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A GENERAL SPECTRAL TRANSFORMATION SIMULTANEOUSLY INCLUDING A

FOUR I FR TRANSFORMATION AND A LAPLACF TRANSFORMATIONON

Hans Marko
Institute for Information 'Technology, Technical University,

Mun i C 1
/363*

A general spectral transformation is proposed and described.

Its spectrum can be interpreted as a Fourier spectrum or a Laplace

spectrum.	 II.nce it describes the relationship between these two

transformations.	 Using this transformation, general time func-

tions, e.g. functions with exponential growth in both negative and

positive time directions, can be represented. This general

spectral transformation is characterized by the introduction

of two complex frequency variables (p and q) for the positive

and the negative time domain, res pectively. Thus it is possible

to express the spectral distributions of the Fourier transforma-

tion (the Dirac function and its derivatives) by rational !'unc-

tions. The laws and operations of the new method are discussed

i n comp, r i son w  t h t he known t ra p s forma t i ons .	 V. i t h the general

spectral transformation it is possible to define tho stability

criteria for general (i.e. causal and non-causal) systems.	 As

an example, its application is shown for the solution of linear

differential equations, taking into account the initial state

due to past system excitation.

1.	 Int roduction

Spectral transformations have gradually become the most

important calculation procedure in in!'ormation technolog y ,	 11nfor-

tun•rtcl ,	 there •ire two )r 0 cedr1reS	 the l : our • ier transformation

(11 and the Laplace transformation [2], each valid under different

i	 t Numbers in the marlin indicate pagination in the foreign text.
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preconditions.	 It is also impossihlc to limit oneself to only

one of these methods. Of course, the Laplace transformation is

Always applicable when causal signals are involved (time func

tions only for t > 0) and when one wants to describe realizable

systems. It then has the advantage of yielding the spectrum by

ari algebraic expression of the complex frequency p (in many

cases a rationally broken function).

lVith the increased use of the system theory introduced by

h. hlipfmlllIer [31, however, it is also necessary to consider

non-causal signals and non-realizable (idealized) systems. The

Laplace transformation cannot be used for this, and one mint

resort to the Fourier transformation. When working with statis-

tical signal theory, one must also used the Fourier transforma-

tion. Of course, for stationary or semistatioriary processes the

Fourier spectrum contains distributions (i.e. the Dirac function

and its derivatives), which is an undesirahle trait	 that often

impedes mathematical handling. There also arises the question

of' whether there are different spectra for the same time signal,

and What these differences may be. This question vields the

further question of 0iother there might be a still more general

spectral transformation th'it would inclode both the FoU1• ier and

the Laplace transformation, and from i%hich hoth processes would

develop as special cases. Such a transformation must on the one

hand not be limited to causal signals, and must on the other

hand permit representation of :ill the processes accessible to

the Laplace transformation, e.g. functions that develop exponen-

tially.
/364

The following describes such a general spectral transforma-

tion and discusse-, its laws and peculiarities.	 In particular,

it also establish(` the connection between the Fourier and

Laplace tran:formatlons and permits conversion of their spectra.

File presrrt report can contain only a short sketch of the proce-

dure. The reasoning hehirid the general spectral transformation

2
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given in detail in (41; the necessary proofs and the derivation

of their laws are also contained there .

Common Grounds and Differences between the Fourier and Laplace

Transformations

Both procedures are based on the Fourier integral:

	

0111 _	 „ IJ1 ^ J eRn tlt ,	 (1)
e'
^b /

ee(l) s ^U(I)	 d/	 (2)(2)

The differences are essentiall y rooted in the manner in which

the convergence of this integral is reached. Namely, with sta-

tionary (or unilaterally stationary) time procedures, the Fourier

integral does not converge.

The Fourier transformation forces convergence by means of

	

a "convergence factor", e.g. 	 e EItI , vielding

I	
4 Co

UVW	 1111	 J U (1) N - 1111 0—J2n/t(It

. -U —a

4 oo

	

u (l) _- Inn	 !I (^) ^• • Ill,, t 1- R/r i 1^	 (4)

• U —m

(In lief. 4 a convergence factor e -Ejfj was introduced for reasons

of symmetry.) Thus it is possible to represent stationary pro-

cesses, bi_it one gets distributions by passing the limit c- 0.

