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STABILITY OF CONSTANT RETRIAL RATE
SYSTEMS WITH NBU INPUT*

K. Avrachenkov1, E.V. Morozov2, R. S. Nekrasova3, and B. Steyaert4

We study the stability of a single-server retrial queueing system with constant retrial rate, general
input and service processes. First, we present a review of some relevant recent results related to the
stability criteria of similar systems. Sufficient stability conditions were obtained by Avrachenkov and
Morozov (2014), which hold for a rather general retrial system. However, only in the case of Poisson
input is an explicit expression provided; otherwise one has to rely on simulation. On the other hand,
the stability criteria derived by Lillo (1996) can be easily computed but only hold for the case of
exponential service times.

We present new sufficient stability conditions, which are less tight than the ones obtained by Avrachenkov
and Morozov (2010), but have an analytical expression under rather general assumptions. A key as-
sumption is that interarrival times belongs to the class of new better than used (NBU) distributions.
We illustrate the accuracy of the condition based on this assumption (in comparison with known
conditions when possible) for a number of non-exponential distributions.

1. Introduction

We consider a general finite-capacity retrial queueing system with a constant retrial rate; this system
will be denoted by Σ. The external (primary) arrivals follow a renewal input with arrival epochs {tk}
and rate λ. The system has m identical servers, and customers have i.i.d. service times {Si}, with a
generic element S and rate μ := 1/ES. If a new customer finds all m servers busy and the buffer (of
size n < ∞) full, it joins an infinite-capacity virtual buffer (or orbit). If the orbit is non-empty, then an
orbital (secondary) customer attempts to rejoin the primary queue after an exponentially distributed
time with rate μ0. Thus, unlike most classical retrial models, the orbit rate in Σ does not depend on
the orbit size (i.e., the number of orbit customers). Such a model is referred to as a retrial model with
constant retrial rate. It then follows that the orbit can be interpreted as a single-server ·/M/1-type queue
with service rate μ0, and where the jobs rejected from the primary queue provide the input. The merged
stream to the orbit is in general not a GI-type arrival stream, since it is a combination of the rejected
part of the primary customers and the secondary customers returning to the orbit after unsuccessful
attempts to enter the primary queue.

Retrial systems with constant retrial rate have been investigated in a considerable number of contri-
butions that mainly focused on Markovian systems. Let us list the most relevant papers that consider
such a model. In [11] G. Fayolle introduced a retrial system with constant retrial rate and derived
stability conditions for the bufferless M/G/1/0 primary queue. In [1] J. R. Artalejo has obtained sta-
bility conditions for the Markovian M/M/2/0 case. In [18] M.F. Ramalhoto and A. Gómez-Corral have
deduced stability conditions for the M/M/1/1 case. For the general Markovian M/M/m/n case, the
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authors of [18] have obtained decomposition results, assuming ergodicity (stability). The ergodicity
conditions for the multiserver Markovian M/M/n/0 case with a recovery probability have been derived
in [2]. Retrial systems with constant retrial rate can be adopted to model a range of telecommuni-
cation systems, such as a telephone exchange system [11], multiple access systems [9, 10], short TCP
transfers [4, 5], as well as logistic systems [13]. Such a system can be successfully applied to model the
multi-access protocol ALOHA, with restrictions for the individual retrial rates.

It is useful to note that the only source of instability of the system is an unlimited growth of the
orbit size. In this paper we briefly discuss some known stability results. These conditions are defined by
the system parameters λ, μ0, μ, and the condition discussed in [6] also includes the loss probability Ploss

in an auxiliary loss system. In some cases this probability can be found explicitly; otherwise, simulation
is required to obtain an estimation for this quantity.

The paper is organized as follows. In Section 2 we give a short review of the known stability
conditions of the described system. In particular, the stability criteria for the GI/M/1/0-type retrial
system presented in [13] are discussed in detail. Then, in Section 3, we present a sufficient stability
condition, which will be verified analytically (with no simulation). This is useful for those cases where
the loss probability Ploss, as indicated above, can be found merely by estimation. Finally, in Section
4, we present simulation results. We would like to stress that these results demonstrate a remarkable
consistency with the theoretical formulas.

