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A GENERAL SPECTRAL TRANSFORMATION SIMULTANEOUSLY INCLUDING A
FOURTER TRANSFORMATION AND A LAPLACE TRANSFORMATION

Hans Marko
Institute for Information Technology, Technical University,
Munich
/363%
A general spectral transformation is proposed and described.

Its spectrum can be interpreted as a Fourier spectrum or a Laplace
spectrum. Hence it describes the relationship between these two
transformations. Using this transformation, general time func-
tions, e.g. functions with exronential growth in both negative and

positive time directions, can be represented. This general ‘
spectral transformation is characterized by the introduction |
of two complex frequency variables (p and q) for the positive

and the negative time domain, resnectively., Thus it is possible

to express the spectral distributions of the Fourier transforma- ;
tion (the Dirac function and its derivatives) by rational func- i
tions. The laws and operations of the new method are discussed

in comparison with the known transformations. With the general

spectral transformation it is possible to define the stability

criteria for general (i.e. causal and non-causal) systems. As

an example, its application is shown for the solution of linear
differential equations, taking into account the initial state

due to past system excitation,

1. Introduction

Spectral transformations have gradually become the most
important calculation procedure in information technology. Unfor-
tunately, there are two procedures, the Fourier transformation

{1] and the Laplace transformation [2], each valid under different

* Numbers in the margin indicate pagination in the foreign text,
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preconditions. It is also impossible to limit oneself to only
one of these methods. Of course, the Laplace transformation is
always applicable when causal signals are involved (time func-
tions only for t > 0) and when one wants to describe realizable
systems., It then has the advantage of yielding the spectrum by
an algebraic expression of the complex frequency p (in many
cases a rationally broken function),

With the increased use of the system theory introduced by
K. KupfmUller [3), however, it is also necessary to consider
non-causal signals and non-realizable (idealized) systems. The
Laplace transformation cannot be used for this, and one must
resort to the Fourier transformation. When working with statis-
tical signal theory, one must also used the Fourier transforma-
tion. Of course, for stationary or semistationary processes the
Fourier spectrum contains distributions (i.e. the Dirac function
and its derivatives), which is an undesirable trait that often
impedes mathematical handling. There also arises the question
of whether there are different spectra for the same time signal,
and what these differences may be. This question vields the
further question of whether there might be a still more general
spectral transformation that would include both the Fourier and
the Laplace transformation, and from which both processes would
develop as special cases. Such a transformation must on the one
hand not be limited to causal signals, and must on the other
hand permit representation of all the processes accessible to
the Laplace transformation, e.g. functions that develop exponen-

tially.
d /364

The following describes such a general spectral transforma-
tion and discusses its laws and peculiarities. In particular,
it also establishes the connection between the Fourier and
Laplace tranzformations and permits conversion of their spectra.
The presert report can contain only a short sketch of the proce-
dure. The reasoning behind the general spectral transformation

A g )



given in detail in [4]: the necessary proofs and the derivation
of their laws are also contained therel

2, Common Grounds and Differences between the Fourier and Laplace

Transformations

Both procedures are based on the Fourier integral:

Uf) = [uitye-ienrar, 1

() = .ﬁ’ (fyetizntgf, (2)

The differences are essentially rooted in the manner in which
the convergence of this integral is reached, Namely, with sta-

tionary (or unilaterally stationary) time procedures, the Fourier
integral does not converye.

The Fourier transformation forces convergence by means of
a "convergence factor", e.g. e'c]tl, vielding

4 oo

Uplf) =tim  [u(t)yo-*Mo-ttnigy (3

sl ~o0
u(t) =-.Ii|.1‘|’ __LU(I)!‘ mRREL (P T (4)

(In Eq. 4 a convergence factor e'E'fl was introduced for reascns
of symmetry.) Thus it is possible to represent stationary pro-

cesses, but one gets distributions by passing the limit e~ 0.
For instance, for u(t) = 1, one gets

Uelh) = 34p).

where (f) is the Dirac function with the function integral
*T5(£)df = 1 and s(f) = 0 for £ 4 0.

For the convergence of the Fourier integral the time func-

tion must be exponentially limited, i.e. it must satisfy the
condition

1 The author wishes to thank his colleague Prof. Bordewijk, Delft

Technical University, and his assistant W. Wolf, for stimulating
discussions on this theme.
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for any ¢ > 0. Thus time functions such as u(t) = ct™ are
permitted and are represented in the Fourier spectrum by deri-
vatives of the Dirac function.

The Laplace transform is limited to causal time processes
for which u(t) = 0 for t <« 0. By a substitution, p = jw = j2nf,
it achieves the convergence of the Fourier integral for complex
values of p. In unilaterally stationary processes, Re(p) > 0
is additionally required. The transformation equations are

UMpL=JMUh-”HH. <
| I'}l-'
u(l) - 2R‘I{J|Jph“ﬂdp. (6)
For the reverse transformation here should be chosen large

anough that the integration path running parallel to the imaginary
axis runs within the convergence domain of UL(p). In this way
even unilaterally exponential processes can be represented. The
reversal formula {(6) can be transformed to a ring integral
separately for t < 0 and t > 0, using Jordan's lemma, and can

then be evaluated simply using the residue theorem of function
theory. The result of evaluation is called a Heaviside develop-

ment theorem. up) ult) ult)
a nach ¥ nach b
p - Ebene Laplace -Transf Fourier -Transf,

imag.
\ L]
| 2
t R c
e -reeli —} t

Fig. 1. Pole position of a single pole in the
complex frequency plane, and corresponding time
function according to Laplace and Fourier trnas-
formations.
Key: a. p-plane b. according to

' c. roal

.
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To compare the two procedures, we now observe a spectrum
as in Fig. 1, with a single real pole at point a, i.e. the
spectrum

1 .
U= ™)

Depending on whether a < 0, a = 0 or a > 0, the reverse trans-
formation yields different results via the Laplace and Fourier
transformations. For a > 0 (Fig. 1, Case 1), the result is

the same with both methods, For a < 0 (Case 3) it is different,
because the integration path with the Fourier transformation
runs along the imaginary axis of the p plane (for real frequen-

cjes) -- i.e. left of the pole -- while with the Laplace trans-
form it is right of the pole. The exponentially developing

process appears in the right time domain (t > 0) with the
Laplace transformation, while it is reverse-poled and in the

left domain (t < 0) with the Fourier transformation. 1he

case of a pole directly on the imaginary axis for a = 0 (Case 2)

is especially difficult, for now one must know how the Fourier
integral is to be evaluated. If one takes Cauchy's main value,

one gets %sgn(t) with the Four'er transformation. With the

Laplace transformation one gets the unit step for t > 0. Thus

one and the same spectrum yields different time functions with /365
the two procedures, or in other words, the "spectrum" as defined

up to now is ambiguous and one must know which method 1s being
used.

3. Definition of a General Spectral Transformation

One can now combine both methods and find a common repre-
sentation, if one assigns the time domains t > 0 and t < 0
different complex frequency symbols. We choose p for t > 0
and q for t < 0, and write g

-



Ulp.ﬂqumo.,p:.n | j"a(nrmu..,
= Us(p) + U (q), (8)

1
w(l) = 3 J;uu,neud.l. "

We get a spectrum U(p q)
L]
quency variables, p and q.

with two differentiated complex fre-
Here the partial spectra U+(p) and

U_(q) can be calculated by a right- or left-side Laplace trans-

formation, for

Us(p) = L{ult)}, (1)
U (=q) = Llu(=0}. (1

For the reverse transformation the integration path J from

Fig. 2. Integration path in
the A plane with the general
spectral transformation.
Key: a. X plane

b. real

-j» to +j= 1is run so that all
poles p  of U+(p) are left of
it and all poles q of U_(q)
are right of it. Under these
conditions, p = q = A can again
be established for the reverse
transformation. Fig. 2 shows
the integration path for U(r,2)
in the ) plane. The p poles

p, are shown by the symbol M
and the q poles of q, are shown
with the symbol KX . Since the

ﬁosition of the p and q poles is arbitrary, this method can

represent time processes that develop exponentially on both

sides.

With respect to representability, the general spectral

transformation thus combines the possibilities of the Fourier

and the Laplace transformations,
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Fig. 3. General spectral transformation; time function and
spectrum of a single pole at the frequency zero point.

Fig. 3 shows the time function, gcneral spectrum and
Fourier spectrum for a single pole in the frequency zero point,
and Fig. 4 shows the same for a multiple pole. One can see
that the distributions occurring with the Fourier spectrum
(as well as their derivatives with the multiple pole) can be
represented by rationally broken functions in p and q.

One gets the Fourier spectrum from the general spectrum by
the limit passage

Ug(f) = |il‘l‘|)U(u - &,q—€). (12)

For the Laplace spectrum

Un(p) = U.(p), (13)

o

applies, i.e. the partial spectrum U—(q) dependent on q is
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Pig. 4.

General spectral transformation.

Time function and

spectrum of & uy-multipie pole in the frequency zero point.

simply omitted.

For instance, for the spectrum of u(t) = 1 (direct current),

applies.

P 4

-0

GU)-lim(- : s

). (14)

for the spectral Dirac function (spectral line):

NEE.
8~ =
Sm_.p .

(15)

/366

This means that the following correspondence applies

For the Dirac function differentiated Ptﬁmes, likewise2

2
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The conversicn S(p)(f) = (2w)p+16(p)(w) applies.
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Thus spectral distributions of the pth order correspond to
the difference between p and q poles of the p*lth
According to Fig. 4 this includes time functions increasing
with the power of o. If one only wants the causal portion (for

order.

t > 0)(Laplace spectrum), one simply omits the q component,

Through the initial complication of having to use two
frequency variables p and q, one gains the advantage of always
being able to distinguish the positive and negative time domain,
even in the spectrum and »f obtaining the Fourier ~pectrum (if
it exists) by passing a 1imit. The advantage of the Laplace
transformation is maintained, namely spectral representation by
rational functions in p and q instead of distributions, and thus
the possibility of applying the rules of function theory (residue
theorem). In addition, one can represent time processes that
grow exponentially to both sides. Further to be noted is that
the procedure is significantly more efficient than the already-
known bilateral Laplace transform, which requires the convergence
of the spectrum in a strip of the p plane parallel to the ima-
ginary axis.

4. The Development Theurem According to Figenfunctions

If U(p a) is given by a rational brokeu function, one can
L

get a development theorem correspondir; to the Heaviside theorem

of the Laplace transformation. First one must split off an
entire function in p or q, setting p = q = 2. The remaining
function component U+(p) is developed into a partia. fraction
series with the coefficients Avu of the p poles P, of the
order up. One proceeds correspondingly with the function compo-
nent U_(q) and gets a partial fraction development with the

coeff .cients Bvu of the q poles q, of the order uq;




"5 w4
Uip,q) = Au ) PES.. . IEy

* a.-. 1] ;':'P‘ [

By member-by-member transformation into the time domain one

ose! N e, B DY Sdw, U o
um-m% "H”“%fa”w;ﬂl -

.,
—_— - \ ; .
?’( ')m';'n'l u‘__l)'w
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-1 (1K) s

Here 6(")(t) is the uth time derivative of the temporal Dirac

function &(t). The function

{ 1 for t > 0
Y(t) =1 0 fort <o

is the unit step. Aside from the distributions in the time zero
point one gets a development according to the eigenfunctions at
the po'e points, which are exponential oscillations of the polar
frequencies multiplied by a power of t. The separation of the
two time domains (p poles for t >0 and q poles for t < 0) is very
evident here,.

5. Operations

Table 1 contains the most important operations of spectral
tcansformation, comparing Fournier, Laplace and general spectral
transformations. For the derivation and proof of the latter
one must refer to [4]. Some peculiarities should be noted.

5.1. Causal and Acausal Differentiation and Integration

By distinguishing p from q in the spectrum, not only the
time domain but also the time direction becomes distinguishable.
For in the uswval limit passage that occurs in forming the temp-
oral differential quotients, the causal relation (distinction

