j > i+ |β|. Let p′ be the point such that pj ≡ p′ and sv(p′) = j − |β|. If pi

∼
� pj (for

some ∼∈ {�,≺,≈,�,�}), then also pi
∼
� p′.

Proof. First, since pi ≡ pj , then ρ(j − |β|) = ρ(j) = s′ holds.

Let us consider the case pi
�
� pj . Then, as exemplified in Figure 4, along the finite

forward path from pi to pj , there must be a point p1 to the right of (or aligned with) p′

such that p′ and p1 are locally related (p1 could be p′ itself). More precisely, it must be

0 ≤ sv(p1) + shift(p1) − (sv(p′) + shift(p′)) < −	φ
 + �φ� + 1, or there are two

consecutive points along the path from pi to pj that are not locally related, which is

impossible. Then, we have that:

1. pi
�
� p1

2. p1
�
� pj

3. either p′ � p1, or p′ � p1

We have two cases. If p′ � p1, then, from condition 2 above and the definition of
�
� we

have p′ �
� pj ; since pi, p

′ and pj all belong to βω and are such that pi ≡ p′ ≡ pj , then

the same forward path from p′ to pj , from which it descends p′ �
� pj , can be iterated

starting from pi, because suffix βω is periodic. Then, pi
�
� p′. If, instead, p′ � p1,

then, by condition 1 and the definitions of � and
�
�, condition pi

�
� p′ also holds.

25

i j
p' ≣ pi

pi pj ≣ pi

p1

...

j-|β|+1j-|β|

≼
...

≼

Figure 4: Relations between symbolic valuations i and j.

The case pi
≺
� pj is similar, when one considers that, in addition to conditions 1-3,

it must be pi
≺
� p1 or p1

≺
� pj . If p′ � p1, then if p1

≺
� pj also p′ ≺

� pj , and the

proof is as before. If, instead, p1
≺
� pj does not hold, then it must be that p′ ≺ p1,

otherwise from Remark 1 it descends that the value of the variable in p′ is equal to

the value in pj , and in turn that the value of the variable in pi is equal to the value in

pj , thus contradicting pi
≺
� pj . If p′ � p1, then if pi

≺
� p1 we have also pi

≺
� p′.

Otherwise, if pi
≺
� p1 does not hold, then it must be that p1

≺
� pj , and in this case

p′ � p1 must also hold (hence also pi
≺
� p′), or the arc from p1 to p′ is labeled with

=, and we have that pi
�
� p′, not pi

≺
� p′ (hence pi

≈
� p′ by Remark 1), and p′ ≺

� pj ,

which yields a contradiction.

The proofs for cases pi
�
� pj , pi

	
� pj , and pi

≈
� pj are analogous.

We immediately have the following corollary, which states that a path looping

through pi can be shortened to a single iteration.

Corollary 3. Let ρ = αβω ∈ SV (φ)ω , pi and pj as in Lemma 5. Let p′ be the point
such that pj ≡ p′ and sv(p′) = i+ |β|. Then pi

∼
� p′ holds.

The following lemma shows that there is an infinite non-strict (resp. strict) forward

path in ρ = (α′s)(β′s)ω if, and only if, there is an infinite non-strict (resp. strict)

forward path that loops through symbolic valuation s.

Lemma 6. Let ρ = αβω ∈ SV (φ)ω be an ultimately periodic word, with α = α′s
and β = β′s. In ρ there is an infinite non-strict (resp. strict) forward path if, and only
if, there is an infinite non-strict (resp. strict) forward path that contains a denumerable
set of points {pi}i∈N of Pρ such that:

1. sv(p0) = |α| − 1 = |α′|,
2. pi ≡ pj and sv(pi) < sv(pj) for all i < j ∈ N,

3. pi
�
� pi+1 (resp. pi

≺
� pi+1) for all i ∈ N.

Proof. Let us assume in ρ there is an infinite non-strict forward path, and let F =
{fi}i∈N be the points that it traverses (hence, fi � fi+1 for all i). Note that sv(f0)
can be any, not necessarily 0 or |α′|. Since suffix βω is periodic and each arc 〈fi, fi+1〉
in F connects two points that, for Condition 1 of Definition 6, have distance at most

−	φ
+�φ�+1 from one another, then there must be a sequence of points Q = {qi}i∈N

such that, for each qi ∈ Q

26

|α'|

p0 p1...

0 1 2

...

|α'|+r|β| sv(l0)

...

sv(l0)+r|β|
≼

l0 l1...

≼

Figure 5: Example of translation by sv(l0)− |α′|.

• sv(qi+1) > sv(qi) > |α′|
• there is a point fj ∈ F such that fj is locally equivalent to qi

• ρ(sv(qi)) = s.

In other words, Q is made by points of F (or locally equivalent ones) that belong to

one of the instances of symbolic valuation s in βω . For each i ∈ N qi
�
� qi+1 holds.

Since the number of points in symbolic valuation s is finite, there must be an element

qī ∈ Q such that an infinite number of points equivalent to qī appear in Q. In other

words, there is a denumerable sequence L = {li}i∈N such that

• l0 = qī

• for all i li ≡ qī holds

• for all i we have that both li
�
� li+1 and sv(li) < sv(li+1) hold.

Sequence L is part of an infinite forward path that starts from l0 and visits all li. The

desired sequence {pi}i∈N that satisfies conditions 1-3 is L translated by sv(l0)− |α′|,
i.e., for every i ≥ 0, sv(pi) = sv(li)−(sv(l0)−|α′|) so that it starts from the symbolic

valuation in position |α′|; the translation is possible because of the periodicity of βω .

Figure 5 shows an example of translation.

The proof in case of strict infinite paths is similar.

A similar lemma holds for backward paths. We have the following result.

Theorem 4. Let ρ = αβω ∈ SV (φ)ω be an ultimately periodic word, with α = α′s
and β = β′s. Then, there is a non-strict (resp. strict) infinite forward path in ρ if, and
only if, there are two points p, p′ of Pρ such that sv(p) = |α′|, sv(p′) = k, p ≡ p′, and

p
�
� p′ (resp. p ≺

� p′).

Proof. We consider the case for non-strict forward paths, the case for strict ones being

similar.

Assume in ρ there is an infinite non-strict forward path; then, by Lemma 6 there

is also an infinite non-strict forward path that contains a denumerable set of points

{pi}i∈N that satisfies conditions 1-3 of the lemma. Then, from Corollary 3 we imme-

diately have p0
�
� p′, with p′ ≡ p0 and with sv(p′) = |α′| + |β| = k (recall that

|αβ| = k + 1).

27

Conversely, assume that there are two points p, p′ such that p = (x, |α′|, h), p′ =
(x, k, h), p ≡ p′, and p

�
� p′. By definition of p

�
� p′, there exists a finite number

of points p1, p2, . . . such that p � p1 � p2 . . . � p′. This forward path can be

iterated infinitely many times, since p ≡ p′ and the suffix β is repeated infinitely often.

Therefore, point p and all points equivalent to p satisfy conditions 1-3 of Lemma 6. By

the same lemma, then, in ρ there is an infinite non-strict forward path.

Analogously, we can prove the following version of Theorem 4 in case of backward

paths.

Theorem 5. Let ρ = αβω ∈ SV (φ)ω be an ultimately periodic word, with α = α′s
and β = β′s. Then, there is a non-strict (resp. strict) infinite backward path in ρ if,
and only if, there are two points p, p′ such that sv(p) = |α′|, sv(p′) = k, p ≡ p′, and

p
�
� p′ (resp. p 	

� p′).

Our condition for the non existence of an arithmetic model for symbolic model

ρ = α′s(β′s)ω (with |α′sβ′s| = k+1) is formalized by Formula (1) below; it captures

the negation of Property 1 and takes advantage of the previous Theorems 4 and 5.

