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Abstract: We consider a GI/G/c/K-type retrial queueing system with constant retrial
rate. The system consists of a primary queue and an orbit queue. The primary queue has c
identical servers and can accommodate the maximal number of K jobs. If a newly arriving
job finds the full primary queue, it joins the orbit. The original primary jobs arrive to the
system according to a renewal process. The jobs have general i.i.d. service times. A job in
front of the orbit queue retries to enter the primary queue after an exponentially distributed
time independent of the orbit queue length. Telephone exchange systems, Medium Access
Protocols and short TCP transfers are just some applications of the proposed queueing sys-
tem. For this system we establish minimal sufficient stability conditions. Our model is very
general. In addition, to the known particular cases (e.g., M/G/1/1 or M/M/c/c systems),
the proposed model covers as particular cases the deterministic service model and the Erlang
model with constant retrial rate. The latter particular cases have not been considered in
the past. The obtained stability conditions have clear probabilistic interpretation.
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L’analyse de la stabilité de la file d’attente de type
GI/G/c/K avec des clients qui reviennent à un taux

constant

Résumé : On considère une file d’attente de type GI/G/c/K avec des clients qui re-
viennent à un taux constant. Le système se compose d’une file d’attente primaire et une
file d’attente orbite. La file d’attente primaire a c serveurs identiques et peut accueillir le
nombre maximal de K clients. Si un arrivé trouve la file d’attente primaire pleine, il re-
joint l’orbite. Les clients qui entrent dans le système pour la première fois arrivent selon un
processus de renouvellement. Les clients ont un temps de service générale iid. Les clients
dans la file d’attente orbite essaient d’entrer dans la file d’attente primaire après un temps
avec une distribution exponentielle indépendante de la longueur de la file d’attente orbite.
Les commutateurs téléphoniques, le contrôle d’accès au support, et les courte transferts TCP
sont quelques-unes des applications de le système étudié. Pour ce système, nous établissons
les conditions de stabilité suffisantes. Notre modèle est très général. En plus des cas parti-
culiers (par exemple, M/G/1/1 ou M/M/c/c), le modèle proposé couvre les cas particuliers
du modèle de service déterministe et le modèle Erlang avec des clients qui reviennent. Les
derniers cas particuliers n’ont pas été considéré dans le passé. Les conditions de stabilité
obtenus ont une interprétation probabiliste tres claire.

Mots-clés : File d’Attente avec des Clients qui Reviennent, Stabilité Stochastique, Proces-
sus de Renouvellement, Regeneration
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1 Introduction

We consider a GI/G/c/K-type retrial queueing system. The system consists of a primary
queue and an orbit queue. The primary queue has c identical servers and can accommodate
the maximal number of K jobs. If a newly arriving job finds the full system, it joins the orbit.
The original primary jobs arrive to the system according to a renewal process with rate λ.
We denote the arrival times of the original primary jobs by tn and we denote the interarrival
times by τn = tn+1−tn, n ≥ 1, with generic element τ . Without loss of generality we assume

that t1 = 0. The jobs have general i.i.d. service times {S
(1)
n , n ≥ 1} with service rate µ

and generic element S(1). Retrial times {S
(2)
n , n ≥ 1} are i.i.d. exponential with (generic)

service time S(2) with rate µ0 and independent of the orbit size, provided it is positive. Such
a model is referred to as a retrial model with constant retrial rate. It then follows that the
orbit can be interpreted as a single-server ·/M/1-type queue with service rate µ0 and with
the input which is formed by the flow of jobs rejected from the primary queue. We use
notation ·/M/1 because the merged stream arriving in the orbit is not in general GI-type
since it is a complex combination of a lost part of original primary customers and secondary
customers returning to the orbit after unsuccessful attempts to enter the primary queue.

In this work we establish minimal sufficient stability conditions for the presented retrial
system. Our model is quite general. To the best of our knowledge, the retrial queueing
system with constant retrial rate and general renewal arrival process is considered for the
first time. In [11] Fayolle has introduced a retrial system with constant retrial rate. Fayolle
has derived stability conditions for the case of M/G/1/1 primary queue. In [1] Artalejo
has obtained stability conditions for the Markovian case M/M/2/2. In [20] Ramalhoto and
Gómez-Corral have obtained stability conditions for the M/M/1/2 case. For the general
Markovian case M/M/c/K the authors of [20] have obtained decomposition results assuming
ergodicity. The ergodicity conditions for the multiserver Markovian case M/M/c/c with
recovery probability have been derived by Artalejo, Gómez-Corral and Neuts in [2]. In [13]
Krishna Kumar and Raja have derived stability conditions for the M/M/c/c constant retrial
rate model with feedback and balking. Stability conditions for the basic M/M/c/c constant
retrial model can be recovered from the results in [2] and [13]. The ergodicity conditions for
the Markovian case M/M/1/K have been obtained in [4]. In the works [2], [4] and [13] the
authors have established stability conditions by using the matrix-analytic technique for QBD
processes [19]. We shall demonstrate that stability conditions for M/G/1/1, M/M/c/c and
M/M/1/K systems are particular cases of our general conditions. Furthermore, the following
important cases with Poisson input have not previously been covered: M/G/c/c (Erlang
model), M/M/c/K (Markovian model with a general number of servers and waiting spaces),
M/D/1/K system. Stability conditions of these important cases appear to be particular
cases of our general conditions and will be considered in detail below. We emphasize that,
to the best of our knowledge, such retrial system with general renewal input of primary
customers is considered for the first time.

There is a number of applications of retrial systems with constant retrial rates in telecom-
munication. Using a retrial queue with constant retrial rate Fayolle [11] has modelled a
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4 K. Avrachenkov & E. Morozov

telephone exchange system. In the series of papers [8]-[10] the authors have proposed to use
a retrial queueing system with constant retrial rate to model Multiple Access protocols. In
particular, in [8] the authors have modelled an unslotted Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) protocol and in [9] and [10] the authors have modelled
some versions of the ALOHA protocol. In [4] and [5] the authors have suggested to use re-
trial queues and retrial networks with constant retrial rates to model TCP traffic originated
from short HTTP connections.

The stability analysis used in this paper is based on renewal theory and a characterization
of the limiting behavior of the forward renewal time in the process generated by regenerations
of a basic process. This approach, presented in a general form in [16, 18], turns out to be
effective in the stability analysis of many queueing systems including general multiserver
retrial queue [17], and also multiserver system with non-identical servers [15]. The presented
method also works successfully outside of Markovian models, and it is demonstrated also in
this paper where non-Markov processes are considered. In particular, it allows us to reduce
the dimension of the processes that simplifies analysis considerably and does not require
involved stability techniques developed in the theory of multi-dimensional Markov processes
[6, 14]. An important contribution of this work is an extension of the stability analysis to
arbitrary initial state of the system.

The paper is organized as follows. In the next Section 2 we present the main result of the
paper, minimal stability conditions for GI/G/c/K-type retrial queue with constant retrial
rate. We also provide the proof of the main result. Then, in Section 3 we specify the general
condition for a number of important particular cases of the primary queue. In particular, we
consider the general Markovian queue, the Erlang queue and the queue with deterministic
service. We would like to note that stability conditions for these important particular retrial
queues have not been available before. We conclude our paper with Section 4.

2 Stability analysis

To describe the behavior of the system, we consider (right-continuous) process M(t) :=
N(t) + ν(t), t ≥ 0, where N(t) is the number of retrial customers being in orbit and ν(t) is
the number of the customers waiting in the buffer, at instant t. Note that ν(t) ∈ [0, K − c]
for any t. Also we introduce the (right-continuous) process W (t), t ≥ 0, expressing, at each
instant t, the remaining workload in all servers. More exactly, if Si(t) is the remaining
service time at server i at instant t (= 0 if the server is empty), then W (t) =

∑c
i=1 Si(t).

Introduce the basic (two-dimensional) process X = {X(t) := (M(t), W (t)), t ≥ 0}. The
choice of the basic process is motivated by the stability analysis under arbitrary initial state
of the system, while there are other candidates for basic process, to analyze the system
under zero initial state. In the latter case, one can use, for instance, the total number of
customers in the system, or the total remaining workload in the system (including orbit),
etc. Also, let X(t−k ) = Xk, k ≥ 1. Denote T0 = 0, then the instants

Tn+1 = inf
k
(tk > Tn : Xk = (0, 0)), n ≥ 0, (1)

INRIA



Stability Analysis of GI/G/c/K Retrial Queue with Constant Retrial Rate 5

are the regeneration points of the basic process X . Let T be a generic regeneration period
and T (t) = infk{Tk − t : Tk − t > 0} be the forward renewal/regeneration time at instant
t ≥ 0. If

T1 < ∞ with probability 1 (w.p.1) and ET < ∞, (2)

then we call any regenerative process having regeneration instants defined by (1) (and also
the original system) positive recurrent. (This term, repeatedly used in previous works [15,
16, 17, 21, 22], has evident analogy with positive recurrent Harris Markov chains whose
embedded renewal process of regenerations has finite mean cycle length.)

It follows from the theory of regenerative processes that positive recurrence is the most
essential element in stability analysis of the process. Indeed, if the interarrival time τ is non-
lattice then T is so, and, under positive recurrence, X(t) converges to a stationary limit. (It
is obvious that the system is unstable if ET = ∞.) Our approach to stability is based on
the following result [12]: if ET = ∞ then

T (t) ⇒ ∞ as t → ∞, (3)

regardless of initial (finite) delay T1 = T (0), where ⇒ stands for convergence in probability.
Thus, if convergence (3) does not hold then (2) is satisfied and positive recurrence for the
zero- delayed process holds, in which case T1 = T and X(0) = X1 = (0, 0) (that is t1 = 0 is a
regeneration instant). However, violation of (3) does not implies in general the finiteness of
T1 w.p.1 under arbitrary initial state X(0), and an extra (sometimes hard) work is required
to prove that T1 < ∞. Denote β0 = 0, then

βn+1 = inf
k
(k > βn : Xk = (0, 0)), n ≥ 0, (4)

are regeneration instants of the embedded discrete-time process Xn, n ≥ 1, with generic
regeneration cycle length β, and its remaining renewal time β(n) := infk{βk − n : βk − n >
0} ⇒ ∞ (as n → ∞) provided Eβ = ∞.

Now we outline how to apply the above mentioned approach to our model. Because the
buffer of the primary queue is finite, the source of instability of the system can only be
the unlimited increase of the orbit size. Thus, we first show that under the predetermined
stability condition (see Theorem 2.1) the orbit size N(t) 6⇒ ∞. Then the second step is to
show that also T (t) 6⇒ ∞. Finally, we apply characterization (3). To establish T1 < ∞ for
non-zero initial state, we will use new development of the approach presented in [18].

Let us denote original system by Σ and construct an auxiliary (new) system Σ̂ as follows.
The system Σ̂ has the same set of servers and the same buffer as system Σ, the same renewal
input of primary customers with rate λ (we call them λ-customers) and in addition an
independent Poisson input of primary customers with rate µ0 (we call them µ0-customers).
Arriving primary customer (of any type) who finds servers and the buffer full in system
Σ̂ joins the orbit. The orbit is an infinite buffer system of ·/M/1 type as in the original
system. The secondary customers leaving orbit (in Σ̂) leave the system forever and do not
affect its future state. Note that the system Σ̂ (as Σ) regenerates at the instants when the
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6 K. Avrachenkov & E. Morozov

λ-customers find both buffer and orbit empty. Note that here we also use the memoryless
property of the input of µ0-customers. Moreover, for any variable ζ in system Σ we denote
corresponding variable in system Σ̂ as ζ̂. In particular, Ŵk is the remaining workload in all
servers and ν̂k is the number of waiting customer in the buffer, respectively, in the system
Σ̂ at instant t−k , k ≥ 1.

Denote the primary queue of system Σ̂ as Θ̂, and note that it can be considered as an
isolated system because secondary customers (in Σ̂) leave the system and do not go to the
primary queue. Then the subsystem Θ̂ regenerates (in continuous time) at the instants

Ψ̂n+1 = min(tk > Ψ̂n : Ŵk = ν̂k = 0), n ≥ 0, (5)

where, by definition, Ψ̂0 = 0. (So the regenerations of the whole system Σ̂ are a subsequence
of the regenerations of Θ̂.) Because the subsystem Θ̂ has a regenerative input and finite
buffer, then such a system is positive recurrent under the condition

P(τ > S(1)) > 0, (6)

see [16, 18]. In particular, mean generic regeneration period EΨ̂ < ∞.

Remark 1 Exact condition in [16] (condition (3.15) there) and in [18] (condition (31)
there) require that the discrete-time regeneration period Â (counting all arrivals during re-
generation period Ψ̂) equals 1 with a positive probability. It occurs if the interarrival time
τ following a λ-customer (with service time S(1)) starting new regeneration period is larger
than S(1) and less than the next Poisson arrival (with interarrival time τ̃). In other words,
the following inclusion holds: {Â = 1} ⊇ {τ̃ > τ̂ > S(1)}. Obviously, under condition (6),
P(τ̃ > τ > S(1)) > 0, and the required assumption is fulfilled.

Denote by R̂(t) the total number of rejected customers in system Θ̂ in the interval [0, t]
(this is also the total number of customers which went to the orbit in the whole system Σ̂).
Denote by Â(t) the total number of arrivals (primary λ-customers and µ0-customers) in the
interval [0, t]. Denote also by R̂ the number of rejected customers during regeneration cycle
of system Θ̂.

Of course, the process {R̂(t), t ≥ 0} is positive recurrent cumulative process with em-
bedded regenerations {Ψ̂n} and, in particular, there exists (w.p.1) the limit

lim
t→∞

R̂(t)

Â(t)
=

ER̂

EÂ
. (7)

(To explain, we note that R̂(t)/t → ER̂/EΨ̂, Â(t)/t → EÂ/EΨ̂.) In the system Σ̂, define
indicator In as

In =

{

1, if customer n is rejected,
0, otherwise,

(8)

so the sequence {In, n ≥ 1} has regeneration period Â. Because P(Â = 1) > 0, then the weak
limit In ⇒ I exists, or P(In = 1) → EI := Ploss where Ploss is stationary loss probability.

INRIA
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Moreover, by the standard result of regenerative theory, stationary loss probability coincides
with the long-run-average loss probability (7):

Ploss = lim
n→∞

∑n
k Ik
n

=
ER̂

EÂ
. (9)

Now we are ready to formulate the main stability result.

Theorem 1 Assume that condition (6) and the following condition

(λ+ µ0)Ploss < µ0, (10)

hold. Then, under arbitrary (fixed) initial state X(0) = X1 = (m0, w0), the original system
is positive recurrent, that is

ET < ∞, Eβ < ∞ and T1 < ∞, β1 < ∞ w. p. 1.

Moreover, the stationary distribution limn→∞ P(Xn ∈ ·) exists. If, in addition, interarrival
time τ is non-lattice, then stationary distribution limt→∞ P(X(t) ∈ ·) also exists.

Proof. We will use a monotonicity property of the loss system with respect to change of
service times, see [24, 25, 26]. Namely, we use coupling to sample identical corresponding
interarrival times in both systems Σ, Σ̂ until first empty period of the orbit in the original
system Σ. Then we assume that during this (and any following) empty period of the orbit
we continue to sample input Poisson process (with parameter µ0) in the original system
but with arriving customers having zero service times (as long as the empty period lasts).
At the end of such period, we interrupt current interarrival times (in Poisson processes in
both systems Σ and Σ̂) and resample new (identical) interarrival times for both systems.
By memoryless property, this resampling keeps distribution of the input process. At the
same time this procedure allows us to keep equivalence between input intervals in both
systems. (Note that λ-inputs stay identical and unchanged in both systems.) Moreover, this
shows that service times of arriving customers in the systems are stochastically ordered as

S
(1)
n ≤st Ŝ

(1)
n while for non-zero (actual) customer n, S

(1)
n =st Ŝ

(1)
n , n ≥ 1.