For instance, for u(t) = 1, one gets

Irk, W

where (f) is the Dirac function with the function integral

+ ,6(f)df = 1 and S(f) =0 for f + 0.

For the convergence of the Fourier integral the time func-

tion must be exponentially limited, i.e. it must satisfy the

condition

1 The authov wishes to-thank his colleague Prof. hordewijk, Delft
Technical University, and his assistant W. Wolff, for stimulating
discussions on this theme.
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for any c > 0. Thus time functions such as u(t) - ct" are

permitted and are represented in the Fourier spectrum by deri-

vatives of' the Dirac function.

The Laplace transform is limited to causal time processes

for which u(t) - 0 for t < 0.	 By a substitution, p = j 	 - j27tf,

it achieves the convergence of the Fourier integral for complex

values of p.	 In unilaterally stationary processes, Re(p) > 0

is additionally required. The transformation equations are

r.

2 j

For the reverse trans form:ition lie re	 should be chosen large

anough that the integration path running; parallel to the imaginary

axis runs within the convergence domain of 11 L (p).	 In this wav

even unilaterally exponential processes can be represented. The

reversal formula (G) can be transformed to a ring integral

separately for t < 0 and t > 0, using .Jordan's lemma, and can

then be evaluated simply using the residue theorem of function

theory. The result of" evaluation is called a Heaviside develop-

ment theorem.	 V(p)	 UW	 U(t)

	

,a	 nacn b	 narl r'

	

P .- Ebere 	 Laplace Transf	 Fovier-Transf.

a

	

1)	 C	 1
--a^	 « reek	 — t	 _	 t

Fig. 1.	 role position of a single pole in the
complex frequency plane, and corresponding time
function according to Laplace and Fourier trnas-
formations.

Key:	 a.	 p-plane	 b. according to
c. real

1

,
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To compare the two procedures, we now observe a spectrum

as in Fig. 1, with a single real pole at point a, i.e. the

spectrum

U(Y) =p I ^^ •	 (7)

Depending on whether a < 0, a = 0 or a > 0, the reverse trans-

formation yields different results via the Laplace and Fourier

transformations.	 For a > 0 (Fig. 1, Case 1), the result is

the same with both methods. For a < 0 (Case 3) it is different,

because the integration path with the Fourier transformation

runs along the imaginary axis of the p Mane (for real frequen-

cies) -- i.e. left of the pole -- while with the Laplace trans-

form it is right of the pole. The exponentially developing

process appears in the right time domain (t > 0) with the

Laplace transformation, while it is reverse-poled and in the

left domain (t < 0) with the Fourier transformation.	 she

case of a pole directly on the imaginary axis for a = 0 (Case 2)

is especially difficult, for now one must know how the Fourier

integral is to be evaluated. 	 If one takes Cauchy's main value,

one gets Isgn(t) with the Fourier transformation. With the

Laplace transformation ane gets the unit step for t > 0. "Thus

one and the same spectrum yields different time functions with / 365

the two procedures, or in other words, the "spectrum" as defined

up to now is ambiguous and one must knob; which method is being

used.

3. Definition of a General Snectral Transformation

One can now combine both methods and find a common repre-

sentation, if one assigns the time domains t > 0 and t < 0

different complex frequency symbols. We choose p for t > 0

and q for t < 0, and write

S

1

,r

1!
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We get a snectrum l) (p,q) with two differentiated complex fre-

quency variables, p and (I. here the partial spectra U +(p) and

U_ (q) can be calculated by a right - or left-side Laplace ti r ans -

formation, for

	

11,(1')	 le i u ( 1 )),	 (Iu)

	

U (—q)	 V It" (—f)1.	 (11)

For the	 reverse	 transformation	 the	 integration path .1	 from

-jm	 to	 +jm	 is	 run	 so	 that	 all
Rag	

a poles	 p
V
	 of U +(p)	 are	 left of

a	 f Lee

it	 and	 all	 poles	 q^	 of U_ (q)

Al are	 right	 of it.	 Under	 these
ti

----+ reel) con ditions,	 p	 = q	 =	 a	 can again

X be established	 for	 the	 reverse

transformation.	 Fig.	 1	 shows

the	 integration	 path	 for	 ll(a,?.)