10
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TABLE 1. SPECTRAL TRANSFORMATION OPERATIONS
Type wif) Uvih Uip) Uipg)
Linearity ayuy(t) + agug(t)  ay Uye(f) + ag Ugplf) aqUin(p) aaUsi(p) aiUsipg) + agUsipaq)
similarit wiat) i / 1. (p ks 3
’ (@ veell) |a] U'(c) -'U"(l) s IO "("q) e 3
= ‘
L-) ('.")n(O j
Time it - to) Up(f) e=13ntet Us(p) o=0t ' - . {
TLip)e=rh Ulp.gie=rh to > 0 3
displacement {tg reell) a (te > 0) Uipoglo=ite fo =<0 ‘
Frequency uit) et Ul = o) Unlp —a) Uljp—a,qg~a )
displacement (== )2 fo, fo reell) 4 < e :
Attenuation _ y '
Citsis sit)e=ckl (a resll) — Usip +a) Ulp+ a,q~a) A :
Temporal du Uplfhj2mf Ur(p) = u(+0) Uip.g)p Kausal 5 |
differentiation e Uip.gig nkaung! i
. U L i
Temporal _!"‘“"" Urm(“ TR l(l)) . -:,m- .P_l:_ﬂ Kaud)
integration v c
‘ ‘ "uip) = Ur(0) UVipg)
+i.( ).“ U'u’( 2 ”’ 2 'U)) ’ 7 akausal
Spectral —tu(t) L 20w aUnlp) al.(p)  dU-(q)
differentiation s & dp b dV
Spectral ut) : ; T
Sntiesutiin P ,2.;( {l"‘"‘"' ;-(o)) +£Ul.fp)dp ﬁ.(,.;ap g -
Spectral folding w () wale) Ui # Uzp()) Uin(p)w Ua(p) Ur(pog)w Usip,q) ==
= Uni(p) e Usalp) +
Temroral U (g)hw Usglg)
fc. ving uy(f)wugt) Uy ) Uself) Uyn(p) s Uar(p) Uiipog) s Usipog)
(l{qm.j < Ih-(q:-))
Re(pas) < Re(gie)
Causal component ylt) - uit) § (Ui~ De) Urip) Us(p) = Ulp, q)w1p
Acausal component y(=18)wi) VU +§ Ov ) 0 U-(g) —U(p.q)o( l')
Hilbert transfo:ma-
1) uit -0, %
tion of the Fourier i A Veim Us(p) = U-9)
spectrum
Key: a. reell =real

b. kausal causal
c. akausal = acausal

11
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between cause and effect) is lost., This has the result that /368
in differential equations from physics time is symmetrical and
apparently dizectionless, which has already led to may contra-
dictions in understanding the development of events, (In the
author's opinion it is unnecessary to resort to the Second Law

of Thermodynamics to give time a direction on the grounds of
irreversibility.) For if one forms the differential quotients
while observing the causality requirement, i.e. with the stipu-
lation that only past function values may be used, then (At > 0)

(tlu) - () — u(t — ) '
*

e T At ()

Considering the displacement theorem
it — Mo—el/(py)o ™ for at >0 (20)
this yields, after the limit bhas been passed, co the operation

. |
: (:; )uo s Uipp, (21)

which is designated as a causal differentiation., Correspondingly,
an "acausal" Jdifferentiation in which the future function values
are used,

i du L T () .
( ] ). ",|lf":‘n At (22)

would lead, with the help of the correspondence of the displace-
ment theorem
u(t + Adtyo—e U(p.q)et™ for At > 0 (23)

to the operation

o
- ! o
(dl ).o el (pq)y (24)
This means that a "causal" differentiation requires the multi-

12
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plication of the spectrum by p, and an "acausal" differentia-
tion requires multiplication by q. Thus a temporally causal
differential equation yields a spectral power expression only
in p, and thus the conversion factor S of a causal system is
also only a function of p:

8= 8.(p. @)

The impulse response s(t)o—-e S+(p) is thus a causal temporal
function. By requiring a causal differentiaticn, the direction
of time established, which would otherwise not bhe the case.

The equivalent situation applies to integration, in which
past values of u(t) are used in the causal case and future values

in the acausal case. Accordingly, the spectrum must be multiplied

by % (causal) or é (acausal).

5.2. Multiplication and Folding

In multiplying two general spectra one should note that
there are no restrictions on the products of p-partial spectra
and q-partial spectra. However, with a mixed product of p and
q partial spectra one must require a parallel to the imaginary
axis, so that all p poles of the one factor are left of the axis
and all q poles of the other are right of it. The folding of
the corresponding time functions corresponds to the product of
the spectra.