2. Stability conditions

In this section, the stability conditions of the retrial system Σ are discussed. We consider a general
GI/G/m/n-type retrial system and construct an associated auxiliary loss system (denoted as Σ(0)),
which has the same configuration as the original system Σ, and an extra independent Poisson input with
rate μ0. We assume that the overflow stream from the system Σ(0) is directed to a ·/M/1/∞ system
(with a service rate μ0), which is treated as a virtual orbit. The server in the original system Σ is less
loaded than in the system Σ(0) (because in the former system some gaps in the stream from orbit to
server occur, as opposed to the latter system). In [6], the following sufficient stability condition of Σ has
been obtained:

(λ+ μ0)Ploss < μ0, (1)

where Ploss is the stationary loss probability in the system Σ(0). Indeed, condition (1) is strictly proved
for a limited class of service time distributions. This proof is based on a delicate coupling construction
and sample-path monotonicity of the stream of the rejected customers in system Σ(0). Condition (1)
has a clear probabilistic interpretation: the left-hand side is the input rate to the virtual orbit (system
·/M/1/∞), while the right-hand side represents its service rate. From standard queueing theory we
know that this condition will imply the stability of the virtual orbit, and hence, the stability of the real
orbit in the (less loaded) original system Σ. For the M/G/1/0 system Σ(0), by the Erlang formula, we
may write

Ploss =
λ+ μ0

μ+ λ+ μ0
, (2)

where μ := 1/ES. Setting λ = 1 we can rewrite (1) in the form

1

μ0
+ 1 < μ, (3)

which allows numerical investigation of the stability region, by varying the two parameters μ0 and μ
(Fig. 1 shows this region for an M/M/1-type system).

Thus, the stability region of the M/G/1/0-type retrial system can be determined analytically by
means of (3).



24 K. Avrachenkov, E.V. Morozov, R. S. Nekrasova, and B. Steyaert

Fig. 1. Stability/instability region of the M/M/1/0-type system with λ = 1.

Now we focus on the stability criterion of a GI/M/1/0-type retrial system obtained in [13]:

λ(μ + μ0)
2

μ
[
λμ[1− C(μ+ μ0)] + μ0(μ + μ0)

] < 1, (4)

where

C(s) =

∞∫

0

e−xsdF (x), s > 0, (5)

is the Laplace–Stieltjes transform of the distribution function F of the interarrival times between primary
arrivals. For the M/M/1/0-type retrial system, C(s) = λ/(s + λ), and in this case it is easy to check
that conditions (1) and (4) are indeed equivalent. Note that in a recent paper [12], the stability criterion
(4) is given in another equivalent form

μ+ μ0

μ

[ μ

μ+ μ0

[
1−C(μ+ μ0)

]
+

μ0

λ

]−1
< 1. (6)

Returning to the GI/M/1/0-type system, we note that for a non-Poisson input, inequality (1) is
only a sufficient (but not a necessary) condition, and thus the stability region found by (1) (that is,
the domains of parameters λ, μ, μ0 where the orbit is stable) is expected to be a subspace of the exact
stability region satisfying (4). Note that, for now, Ploss is an unknown quantity, and we can use simulation
results to obtain an estimate Ploss(t) instead, to check condition

Ploss(t)(λ+ μ0) < μ0, (7)

where Ploss(t) := R(t)/A(t) and R(t) and A(t) are the number of losses and arrivals, respectively, in
system Σ(0) during interval (0, t]. The accuracy of condition (7) is discussed in more detail in Section 4.

3. Stability condition based on NBU property

As it was mentioned above, the explicit expression for Ploss is available only for Poisson arrivals (with
rate λ). Hence, in general, to verify sufficient stability condition (1), we need to simulate system Σ(0)

and estimate the probability Ploss.
In this section, we present a new sufficient stability condition of Σ, which can be computed an-

alytically and thus does not require simulations, but is rougher, in a sense, than condition (1). More
precisely, we assume that Ploss is upper bounded by an analytically available value L. Then Ploss(λ+μ0) �
L(λ+ μ0), and if the condition

L(λ+ μ0) < μ0, (8)
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holds, then condition (1) holds as well. We stress that there is a trade-off: condition (8) is less tight
than (1), but because the value of L is available analytically in a closed-form expression, then there is
no need for simulation experiments. Hence, the advantage/disadvantage of condition (8) depends on
the specific model that is considered. As simulation results in Section 4 show, in some cases the new
condition is easy to check and is quite accurate.