Fig,	 1. Integration path	 in in	 the	 a	 plane.	 The p poles
the	 a	 plane with	 the general p	 are shown by the symbol )d
spectral transformation. V
Key:	 a. a	 plane and	 the q poles of q 	 are shown

b. real with the symhol	 k.	 Since the

position of the p and q poles is arbitrary,	 this method can

represent time processes	 that develop exponentially oil

sides. With	 respect	 to representability, the general	 spectral

transformation thus	 combines the possibilities of	 the Fourier

and	 the Laplace transformations.

. d
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For the Laplace spectrum

applies, i.e. the partial spectrum U_(q ) dependent on q is

7

Time function	 5pectriun

,

Diagram
r(f) (P. q) VV h^.^" "I

00

I

p jm

`UQ)

W.

t
^ J

^WW
t	 1 1

UW

^ t t t 1na(^,,)

I _-

Fig General	 spectral transformation;	 time function	 aIld
spectrum of a	 single	 hole at	 the	 frequency zero point.

Fig. 3 show:, the time function, general spectrum and

Fourier spectrum for a single pole in the frequency zero point,

and Fig. 4 shores the same for a multiple pole. one can see

that the distributions occurring with the Fourier spectrum

(as well as their derivatives with the multiple pole) can he

represented by rationally broken functions in p and q.

One gets the Fourier spectrum from the general spectrum by

the limit passage

o •0

1



Time function	 Spectrum

Diagram,	 up)	 U(P.0	 VVU)	 liyn11NJ1

1N(r)

1•-1	 r	 r	 -j^ `	
41N 11(^) 111 — 	p»	

V lu)M -}- 111 — 1):	
0"1	 in

WO

1M'^	 ^	 1	 R ^r-1	
IN-11--	 —•t	 Y(- 1)i

	 y"	 U /")• — ( 00 -1)IE
	 (w)	 tc

SUM	 •

--^1	 fig n (1)- __. __	
..W T »	 IUD	

X
Ili — r ) 1	 1	 Q	 I1 )

}WO

f̀	 IM-,	 1	 r	 ^ ^ ^^N-r

(1^ — 1)I	 p"	 q"	 Ip — r)l

Fig. 4. General spectral transformation. Time function and
spectrum of a u-multipie pole in the frequency zero point.

simply omitted.

For instance, for the spectrum of u(t) - 1 (direct current),

8 (/) =h i ll	 -	1	 ).

/366

applies. This means that the following correspondence applies

for the spectral Dirac Cunc tion (spectral line):

For the Dirac function differentiated fatimes, likewise 

2 The conversion W' (f) = (27)
0+1 

6'"1 (
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Thus spectral distributions of the oth order correspond to

the difference between p and y poles of the ,,+1
th
 order.

According; to Fig. 4 this includes time functions increasing;

with the power of P.	 If one only wants the causal portion (for

t ^ 0)(Laplace spectrum), one simply omits the q component.

Through the initial complication of having to use two

frequency variables p and q, one gains the advantage of always

being able to distinguish the positive and negative time domain,

even in the spectrum and .-if obtaining the Fourier s pectrum (if

it exists) by passing; a limit. The advantage of the Laplace

transformation i ,; maintained, namely spectral representation by

rational functions in p and q instead of distrihutions, and thus

the possibility of applying the rules of function theory (residue

theorem)	 In addition, one can represent time processes that

grow exponentiall y to both sides. Further to be noted is that

the procedure is significantly more efficient than the already-

known bilateral Laplace transform, ti%hick requires the convergence

of the spectrum in a strip of the p plane parallel to the ima-

ginary axis.

4. The Development Theore m Acc ordi ng o F i9cit functi ons

I ]

If ll (p,q) is given by a rational broke:, function, one can

get a development theorem correspondi — to the Heaviside theorem

of the Laplace transformation.	 First one must split off an

entire function in p or (1, setting p = q = X. The regaining;

function component U +(p) is developed into a parria: fraction

series with the coefficients A VW of the p poles pV of the

order up . one proceeds correspondingly with the function compo-

ncnt U_
(
q ) and gets a partial fraction development with the

coefficients B	 of the q poles q^ of the order ugly

^j

a
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r/r	 '^I

	

U^1	 r Ir) M-1 (11 —	 (17)

t.	 Boo

r't N^1 (y — yr)r• '

By member-by-member transformation into the time domain one

get s: 	 • rr	 ►r l
I'l rim

^••	 111-1	 (li{)

VIM • 1	 (/

Here 6 (u) (t) is the u th time derivative of the temporal hirac

function 6(t).	 1he function

.,I for t > 0

	

Y(t)	 i 0 for t < 0

is the unit step. Aside from the distributions in the time zero

point one gets a development according to the eigenfunctions at

the po l e points, which are exponential oscillations of the polar

frequencies multiplied by a power of t. The separation of the

two time domains (p poles for t >0 and q Doles for t < 0) is very

evident here.

S. Operations

'fable 1 contains the most important operations of spectral

transformation, comparing Fournier, Laplace and general spectral

transformations. For the derivation and proof of the latter

one must refer to [41.	 Some peculiarities should be noted.

5.1. Causal and Acausal Differentiation and Integration

By distinguishing p from cI in the spectrum, not only the

time domain but also the time direction becomes distinguishable.

For in the ustial limit passage that occurs in forming the temp-

oral differential Liuotients, the causal relation (distinction

10
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TAHLti 1.	 SPECTRAL TRANSFOWMATION OPERATIONS

Tyi)e x(t) 111,(1) JIL(P) 11(p. q)
	

....

Linearity 41 1010)	 t n lxt( t ) 4 ll/v(1) + At Uo► (l) alUIL(1I)	 t- 4 2 1 '101 1 ) a,f'rlP.gl	 rn21,1(p.g)

Similarity
(n(m) Ur(a) 1'L( " )	 (n>0) g )	 n,., ►A	 I'(q'

k
•II) ,

/
(- 1)	

( tj <
1	 'a

Time %(1-  to) ll	 (l) e-12 nf.1v U	 ,,-1,r.L(P) r.U(P.V)o-r	 to	 0displacement
^ (in hull) a f	 0(o-	 1 U.	 r(l.g) u -o.	 o< 0t

Frequency a(t)OSO Ur(/ - /o) UL(P	 n) C'(l, _ a g _ o)
displacement (4 - j2ff/o. /o ru,- ► U a
Attenuation
theorem rlt)e-'MI	 a I*ol((	 a - i' L{P + n) 1%(p } o, g - a)

Temporal .ix Uv (/) J 2,T ! UL(P) - x (	0) (' (p, y)1,	 kuu>.bil
differentiation .Ir U(p.g)q	 ,k ► ur,^l

Temporal u11Ly^, 1	 1
a(/))UvW (12 n/ + `,

11L 
c

U(P•9l-	 kuu '1P P

integrationg
u(t)^tt !

1	 1
Ur 0) 	 -	 a(/))

UL(P)- .- Ut.10 ) U( p.ol	 c
-^/	 `,

p
1	 JIamwl
'

Sl:=ctral --txp)
t	 filly (/) dUL(P) (I('.,),)	 dU-(g)

differentiation )2a	 dJ d/''

Spectralp
integration

x (tl
1-t ►

`
1111	 1 fly (/) rl/-	 x (u

1

('j	 l '
y

r r	 d	 C-( )d

Spectral folding x101	 41(1) UIVO)*t':1,(!) I-JOP)0U91.Ur) ('((1,-0	 1'.11),gI=
(1.111') * (	 2(P) t

Temroral t. U IIg )* ('-s(4)
fc	 1 .nq U1 (00 U 2 (1) UIV,/)	 t'yv(I) r'IL(P)	 1111.(1)) lri(P.g)	 I's (10.1,)

!t^ U,^.)	 He(gj

Causal component pUi	 x111 + ( llr(/) -j UFW) (IMP) (',(P) = U( P.0* I/P

Acausal component V(-t)'x(I) i (Ur(/1 + J Or(h) 0 ! -W °U(P.4)u°1
,

Hilbert transfo:ma-  x(r) - j orw UL(P) U.(p) - U-N)tion of the Fourier
spectrum

' Key:	 a. reell = real
b. kausal = causal
c. akausal = akausal

11



between cause and effect) is lost. This has the result that /308

in kli ffrrential equat ions from physics t ime is symmetric;lI and

apparently di;rct ion less, %, hi 	 has already Ira to may contra -

dictions in understanding the development of event,. (In the

aut hor's opi it 	 it is unnece-;stlry t o resort to t he Second La ►.
of Thermodynamics to give time a direction on the grounds of

irreversibility.) For it' one forms the differential quotients

while observing the causality re(Inirement, i.e. with the stilru-

lation that only bast function values may be used, then (At > 0)

	

(11u1	
line	

u(1)	 101	 .Ill
(I! ► )`	 I

X11	 k	 If	 It

Cons i der i lig t he d i sp l acemeii t t heorem

	

14(1	 l0o--91 1(vot, P.II	 for At > Il	 (20)

this yields, after the limit has been passed, (o the operation

Ilu

'It )k

khich is designated as a causal differentiation. 	 Corrrsluondingly,

all "acausa1" -.I i (- ferentiation in 01iCII the I lit ure funct ion values

;ire used'
r ^!a 1 : 

_lien

	

11V  1 .11) -	 11(t) 	 (40)

wou l d l ead , k i t h t he he 11) o f t he col . responder► ce o 1 * t he d i sp l ace -

ment theorem

I

,

.r 

I

n(/ I .I/)o— .('Ip.,^)^^ of for A  - 0	 (23)

to the operation

Il .0 „ 
n • 1 (p. q) y	 (2-1)

This means that a "eausa I " d i f ferent i:i t ion rcclu i res the n!u 1 t i -

12
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plicat ion of the spectrum by p, and an "accusal" dit - ferentia-

tion requires multiplication by q. 'Thus a temporally causal

differential equation yields a spectral power expression only

in p, and thus the conversion factor S of a causal system is

also only a function of p:

The impulse response s(t)o • S+(p) is thus a causal temporal

function. By requiring a causal differentiation, the direction

of time established, which would otherwise not he the case.

The equivalent situation applies to integration, in which

past values of u(t) are used in the causal case and future values

in the acausal case. Accordingly, the spectrum must he multiplied

by 
P 

(causal) or 
q 

(acausa11

5 .2.	 Mu ltiplication and Fo l ding;

In multiplying; two general spectra one should note that	 t

there are no restrictions on the products of p-partial spectra 	 •^

and q-partial spectra. however, with a mixed product of p and

q partial spectra one must require a parallel to the imaginary
t.

axis, so that all p poles of the one factor are left of the axis

and all q poles of the other are right of it. The folding of
i

the corresponding time functions corresponds to the product of

the spectra.

on the other hand, the Folding of the spectra corresponds

to the products of the time functions. 	 From this it follows

that folding a p-spectrum with a q -spectrum must a  ways yield

zero:

Spectral folding may he defined by a complex integral as follows:

13
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t

i

Ut 0, - q) * NO, • q) a^	 ('l , )
I"

Here the integration path .l I of U  is used, and one should choose

Re(p) > Re(A) + Re(p 2v ) and Re(q) < Re(a) + Re(g 2v ) in performing

the integration.

Using spectral folding one can calculate partial spectra,

if they arc not already available:

U. (p)	 U ( p , rl) * I	 (=K)

c (q)-11QP. q) * (-

	

	 .	 (20)
r

This corresponds to a multiplication of the time function by

y(t) or	 y(-t).

5.3.	 Limit Value 'theorems

If u(t) at t - 0 has no distrihution, one can calculate

the left and right-hand initial values for t = +0 or t = -0

from the partial spectrum by the following limit passages:

u(-r0)	 lint I N U+(P))	 1;;0^

t
F;	 u(•-U)	 lint I'qr'-(q)]•	 (31)

ta•v,t • 00

Likewise, for the asymptotic final value: at t 	 or t =

(if these exist),

,, .11

y(- oo)	 lint (—q U-(q )] •	 (:1a)

14
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5.4. 	 Hilbert "Transformation

The [filbert t r.insformation of the Fourier spectrum

	

0 ill =	 1 	
11
01 ^ly

can he expressed especially simpl y using the general spectrum.

Here

u(1) 0 V 0 1 1 r(I) Q U+ 04 + f:I_ W.	 (:{4)

agn ( t ) u ( t ) o v- J Or 	 A U,1P)-- U--(9)- (35)

/369

app  ies. One thus gets the Ili lbert-transformed U F M from 11I'm

by reversing the sign of the q partial spectrum and multiplying
s

by j. The correspondence sign s indicates that the Fourier

spectrum is obtained from the general spectrum by limit passage

(Eq	 12 ) .

6. Stability Criteria for general Systems

The general spectral transformation permits statements on

stability for general -- i.e. non-causal -- system functions

such as occur in system theory. Since the relationship S(p,q)

•--o s(t) applies, where S(p,q) is the system function (conver-

sion factor) and s(t) is the impulse response, the following

three stability criteria apply:
i

a)	 If s(t) is restricted by energy, i.e.

i ao

	

j I.	 1 2 dr	 oo

then all p poles of S(p,q) must he in the open left half of the

frequency plane and all q poles must he in the open right half.

The imaginary axis (including w = m ) is poleless.

15
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h1 If s(t) is restricted by power, i.e.
w

then the p poles of S(p,q) must be in the closed left half of

the frequency plane and the ( I poles must be in the closed right

half, i.e. including the imaginary axis. 	 On the imaginary axis

(including w = m ) the poles are single.

c) If s(t) is exponentially restricted, i.e.

l ,. 0l l o ' I1I ltr < o0
.n

for all positive F	 then all p boles of' S(p,q) must be in the

closed left half of the frequency plane and all q poles must be

in the closed right half. Multiple poles may occur on the

imaginary axis (including w = m).

(Note: Such systems davelop,for instance, in series

circuits of ideal integration amplifiers.)	 I

In addition to system theory, which uses idealized but

riot immed..ately realizable acausal systems (for r- ,hich s(t) _ 0

does riot apply for t < 0), such systems also occur practically,

if one replaces time t with place x. This is the case in

"homogenous layer system theory"(51, vOlich serves to describe

neuron systems (nerve networks in a layer-like structure). Here

the same stability criteria apply with respect to the local

stimulus transmittance )f such systems. The same problems arise,

for instance, in realizing digital recursive filters for

picture processing.

7. Solut ion of Differential Equatio ns wi th I nitial Value s

Here the Laplace transformation is actually particularly

16
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%.ell suited, since it can take account of the charge condition

of the system as expressed in the initial values. on the other

hand it cannot include charging that occurred in the past. Here

the general spectral transformation establishes the relationsi-A p.

	

u,(t)	 Q

t U W

Fig. S. Time graphs of the compulsive force
u l (t) and the effect u 2 (t).	 -- -- = charging

Of the system by u l _(t) and homogenous solution

	

u, N (t) for t > 0;	 = compulsive force

u l+ (t) and its effect u 2Z (t) for t > 0.

In Fig. S the dotted line represents the charging process

of the system and the solid line represents the compulsive force

u l+ (t) and its effect u 2+ (t) = u 211 (t) + u 1Z (t).	 The term u20t)

is the homogenous solution of the differential equation for t > 0

taking into account the intial state. 	 t ► , Z (t) is the effect of

the compulsive force u l+ (t).	 Both components should he calcu-

lated separately. From the differential equation of the system

(which is assumed to he causal),

.•` i^	 Oyu

one gets b y transformation into the spectral domain using the

general spectral transformation:

,1	 "1

* a , P , 	(1 , -(1)	 6r1PvU1	 (37)r-..Y	 r U

This yields

	

112( p , q)	 R ( p ) - U1 (p. q )	 (3y)