∃p1p2p′1p′2

⎛
⎜⎜⎜⎜⎝

p1 ≡ p2 ∧ p′1 ≡ p′2 ∧
sv(p1) = sv(p′1) = |α′| ∧ sv(p2) = sv(p′2) = k ∧
p1

�
� p2 ∧ p′1

�
� p′2 ∧ (p1

≺
� p2 ∨ p′1

	
� p′2) ∧

(p1 ≺ p′1 ∨ p′1 � p1)

⎞
⎟⎟⎟⎟⎠ . (1)

In Formula (1) four conditions are defined, similar to those of Property 1. Infor-

mally, Formula (1) says that:

1. there is an infinite forward path f from p1 (this derives from the fact that p1
�
�

p2, with p1 ≡ p2, sv(p1) = |α′|, and sv(p2) = k);

2. there is an infinite backward path b from p′1 (from p′1
�
� p′2, with p′1 ≡ p′2, where

sv(p′1) = |α′|, and sv(p′2) = k);

3. at least one of the paths f and b is strict;

4. there is an edge labeled with < from p1 to p′1 .

In particular, condition 4 of Property 1 is different from condition 4 of Formula (1).

In fact, the former one states that for each i, j ∈ N, given a forward path d and a

backward path e, whenever d(i) and e(j) belong to the same symbolic valuation (i.e.,

|i − j| < −	φ
 + �φ� + 1) there is an edge labeled by < from d(i) to e(j). In other

words, this means that point pd representing d(i) and point pe representing e(j) are

such that either pd ≺ pe or pe � pd. The next theorem shows that the conditions are

nevertheless equivalent when ρ = αβω . In fact, whereas Property 1 is defined for a

general Gρ, Formula (1) is tailored to the finite representation of ultimately periodic

symbolic models ρ = αβω .

Theorem 6. Over ultimately periodic symbolic models of the form α′s(β′s)ω , with
α, β ∈ SV (φ)∗ and s ∈ SV (φ), the negation of Property 1 is equivalent to Formula
(1).

28

Proof. Let ρ = α′s(β′s)ω be an infinite symbolic model and assume that Formula (1)

holds in α′sβ′s. Therefore, there exist two pair of points p1, p
′
1 and p2, p

′
2 satisfying

Formula (1), hence, sv(p1) = sv(p′1) = |α′|. By Theorems 4 and 5, p1, p
′
1 are visited,

respectively, by an infinite forward path and an infinite backward path, where at least

one of the two is strict (because p1
≺
� p2 ∨ p′1

	
� p′2 holds). Consider any two points

p̄2 and p̄′2 such that p1 ≡ p̄2, p′1 ≡ p̄′2. Since p1 ≺ p′1 ∨ p′1 � p1 holds, and for both

pairs p1, p
′
1 and p̄2, p̄

′
2 the symbolic valuation is s, then also p̄2 ≺ p̄′2 ∨ p̄′2 � p̄2 holds.

Now, consider any two points q and q′ in α′s(β′s)ω , such that sv(q) = sv(q′) and q
(resp. q′) belongs to the infinite strict forward (resp. backward) path from p1 (resp.

p′1). If p̄2 and p̄′2 are the points in the same iteration of the suffix β′s as q, q′ such that

p̄2 ≡ p2 and p̄′2 ≡ p′2, then q
�
� p̄2, q′ �

� p̄′2 and p̄2 ≺ p̄′2 ∨ p̄′2 � p̄2 hold. Hence,

there is a path from q to q′ along which all edges are labeled with = or with <, with at

least one edge labeled with <. Therefore, q ≺ q′ or q′ � q, i.e., from q to q′ there is an

edge labeled with <. The vertices u and v that show that Property 1 does not hold are

simply p1 and p′1.

Conversely, assume Property 1 does not hold; then, by Theorems 4 and 5 there are

points p1, p
′
1, p2, p

′
2 such that sv(p1) = sv(p′1) = |α′|, sv(p2) = sv(p′2) = k, p1 ≡ p2,

p′1 ≡ p′2, p1
�
� p2, p′1

�
� p′2, and p1

≺
� p2∨p′1

	
� p′2 hold. From the proof of Theorem

4, point p1 is equivalent to some point in the original forward path; similarly for point

p′1. Then, since p1 and p′1 belong to the same symbolic valuation, by condition 4 of

Property 1, they are connected through an edge labeled with <, i.e., p1 ≺ p′1 or p′1 � p1
hold.

The next theorem extends Proposition 5 to constraint system IPC∗, which does not

benefit from the completion property.

Proposition 6. Let φ ∈ CLTLB(D) and D be IPC∗. Formula φ is k-satisfiable for
some k ∈ N and the induced symbolic model ρ = αβω does not satisfy Formula (1) if,
and only if, there exists an arithmetic model σ such that σ, 0 |= φ.

Proof. By Theorems 1, 2, and 3, φ is k-satisfiable for some k ∈ N if, and only if,

formula |φ|k is satisfiable; in addition, when formula |φ|k is satisfiable, it induces a

model σk and a sequence αβ of symbolic valuations of length k representing an infinite

sequence ρ = αβω of symbolic valuations such that ρ
sym

φ. Since Formula (1) does

not hold for ρ, then by Theorem 6 Property 1 holds, hence, by Lemma 2, ρ admits an

arithmetic model σ such that σ, 0 |= φ.

Conversely, if formula φ is satisfiable, then automaton Aφ recognizes locally con-

sistent symbolic models of φ which satisfy Property 1. Then, a symbolic model αβω ∈
L (Aφ) which satisfies the negation of Formula (1) and a k-bounded model σk, 0 |=k

αβ can be obtained as in the proof of Proposition 5.

Bounded Encoding of Formula (1)

The encoding shown afterwards represents, by means of a finite representation,

infinite – strict and non strict – paths over infinite symbolic models. As before, we

consider models ρ = αβω where α = α′s and β = β′s, and we consider the finite

sequence of symbolic valuations α′sβ′s. We indicate by Pαβ ⊂ Pρ the set of points

29

of finite path α′sβ′s (for all p ∈ Pαβ , sv(p) ∈ [0, k + 1]). We use the points of Pαβ

to capture properties of Pρ. To encode the previous formulae into QF-EUD formulae,

where D is a suitable constraint system embedding N and having the successor func-

tion plus order <, we rearrange the formulae above by splitting information, which is

now encapsulated in the notion of point, on variables and positions over the model.

Predicate f<
x,y : N3 → {true, false} for all pairs x, y ∈ V ∪ const(φ) (resp. f≤

x,y)

encodes relation p1 ≺ p2 (resp. p1 � p2) where p1 = (x, j, h) and p2 = (y, j,m).
For all h,m ∈ [φ
, �φ�] predicates f<

x,y and f≤
x,y are defined by the following table,

where Ohx is x if h = 0, Xhx if h > 0, and Yhx if h < 0 (similarly for Omy). Denote

with Ohx(j) the unary function associated with a.t.t. Ohx introduced in Section 3.3

and obeying |ArithConstraints|k.

0 ≤ j ≤ k + 1 and h ≤ m 0 ≤ j ≤ k + 1 and h > m

f<
x,y(j, h,m) ⇔ Ohx(j) < Omy(j) ¬f<

x,y(j, h,m)

f≤
x,y(j, h,m) ⇔ Ohx(j) ≤ Omy(j) ¬f≤

x,y(j, h,m)

Constants are implicitly included in the model. For instance, if 5 ∈ const(φ) and

x ∈ V we have formulae f<
x,5(j, 0,m) ⇔ x(j) < 5 and f<

5,x(j, 0,m) ⇔ 5 < x(j).

When x, y ∈ const(φ) then f<
x,y ⇔ x < y and f≤

x,y ⇔ x ≤ y for all 0 ≤ j ≤ k + 1

and h ≤ m; ¬f<
x,y and ¬f≤

x,y for all 0 ≤ j ≤ k + 1 and h > m.

Relation
≺
� (resp. relation

�
�) is encoded by the uninterpreted predicates

F<
x,y : N4 → {true, false} (resp. F≤

x,y : N4 → {true, false}) for all pairs of

variables x, y ∈ V ∪ const(φ). To build in practice
≺
� (resp.,

�
�) through F< (resp.

F≤), over points of the symbolic model α′sβ′s, we construct the transitive closure of

F< (resp. F≤) explicitly. Starting from ρ(0), we propagate the information about

relations ≺ and � that are represented by f< and f≤ among all points representing

variables of model ρ. In fact, it is immediate to show that p1
≺
� p2 holds if, and only if,

there is a point p such that either p1 ≺ p and p
�
� p2 or p1 � p and p

≺
� p2 (note that

p cannot be locally equivalent to both p1 and p2, but it can be locally equivalent to one

of them). Similarly for the other relations. Figure 6 provides a graphical representation

for
≺
�. Formulae defining F<

x,y and F≤
x,y are the following:

p2

p1
p

i i+ 1

y

x

≺

≺
�

Figure 6: Adjacent symbolic valuations ρ(i) (solid line) and ρ(i+ 1) (dotted line) not covering both points

p1 = (y, i,−1) and p2 = (x, j, h) (with j > i and −1 ≤ h ≤ 1) of the model, with p1 ≺ p, p
�
� p2 and

p1
≺
� p2.

30

F<
x,y(j, h, i,m) ⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∨
z∈V

�φ∨
u=�φ�

f<
x,z(j, h, u) ∧ F≤

z,y(j, u, i,m)∨

∨
z∈V

�φ∨
u=�φ�

f≤
x,z(j, h, u) ∧ F<

z,y(j, u, i,m)

(2)

F≤
x,y(j, h, i,m) ⇔

∨
z∈V

�φ∨
u=�φ�

f≤
x,z(j, h, u) ∧ F≤

z,y(j, u, i,m) (3)

for all j, i ∈ [0, k+1] with j < i and for all h,m ∈ [φ
, �φ�] such that i+m−(j+h) >
−	φ
 + �φ�, (x = z) ⇒ (h �= u) and for all pairs x, y ∈ V ∪ const(φ). When

j = i ∈ [0, k + 1] and h ≤ m, with h,m ∈ [φ
, �φ�]:

F<
x,y(j, h, j,m) ⇔ f<

x,y(j, h,m)

F≤
x,y(j, h, j,m) ⇔ f≤

x,y(j, h,m)

When j + h > i+m:
¬F<

x,y(j, h, i,m)

¬F≤
x,y(j, h, i,m)

Figure 7 shows how predicate F<
x,x(i, 0, j, 1) is defined as conjunction of local relation

f<
x,y(i, 0, 1) and of F≤

y,x(i, 1, j, 1).

i j

f<
x,y(i, 0, 1)

y

x

F≤
y,x(i, 1, j, 1)

F<
x,x(i, 0, j, 1)

Figure 7: Definition of F< by local relations f<.

The following formula |CongruenceConstraints|k defines congruence classes of

locally equivalent points for relations
≺
�,

�
� captured by predicates F< and F≤. In

fact, observe that, since from p1 � p2 we obtain p′1 � p′2, for all p′1 (resp. p′2) that

is locally equivalent to p1 (resp. p′2), then, in general, the congruence extends to
�
�;

i.e., from p1
�
� p2 we obtain p′1

�
� p′2 for all p′1, p

′
2 locally equivalent to p1, p2. An

analogous argument holds for
≺
�,

�
� and

	
�.

Let us consider two points (x, j, h) and (y, i,m) of Pαβ such that (x, j, h) ∼
(y, i,m). The first set of formulae enforces congruence for all points (x, j′, h′) that are

locally equivalent to (x, j, h). In particular, each formula defines relation (x, j′, h′) ∼
(y, i,m) when point (x, j′, h′) is the local equivalent of (x, j, h) belonging to the sym-

bolic valuation at position j′ on the right of the one at position j, i.e., j′ = j + 1. As

31

the position j′ increases by 1, then shift h′ is decreased also by 1, i.e., h′ = h− 1.

i ∈ [0, k + 1] and m ∈ [φ
, �φ�] and j ∈ [0, k] and h ∈ [φ
+ 1, �φ�]
F<
x,y(j, h, i,m) ⇔ F<

x,y(j + 1, h− 1, i,m)

The second set of formulae is similar to the previous one and considers all points

(y, i′,m′) locally equivalent to (y, i,m).

j ∈ [0, k + 1] and h ∈ [φ
, �φ�] and i ∈ [0, k] and m ∈ [φ
+ 1, �φ�]
F<
x,y(j, h, i,m) ⇔ F<

x,y(j, h, i+ 1,m− 1)

Predicates b>x,y, b
≥
x,y for local backward paths �,�, predicates B>

x,y,B
≥
x,y for

backward paths
	
�,

�
� and congruence among points are defined similarly. For brevity,

we only show the definition of b>x,y and b≥x,y , the others are straightforward.

0 ≤ j ≤ k + 1 and h ≤ m 0 ≤ j ≤ k + 1 and h > m

b>x,y(j, h,m) ⇔ Ohx(j) > Omy(j) ¬b>x,y(j, h,m)

b≥x,y(j, h,m) ⇔ Ohx(j) ≥ Omy(j) ¬b≥x,y(j, h,m)

for all h,m ∈ [φ
, �φ�]. When both x, y ∈ const(φ) then b>x,y(j, h,m) ⇔ x > y

and b≥x,y(j, h,m) ⇔ x ≥ y for all 0 ≤ j ≤ k + 1 and h ≤ m; ¬b>x,y(j, h,m) and

¬b≥x,y(j, h,m) for all 0 ≤ j ≤ k + 1 and h > m.

Finally, the condition of existence defined by Formula (1) is encoded by the follow-

ing QF-EUD formula. The condition is parametric with respect to a pair of variables

x, x′ ∈ V ∪ const(φ). The condition is meaningful only if x �= x′ and if x /∈ const(φ)
or x′ /∈ const(φ). In fact, a constant value never generates a strict (forward or back-

ward) path; therefore, two constants cannot satisfy the condition of non-existence of an

arithmetical model. Formula Cx,x′ below captures the existence in ρ(|α′|) of a strict

relation < between two points, one of a forward and one of backward path, which in-

volve variables x and x′. Variable loop has already been introduced in Section 3.3: it

defines the position where, in αβ, suffix β starts (as already explained |α′| = loop).

Cx,x′ :=
∨

h,h′∈[�φ�,�φ]

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

F≤
x,x(loop, h, k + 1, h) ∧B>

x′,x′(loop, h
′, k + 1, h′)

∨
F<
x,x(loop, h, k + 1, h) ∧B≥

x′,x′(loop, h
′, k + 1, h′)

⎞
⎟⎟⎠

∧
f<
x,x′(loop, h, h

′) ∨ b>x′,x(loop, h
′, h)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

In Formula Cx,x′ , we use explicitly points that were symbolically represented in

Formula (1): p1 = (x, loop, h), p′1 = (x′, loop, h′), p2 = (x, k + 1, h), p′2 =
(x′, k+1, h′). It is immediate to see that formula f<

x,x′(loop, h, h
′)∨b>x′,x(loop, h′, h)

encodes p1 ≺ p′1 ∨ p′1 � p1 of Formula (1) and formula F≤
x,x(loop, h, k + 1, h) ∧

B>
x′,x′(loop, h

′, k + 1, h′) , encodes p1
�
� p2 ∧ p′1

�
� p′2 ∧ p1

≺
� p2 (similarly for

formula F<
x,x(loop, h, k + 1, h) ∧B≥

x′,x′(loop, h
′, k + 1, h′)).

