226 research outputs found

    Higher-Order Methods for Solving Maxwell\u27s Equations in the Time-Domain

    Get PDF

    A Numerical Algorithm For Simulating Two Species Plasma

    Get PDF
    An algorithm for modeling two species plasmas, which evolves the number density, flow velocity, and temperature equations coupled to Maxwell\u27s electric and magnetic field equations, is discussed. Charge separation effects and the displacement current are retained. Mathematical derivations of normal modes in cold and hot plasmas, as represented by dispersion relations resulting from a linear analysis of the two fluid equations, are presented. In addition, numerical theory in relation to the ideas of geometry, temporal and spatial discretization, linearization of the fluid equations, and an expansion using finite elements is given. Numerical results generated by this algorithm compare favorably to analytical results and other published work. Specifically, we present numerical results, which agree with electrostatics, plasma oscillations at zero pressure, finite temperature acoustic waves, electromagnetic waves, whistler waves, and magnetohydrodynamics (MHD) waves, as well as a Fourier analysis showing fidelity to multiple dispersion relations in a single simulation. Final consideration is given to two species plasma stability calculations with a focus on the force balance of the initial conditions for a resistive MHD tearing mode benchmark and a static minimum energy plasma state

    Numerical Integration of Damped Maxwell Equations

    Get PDF
    We study the numerical time integration of Maxwell's equations from electromagnetism. Following the method of lines approach we start from a general semi-discrete Maxwell system for which a number of time-integration methods are considered. These methods have in common an explicit treatment of the curl terms. Central in our investigation is the question how to efficiently raise the temporal convergence order beyond the standard order of two, in particular in the presence of an explicitly or implicitly treated damping term which models conduction

    Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is operated by the Ohio Aerospace Institute (OAI) and funded under a cooperative agreement by the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the activities at ICOMP during 1994

    A Coupled Transport and Chemical Model for Durability Predictions of Cement Based Materials

    Get PDF

    Nonlinear optics

    Get PDF
    Nonlinear light-matter interactions have been drawing attention of physicists since the 1960's. Quantum mechanics played a significant role in their description and helped to derive important formulas showing the dependence on the intensity of the electromagnetic field. High intensity light is able to generate second and third harmonics which translates to generation of electromagnetic field with multiples of the original frequency. In comparison with the linear behaviour of light, the nonlinear interactions are smaller in scale. This makes perturbation methods well suited for obtaining solutions to equations in nonlinear optics. In particular, the method of multiple scales is deployed in paper 3, where it is used to solve nonlinear dispersive wave equations. The key difference in our multiple scale solution is the linearity of the amplitude equation and a complex valued frequency of the mode. Despite the potential ill-posedness of the amplitude equation, the multiple scale solution remained a valid approximation of the solution to the original model. The results showed great potential of this method and its promising wider applications. Other methods use pseudo-spectral methods which require an orthogonal set of eigenfunctions (modes) used to create a substitute for the usual Fourier transform. This mode transform is only useful if it succeeds to represent target functions well. Papers 1 and 2 deal with investigating such modes called resonant and leaky modes and their ability to construct a mode transform. The modes in the first paper are the eigenvalues for a quantum mechanical system where an external radiation field is used to excite an electron trapped in an electrical potential. The findings show that the resonant mode expansion converges inside the potential independently of its depth. Equivalently, leaky modes are obtained in paper 2 which are in close relation to resonant modes. Here, the modes emerge from a system where a channel is introduced with transparent boundaries for simulation of one-directional optical beam propagation. Artificial index material is introduced outside the channel which gives rise to leaky modes associated with such artificial structure. The study is showing that leaky modes are well suited for function representation and thus solving the nonlinear version of this problem. In addition, the transparent boundary method turns out to be useful for spectral propagators such as the unidirectional pulse propagation equation in contrast to a perfectly matched layer

    HPTAM, a two-dimensional Heat Pipe Transient Analysis Model, including the startup from a frozen state

    Get PDF
    A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end
    • …
    corecore