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Preface

The thesis is divided into three parts:

Part I The motivation for initiating the PhD project is described and the
aims and scope are de�ned. A description of cement, from its produc-
tion to its use in the end products is given in order to relate the origin
of the physical properties to service life aspects. The continuum based
reactive transport model is described in terms of mixture theory, the
numerical scheme and the computer algorithm established. The overall
research �ndings are evaluated by a summary of the scienti�c papers,
together with a complete discussion and conclusion based on these.

Part II This part includes the scienti�c papers published and submitted to
relevant journals. The papers treats individual subjects related to the
project.

Part III This part is an appendix with supplementary description to Part
I. An extensive review of the balance equations in mixture theory and
hybrid mixture theory is given.

The PhD project is a part of di�erent consortia, where the Danish Expert
Center for Infrastructure Constructions (or Concrete Expert Center) is the
primary. The Concrete Expert Center is a collaboration between the Civil
Engineering Department at Technological University of Denmark and the
Technological Institute in Denmark on improvement of knowledge within
service life of concrete. Furthermore, the Concrete Expert Center includes
a PhD project entitled �Numerical Modeling of Reinforcement Corrosion in
Cracked Concrete�. The results from the PhD projects in the Concrete Ex-
pert Center have been presented to a group of stakeholders. The group were
representatives from danish engineering companies and government institu-
tions, e.g., Rambøll, Cowi, the Danish Road Directorate, Bane Danmark and
the cement producer Aalborg Portland.

The project is a part of the Nanocem consortium as the partner project for
the Civil Engineering Department at Technological University of Denmark
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in the Nanocem consortium. Nanocem is a global consortium of academic
and industrial partners, with interest in fundamental research of cement and
concrete. Annual project reports were delivered to the members with re-
cent �ndings from the PhD project. The results from the PhD project was
presented by posters and oral presentations at di�erent workshops.

Knowledge from the PhD study was shared at the Denmark-USA Work-
shop Series on Innovation and Design of Next Generation Sustainable Trans-
portation Infrastructure. Topics upon service life prediction and total life
cycle analysis were debated with focus on the coupling of physical models
and probabilistic modeling.

Kgs. Lyngby 30'th June 2014

M. M. Jensen
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Abstract

The use of multi-physics numerical models to estimate di�erent durability
indicators and determine the service life of cement based materials is in-
creasing. Service life documentation for concrete used in new infrastructure
structures is required and the service life requirement for such structures is
often in the range from 80-125 years. Numerical multi-physics models are
valuable tools when long term predictions are of interest. The multi-physics
models needs to be theoretical sound in order to account for all the essential
coupled processes that occurs. The numerical approach and algorithm needs
to be robust in order to meet the increasing requirements for the detail level
for the simulations and increasing long term simulations.

A coupled reactive mass transport model for concrete is established and
di�erent simulations of concrete exposed to di�erent service environments
are conducted. The theoretical background for the model is to a large extent
based on the hybrid mixture theory, which is a modern continuum approach.
The hybrid mixture theory description considers the individual phases and
species, building up the whole mixture, with individual di�erential equations.
The di�erential equations includes exchange terms between the phases and
species accounting for the exchange of physical quantities which are essen-
tial for a stringent physical description of concrete. Balance postulates for,
mass, momentum and energy, together with an entropy inequality are stud-
ied within mixture theories. Special attention is paid to the criteria for the
exchange terms in the studied balance postulates. A simple case of mix-
ture theory is used to demonstrate how constitutive assumptions are used to
obtain the governing equations for a speci�c model.

The governing equation system used for the multi-physics durability model,
established in this work, is an extended version of the Poisson�Nernst�Planck
system of equations. The extension of the Poisson�Nernst�Planck system
includes a two phase description of the moisture transport as well as chem-
ical interactions. The vapor and liquid contents are coupled by a sorption
hysteresis function and the chemical equilibrium is solved in terms of mass
actions laws using the geochemical code phreeqc. The overall durability
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model accounts for, ion di�usion, ion migration, two phase moisture trans-
port including for hysteresis, ionic convection and chemical interactions in
the pore solution and between the solid cement hydrates and the pore solu-
tion constituents. The mass transport equation system is solved using the
�nite element method. An operator splitting approach is utilized in order to
solve the mass transport and chemical interactions sequentially. A detailed
description of the continuum background of the governing equations and the
numerical solution approaches used is given in this work.

The durability model is tested with di�erent input parameters and bound-
ary conditions in order to demonstrate the applicability of the model and
robustness of the algorithm established. A calculated test example shows
the model response to varying vapor content at the boundary, where satu-
rated conditions occurs in periods and leaching of ions is only allowed in this
period. The e�ect of the sorption hysteresis function is demonstrated in this
test by a comparison to a more simple numerical approach.

The importance of the chemical interactions are demonstrated through
di�erent cases in terms of using di�erent boundary conditions and chem-
ical reaction calculation approaches. Sea-water compositions are used as
multi-species boundary conditions to model natural exposure conditions of
infrastructure constructions. Test examples shows that the simulation re-
sults are very sensitive to the choice of chemical reactions included in the
model. It is concluded that the di�erent numerical chemical equilibrium so-
lution approaches used performs di�erently for the same initial and exposure
conditions. Di�erent numerical calcium silicate hydrate reaction approaches
are studied and reactive transport modeling results using these are compared.
Modeling results of ion ingress are compared with experimental results where
mortar samples has been exposed to a NaCl solution or sea-water. Compar-
ing the chloride ingress between the numerical model and the experiments at
three di�erent exposure times showed good agreement.



Resumé

Brugen af multi-fysiske modeller til estimering af forskellige holdbarheds-
indikatorer til bestemmelse af levetiden for cement baserede materialer er
stigende. Levetidsdokumentation kræves ofte for beton som anvendes i infras-
truktur konstruktioner hvor levetidskravene for disse ofte er 80-125 år. Multi-
fysiske numeriske modeller er yderst anvendelige værktøjer ved langtids-
forudsigelser. De multi-fysiske modeller skal være teoretisk velfunderede for
at inddrage alle essentielle koblede fysiske og kemiske processer. Den nu-
meriske løsning og algoritme skal være robust for at imødekomme de øgede
krav til detaljeniveauet i simuleringerne samt øget simuleret tid.

En koblet reaktiv masse transport model til beton er etableret og forskel-
lige simuleringer af beton eksponeret imod forskellige eksponeringsmiljøer er
udført. Den grundlæggende teoretiske baggrund for modellen er baseret på
hybrid blandingsteori som er en moderne kontinuum metode. Den hybride
blandingsteori beskriver de enkelte faser og de enkelte bestanddele med in-
dividuelle di�erentiale ligninger. Di�erentiale ligningerne inkluderer udbyt-
ningstermer som beskriver overførslen af fysiske mængder hvilket er essentielt
for at opnå en stringent beskrivelse af beton. Studier af ligevægtspostulater
for masse, momentum og energi, samt en entropi ulighed indenfor blanding-
steorier er udført. I studierne er der er lagt specielt vægt udbytningstermerne
i ligevægtspostulaterne. Et simpelt tilfælde fra blandingsteorien er brugt til
at vise hvorledes de konstitutive antagelser bruges ved udledningen af de
styrende ligninger for en speci�k model.

Det styrende ligningssystem som anvendes i den multi-fysiske holdbarheds-
model, etableret i dette projekt, er en udvidet version af Poisson�Nernst�
Planck ligningssystemet. Udvidelsen af Poisson�Nernst�Planck systemet in-
kluderer en to fase beskrivelse af fugt transport, samt kemiske interaktioner.
En soprtionshysterese funktion beskriver forholdet imellem damp og væskeind-
holdet og kemisk ligevægt er beregnet ved hjælp af 'mass action laws' i den
geokemiske kode phreeqc. Den overordnede holdbarhedsmodel beskriver,
ion di�usion, ion migration, to faset fugttransport med sorption hysterese,
ion konvektion og kemiske interaktioner i poreopløsningen og mellem pore-
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opløsningen og de solide cement hydrater. Masse transport ligningssystemet
er løst ved hjælp af �nit element metoden. En operatordelings metode er
anvendt for at løse masse transport og kemisk ligevægt sekventielt. En de-
taljeret gennemgang af kontinuum baggrunden for de styrende ligninger og
fremgangsmåden for løsningen af disse er givet.

Holdbarhedsmodellen er testet med forskellige inputparametre og rand-
betingelser, for at demonstrere anvendeligheden af modellen og robustheden
af algoritmen som er etableret. Et beregningseksempel viser modellens re-
spons på varierende dampindhold ved randen, hvor vandmættede perioder
forekommer og udludning af ioner er kun tilladt i denne periode. E�ekten
af sorptionshysterese funktionen vist ved en sammenligning med en simpel
numerisk fremgangsmåde.

De vigtige kemiske interaktioner er vist igennem �ere forskellige cases i
form af forskellige påsatte randbetingelser og fremgangmåder for kemisk reak-
tionsberegninger. Havvandskompositioner anvendes som multi-komponents
randbetingelser til modellering af naturligt eksponerede infrastruktur kon-
struktioner. Test eksempler viser at simulerings resultaterne er yderst sensi-
tive for valget af kemiske reaktioner inkluderet i modellen. Det konkluderes
at forskellige numeriske fremgangsmåder for beregningen af kemisk ligevægt
giver forskellige output for de samme initielle forudsætninger og eksponer-
ingsbetingelser. Forskellige numeriske metoder for reaktionen med kalcium
silikat hydrater er undersøgt og disse er sammenholdt. Modelleringsresul-
tater af ion indtrængning er sammenholdt med eksperimentelle resultater,
hvor mørtel prøver har været eksponeret imod en NaCl opløsning eller hav-
vand. Sammenligningen imellem den numeriske model og de eksperimentelle
resultater vidste en god korrelation ved tre forskellige eksponeringstider.
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Chapter 1

Introduction

A numerical framework for service life predictions in terms of durability in-
dicators is established in this project. The background for establishing the
project and the descriptions of the aims and scope for the project are pre-
sented in this chapter. Cement based materials, especially concrete, are of
main interest in this project. Therefore, a general description of cement is
given, in terms of cement production, the use of cement based materials and
durability indicators. The description of the cement properties are related
to service life aspects of concrete, where numerical service life modeling is an
important tool for service life predictions. The service life concept as it is
treated in this work is shortly described and a review of existing numerical
service life models/tools for concrete is given.

The purpose of including a detailed description of cement as a material
is twofold, �rstly, to emphasize the importance of understanding that all
physical and chemical processes from cement production have a signi�cant
in�uence on how cement based materials evolves over time and how they
behave in their service environments. Secondly, further development of the
numerical service life framework in terms of new models/tools requires a deep
knowledge of the material in terms of physical and chemical behaviors.

1.1 Project background

Cement based materials are the most used building material in the world,
where di�erent types of concretes are the most used products. The total
amount of cement requested world wide is extremely high, in 2013 the total
global amount of cement produced was estimated to be 4.000[Mton] where
the major parts were produced in China with 58%, 7% in India, 2% in the
United States (U.S. Geological Survey, 2014). The enormous amount of
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1.1 Project background Introduction

cement produced globally is in charge of 4-5% of the global CO2 emission
as the approximately energy consumption for the production is 1.4[GJ/ton]
and due to the breakdown of the limestone in the cement kiln (NRMCA,
2012). Research has been devoted to reduce the energy consumption in the
cement production, but it seems that practical limits have been reached, for
developing this further. The research tends to focus on replacing the cement
in the end products with other silicate based materials and in this way reduce
the amount of cement needed in these. Examples of substitutes for cement
are �y ash, ground granulated blast furnace slag and silica fume (Siddique
and Khan, 2011).

Cement based materials are often very durable, so the total amount of
CO2 emitted from the production is often acceptable seen from a service life
perspective. Service life requirements for large infrastructure constructions
are often in the time frame of 80 - 125 years where only planned maintenance
is accepted. The design phase of larger structures will often involve a long
term service life estimation in order to ensure a su�cient service life which
requires knowledge of the deterioration processes in the material caused by
speci�c service environments. The physical and chemical deterioration pro-
cesses involved are often very complex and interlinked, which makes a reliable
service life estimate di�cult to perform.

The overall durability of cement based materials is strongly dependent on
the service environments they are placed in. A great majority of the overall
durability aspects are related to mass transport mechanisms of di�erent kinds
in the porous network. The mass transport of ions, in the pore solution,
change the equilibrium state between the solid and liquid phases in the system
and thereby a�ects the durability. The ion transport a�ects the durability in
to ways, with transport from the service environment into the pore solution
and transport from the pore solution towards the service environment. The
ingress of external ions from the service environment, may lead to formation
of new solid phases or increase the amount of the existing ones. The formation
of solid phases may result in volume expansions, that can cause cracking. The
leaching of ions from the concrete pore solution to the service environment
leads to dissolution of the initially formed solid phases.

Changes in the initial pore solution are especially critical for reinforced
concrete structures as the pH-value may decrease due to the ion transport
and rebar corrosion can initiate which is especially critical when chloride is
present (Nielsen and Geiker, 2004; Geiker et al., 2007). Another important
mass transport process to consider for the durability aspects of concrete is
the moisture �ow in non-saturated concrete. An external supply or loss of
moisture will change the initial conditions of the pore solution and thereby
change the ion concentrations. The moisture �ow in concrete is rather com-
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Introduction 1.1 Project background

plex as it is heavily a�ected by sorption hysteresis. Examples of moisture
level variations in service environments are typically from summer to win-
ter periods or in tidal zones, in which parts of the structure are exposed to
saturated conditions in periods.

The task of predicting the service life of a concrete structure as a func-
tion of durability indicators is challenging in di�erent ways, the time frame
considered (80 - 125 years), the number of coupled physical and chemical pro-
cesses involved and variations in the service environment in both short and
long time perspectives. The number of unknowns in the service life 'equation'
for concrete is extensive and requires a robust and e�ective framework for its
solution and equally important, the possibility to extend the framework in
terms of coupling of additional physical and chemical processes. The com-
putational power available today, enables rather large and complex coupled
systems to be solved numerically within reasonable short time.

1.1.1 Aim and scope

The project is motivated by the increasing demands to service life predic-
tions of concrete structures. Numerical service life frameworks based on
sound theoretical descriptions in terms of numerical durability models, used
as durability indicators, are relevant for this matter. Robust solving methods
are also needed to meet the future demands. The overall aim of the project
is:

� To identify and understand the main multi-physical and chemical pro-
cesses in concrete through a sound continuum theory.

� To implement coupled moisture and ion transport equations into a
tailor made �nite element code.

� To implement a chemical equilibrium module into the mass transport
equation scheme.

� To verify the multi-physics hypothesis in terms of mass transport and
chemical interactions by comparing simulation results with experimen-
tal results.

The durability model established in this work will not account for all known
physical and chemical processes related to durability. However, the struc-
ture of the model is such that future modi�cations and additions are straight
forward. The theoretical mechanical background for the durability model
established is based on continuum mixture theory (Bowen, 1976) and hybrid

Department of Civil Engineering - Technical University of Denmark 5



1.2 The use of concrete Introduction

continuum mixture theory (Bennethum and Cushman, 2002a,b). The trans-
port of each ion and phase are considered individually in the mixture theories
and the chemical interactions are taken into account. The mass transport
part of the durability model is based on an extended version of the Poisson�
Nernst�Planck system of equations derived from hybrid mixture theory, see
e.g. Johannesson (2010a). The moisture transport part, of the durability
model, which accounts for sorption hysteresis is included by the method de-
scribed in Nyman et al. (2006); Johannesson and Nyman (2010). The �nite
element method is used as numerical solver for all included mass transport
equations. The chemical interactions are descried by equilibrium dissolu-
tion/precipitation reactions and the equilibrium state is determined in terms
of the corresponding mass action laws. Special attention is paid to a robust
chemical description which includes the state-of-art reaction schemes for the
calcium silicate hydrate. The durability model is not validated against exper-
iments in all parts but examples of its performance is checked by comparing
simulation results with experimental data.

1.2 The use of concrete

Concrete is properly the most well known type of material based on cement.
Concrete is used extensively as a building material, not only by professional
craftsmen but also in simple do-it-yourself projects conducted by amateurs.
Concrete is, therefore, available in di�erent formats, from large trucks with 6-
12 m2 ready-mixed concrete to kinds of �shake'n-bake� mixtures in 5 kg bags
where only water needs to be added. The placing of concrete is also varying,
from a simple foundation under a single-family house to large constructions
in terms of bridges, dams, tunnels, etc. The �uidity of fresh concrete is
one of the reasons for the widespread use in the building industry. The
properties of fresh concrete is also used by artists to form sculptures. Artists
and architects may utilize the possibility of varying the color and surface
treatments of concrete to create di�erent visual expressions. A completely
di�erent application of cement paste is for dental repair, which is developed
from commercial portland cement in combination with bismuth oxide powder
(Torabinejad and Chivian, 1999). Durability is to some extent relevant for
the applications listed above, but the requirements and service environment
di�ers signi�cantly for the application.

The most simple form of concrete is a mix of Ordinary Portland Cement
(OPC), aggregates in variable sizes and water, where the properties of the
hydrated concrete is highly depended on the proportions of the components in
the mixture. The most important property for concrete as a building material
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Introduction 1.2 The use of concrete

is the compressive strength. The compressive strength for ordinary concrete
is around 30-50[MPa] and high-strength concrete has been developed with
compressive strength >100[MPa]. High compressive strength is obtained by
using high amounts of cement in relation to the amount of water used. The
tensile strength is signi�cant lower compared to the compressive strength,
around a factor of 0.10.

Reinforced concrete is properly the most used type of concrete, where
steel reinforcement is used to limit cracking of the concrete besides increas-
ing the tensile strength. Di�erent types of reinforcement methods have been
developed for di�erent purposes and di�erent materials have been used in
combination with concrete. Typical reinforcement for, e.g., bridge decks are
a carefully designed net of steel rebars in which concrete is casted to cover
the steel and add compressive strength to the structure. Another type is �ber
reinforcement, where small �bers of di�erent kind of shapes are mixed into
the concrete. Fiber reinforcement increases the toughness of the concrete
and therefore stresses can be transfered across local cracks. Fiber reinforce-
ment is in some cases combined with the conventional steel rebars. A more
advanced form of reinforcement is pre-stressed concrete, where the rebars are
pre-stressed to increase the span for, e.g., concrete bridge decks. Common
to most reinforced structures today, is the use of steel and the durability is
therefore no longer only dependent on the concrete but also the durability of
the steel embedded in the concrete.

Concrete is used in large scale for other purposes than the load bearing
capacity. Common for the di�erent types of concrete is that the cement paste
glues together the aggregates. The amount of cement paste, density of the
aggregates and the use of di�erent add-mixtures are then varied in order to
create di�erent types of concrete. Lightweight concrete is often used for non-
bearing walls, where it reduces the total dead load of a structure. Lightweight
concrete has a comparable low bearing capacity but has improved thermal
properties due to its high porosity. On the other hand, heavyweight con-
crete is for instances, used as radiation protection where the thickness of
the construction required to obtain proper protection is reduced compared
to conventional concrete. Another example is pre-stressed concrete which is
used in pressure vessels for nuclear reactors (Mindess et al., 2003). Concrete
is also used for storage and encapsulation of nuclear waste where the long
term performance of concrete is very important, in the range of 1000 years
(Fillmore, 2004; Acevedo and Serrato, 2010).