On the other hand, the folding of the spectra corresponds
to the products of the time furctions. From this it follows
that folding a p-spectrum with a q-spectrum must always yield
zero:

i s Uslpd=0;  (26)

Spectral folding may be defined by a complex integral as follows:

13




Ur(pog)» Us(p.q) = (27)
g L
—2“1Jyﬂhhbﬂp—kq—lhuo

Here the integration path Jl of U1 is used, and one should choose
Re(p) > Re()r) + Re(pzv) and Re(q) < Re(r) + Re(qzv) in performing
the integration.

Using spectral folding one can calculate partial spectra,
if they are not already available:

Uiip) = Ulp,q)» ;‘ : (28)
: :

'_ == ll‘ b — *

U_(q) uoq)-( q) . (29)

This corresponds to a multiplication of the time function by
y{t) or ¥(-t).

5.3. Limit Value Theorems

If u(t) at t = 0 has no distribution, one can calculate
the left and right-hand initial values for t = +0 or t = -0
from the partial spectrum by the following limit passages:

u(+0) = lim [p-Uy(p)], (30}
lte(p) s o0
u(—0)= lim [—qU-(¢)]. (31)

Helg) -+ oo

Likewise, for the asymptotic final values at t = +» or t = -=
(if these exist),

u(+ o0) = lim[pU,(p)], (32)
p-=0

L u(=oe) =lim(—qU(@).  (33)
. . 40

14
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5.4, Hilbert Transformagjon

The Hilbert transformation of the Fourier spectrum

0 g U(q‘d
(f) = - gy - v

can be expressed especially simply using the general spectrum,
Here
wio e UrN 2 Usp) + Ul (39

n () ut)o’e : Qv 2 U. p) = U-(9). (35)

/369
applies. One thus gets the Hilbert-transformed ﬁp(f] from UF(f)
by reversing the sign of the q partial spectrum and multiplying
by j. The correspondence sign * indicates that the Fourier
spectrum is obtained from the general spectrum by limit passage
(Bqg. 12). }

6. Stability Criteria for General Systems

The general spectral transformation permits statements on
stability for general -- i.e. non-causal -- system functions :
such as occur in system theory. Since the relationship S(p,q) f
e—o0 s(t) applies, where S(p,q) is the system function (conver-
sion factor) and s(t) is the impulse response, the following
three stability criteria apply:

a) If s(t) is restricted by energy, i.e.

4 oo
[ |e)|2dt << oo,

i
then all p poles of S(p,q) must be in the open left half of the i
frequency plane and all q poles must be in the open right half. i
The imaginary axis (including w = =) is poleless.

15




b) 1€ s(t) is restricted by power, i.e.

+ T2

i, ffroitu<.

n
T som
then the p poles of S(p,q) must be in the closed left half of
the frequency plane and the q poles must be in the closed right

half, i.e. including the imaginary axis. On the imaginary axis
(including w = =) the poles are single.

c) If s(t) is exponentially restricted, i.e.

Tiotle-ma<m

for all positive ¢ , then all p poles of S(p,q) must be in the
closed left half of the frequency plane and all q poles must be
in the closed right half. Multiple poles may occur on the
imaginary axis (including w = =),

(Note: Such systems develop, for instance, in series
circuits of ideal integration amplifiers.)

In addition to system theory, which uses idealized but
not immed ately realizable acausal systems (for which s(t) = 0
does not apply for t < 0), such systems also occur practically,
if one replaces time t with place x. This is the case in
"homogenous layer system theory'"[5], which serves to describe

neuron systems (nerve networks in a layer-like structure). Here

the same stability criteria apply with respect to the local

stimulus transmittance »>f such systems. The same problems arise,

for instance, in realizing digital recursive filters for
picture processing.

7. Solution of Differential Equations with Initial Values

Here the Laplace transformation is actually particularly

16
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well suited, since it can take account of the charge condition
of the system as expressed in the initial values. On the other
hand it cannot include charging that occurred in the past. Here
the general spectral transformation establishes the relationship.

Fig. 5. Time graphs of the compulsive force
u, (t) and the effect u,(t). ---- = charging

of the system by ul (t) and homogenous solution
H(t) for t > = compulsive force

ul¢(t] and its effect uzz(t) for ¢t » 0.