Let us show how the quantity L can be computed in some particular cases. For a classical bufferless
loss system GI/G/1/0 with general interarrival time τ and general service time S, the following relation

connecting the probability Ploss and stationary busy probability P
(0)
b has been obtained (by mean of

regenerative arguments) [17]:

Ploss = 1− 1

ρ
P
(0)
b , (9)

where ρ := ES/Eτ is the traffic intensity,

Ploss := lim
t→∞Ploss(t), P

(0)
b := lim

t→∞
B(t)

t
,

and B(t) is the busy time of the server in interval [0, t]. Thus, if we can determine a lower bound B of

the probability P
(0)
b , then the required upper bound L of the probability Ploss immediately follows:

Ploss = 1− μ

λ+ μ0
P
(0)
b � 1− μ

λ+ μ0
B := L. (10)

In the loss system GI/G/1/0, each arrival at an empty server induces a regeneration. The length of a
regeneration cycle is the sum of the busy period B (which stochastically equals a service time S) and
the idle period I, which equals a remaining interarrival time τ̂ . Consider for a moment a loss system
M/G/1/0, with Poisson input with rate λ and service rate μ = 1/ES. In such a case I =st τ and we
have the well-known expression

P
(0)
b =

ES

ES + Eτ
=

ρ

1 + ρ
. (11)

However, expression (11) is not applicable to the loss system Σ(0), where the input is a superposition
of two independent streams, Poisson μ0-input, and in general non-Poisson λ-input. In this case a
regeneration occurs if and only if a λ-customer enters an empty system, and hence the busy period is a

random sum of service times. To obtain a lower bound for P
(0)
b in system Σ(0), we construct a modified

loss system Σ(1) as follows. Recall that both λ- and μ0-customer has the same service time S. Then,
at each service completion epoch, the next interarrival time in the λ-input is generated anew. Thus, in
system Σ(1), the remaining time to the next λ-arrival is replaced by an independent variable distributed
as τ . As a result, each arrival at an empty server generates a regeneration instant, and the busy period
is stochastically equivalent to service time S. At the same time, in the system Σ(1), the idle period I
is stochastically equal to a minimum of τ and an exponential variable η with rate μ0 (describing the
interarrival time between μ0-arrivals). Denote γ = min(τ, η) and note that Eγ < ∞. Then by standard

regenerative arguments, the busy probability P
(1)
b in the modified system Σ(1) satisfies

P
(1)
b =

ES

ES + Eγ
. (12)

If Fτ is the cumulative distribution function of τ , then, denoting its tail as by F̄τ = 1− Fτ , we obtain

Eγ =

∞∫

0

P(γ � x)dx =

∞∫

0

F̄τ (x)e
−μ0xdx. (13)
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Constructing system Σ(1), we replace the tails of some interarrival times between λ-customers in system
Σ(0) by the entire intervals τ . Thus, if τ̂ �st τ , one can expect that system Σ(0) is more heavily loaded

than system Σ(1) and our main assumption is P
(0)
b � P

(1)
b , or

P
(0)
b � P

(1)
b =

ES

ES +
∞∫
0

F̄τ (x)e−μ0xdx

. (14)

Note that the tail distribution is denoted by F̄ = 1− F . Inequality τ̂ �st τ holds if and only if

F̄τ (x+ y) � F̄τ (y)F̄τ (x), x � 0, y � 0, (15)

in which case Fτ belongs to the class of new-better-than-used (NBU) distributions. Equivalently, (15) can
be written, for any x � 0, y � 0, as P(τ − y > x|τ > y) � P(τ > x). In other words, an independently
resampled variable τ is stochastically larger than or equal to the remaining value τ̂ = τ − y > x
conditioned on the event {τ > y}. If a distribution satisfies the opposite inequality (to (15)), then it is
known as a new-worse-than-used (NWU) distribution.

In case (14) holds, then

L := 1− μ

λ+ μ0
· ES

ES + Eγ
, (16)

is an upper bound of Ploss in system Σ(0). So, condition (8) implies stability of the original retrial system
Σ.

Remark. Note that the proof of statement (14) cannot be based on the classical monotonicity
properties of queues, as the inputs in Σ(0) and Σ(1) are a superposition of two streams [21]. Therefore,
we have to rely on simulation to validate this result.

Consider the Weibull/M/1/0-type retrial system with a Weibull distribution describing the primary
input. In this case

Fτ (x) = 1− e−xw
, x > 0. (17)

The property (15) holds, for instance, for a light-tailed Weibull distribution with w > 1. Note that for
the system under consideration

λ =
1

Eτ
=

1
∞∫
0

u1/w e−udu

, (18)

and

Eγ = Emin(τ, η) =

∞∫

0

e−xw−μ0xdx. (19)

Now we compare two stability regions: i) based on criterion (4); and ii) based on condition (8).
To illustrate criterion (4), for each μ0 we need to calculate the root μL := μL(μ0) of equation

λ(μ + μ0)
2

μ
[
λμ[1− C(μ+ μ0)] + μ0(μ + μ0)

] = 1. (20)

Thus, function μL(μ0) strictly delimits the stability zone. Similarly, to illustrate condition (8), we find

μC := μC(μ0)

as a solution of equation, see (16),

L(λ+ μ0) =
(
1− μ

λ+ μ0
· 1

1 + μ · Eγ
)
·(λ+ μ0) = μ0. (21)
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Figure 2 shows a comparison between the two stability regions, for the Weibull/M/1/0-type retrial
queueing system, with w = 4. The first region is based on stability criterion (4). The second region is
based on condition (8). The area above the curves is the stability zone for the respective condition. It is
obvious that the stability region, based on the function μC(μ0), is a subspace of the region delimited by
μL(μ0), because condition (8) is a sufficient condition (but not a necessary one, in general). And thus
we lose the stability area between the two curves when we rely on condition (8) only. As we obtained,
the stability region obtained by condition (1) is closer to the exact stability zone than a region obtained
by condition (8).

However, because Ploss is typically unknown, it is often preferable to use condition (8) instead of
relying on simulation.

Fig. 2. Stability region for the Weibull/M/1/0-type retrial system, w = 4, λ = 1.103.

Note that if μ0 increases, then the stability region delimited by condition (8) approaches the actual
stability region, delimited by requirement (4). It can be deduced from [15] that as μ0 increases, the
original retrial system approaches the classical system with an infinite buffer, for which the stability
criterion is ρ := λ/μ < 1. This explains why the curve μL(μ0) depicted on Fig. 2 approaches the
constant μ = λ = 1.103 as μ0 → ∞.

Figure 3 gives a comparison of the two stability regions for the Weibull/M/1/0-type system with
parameter w = 2. It is seen that the region obtained by condition (8) on Fig. 3 is closer to the real
stability region than the one on Fig. 2. Thus, decreasing w ↓ 1 makes the predicted stability region more
accurate. Note that for w = 1 the Weibull distribution becomes exponential with rate 1. Then inequality
(15) becomes an equality, and in this case Ploss = L. Hence, conditions (8) and (1) are equivalent and
coincide with the criterion (4). This property is illustrated by Fig. 4.
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Fig. 3. Stability region for the Weibull/M/1/0-type retrial system, w = 2, λ = 1.128.

Fig. 4. Stability region for the Weibull/M/1/0-type retrial system, w = 1, λ = 1.

The Weibull distribution with parameter w < 1 is heavy-tailed (15) and thus belongs to the class of

NWU distributions. As is seen, in this case, P
(0)
b < P

(1)
b . Thus, the fulfillment of (8) does not guarantee

the fulfillment of the sufficient condition (1) in such a case. Figure 5 shows a comparison of the two
regions delimited by μC(μ0) and μL(μ0) for the Weibull/M/1/0-type system with w = 0.8. In this case,
the values that provide an equality in condition (8) are outside the actual stability zone.

Fig. 5. Stability region for the Weibull/M/1/0-type retrial system, w = 0.8, λ = 0.883.

Next, we use simulation to verify (14). Obviously, it is preferable to use condition (8) to designate
the stability region, rather than to rely on estimation based on (7). Verifying condition (7) demands, in
general, a considerable simulation effort, and the results are naturally less accurate. At the same time,
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the method based on the (rougher) sufficient condition is applicable to a general GI/G/1/0-type retrial
system with NBU λ-input.

4. Simulation results

In this section we present and discuss some simulation results, which indeed confirm the theoretical
conclusions obtained in previous sections.

4.1. Accuracy of the sufficient condition

Consider the loss system Σ(0), where the input stream is a superposition of two independent streams:
a primary (in general, non-Poisson) renewal stream with rate λ, and a Poisson stream with rate μ0. First,
we illustrate how to apply condition (7) when only simulation is available to estimate the unknown
probability Ploss by means of the estimate Ploss(t). The goal is to find, for fixed λ, μ0, ε > 0, and
simulation time t, the proper value of μ such that

∣∣∣Ploss(t)(λ+ μ0)− μ0

∣∣∣ � ε. (22)

Let us define

Γ(t) := μ0 − Ploss(t)(λ+ μ0). (23)

Then it is expected that if Γ(t) > 0, the system is stable, and the system is unstable otherwise.

Simulation results for Pareto λ-input with parameters

t = 20000, ε = 0.01, μ0 � 0.02, k = 1, . . . , 500,

are given on Fig. 6, where the stability region obtained by criterion (4) is depicted as well. Note that
in this case

P(τ � x) = 1− x−α, x � 1, α > 1, (24)

and λ = (α− 1)/α. The values of μ that delimit the stability area can be read from the figure.

Fig. 6. Stability region for the Pareto/M/1/0-type retrial system, α = 4, λ = 0.75.

Note that the values of μ0 and μ that fall within the area above the graph assure the stability of
the retrial system with the same configuration. Figure 6 shows that the stability region based on the
sufficient condition is quite close to the real stability region, calculated from the proposed criterion (the
two curves almost coincide). Tests for other values of the input rate (α = 2, α = 3, α = 5) have shown
similar results as for α = 4. Thus, the sufficient condition for the Pareto/M/1/0-type retrial system
is actually quite accurate. Note that a Pareto distribution is an NWU one, and condition (8) is not
applicable in this case.
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4.2. Accuracy of the new stability condition

Now we present some simulation results of systems Σ(0) and Σ(1) with an NBU distribution for the
λ-input. Recall that the stability analysis based on condition (8) is applicable only if

P
(0)
b � P

(1)
b . (25)

The results of the estimation of P
(0)
b , Ploss, L, P(1)

b for Weibull λ-input and exponential service times are
presented in Table 1 (where the corresponding estimators are equipped with a “hat”).

Table 1. Simulation results for Σ(0) and Σ(1) with Weibull λ-input and exponential service times.

w λ μ0 μ P̂
(0)
b P

(1)
b P̂loss L̂

4.0 1.103 1 5 0.317 0.286 0.243 0.321
4.0 1.103 6 6 0.547 0.512 0.542 0.567
2.0 1.128 3 4 0.520 0.489 0.495 0.527
2.0 1.128 3 2 0.684 0.667 0.670 0.677
1.0 1.000 2 4 0.429 0.428 0.430 0.429
1.0 1.000 1 6 0.248 0.248 0.250 0.257
0.8 0.883 1 2 0.470 0.482 0.498 0.488
0.8 0.883 2 4 0.416 0.425 0.427 0.410

The experiments presented in Table 1 confirm that for Weibull distribution with parameter w > 1
(in which case the Weibull distribution is NBU) the statement (25) holds, implying that parameter L
(defined in (16)) is an upper bound for Ploss, and condition (8) is a sufficient condition for stability. For

w = 1, the λ-input becomes Poisson, and the (theoretical) equality P
(0)
b = P

(1)
b is reflected in Table 1.

For NWU Weibull distribution (with parameter w < 1), inequality (25) is violated (see the two bottom
lines in Table 1), and thus condition (8) is not applicable.

A comparison of the three stability zones based on sufficient condition (22), criterion (4), and rough
sufficient condition (8) for a Weibull/M/1/0-type system is presented in Fig. 7.

Fig. 7. Stability region for the Weibull/M/1/0-type retrial system, w = 4.

Similar results for a D/M/1/0-type system with deterministic λ-input with rate λ := 1/D = 3 and
exponential service times are presented in Fig. 8. (Note that deterministic input is NBU.)

We would like to emphasize that the method based on the rough condition is applicable for the
general retrial queuing system. This is illustrated for the Weibull/D/1/0-type retrial system with
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Fig. 8. Stability region for the D/M/1/0-type retrial system, D = 3.

Weibull parameter w = 4 in Fig. 9. Note that in this case μ = 1/D, where D is the deterministic service
time, and criterion (4) is not applicable.

Fig. 9. Stability region for the Weibull/D/1/0-type retrial system, w = 3.

Let N(t) be the orbit size at instant t. To conclude, we demonstrate the dynamics of the process
{N(t), t � 0} for the set of parameters {(μ0, μ)} = {(1, 4), (1, 2), (1, 1)}. The points (1, 4), (1, 2)
belong to the stability region, and this is confirmed by Fig. 10 where we observe that N(t) is a stable
process. However, the pair (1, 1) belongs to the instability region, and Fig. 11 shows the expected
growth of the orbit size.

Fig. 10. Dynamics of the orbit for the Weibull/D/1/0-type retrial system, w = 3, μ0 = 1, μ = 2, D = 0.5.
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Fig. 11. Dynamics of the orbit for the Weibull/D/1/0-type retrial system, w = 3, μ0 = 1, μ = 1, D = 1.
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