The review of the applications of concrete and the di�erent types of con-
cretes given here is not complete, but it gives an indication of the variety
of its use and types of concretes available. A common issue for most of the
applications considered here, is the durability. It is concluded that the dif-
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ferent applications sets di�erent requirements for the durability and gives
signi�cantly di�erent service environments. Durability aspects of concrete
are a factor in safety considerations for, e.g., bridge construction and nuclear
power plants, but also a factor in the economical considerations for, e.g.,
larger infrastructure constructions.

1.3 Concrete as building material

Concrete is simply a mix of cement, water and aggregates, where cement
and water forms the cement paste that binds together the aggregates to form
a composite material. The chemistry involved, from production to cement
paste in service environments is described in the following sections. Essen-
tial physical properties responsible for the mass transport in concrete are
described. The coupled mass transport processes and chemical interactions
in concrete are the main actions a�ecting the overall durability.

The experienced concrete researcher or civil engineer may �nd this sec-
tion trivial, but it is included here to relate the basic cement properties, to
durability problems where complex solution procedures are needed. Another
purpose of this section is to describe concrete as a general material within the
category of reactive porous media. The theoretical background for the mod-
eling tool described and used in this work is valid for any porous medium,
which facilitates that methods from other research �elds may be transfered
and utilized.

1.3.1 Cement chemistry

The cement chemistry is divided into three main processes in this work.The
processes are related to the overall durability of the end products.

1. The manufacturing of cement from the raw materials

2. The hydration processes in which cement and water reacts

3. Cement paste degradation caused by a non-equilibrium condition be-
tween the paste and the pore solution.

The practical process of manufacturing cement is rather simple, the raw
materials are heated in a kiln to approximately 1300 to 1400◦C where di�erent
calcium silicates are formed (Taylor, 1997; Hewlett, 2003; Mindess et al.,
2003; Boateng, 2008). The raw materials must be of a certain quality in
order to control the chemical process in the kiln and get a uniform cement
composition in a continuous production line. The typical raw materials for
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Table 1.1: Clinker composition of a typically ordinary Portland cement
according to Mindess et al. (2003).

Clinker phase Compound Weight percent

Alite C3S 55
Belite C2S 18
Aluminate C3A 10
Ferrite C4AF 8
Gypsum CSH2 6
Impurities 3

the calcium oxide supply are limestone, chalk and/or shell deposits. Iron-
bearing aluminasilicates provides the silicate to the cement where clay and
silts are the primary sources. One of the advantages of using clay and silts
is that these minerals are often naturally �nely divided. The raw materials
are blended and grinded if necessary before they are heated in the kiln.

The chemical processes in the kiln starts in the calcination zone where
carbon dioxide is released from the limestone at about 900◦C and clinker
components starts to form at a temperature of 1200◦C. The �rst clinker
component formed is typically belite (C2S) which is produced by solid-state
reactions, where the the present alumina and ferrite acts as �uxes. Increasing
the kiln to the �nal temperature at 1300 to 1400◦C will result in formation of
the important alite (C3S). The alumina and ferrite phases (C3A and C4AF)
are formed in the cooling phase of the cement. A small amount of gypsum(
CSH2

)
is added to the cement to control hydration of C3A. A typically

clinker composition of an OPC is shown in Tab. 1.1. The impurities or mi-
nor components in the cement are often found in the aluminate phases C3A
and C4AF, where the oxides K2O, Na2O and MgO are the most common.
The presence of magnesium oxide MgO in the cement may cause volume ex-
pansions in the cement paste after a hydration period, due to its relative slow
reaction rate. The alkalies K2O and Na2O may cause alkali-silicate reactions
with the aggregates in concrete which may lead to cracking. Crack formation
is of course a signi�cant durability issue and has signi�cant in�uence, on e.g.,
the mass transport properties.