In Fig. 5 the dotted line represents the charging process
of the system and the solid line represents the compulsive force
u;,(t) and its effect u,, (t) = u,p(t) + u,,(t). The term u, (t)
is the homogenous solution of the differential equation for t > 0
taking into account the intial state. uzz(t) is the effect of
the compulsive force u1+(t). Both components should be calcu-
lated separately. From the differential equation of the system
(which is assumed to be causal),

S_a,rt"’(f) -s < b,u"’(l} (34)
ve b v .

one gets by transformation into the spectral domain using the
general spectral transformation:

e

2@ Uapg) = ShaprUipg).  @37)

oo

This yields

Us(p,q) = S(p) Uilp.q) . (38)

Here the causal system function
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is determined by the (real) coefficients of the presumably
causal differential equation (36). With the partial spectra
of Uys corresponding to both time domains,

. ]

Uslp, @) == Vre(p) + Vs (@) (40)

one gets

.U,(p, @) = N(p) - Ura(p) + 8(p) - Ur(g) o (41)

The first term in Eq. (41) describe- the effect of the compul-
sive force ul+(t) commencing at t = o, so that

uzz(l) o« S(p)- Upi(p). (42

The second term of Eq. (41) describes the influence of the
past, i.e. the effect of the cause u, (t). Of this, only the /370
t > 0 component is of interest -- namely the homogenous solution
of the differential equation uZH(t). We must thus calculate the
p-partial spectrum from the spectral product using :Eq.(28),
and get \

(oo [N(p): Us-(q)| % % (43)

This spectral expression represents a causal system function H(p)
describing the homogenous solution (because of the charging):

IS U@l
Thus the replacement circuit in Fig. 6 applies, in which the

effect of the compulsive power starting at t = 0 and the homo-
genous solution are represented separately. The latter is pro-
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duced by a Dirac function &(t) over H(p) acting at t = 0,

Eq.(44) can also be
transformed into the time

lﬂ-“, u”"’ domain’ yie]ding for the
y(t) homogenoug R
l(ufo—Eu,; ugy(t) s §

ugii (1) = [s(1) % uy ()] p(0). 45)
Fig. 6. Replacement circuit
diagram of the differential
equation for the effect of the
compulisive force uzz(t] (for Here an ambiguity is permis-

t > 0) and the homogenous solution sible insofar as totally
uZH(t) based on the charging of

different functions u,_(t)
the system.

lead to the same function
uzn(t}. With the determina-
tion of H(p), however, the prucess is established unambiguously.
H(p) desciibes the charge condition of the system at the time

t = 0. On the other hand, H(p) can also be calculated using

the Laplace transformation. If one applies the differentiation
theorem of the Laplace transformation, which takes into account
the initial condition, one gets,for t > 0, ul*(t] = 0 as the
compulsive force disappears (cf.[4]).

#=3 "
H(p) = },uf‘-p'/ 2anp" (46)
we L4

Here the denominator polynomial is the same as that of S(p) and
the coefficients of the numerator polynomial are given by the
initial values of the homogenous solution for t = +0 and its
derivatives.

N )=r
G D arepsguiy (4 0). “7)
=0

Since uZHo——oH(p] applies, these initial values may also be
determined in reverse from H(p) via the limit theorem (30):

19
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Wi (4 0) = lim [V H(p)]. (4%)
p)oove

If one knows the coefficient €, whether by knowing H(p) from

Eq.(44) in development towards Eq.(46), or from the initial

value from Fq.(470, one can get the analog computer realization

for the solution of the differential equation as in Fig.

7.

(Here the real constant k is an arbitrary time factor and 1

is the time constant of the integration amplifier used, deter-

mined by u, = (%Iuldt.)

b/t by/ ) lu/ i)
it ol T ., Y17y
-;[‘f)

(r)'/a,
oy /et -0, /00)"! '
j

Fig. 7. Realization of the differential
equation in analog computer technology with

integration amplifiers of the system function

1/pt and a time scale factor k. The coeffi-
cients a and b are given by Eq.(36) o~ (39),

and the Coefficients ¢, are given by "q.(46) or (47).

The initial state of the system, which is expressed in the
coefficients c, and which must be known for a realization by

analog computer, can thus be determined from the system's past

using the general spectral transformation according to Eq.(44)

and (46).
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