7,084 research outputs found

    Stability Analysis of GI/G/c/K Retrial Queue with Constant Retrial Rate

    Get PDF
    We consider a GI/G/c/K-type retrial queueing system with constant retrial rate. The system consists of a primary queue and an orbit queue. The primary queue has cc identical servers and can accommodate the maximal number of KK jobs. If a newly arriving job finds the full primary queue, it joins the orbit. The original primary jobs arrive to the system according to a renewal process. The jobs have general i.i.d. service times. A job in front of the orbit queue retries to enter the primary queue after an exponentially distributed time independent of the orbit queue length. Telephone exchange systems, Medium Access Protocols and short TCP transfers are just some applications of the proposed queueing system. For this system we establish minimal sufficient stability conditions. Our model is very general. In addition, to the known particular cases (e.g., M/G/1/1 or M/M/c/c systems), the proposed model covers as particular cases the deterministic service model and the Erlang model with constant retrial rate. The latter particular cases have not been considered in the past. The obtained stability conditions have clear probabilistic interpretation

    Waiting times in queueing networks with a single shared server

    Full text link
    We study a queueing network with a single shared server that serves the queues in a cyclic order. External customers arrive at the queues according to independent Poisson processes. After completing service, a customer either leaves the system or is routed to another queue. This model is very generic and finds many applications in computer systems, communication networks, manufacturing systems, and robotics. Special cases of the introduced network include well-known polling models, tandem queues, systems with a waiting room, multi-stage models with parallel queues, and many others. A complicating factor of this model is that the internally rerouted customers do not arrive at the various queues according to a Poisson process, causing standard techniques to find waiting-time distributions to fail. In this paper we develop a new method to obtain exact expressions for the Laplace-Stieltjes transforms of the steady-state waiting-time distributions. This method can be applied to a wide variety of models which lacked an analysis of the waiting-time distribution until now

    Stability of constant retrial rate systems with NBU input*

    Get PDF
    We study the stability of a single-server retrial queueing system with constant retrial rate, general input and service processes. First, we present a review of some relevant recent results related to the stability criteria of similar systems. Sufficient stability conditions were obtained by Avrachenkov and Morozov (2014), which hold for a rather general retrial system. However, only in the case of Poisson input is an explicit expression provided; otherwise one has to rely on simulation. On the other hand, the stability criteria derived by Lillo (1996) can be easily computed but only hold for the case of exponential service times. We present new sufficient stability conditions, which are less tight than the ones obtained by Avrachenkov and Morozov (2010), but have an analytical expression under rather general assumptions. A key assumption is that interarrival times belongs to the class of new better than used (NBU) distributions. We illustrate the accuracy of the condition based on this assumption (in comparison with known conditions when possible) for a number of non-exponential distributions

    Mixed Polling with Rerouting and Applications

    Full text link
    Queueing systems with a single server in which customers wait to be served at a finite number of distinct locations (buffers/queues) are called discrete polling systems. Polling systems in which arrivals of users occur anywhere in a continuum are called continuous polling systems. Often one encounters a combination of the two systems: the users can either arrive in a continuum or wait in a finite set (i.e. wait at a finite number of queues). We call these systems mixed polling systems. Also, in some applications, customers are rerouted to a new location (for another service) after their service is completed. In this work, we study mixed polling systems with rerouting. We obtain their steady state performance by discretization using the known pseudo conservation laws of discrete polling systems. Their stationary expected workload is obtained as a limit of the stationary expected workload of a discrete system. The main tools for our analysis are: a) the fixed point analysis of infinite dimensional operators and; b) the convergence of Riemann sums to an integral. We analyze two applications using our results on mixed polling systems and discuss the optimal system design. We consider a local area network, in which a moving ferry facilitates communication (data transfer) using a wireless link. We also consider a distributed waste collection system and derive the optimal collection point. In both examples, the service requests can arrive anywhere in a subset of the two dimensional plane. Namely, some users arrive in a continuous set while others wait for their service in a finite set. The only polling systems that can model these applications are mixed systems with rerouting as introduced in this manuscript.Comment: to appear in Performance Evaluatio

    Optimal design of simulation experiments with nearly saturated queues

    Get PDF
    Simulation Models;Interpolation;Queueing Network;Extrapolation

    Sample path large deviations for multiclass feedforward queueing networks in critical loading

    Full text link
    We consider multiclass feedforward queueing networks with first in first out and priority service disciplines at the nodes, and class dependent deterministic routing between nodes. The random behavior of the network is constructed from cumulative arrival and service time processes which are assumed to satisfy an appropriate sample path large deviation principle. We establish logarithmic asymptotics of large deviations for waiting time, idle time, queue length, departure and sojourn-time processes in critical loading. This transfers similar results from Puhalskii about single class queueing networks with feedback to multiclass feedforward queueing networks, and complements diffusion approximation results from Peterson. An example with renewal inter arrival and service time processes yields the rate function of a reflected Brownian motion. The model directly captures stationary situations.Comment: Published at http://dx.doi.org/10.1214/105051606000000439 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore