1,191 research outputs found

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Pseudoknots in a Homopolymer

    Full text link
    After a discussion of the definition and number of pseudoknots, we reconsider the self-attracting homopolymer paying particular attention to the scaling of the number of pseudoknots at different temperature regimes in two and three dimensions. Although the total number of pseudoknots is extensive at all temperatures, we find that the number of pseudoknots forming between the two halves of the chain diverges logarithmically at (in both dimensions) and below (in 2d only) the theta-temparature. We later introduce a simple model that is sensitive to pseudoknot formation during collapse. The resulting phase diagram involves swollen, branched and collapsed homopolymer phases with transitions between each pair.Comment: submitted to PR

    Polyhedral characteristics of balanced and unbalanced bipartite subgraph problems

    Full text link
    We study the polyhedral properties of three problems of constructing an optimal complete bipartite subgraph (a biclique) in a bipartite graph. In the first problem we consider a balanced biclique with the same number of vertices in both parts and arbitrary edge weights. In the other two problems we are dealing with unbalanced subgraphs of maximum and minimum weight with nonnegative edges. All three problems are established to be NP-hard. We study the polytopes and the cone decompositions of these problems and their 1-skeletons. We describe the adjacency criterion in 1-skeleton of the polytope of the balanced complete bipartite subgraph problem. The clique number of 1-skeleton is estimated from below by a superpolynomial function. For both unbalanced biclique problems we establish the superpolynomial lower bounds on the clique numbers of the graphs of nonnegative cone decompositions. These values characterize the time complexity in a broad class of algorithms based on linear comparisons

    Efficient Generation of Stable Planar Cages for Chemistry

    Full text link
    In this paper we describe an algorithm which generates all colored planar maps with a good minimum sparsity from simple motifs and rules to connect them. An implementation of this algorithm is available and is used by chemists who want to quickly generate all sound molecules they can obtain by mixing some basic components.Comment: 17 pages, 7 figures. Accepted at the 14th International Symposium on Experimental Algorithms (SEA 2015

    VLSI layouts and DNA physical mappings

    Full text link
    We show that an important problem (kk-ICG) in computational biology is equivalent to a colored version of a well-known graph layout problem (kk-CVS).Comment: 7 page

    Proximity Drawings of High-Degree Trees

    Full text link
    A drawing of a given (abstract) tree that is a minimum spanning tree of the vertex set is considered aesthetically pleasing. However, such a drawing can only exist if the tree has maximum degree at most 6. What can be said for trees of higher degree? We approach this question by supposing that a partition or covering of the tree by subtrees of bounded degree is given. Then we show that if the partition or covering satisfies some natural properties, then there is a drawing of the entire tree such that each of the given subtrees is drawn as a minimum spanning tree of its vertex set

    Enumeration of RNA structures by Matrix Models

    Full text link
    We enumerate the number of RNA contact structures according to their genus, i.e. the topological character of their pseudoknots. By using a recently proposed matrix model formulation for the RNA folding problem, we obtain exact results for the simple case of an RNA molecule with an infinitely flexible backbone, in which any arbitrary pair of bases is allowed. We analyze the distribution of the genus of pseudoknots as a function of the total number of nucleotides along the phosphate-sugar backbone.Comment: RevTeX, 4 pages, 2 figure

    The predictor-adaptor paradigm : automation of custom layout by flexible design

    Get PDF

    A general spectral transformation simultaneously including a Fourier transformation and a Laplace transformation

    Get PDF
    A general spectral transformation is proposed and described. Its spectrum can be interpreted as a Fourier spectrum or a Laplace spectrum. The laws and functions of the method are discussed in comparison with the known transformations, and a sample application is shown
    • …
    corecore