32

Formula (1) corresponds to
∨

x,x′ Cx,x′ , where x, x′ range over all pairs of elements

of V ∪const(φ) such that x �= x′ and at least of x, x′ belongs to V . Then, ¬∨
x,x′ Cx,x′

captures the existence condition of an arithmetical model, and corresponds to the fol-
lowing formula: ∧

x, x′ ∈ V ∪ const(φ)

x
= x′, x /∈ const(φ) ∨ x′ /∈ const(φ)

¬Cx,x′ (4)

Finally, the following result is a direct consequence of Proposition 6 and of the fact

that Formula (4) captures the negation of Formula (1).

Theorem 7. Let φ be CLTLB(IPC∗) formula. φ is satisfiable if, and only if, the fol-
lowing QF-EU(D) formula is satisfiable with respect to some k ∈ N:

|φ|k ∧ (4). (5)

Proof. Suppose φ is satisfiable. Then, by Theorems 1–3, |φ|k is satisfiable for some

k ∈ N. In addition, by Proposition 6, the induced locally consistent symbolic model

ρ = αβω satisfies the negation of Formula (1). Since Formula (4) captures the negation

of Formula (1), then the model of |φ|k also satisfies (4).

Conversely, if |φ|k ∧ (4) is satisfiable, then by Theorems 1–3 there is ρ = αβω

such that ρ
sym

φ, and since Formula (4) captures the negation of Formula (1), by

Proposition 6 φ is satisfiable.

4.1. Simplifying the condition of existence of arithmetical models
In this section, we relax the condition of existence of an arithmetical model σ for

sequences of symbolic valuations of CLTLB(IPC∗) formulae. In fact, Property 1 is

stronger than necessary in those cases in which not all variables appearing in a formula

φ are compared against each other. Consider for example the following formula

G(x < Xx ∧ ¬(y < Xy)) (6)

which enforces strict increasing monotonicity for variable x and decreasing mono-

tonicity for variable y. Figure 8 shows a symbolic model for Formula (6) which does

not admit an arithmetic model, as it does not satisfy Property 1 (in fact, the strict for-

ward path that visits all points {(x, i, 0)}i∈N and the strict backward path that visits all

points {(y, i, 0)}i∈N are such that, for all i, (x, i, 0) ≺ (y, i, 0)). However, in Formula

< < < <

= > = >

<

x

y

<<<<

...

...

0 1 2 3 4

Figure 8: A symbolic model for Formula (6) that does not admit an arithmetic model.

(6) x and y are not compared, neither directly, nor indirectly: we can still obtain an

33

arithmetic model for Formula (6) if we disregard the relations between x and y in the

symbolic model of Figure 8, and produce an assignment of the variables that only re-

spects the relations between variables that are actually compared in the formula (i.e.,

x with itself, and y with itself). Figure 9 shows a “weaker” version of the symbolic

model of Figure 8, one that is more concise to encode into QF-EU(D) formulae than

the maximally consistent one, as it does not contain any comparison between unrelated

terms.

< < < <

= > = >

x

y

...

...

0 1 2 3 4

Figure 9: A weak symbolic model for Formula (6).

To characterize sequences of symbolic valuations which do not take into account

relations among variables that are not compared with each other in a formula φ, we

first introduce a binary relation � on variables of V . We say that, for a pair of variables

x, y ∈ V , x � y if, and only if, there is an IPC∗ constraint R(Oix,Ojy) occurring in

φ, for some i, j ∈ Z (we recall that Onx stands for Y−nx when n < 0, for Xnx when

n > 0, and for x when n = 0). The equivalence relation obtained by considering the

reflexive, symmetric and transitive closure of � induces a finite partition {V1, . . . , Vh}
of set V . Then, we introduce the notions of weak symbolic valuation and of sequence
of weak symbolic valuations.

Definition 10. Given a symbolic valuation sv ∈ SV (φ), its weak version sv is ob-

tained by removing from sv all relations R(Xix,Xjy) where x ∈ Vl and y ∈ Vt with

l �= t. We similarly define the weak version ρ of a sequence ρ of symbolic valuations.

Given a CLTLB(IPC∗) formula φ, we indicate with SVw(φ) the set of all its weak

symbolic valuations. A weak symbolic model ρ ∈ SVw(φ)
ω of φ is a sequence of weak

symbolic valuations such that ρ, 0
sym

φ. Given ρ ∈ SV (φ)ω and its weak version ρ,

Gρ is the subgraph of Gρ obtained by removing all arcs between points p = (x, j, h),
p′ = (y, i,m) such that x ∈ Vl, y ∈ Vt, and l �= t.

The next lemma shows that focusing on weak symbolic valuations is enough to

determine whether symbolic models for φ exist or not.

Lemma 7. Let φ be a CLTLB(IPC∗) formula. Given ρ ∈ SV (φ)ω such that ρ, 0
sym

φ,
we have that ρ, 0

sym

φ. Conversely, given a sequence ν ∈ SVw(φ) of weak symbolic
valuations, if ν, 0

sym

φ, then for any ρ ∈ SV (φ) such that ρ = ν we also have that
ρ, 0

sym

φ.

Proof. Assume that ρ
sym

φ. We only need to focus on the base case, as the inductive

one is trivial. For all i ≥ 0 and all R(α1, α2) occurring in φ, ρ, i
sym

R(α1, α2) if,

34

and only if, R(α1, α2) ∈ ρ(i). Since R(α1, α2) occurs in φ then, by Definition 10, we

have that R(α1, α2) ∈ ρ(i), hence ρ, i
sym

R(α1, α2).

The converse case is similar. If ν ∈ SVw(φ) is such that ν, 0
sym

φ, then for all i and

R(α1, α2) that occurs in φ we have that ν, i
sym

R(α1, α2) if, and only if, R(α1, α2) ∈
ν(i); in addition, for any ρ such that ρ = ν we have R(α1, α2) ∈ ρ(i) if, and only if,

R(α1, α2) ∈ ν(i). Finally, ν, i
sym

R(α1, α2) implies ρ, i
sym

R(α1, α2).

We have the following variant of Lemma 2, which defines a condition of existence

of arithmetical models for symbolic models defined on weak symbolic valuations.

Lemma 8. Let φ be a CLTLB(IPC∗) formula. Given an ultimately periodic, locally
consistent sequence ρ ∈ SV (φ)ω of symbolic valuations, if there is σ : Z × V → D
such that σ, 0 |= ρ, then Property 1 holds for graph Gρ. Conversely, if ν ∈ SVw(φ)

ω

is an ultimately periodic, locally consistent sequence of weak symbolic valuations such
that Property 1 holds for graph Gν , then there are σ, ρ such that ρ = ν and σ, 0 |= ρ.

Proof. If there is σ such that σ, 0 |= ρ then, by Lemma 2, Property 1 holds for Gρ.

Since Gρ is a subgraph of Gρ, a fortiori Property 1 holds for Gρ.

Conversely, if Property 1 holds for Gν , then each set of variables Vi, with i ∈
{1..h}, in which V is partitioned induces an ultimately periodic sequence νVi

of sym-

bolic valuations that only include constraints on Vi, such that its graph GνVi
is not

connected to any other graph GνVj
, for j �= i. Then, Lemma 2 can be applied to νVi

,

which then admits an arithmetic model σVi : Z × Vi → D. By definition, each σVi

assigns a different set of variables, so the complete arithmetic model σ is simply the

union of all σVi
. By Lemma 3, σ induces a sequence of symbolic valuations ρ, and

σ, 0 |= ρ, ρ = ν by construction.

Thanks to Lemmata 7 and 8, in Formula (1) and in the corresponding QF-EU(D)

encoding of Formula (4) we can focus only on relations between points that belong to

the same set Vi.

5. Complexity and Completeness

Complexity

In the following we provide an estimation of the size of the formulae constitut-

ing the encoding of Section 3.3, including, where they are needed, the constraints of

Section 4.

The encoding of Section 3.3 is linear in the size of the formula φ (and of the bound

k). In fact, if m is the total number of subformulae and n is the total number of

temporal operators U and R occurring in φ, the QF-EUD encoding requires n + 1
integer variables (one each for loop and the jψ’s) and m unary predicates (one for

each subformula in cl(φ)).
The total size of the formulae in Section 4 is polynomial in the bound k, in the

cardinality of the set of variables and constants, and in the size of symbolic valuations.

In fact, the encoding of the condition for the existence of an arithmetical model requires

35

a QF-EU(N, <,=) formula of size quadratic in the length k, cubic in the number |V |
of variables, and double quadratic in the size of symbolic valuations.

Let λ be the size λ = �φ� − 	φ
 + 1 of symbolic valuations and V ′ be the set

V ∪ const(φ). The total number of non-trivial predicates f≤
x,y,f

<
x,y (resp. b≥x,y, b

>
x,y),

i.e., those where h ≤ m, is defined by the following parametric formula (where a, b are

the sets to which x, y belong, respectively):

N(a, b) = (k + 1)
λ∑

i=1

|a| · ((λ− i) + (|b| − 1) · (λ− i+ 1))

= (k + 1)

(
|a||b|λ(λ+ 1)

2
− |a|λ

)
.

Each predicate has fixed dimension and the number of non-trivial ones results from the

sum of the following three cases:

• x, y ∈ V , which is N(V, V)

• x ∈ V , y ∈ const(φ), which is N(V, const(φ))

• x ∈ const(φ), y ∈ V , which is N(const(φ), V).

that is bounded by Nlocal = N(V ′, V ′) ≤ (k + 1)|V ′|2λ2.

To compute the size of formulae defining F≤
x,y,F

<
x,y (resp. B≥

x,y,B
>
x,y) we first

determine the number of pairs of points for which F≤
x,y(j, h, i,m) is not trivially false.

The following function Np,p′

Np,p′ = |V ′|
k+�φ∑
i=�φ�

|V ′|(k + �φ� − i) = |V ′|2
k+λ−1∑
i=0

i = |V ′|2 (k + λ− 1)(k + λ)

2

≤ |V ′|2(k + λ)2

corresponds to the number of pairs of points p, p′ that generate non-trivial predicates

F≤
x,y , F<

x,y (resp. B≥
x,y , B>

x,y) because their position is such that sv(p1) + shift(p1) ≤
sv(p2) + shift(p2) (resp. sv(p1) + shift(p1) ≥ sv(p2) + shift(p2)). We compute the

size of (non-trivial) formulae (2)-(3) defining F<
x,y,F

≤
x,y (and B>

x,y,B
≥
x,y) by counting

the number of subformulae involved in their definition. We consider only the case for

F<
x,y because the others have the same (worst) complexity. Each Formula (2) involves,

in the worst case (i.e., for points that do not belong to the same symbolic valuation),

|V |−1 variables z ∈ V with respect to λ different positions u. Then, an instance of (2)

requires at most (|V |−1)λ disjuncts. The upper bound for the total size of all formulae

defining predicates F≤
x,y,F

<
x,y (resp. B≥

x,y,B
>
x,y) is

Nfar = Np,p′2(|V | − 1)λ ≤ λ|V ||V ′|2(k + λ)2 ≤ λ|V ′|3(k + λ)2.

The analysis of formulae |CongruenceConstraints|k shows that each point be-

longs to λ symbolic valuations (e.g., if �φ� = 0, 	φ
 = −1, then λ = 2, and points

(x, 4, 1) and (x, 5, 0) correspond to the same element), and for all pairs p1, p2 we define

36

the consistency of the definition of predicate F<
x,y among the λ points corresponding

to p1 and the λ points corresponding to p2. Therefore, we need at most

NCC = 4λ2|V ′|2k2

constraints |CongruenceConstraints|k, where each constraint has fixed dimension.

Finally, predicate Cx,x′ appears in Formula (4) once for each of the |V ′||V |λ2

pairs of points x, x′. In addition, each instance of Cx,x′ has λ2 disjuncts, one for each

possible pair h, h′ ∈ [φ
, �φ�]. Therefore, the total size of Formula (4) is NC =
|V ||V ′|λ4.

Finally, the complete set of formulae that we require to capture the existence con-

dition of arithmetical models over discrete domains has the following total size:

4Nlocal + 4Nfar + 4NCC +NC ≤
4(k + 1)|V ′|2λ2 + 4λ|V ′|3(k + λ)2 + 16λ2|V ′|2k2 + |V ||V ′|λ4.

In conclusion, for a given formula φ, the parameters λ and |V ′| are fixed, hence the

size is O(k2).

Completeness

Completeness has been studied in depth for Bounded Model Checking. Given a

state-transition system M , a temporal logic property φ and a bound k > 0, BMC looks

for a witness of length k for ¬φ. If no witness exists then length k may be increased

and BMC may be reapplied. In principle, the process terminates when a witness is

found or when k reaches a value, the completeness threshold (see Definition 4), which

guarantees that if no counterexample has been found so far, then no counterexample

disproving property φ exists in the model. LTL always has a completeness threshold;

[19] shows a procedure to estimate an over-approximation of the value, by satisfying

a formula representing the existence of an accepting run of the product automaton

M × B¬φ, where B¬φ is the Büchi automaton for ¬φ and M is the system to be

verified.

In [20] we have already given a positive answer to the problem of whether there ex-

ists a completeness threshold for the satisfiability problem of CLTLB(D), provided that

ultimately periodic symbolic models of the form αβω of CLTLB(D) formulae admit an

arithmetic model. By the results of Section 2.4.1 this occurs when the constraint sys-

tem D has the completion property, or when it is possible to define an automaton AC .

In [20] we used a mixed automata- and logic-based approach to prove the existence of

a completeness threshold. In that approach, automata AC and A� described in Section

2.4 are represented by means of two CLTLB(D) formulae φAC
and φA�

. Formulae

φAC
and φA�

capture the runs of automata AC and A�, respectively. Then, checking

the satisfiability for φ is reduced to studying a finite amount of k-satisfiability prob-

lems of formula φ∧ φAC
∧ φA�

, for increasing values of k. Automaton A� recognizes

sequences of locally consistent symbolic valuations, so its runs are the models of for-

mula φA�
:= G(

∨m
1 svi). Since the bounded representation of formulae (see Section

3.3) is not contradictory (i.e., two consecutive symbolic valuations are satisfiable when

they are locally consistent), the previous formula exactly represents words of L (A�).

37

Formula φAC
, instead, is derived from automaton AC , by means of the translation in

[21]. Automaton AC is built by complementing automaton A¬C [22], recognizing

the complement language of L (AC), which is obtained according to the procedure

proposed in [9]. Finally, to check the satisfiability of φ we verify whether formula

φ ∧ φAC
∧ φA�

is k-satisfiable, with k ∈ N. The existence of a finite completeness

threshold for the procedure above is a consequence of the existence of automaton Aφ

(see Section 2.4) recognizing symbolic models of φ, and of Lemma 2 and Proposition

2. Let rd(Aφ) be the recurrence diameter of Aφ, i.e., the longest loop-free path in the

automaton that starts from an initial state [23]. Then, if formula φ ∧ φAC
∧ φA�

is not

k-satisfiable for all k ∈ [1, rd(Aφ) + 1], then there is no ultimately periodic symbolic

model ρ such that both ρ, 0
sym

φ and there exists an arithmetic model σ with σ, 0 |= ρ.

Hence, formula φ is unsatisfiable. Otherwise, we have found an ultimately periodic

symbolic model ρ of length k > 0 which admits an arithmetic model σ. From the

k-bounded solution, we have a symbolic model ρ = αβω and its bounded arithmetic

model σk. The infinite model σ is built from σk by iterating infinitely many times the

sequence of symbolic valuations in β. Therefore, the completeness bound for BSP of

CLTLB(D) formulae is defined by the recurrence diameter of Aφ.

Thanks to the results of the previous sections, we can simplify the method pre-

sented in [20]. We avoid the construction of automaton A¬C through Safra’s method

and the construction of set SV (φ). In particular, we take advantage of the definition of

k-bounded models of φ. By Lemma 4, a finite sequence σk of D-valuations induces a

unique locally consistent sequence of symbolic valuations ρ, such that σk, i |= ρ(i), for

all i ∈ [0, k]. Therefore, we do not need to precompute set SV (φ) of symbolic valua-

tions and formula φA�
is no longer needed to obtain a finite locally consistent sequence

of symbolic valuations. If φ is a formula of CLTLB(D) and D has the completion

property, we can simply solve k-satisfiability problems for φ instead of φ∧ φA�
; when

D does not have the completion property, Formula (1) allows us to avoid the construc-

tion of AC . In the first case, by Theorems 1 – 3 and Proposition 5 |φ|k is satisfiable

if, and only if, there is an ultimately periodic run αβω which is recognized by automa-

ton As × A�. In the second case, Proposition 6 guarantees that |φ|k is satisfiable and

Formula (1) does not hold if, and only if, φ is satisfiable. Therefore, model αβω ob-

tained by solving the k-satisfiability problem belongs to the language recognized by

automaton As ×A� and also to the one recognized by AC .

The completeness property still holds without the explicit representation of au-

tomata A� and AC in the formula we check for satisfiability. Since the role of Formula

(1) is to filter, by eliminating edges in the automaton, some of the symbolic models of

φ which, in turn, by Theorems 1 – 3 correspond to the runs of automaton As ×A�, the

completeness threshold for our decision procedure can be over-approximated by the

recurrence diameter of As × A�, which is at most exponential in the size of φ. Since

the number of control states of automaton As is at most O(2|φ|), a rough estimation

for the completeness threshold is given by the value |SV (φ)| · 2|φ|. The number of

symbolic valuations |SV (φ)| is, in the worst case, exponential in the size of formula φ
[9].

38

6. Applications of k-bounded satisfiability

The decision procedure defined in this paper has been implemented in our bounded

satisfiability checker Zot (available at http://zot.googlecode.com). The ae2Zot
plug-in of Zot solves k-satisfiability for CLTLB over Quantifier-Free Presburger arith-

metic (QFP), of which IPC∗ is a fragment, but it also supports the constraint system

(R, <,=). Even if constraint systems like IPC∗, or fragments thereof, do not provide

a counting mechanism (provided, for instance, through the addition of functions, such

as + in QFP), they can still be used to represent an abstraction of a richer transition

system. In fact, functions like addition, or in general relations over unbounded vari-

ables which embed a counting mechanism, make the satisfiability problem of CLTLB

undecidable (see [9, Section 9.3]).

We next exemplify the use of the CLTLB logic to specify and verify systems be-

havior, thus highlighting the applicability of the approach.

We use CLTLB over (D,<,=) to specify a sorting process of a sequence of fixed

length N of values in D. Though for reasons of conciseness we do not present all

details and formulae of the example, we provide its salient points. Let v ∈ DN be

the (initial) vector that we want to sort and a ∈ DN be the vector during each step of

sorting. We write v(i) for the i-th component of v, 1 ≤ i ≤ N . Notice that we will

use the notation a(i), which, strictly speaking, is not a CLTLB term; however, since

the length of the array is fixed, we can use N variables ai to represent the elements of

a, one for each a(i). Then, in the following, if a(i) is replaced with ai, one obtains

CLTLB(D,<,=) formulae. We define a set of formulae representing a sorting process

which swaps unsorted pairs of values at some nondeterministically chosen position in

the vector (we report here only the most relevant formulae). A variable p ∈ [0, N − 1]
stores the position of elements which are a candidate pair for swapping; i.e., p = i
means that a(i) is swapped with a(i + 1), while p = 0 means that no elements are

swapped (0 is not a position of the vector). A nondeterministic algorithm can swap two

arbitrary elements in [1, N]; then, the only constraint on variable p is that it holds that

0 ≤ p < N , i.e.: G(p < N ∧ p ≥ 0). An unsorted pair of values is indexed by a

nonzero value of p:

G

⎛
⎝ ∧

i∈[1,N−1]

p = i ⇒ a(i) > a(i+ 1)

⎞
⎠ .

A swap between two adjacent positions of a is formalized by the following formula:

G

⎛
⎝ ∧

i∈[1,N−1]

p = i ⇒ Xa(i) = a(i+ 1) ∧Xa(i+ 1) = a(i)

⎞
⎠ .

Vector a is unchanged when no pairs are candidate for swapping: G(p = 0 ⇒∧
i∈[1,N](a(i) = Xa(i))). For brevity, we omit the formula defining the initial con-

figuration of vectors, which imposes that, at instant 0, vectors a and v are equal (i.e.,

a(i) = v(i) for all 1 ≤ i ≤ N), and that v does not contain duplicates. Various prop-

erties of the algorithm have been verified through the ae2Zot plugin of the Zot tool,

39

e.g., whether there exists a way to sort array a within k steps (with k the verification

bound), which is formalized by the following formula:

F

⎛
⎝ ∧

i∈[1,N−1]

(a(i) ≤ a(i+ 1)) ∧
∧

i∈[1,N]

∨
j∈[1,N]

(a(i) = v(j))

⎞
⎠ .

7. Related works

For some constraint system D more expressive than IPC∗, the future fragment

CLTL(D) can encode runs of two-counter (Minsky) machines. For example, to rep-

resent increment and decrement instructions the grammar of formulae ξ of IPC∗ can

be enriched with formulae of the form x < y + d, where d ∈ D and x, y are vari-

ables (these correspond to difference logic – DL – constraints). Hereafter, we write

CLTLb
a(D) to denote the language of CLTL formulae such that the cardinality of V is

a and �φ� is b (while 	φ
 is of course 0).

The first undecidability result for the satisfiability of CLTL is given by Comon and

Cortier [5, Theorem 3], showing that halting runs of a Minsky machine can be encoded

into CLTL1
3(DL) formulae, where one auxiliary counter encodes control states. There-

fore, the satisfiability problem for CLTL1
3(DL) is Σ1

1-hard. The authors suggest a way

to regain decidability by means of a syntactic restriction on formulae including the U
temporal operator. The “flat” fragment of CLTL1

ω(DL) consists of CLTL formulae

such that subformula φ of φUψ is �, ⊥ or a conjunction ζ1 ∧ · · · ∧ ζm where ζi ∈ DL.