Now we can use the result of [24] which claims (in adaptation to our model) that if
two (the same) finite capacity systems have the same input and the ordered service times,
as above, then the number of rejected customers in primary queues of systems Σ and Σ̂,
respectively, in the interval [0, t] are ordered as

R(t) ≤st R̂(t), t ≥ 0. (11)

We emphasize that R(t) counts all rejections which happen in system Σ including repetitive
rejections of the orbit customers after unsuccessful attempts to enter the primary queue.
Because the input in system Σ̂ is a superposition of two independent renewal processes,
then w.p. 1 as t → ∞

A(t)

t
→ λ+ µ0. (12)

RR n° 7335



8 K. Avrachenkov & E. Morozov

Since R̂(t) =
∑A(t)

k Ik, it then follows from (7) and (9) that w.p.1

lim
t→∞

R̂(t)

t
= (λ+ µ0)Ploss. (13)

(It follows from R̂(t) ≤ A(t) and EA(t)/t → λ + µ0, that the family {R̂(t)/t, t ≥ 0} is
uniformly integrable, and thus the limit ER̂(t)/t → (λ+ µ0)Ploss also exists.)

Denote by Vo(t), V̂o(t) the total workloads arrived to the orbit in the systems Σ, Σ̂,
respectively, during the interval [0, t], including the same (arbitrary) initial state Vo(0) =
V̂o(0) := Vo. Note that

V̂o(t) = Vo(0) +

R̂(t)
∑

k=1

S
(2)
k , t ≥ 0 (

∑

∅

= 0), (14)

and thus,

V̂o(t)

R̂(t)
→

1

µ0
w.p.1 as t → ∞. (15)

Denote, in the original system Σ, by µo(t) the total empty time of the orbit in interval [0, t]
and by Wo(t) the (right-continuous) remaining workload in orbit at instant t ≥ 0. Now we
have the following balance equation

Vo(t) = Wo(t) + t− µo(t), t ≥ 0. (16)

Thus, we have

µo(t) ≥ t− Vo(t) = t−

R(t)
∑

k=1

S
(2)
k − Vo(0)

≥st t−

R̂(t)
∑

k=1

S
(2)
k − V̂o(0) = t− V̂o(t), t ≥ 0. (17)

By (10), (13), (15) this implies

lim inf
t→∞

µo(t)

t
≥ 1−

(λ+ µ0)Ploss

µ0
:= δ0 > 0. (18)

This also shows that under arbitrary initial state Vo(0),

µo(t) =

∫ t

0

I(N(u) = 0)du → ∞ w.p.1 as t → ∞, (19)

INRIA



Stability Analysis of GI/G/c/K Retrial Queue with Constant Retrial Rate 9

where I denotes indicator function. By Fatou’s lemma,

lim inf
t→∞

1

t
Eµo(t) > 0. (20)

Thus, P(N(t) = 0) 6→ 0 as t → ∞ and there exist δ∗ > 0 and non-random sequence of
instants zn → ∞ such that

inf
n≥1

P(N(zn) = 0) ≥ δ∗. (21)

Starting from this point we work with the original system Σ only. Let τ(t) = mink(tk − t :
tk − t ≥ 0) be the remaining interarrival time at instant t in system Σ. Note that, for each
zn,

P(N(zn) = 0) = P
(

N(zn + τ(zn)) = 0
)

≥ δ∗. (22)

Denote κ(n) = min(k : tk ≥ zn), then zn + τ(zn) = tκ(n) is the first arrival instant after
zn, n ≥ 1. Let L(t) be the total remaining workload at the servers and buffer at instant t.
Obviously,

L(t) ≤st W (t) +

K−c
∑

i=1

S
(1)
i , t ≥ 0. (23)

Note that the remaining service time processes, {Si(t), t ≥ 0}, i = 1, . . . , c, are tight. (To
have the tightness, the only requirement, besides the finiteness of ES(1), is that service times

{S
(1)
n } are independent of the input process [15].) Thus, the process W (t), t ≥ 0, is tight,

and hence, the process L(t), t ≥ 0, is also tight. Then we can find a constant D such that
infn P(L(zn) ≤ D) ≥ 1 − δ∗/2. Now we fix for a moment some zn satisfying (21) and let
L(t−n ) = Ln, n ≥ 1. Then, we have

P(Nκ(n) = 0, Lκ(n) ≤ D) ≥ P(N(zn) = 0, L(zn) ≤ D) ≥
δ∗

2
, (24)

where the first inequality is valid since the workload decreases in interval [zn, tκ(n)) and the
second inequality follows from

P(N(zn) = 0, L(zn) ≤ D) = P(L(zn) ≤ D)− P(N(zn) > 0, L(zn) ≤ D)

≥ P(L(zn) ≤ D)− P(N(zn) > 0).

Next we introduce the event

En := {Nκ(n) = 0, Lκ(n) ≤ D, τ(zn) ≤ C}

where, by the tightness of the process {τ(t), t ≥ 0}, the constant C is taken in such a way
that P(En) ≥ δ∗/4. Thus, on the event En, the customer κ(n) indeed arrives in interval

RR n° 7335



10 K. Avrachenkov & E. Morozov

[zn, zn + C] and finds the workload Lκ(n) ≤ D. It follows from (6) and Eτ < ∞ that one
can find constants a < ∞, γ > 0, ǫ > 0 such that

P(a ≥ τ > γ + S(1)) = ǫ. (25)

Note that, for each i, on the event ωi := {a ≥ τi > γ + S
(1)
i } the workload accumulated

in the system at instant ti, decreases during interarrival time [ti, ti+1) not less than by γ,
provided that at least one server is not empty during this interval. If only orbit is not empty,
then an orbit customer may attempt to enter server/buffer before next arrival instant ti+1.
In such a case, regardless of the retrial attempt was successful or not, on the event ωi, the
accumulated workload decreases not less than by γ/2 (during [ti, ti+1)) with the probability
≥ ǫ(1− e−µ0

γ

2 ). Denote R := ⌈2D/γ⌉. Then on the event

En
⋂

κ(n)+R
⋂

i=κ(n)

ωi

R primary customers arrive in the interval [zn, zn+C+aR], and the accumulated workload
reaches zero (regeneration) with probability ≥ 1

4δ
∗ǫR(1 − e−µ0

γ

2 )R > 0. Because this lower
bound is uniform in n, zn, then Eβ < ∞. It follows from Wald’s identity and representation
T =st

∑β
k=1 τk that mean cycle period for continuous time processes is finite, ET = EβEτ <

∞.
Using a modification of the approach from [18], we now extend analysis to arbitrary

initial state of the basic process X . Let S
(1)
k(i) be the k-th service time realized at server i.

(For each i, these service times are i.i.d. and distributed as S(1).) Introduce

S̃i(t) = min
k(i)

(S
(1)
1(i) + · · ·+ S

(1)
k(i) − t : S

(1)
1(i) + · · ·+ S

(1)
k(i) − t > 0)

the remaining renewal time at instant t in the renewal process generated by service times
of server i, and let S̃i(0) = Si(0), i = 1, . . . , c. For any (integer) r ≥ 0 and x ≥ 0, denote
the set B(r, x) = [0, r]× [0, x] and consider the process Y =: {Y (t) = (N(t), W (t)), t ≥ 0}.
Then, for any t and x:

I(Y (t) ∈ B(0, x)) ≥ I(N(t) = 0)− I(W (t) > x)

≥ I(N(t) = 0)−

c
∑

i=1

I
(

Si(t) >
x

c

)

.

(26)

Although, for each t, Si(t) and S̃i(t) in general are not comparable, but by construction,
the following inequality holds for any x:

∫ t

0

I
(

Si(u) > x
)

du ≤

∫ t

0

I
(

S̃i(u) > x
)

du, i = 1, . . . , c. (27)
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Note that I
(

S̃i(t) > x
)

, t ≥ 0, is a regenerative process with (generic) cycle length S(1).

Then w.p.1 as t → ∞,

1

t

∫ t

0

I
(

S̃i(t) > x
)

→
1

ES(1)

∫ ∞

x

P(S(1) > t)dt := P(S(1)
e > x), i = 1, . . . , c, (28)

where distribution of the stationary overshoot S
(1)
e is proper. Hence, we can take x1 in such

a way that

P
(

S(1)
e >

x1

c

)

<
δ0
2c

. (29)

If we take x = x1 in (26)-(35) then it follows from (18), (26)–(29) that w.p.1

lim inf
t→∞

1

t

∫ t

0

I(Y (u) ∈ B(0, x1))du ≥ lim inf
t→∞

µo(t)

t
−

δ0
2

=
δ0
2
. (30)

In particular, the total time that the process Y spends in the set B(0, x1) within time interval
[0, t]

∫ t

0

I(Y (u) ∈ B(0, x1))du → ∞, t → ∞. (31)

Because, for each t and x ≥ 0,

{Y (t) ∈ B(0, x)} ⊆ {X(t) ∈ B(K − c, x)}, (32)

then, by (31), the total time the process X spends in the set B(K − c, x1) during time
interval [0, t]

µB(t) :=

∫ t

0

I(X(u) ∈ B(K − c, x1))du → ∞ w.p.1 as t → ∞.

Denote by Λ(t) the number of λ-customers arriving in the interval [0, t], and let GB(t) be
the number of these λ-customers who meets the process X in the set B(K − c, x1), that is

GB(t) =

Λ(t)
∑

k=1

I(Xk ∈ B(K − c, x1)). (33)

It then follows that w.p.1

GB(t)( max
1≤n≤Λ(t)

τn) ≥ µB(t) → ∞, t → ∞. (34)

Since Eτ < ∞, then max1≤n≤Λ(t) τn = o(t), t → ∞ [23]. Thus, GB(t) → ∞ w.p. 1 as
t → ∞, and the total number of λ-customers, GB(∞), meeting the process X in the set
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12 K. Avrachenkov & E. Morozov

B(K−c, x1) is infinite w.p. 1. (This holds for arbitrary initial state X(0), see (18),(19),(30).)
Recall initial state X(0) = (m0, w0), and choose and fix arbitrary r ≥ max(m0, K − c) and
z ≥ max(w0, x1). Then, as in [18], one can find constants D0 < ∞, ε0 > 0 such that the
remaining renewal time β(k) satisfies

inf
k≥1

P(m0, w0)(β(k) ≤ D0 |Xk ∈ B(r, z), β1 > k) ≥ ε0, (35)

where the bounds ε0 and D0 are uniform: they depend on r, z but does not depend on
neither customer number k nor the specific states Xk ∈ B(r, z). Indeed, due to the specific
form of the basic process X , conditioned on the event {Xk ∈ B(r, z), β1 > k}, the total
workload in the system at instant t−k is (uniformly in k) stochastically upper bounded by
the quantity

z +
K−c
∑

i=1

S
(1)
i +

r
∑

i=1

S
(2)
i , (36)

where, evidently, both the service times {S
(1)
i } of waiting customers in the buffer and (expo-

nential) retrial times {S
(2)
i } of all orbit customers are i.i.d and independent of the remaining

workload Wk (≤ z) in the servers. Then one can unload the system during D0 λ-arrivals
with a probability ≥ ε0 (like in the proof after formula (30)), and thus condition (35) is
indeed satisfied. Then one can show that the mean number of λ-customers meeting the
process X in the set B(r, z) during first regeneration period is finite,

E(m0, w0)

(

β
∑

k=1

I(Xk ∈ B(r, z))
)

≤
D0

ε0
< ∞. (37)

(More details can be found in [17, 18].) Because B(r, z) ⊇ B(K − c, x1), then (37) implies
that the number of λ-customers meeting the process X in the set B(K − c, x1) during first

regeneration period is finite, G
(1)
B :=

∑β
k=1 I(Xk ∈ B(K − c, x1)) < ∞. Then it follows from

above that P(m0, w0)(G
(1)
B < GB(∞)) = 1, and hence the number of regeneration cycles is

not less than two. Thus, first regeneration period β1 < ∞ and hence T1 = τ1+· · ·+τβ1
< ∞.

(Indeed, the number of regeneration cycles is infinite w.p.1.) Finally, we note that condition
(6) implies aperiodicity of β.

Remark 2 In general, one can define another type of regeneration, for instance, k-regeneration,
when an arriving λ-type customer see all servers and buffer empty and a fixed k customers
in the orbit, see [17]. Moreover, a relaxation (or elimination) of assumption (6) (which
is necessary to have classical regenerations of type (1), (4)) may lead to the so-called one-
dependent (or weak) regeneration with a dependence between adjacent regeneration cycles,
see for instance, [16, 21, 22]. However, we do not consider such regenerations in this work.
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Remark 3 In a quite general case of unbounded τ (and in particular for the Poisson λ-
arrival process), the constant a in (26) can be taken in such a way that regeneration occurs
in the interval [zn, zn + C + a].

3 Application to particular queueing models

In this section we apply general stability conditions of Theorem 1 to important particular
types of the primary queue.

3.1 Markovian case M/M/c/K

In the Markovian case with c servers, service rate µ and K places in the primary queueing
system, the loss probability in the auxiliary Σ2 system is given by

Ploss =
((λ+ µ0)/µ)

c

c!

(

(λ + µ0)/µ

c

)K−c

P0,

where

P0 =

[

c
∑

n=0

((λ + µ0)/µ)
n

n!
+

((λ+ µ0)/µ)
c

c!

K−c
∑

n=1

(

(λ+ µ0)/µ

c

)n
]−1

.

Hence, the stability condition (10) takes the form

((λ + µ0)/µ)
K

c!

(

(λ+ µ0)/µ

c

)K−c

P0 <
µ0

λ+ µ0
. (38)

The other conditions of Theorem 1 are naturally satisfied by the Poissonian arrival process.
In the case of one server (M/M/1/K case), the above condition reduces to

((λ+ µ0)/µ)
K

[

K
∑

n=0

((λ + µ0)/µ)
n

]−1

<
µ0

λ+ µ0
,

which is equivalent to the ergodicity condition provided in [4]. Then, in the M/M/c/c case,
the condition (38) reduces to

((λ + µ0)/µ)
c

c!

[

c
∑

n=0

((λ+ µ0)/µ)
n

n!

]−1

<
µ0

λ+ µ0
, (39)

which is equivalent to the ergodicity condition provided in [2] with the recovery probability
p = 1.

It is important to note that the conditions given above are in fact necessary and sufficient
stability conditions for the Markovian case. This is why we call conditions presented in
Theorem 1 minimal sufficient stability conditions.
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14 K. Avrachenkov & E. Morozov

3.2 Erlang model

When the primary queue is described by the Erlang model (M/G/c/c case), the general
stability condition (10) takes the form

(

(λ + µ0)ES
(1)

)c

c!





c
∑

n=0

(

(λ+ µ0)ES
(1)

)n

n!





−1

<
µ0

λ+ µ0
,

which is the same form as in (39). Thus, the stability conditions demonstrate insensitivity
property when the primary queue is the Erlang queue. We would like to emphasize that it
seems to be very difficult (if possible at all) to obtain the above stability condition using
stability techniques for Markov chains and embedded Markov chains. Anyway, the presented
approach ensures short and simple proof of stability.

3.3 Deterministic service

We can obtain explicit stability conditions in another important case, in the case of de-
terministic service (M/D/1/K model for the primary queue). In the case of deterministic
service, the loss probability is given by

Ploss = 1−
bK−1

1 + ρbK−1
,

where

bK−1 =
K−1
∑

n=0

(−1)n

n!
(K − 1− n)nρne(K−1−n)ρ,

with ρ = λS [7]. Thus, in the M/D/1/K case the stability condition (10) takes the form

λ

λ+ µ0
<

bK−1

1 + ρbK−1
,

and we note that there exists an efficient recursive approach to calculate the coefficient bK−1

[7].

4 Conclusion

We have considered a retrial queueing system with general renewal arrival process, general
service time and constant retrial rate. To the best of our knowledge a retrial queueing system
with constant retrial rate was considered for the first time under so general setting. We have
obtained minimal stability conditions which are necessary and sufficient in the Markovian
case. Stability analysis also covers arbitrary initial state of the system. The conditions
have clear probabilistic interpretation and can be easily applied to a number of important
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particular cases. Examples of such particular cases are Erlang model and deterministic
service model. We have observed that the stability condition for the Erlang model with
retrial is insensitive to the distribution shape.
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