Here the causal system function

17
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is determined by the (real) coefficients of the presumably

causal differential equation (36). With the partial spectra

of U l , corresponding to both time domains,

vt^l' .yl	 •I',,(1')-I-I', ( q ).	 (40)

one gets

Ut(P^?) =- N(1.) • lid; (P)	 •̂ (1')' ^^1 — (:) • (^^)

The first term in Eq. (41) describe ,- the effect of the compul-

sive force u l+ (t) commencing at t = o, so that

U tz Y) o--. R (P) - (11, (P) •	 (42)

The second term of Eq. (41) describes the influence of the

past, i.e. the effect of the cause u l (t). Of this, only the /370

t > 0 component is of interest -- namely the homogenous solution

of the differential equation u 211 (t). we must thus calculate the

p-partial spectrum from the spectral product usingri:q.(28),

and get
uP U) 0 — •iX(P)	 I —(y)I* I .	 (43)

11

This spectral expression represents a causal system function 11(p)

describing the homogenous solution (because of the charging):

Thus the replacement circuit in Fig. 6 applies, in which the

effect of the compulsive power starting at t = 0 and the liomo-

genous solution are represented separately. The latter is pro-

1

18
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duced by a Dirac function d(t) over II(p) acting at t - 0.

Eq.(441 can also he

transformed into the time
w.ft)	 sfo ► 	 I,tfq	 domain, yielding for the

u,ft)
homogenous so 1 U t ion

moto	 Nfpf	 ^7Mct)

U211(I) •_ (x(t) *oil ( 1 )I -Y( 1 ) . 	t45)
Fig. 0.	 Replacement circuit
diagram of the differential
equation for the effect of the
compuisive farce u 2Z (t) (for	 Here an ambiguity is permis-

t > 0) and the homogenous solution sible insofar as totally
u, lf (t) hased on the charging of	

different functions ul_(t)
the system.	

lead to the same function

11, 11 M M. With the determina-
tion of H(p), however, the pru,_c;^s is establishedunambiguously.

II(p) describes the charge condition of the system at 1110 time

t - 0.	 Oil the other hind, II(p) can also be calculated using
the Laplace transformation. If one applies the differentiation

theorem of the Laplace transformation, which takes into account

the initial condition, one gets, for t > 0, :r l+ (t) = 0 as the

compulsive ford disappears (cf. 141).
"	 ► 	 / F1

ll (p )	,1" .	 (46)
. o	 rr , u

Here the denominator polynomial is the same as that of S(p) aild

the coefficients of the numerator polynomial aro given by the

initial values of the homogenous solltion for t = +0 and its

derivatives.
a. I - 

r(414V4Q U	 (47)

Since u 2110---*11(p) applies, these initial values may also be
determined in reverse from II(p) via the limit theorem (30):

.1	 {

i.

19
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^leii (l ^^)	 Inn /'v, i !^ (P))	 (Jh)

I f one Knows the coel•1'icient cIV , whether by knowing; II(p) from
Fq.(44) in development towards Fq.(46), or from t1w initial

value from I'q.(470, one can get the analog computer realization

for the solution of the differential equatio ►► ;as in Fig. 7.

(Ifere the real constant k is an arbitrary time factor and T

is the time constant of the integration amplifier used, deter-

mined by u., _ ( I lu l Lit . )

Dp	 D1//t	 tl/,IlJI	 On /:4T,
rp/IT	 r^/(IT)r	 ^^-^/(Its'

1	
^	 (/T)^/On (^rc^r>

J
ap	 -a,/IT	 a,_,/( ► T)^'

Fig. 7.	 Rea Iization of the differential
equation in analog computer technology with
integration ;amplifiers of the system function
1 /1)r and a time scald factor k.	 The covffi -
c ient s a	 and h arc• given b y (iq . (3(t) o ,- ( 3`t)
and the ^oefficieriti c

v 
are given by 'q.(46) or (47).

I

The initial state of

coefficients c
v 

and which

analog coinputer, can thus

using the general spectra

and (46) .

the system, which is expressed in the

must be known for a realization by

be determined from the system's past

1 transformation according to Eq.(44)

20
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