The fragment has a nice correspondence with a special class of counter system (flat

relational counter system) with Büchi acceptance condition, for which the emptiness

problem is decidable. Satisfiability is undecidable also in the case of CLTL2
1(DL) and

CLTL1
2(DL). In fact, even though CLTL2

1(DL) has only one variable, it is expres-

sive enough to encode runs of Minsky machines: models of CLTL2
1(DL) formulae can

represent counter c1 at even positions and counter c2 at odd positions. The recurrence

problem for nondeterministic Minsky machines, which is Σ1
1-hard [24], can be reduced

to the satisfiability problem for CLTL2
1(DL), which then results Σ1

1-hard. It also fol-

lows that the satisfiability problem of CLTL with two integer variables, CLTL1
2(DL) is

Σ1
1-hard. In fact, formulae of CLTL2

1(DL) can be syntactically translated to formulae

of CLTL1
2(DL) by means of a map f such that φ belonging to CLTL2

1(DL) is satisfi-

able if, and only if, f(φ) belonging to CLTL1
2(DL) is satisfiable. Both the languages

CLTL2
1(DL) and CLTL1

2(DL) are indeed Σ1
1-complete, by using a reduction from the

Σ1
1-hard model-checking problem to their satisfiability.

The satisfiability (and model-checking) problem for CLTL over structure (D,<,=)
with D ∈ {N,Z,Q,R} is studied in [9], and for IPC∗ in [8]. Decidability of the

satisfiability problem for the above cases is shown by means of an automata-based

approach similar to the standard case for LTL. Satisfiability for CLTLω
ω(IPC

∗) and

CLTLω
ω(<,=) over N,Z,Q,R is obtained by Demri and Gascon in [13] by reducing it

to the emptiness of Büchi automata. Given a CLTL formula φ, it is possible to define an

automaton Aφ such that φ is satisfiable if, and only if, L (Aφ) is not empty. Since the

emptiness of L (Aφ) in the considered structures is decidable with a PSPACE upper

bound (in the dimension of φ), then the satisfiability problem is also decidable with

40

the same complexity. Since the procedure is purely symbolic, constraints representing

equality relation x = d and constraints of the form x ≡c d, with d, c ∈ D, are explicitly

considered, as no arithmetical model σ is available. A symbolic valuation is defined

there as a triple 〈S1, S2, S3〉 where S1 is a maximally consistent set of D-constraints

over terms(φ) and const(φ); S2 is a set of constraints of the form x = d, and S3 is a

set of constraints x ≡K c, where constant K is the least common multiple of constants

occurring in constraints x ≡c y and x ≡c y + d.

Schüle and Schneider [25] provide a general algorithm to decide bounded LTL(L)
model-checking problems of infinite state systems where L is a general underlying

logic. An LTL(L) formula φ is translated into an equivalent Büchi automaton Aφ

which is symbolically represented by means of a structure defining its transition rela-

tion and acceptance condition. Then, the LTL(L) model-checking problem is reduced

to the μ-calculus model-checking problem modulo L, i.e., a verification of a fixpoint

problem for a given Kripke structure with respect to symbolic representations of Aφ

and the underlying language L. Whenever properties are neither proved nor disproved

over finite computations, their truth value cannot be defined. For this reason, the au-

thors adopt a three-valued logic to evaluate formulae whose components may have

undefined value. Bounded model-checking is performed essentially by computing ap-

proximate fixpoint sets of the desired formula and by checking whether the initial con-

dition is a subset of such set of states. The work of [25] is based on previous results

presented in [26], which defines a hierarchy of Büchi automata (and, therefore, tempo-

ral formulae) for which infinite state bounded model-checking is complete. The speci-

fication language of [26] is the quantifier-free fragment of Presburger LTL, LTL(PA),
with past-time temporal modalities. The bounded model-checking problem is defined

with respect to Kripke structures (S, I, R) and it is solved by means of a reduction to

the satisfiability of Presburger formulae. In general, acceptance conditions of Büchi

automata, requiring that some states are visited infinitely often, cannot be handled im-

mediately by bounded approaches which do not consider ultimately periodic models

used, for instance, in the bounded model-checking approach of Biere et al. [3] or in the

encoding of Büchi automata of de Moura et al. [27]. Therefore, Schüle and Schneider

follow a different approach, tailored to bounded verification, and focus on the analysis

of some classes of LTL formulae, denoted TLF and TLG, such that the correspond-

ing Büchi automaton has a simpler accepting condition which does not involve infinite

computations. TLF and TLG are the sets of LTL formulae such that each occurrence

of a weak/strong temporal operator is negative/positive and positive/negative, respec-

tively. LTL formulae are then represented symbolically by an automaton which is built

using the method proposed by Clarke et al. in [28] rather than using the Vardi-Wolper

construction [14].

Reducing the model-checking problem to Presburger satisfiability is a rather stan-

dard approach when dealing with infinite-state systems. Demri et al. in [29] show how

to solve the LTL(PA) model-checking problem for the class of admissible counter sys-

tems, which are finite state automata endowed with variables over Z whose transitions

are labeled by Presburger formulae. In [29] the authors study the decidability of the

model-checking problem for admissible counter systems with respect to the first-order

CTL∗ language over Presburger formulae.

Hodkinson et al. study decidable fragments of first-order temporal logic in [30].

41

Although some axiomatizations of first-order temporal logic are known, various in-

completeness results induce the authors to study useful fragments with expressiveness

between that of propositional and of first-order temporal logic. Hodkinson et al. are

interested in studying the satisfiability problem and they do not consider the model-

checking problem, which requires a formalism defining the interpretation of first-order

variables over time. In other words, variables do not vary over time and their temporal

behavior is not relevant. The languages investigated by the authors are obtained by

restricting both the first-order part and the temporal part.

Bultan et al. present a symbolic model checker for analyzing programs with un-

bounded integer domains [31]. Programs are defined by an event-action language

where atomic events are expressed by Presburger formulae over programs variables

V . Semantics of programs is defined in terms of infinite transition systems where

the states are determined by the values of variables. The specification language is a

CTL-like temporal logic enriched with Presburger-definable constraints over V . Solv-

ing the CTL model-checking problem involves the computation of least fixpoints over

sets of programs states: the abstract interpretation of Cousot and Cousot [32] provides

a method to compute approximation of fixpoints. Model-checking is done conserva-

tively: the approximation technique admits false negatives, i.e., the solver may indicate

that a property does not hold when it actually does. Programs are analyzed symboli-

cally by means of symbolic execution techniques and they are represented by means

of Presburger-definable transition systems where Presburger formulae represent sym-

bolically the transition relation and the set of program states. Then, the state space is

partitioned to reduce the complexity of verification and to obtain decidability for some

classes of temporal properties, such as reachability ones. Experimental results, based

on the standard Bakery algorithm and the Ticket mutual-exclusion algorithm, show the

effectiveness of the method when verification involves a mutual exclusion requirement.

8. Conclusions and further developments

In this paper, we provide a procedure for deciding the satisfiability problem for

CLTLB over some suitable constraint systems. The main advantage of our approach is

that it allowed us to implement the first effective tool based on SMT-solvers for those

logics. On one side, this method illustrates a new way to solve verification problems of

formalisms dealing with variables ranging over infinite domains and having an inherent

notion of discrete time as that of LTL. Instead of building an automaton for proving the

satisfiability of a formula (which would be unfeasible in practice), we devise a direct

method to construct one of its accepting runs which define a model for the formula.

On the other hand, our framework constitutes a foundation for defining extensions to

handle different temporal formalisms. In [33] we use the same approach presented in

this paper to allow for the use of variables whose behavior is restricted to clocks [34]

into CLTLB(R, <,=). A clock is a nonnegative variable accumulating the time elapsed

since the position it was reset to 0; hence, a clock can be used to measure time between

two discrete positions. Typically, all clocks proceed with the same rate. In [33] we

prove the decidability and the complexity of the satisfiability problem for a version of

CLTLB endowed with a finite set of clocks, and we provide a working implementation

by means of SMT-solvers, which extends the one presented in this work.

42

In [35], we devise a reduction of MITL formulae, interpreted over continuous time,

into equisatisfiable CLTLB formulae with clocks. Therefore, we were able to provide

the first actual implementation of a satisfiability solver for MITL.

Acknowledgments

The authors gratefully thank the reviewers for their suggestions, which have greatly

helped in improving the paper.

References

[1] G. Holzmann, The model checker SPIN, IEEE Transactions on Software Engi-

neering 23 (5) (1997) 279 –295.

[2] E. Clarke, K. McMillan, S. Campos, V. Hartonas-Garmhausen, Symbolic model

checking, in: Computer Aided Verification, Vol. 1102 of Lecture Notes in Com-

puter Science, 1996, pp. 419–422.

[3] A. Biere, A. Cimatti, E. Clarke, Y. Zhu, Symbolic model checking without BDDs,

in: Tools and Algorithms for the Construction and Analysis of Systems, Vol. 1579

of Lecture Notes in Computer Science, 1999, pp. 193–207.

[4] M. Pradella, A. Morzenti, P. San Pietro, Bounded satisfiability checking of metric

temporal logic specifications, ACM Transactions on Software Engineering and

Methodology (TOSEM) 22 (3) (2013) 20:1–20:54.

[5] H. Comon, V. Cortier, Flatness is not a weakness, in: Computer Science Logic,

Vol. 1862 of Lecture Notes in Computer Science, 2000, pp. 262–276.

[6] S. Demri, D. D’Souza, An automata-theoretic approach to constraint LTL, in:

FST TCS 2002: Foundations of Software Technology and Theoretical Computer

Science, Vol. 2556 of Lecture Notes in Computer Science, 2002, pp. 121–132.

[7] S. Demri, R. Gascon, The effects of bounding syntactic resources on Presburger

LTL, Tech. Rep. LSV-06-5, LSV (2006).

[8] S. Demri, R. Gascon, The effects of bounding syntactic resources on Presburger

LTL, in: International Syposium on Temporal Representation and Reasoning

(TIME), IEEE Computer Society, 2007, pp. 94–104.

[9] S. Demri, D. D’Souza, An automata-theoretic approach to constraint LTL, Infor-

mation and Computation 205 (3) (2007) 380–415.

[10] Microsoft Research, Z3: An efficient SMT solver,

http://research.microsoft.com/en-us/um/redmond/projects/z3/ (2009).

[11] J. A. W. Kamp, Tense logic and the theory of linear order, Ph.D. thesis, University

of California at Los Angeles (1968).

43

[12] S. Demri, LTL over integer periodicity constraints, in: Foundations of Software

Science and Computation Structures, Vol. 2987 of Lecture Notes in Computer

Science, 2004, pp. 121–135.

[13] S. Demri, R. Gascon, Verification of qualitative Z constraints, in: CONCUR 2005

- Concurrency Theory, Vol. 3653 of Lecture Notes in Computer Science, 2005,

pp. 518–532.

[14] M. Y. Vardi, P. Wolper, An automata-theoretic approach to automatic program

verification, in: Proceedings, Symposium on Logic in Computer Science, IEEE

Computer Society, 1986, pp. 332–344.

[15] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, Bounded model check-

ing, Advances in Computers 58 (2003) 118–149.

[16] M. M. Bersani, L. Cavallaro, A. Frigeri, M. Pradella, M. Rossi, SMT-based verifi-

cation of LTL specification with integer constraints and its application to runtime

checking of service substitutability, in: IEEE International Conference on Soft-

ware Engineering and Formal Methods, SEFM, 2010, pp. 244–254.

[17] A. Biere, K. Heljanko, T. A. Junttila, T. Latvala, V. Schuppan, Linear encodings

of bounded LTL model checking, Logical Methods in Computer Science 2 (5)

(2006) 1–64.

[18] M. M. Bersani, A. Frigeri, A. Morzenti, M. Pradella, M. Rossi, P. San Pietro,

Constraint LTL satisfiability checking without automata, CoRR abs/1205.0946.

[19] E. Clarke, D. Kroening, J. Ouaknine, O. Strichman, Completeness and complex-

ity of bounded model checking, in: Verification, Model Checking, and Abstract

Interpretation, Vol. 2937 of Lecture Notes in Computer Science, 2004, pp. 85–96.

[20] M. M. Bersani, A. Frigeri, M. Rossi, P. San Pietro, Completeness of the bounded

satisfiability problem for constraint LTL, in: Reachability Problems, RP, Vol.

6945 of Lecture Notes in Computer Science, Springer, 2011, pp. 58–71.

[21] A. P. Sistla, E. M. Clarke, The complexity of propositional linear temporal logics,

Journal of the ACM 32 (3) (1985) 733–749.

[22] S. Safra, On the complexity of omega -automata, in: IEEE Annual Symposium on

Foundations of Computer Science, IEEE Computer Society, 1988, pp. 319–327.

[23] D. Kroening, O. Strichman, Efficient computation of recurrence diameters, in:

Verification, Model Checking, and Abstract Interpretation, Vol. 2575 of Lecture

Notes in Computer Science, 2003, pp. 298–309.

[24] R. Alur, T. A. Henzinger, A really temporal logic, Journal of the ACM 41 (1)

(1994) 181–204.

[25] T. Schüle, K. Schneider, Bounded model checking of infinite state systems, For-

mal Methods in System Design 30 (2007) 51–81.

44

[26] T. Schüle, K. Schneider, Bounded model checking of infinite state systems: ex-

ploiting the automata hierarchy, in: Proceedings of the ACM and IEEE Interna-

tional Conference on Formal Methods and Models for Co-Design, 2004, pp. 17 –

26.

[27] L. M. de Moura, H. Rueß, M. Sorea, Lazy theorem proving for bounded model

checking over infinite domains, in: Automated Deduction-CADE-18, Vol. 2392

of Lecture Notes in Computer Science, 2002, pp. 438–455.

[28] E. Clarke, O. Grumberg, K. Hamaguchi, Another look at LTL model checking,

in: Formal Methods in System Design, Springer-Verlag, 1994, pp. 415–427.

[29] S. Demri, A. Finkel, V. Goranko, G. van Drimmelen, Model-checking CTL* over

flat Presburger counter systems, Journal of Applied Non-Classical Logics 20 (4)

(2010) 313–344.

[30] I. M. Hodkinson, F. Wolter, M. Zakharyaschev, Decidable fragment of first-order

temporal logics, Annals of Pure and Applied Logic 106 (1–3) (2000) 85–134.

[31] T. Bultan, R. Gerber, W. Pugh, Model-checking concurrent systems with un-

bounded integer variables: symbolic representations, approximations, and exper-

imental results, ACM Transactions on Programming Languages and Systems 21

(1999) 747–789.

[32] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints, in: Proceed-

ings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of program-

ming languages, POPL ’77, 1977, pp. 238–252.

[33] M. M. Bersani, M. Rossi, P. S. Pietro, A tool for deciding the satisfiability of

continuous-time metric temporal logic, in: 20th International Symposium on

Temporal Representation and Reasoning, TIME, IEEE, 2013, pp. 99–106.

[34] R. Alur, D. L. Dill, A theory of timed automata, Theoretical Computer Science

126 (2) (1994) 183–235.

[35] M. M. Bersani, M. Rossi, P. S. Pietro, Deciding the satisfiability of MITL speci-

fications, in: Fourth International Symposium on Games, Automata, Logics and

Formal Verification, GandALF, Vol. 119 of EPTCS, 2013, pp. 64–78.

45