The hydration of cement is easy to initiate, as it involves only mixing
water and cement. The chemical processes occurring during hydration are on
the other hand very complex and these are not yet fully understood (Bullard
et al., 2011; Mindess et al., 2003; Taylor, 1997). The reaction schemes for the
hydration presented here are based on examination of the individual clinker
minerals. A simple form of the hydration reactions of the clinker components
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given in Tab. 1.1, are

2C3S + 11H→ C3S2H8 + 3CH

2C2S + 9H→ C3S2H8 + CH

C3A + 3CSH2 + 26H→ C6AS3H32

3C4AF + 12CSH2 + 110H→ 4C6 (F,A) S3H32 + 2 (F,A) H3

The C3S and C2S reactions are similar, where both reactions forms calcium
silicate hydrate (C-S-H or C-S-H gel) and calcium hydroxide (Portlandite
or CH) in di�erent amounts. C-S-H and CH are the two main components
in cement paste and the two most important. The reaction schemes with
the C-S-H are shown with a �xed stoichiometry, but the internal C/S ratio
varies, which makes a sound and robust description of the C-S-H complicated.
Some aspects regarding the structural description of the C-S-H are addressed
in Paper III, where some of the recent chemical models for the C-S-H phase
are shown and implemented in the durability model. The C3A and C4AF
reacts with gypsum and water to form di�erent types of ettringite phases.
The aluminate reaction may also form monosulfoaluminate depending on the
molar ratio between gypsum and aluminate, CSH2/C3A, present. The simulated
formations of ettringite and monosulfoaluminate are studied in Paper III
and Paper IV where they are combined with formation of Friedel's salt, as a
consequence of chloride ingress.

There exist no general agreement of the description of the chemical re-
actions involved in the hydration and therefore a detailed description and
understanding of the kinetics is not yet achieved (Bullard et al., 2011). Some
basic understanding of reaction rates for the clinker minerals, e.g. the order
of the rates kC3A>kC3S>kC4AF>kC2S and di�erent stages of the hydration are
determined from heat elaboration. The hydration kinetic is considered in
this work in terms of the degree of hydration of each of the clinker minerals,
which are functions of time. The total degree of hydration at a given time is
of interest for this work, as all physical properties for the hardened cement
paste are set and developed as a function of this, e.g. porosity, pore size
distribution and connectivity of the pores.

The third cement chemistry topic discussed in this work is the chemical
degradation of the cement paste (Le Bescop et al., 2013; Hewlett, 2003). Here
it is assumed that the desired physical properties have been reached and that
the solid phase composition is in a steady equilibrium with the pore solution.
Chemical degradation of the initial cement paste composition occurs when a
non-equilibrium state between the pore solution and the solid phases exist.
The non-equilibrium state is caused by di�erent exposures from the service
environment. As described earlier, concrete and thereby cement paste are
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used in a variety of applications which also gives a variety of service envi-
ronments. Service environments for infrastructure structures are typically
soil on concrete foundations and sea-water on, e.g., harbor, bridge or tunnel
structures. Concrete placed in soil may su�er from sulfate attack whereas
sea-water exposure is a combined exposure, where sulfate, magnesium and
chloride in di�erent concentrations are common. Leaching of ions from the
pore solution causes dissolution of the solid phases. Sulfate attack from an
external source may result in additional formation of gypsum, monosulfate
and ettringite. This so-called delayed ettringite formation causes a volume
expansion, which increase the internal tensile stresses in the cement paste
and will lead to cracking if the tensile capacity is exceed. Cracks acceler-
ates the rate of ion ingress and thereby sulfate which in some cases causes
spalling of the concrete cover. The major components in sea-water are typi-
cally sodium, chloride and magnesium which may react with the pore solution
to form solid phases like, e.g., ettringite, brucite and Friedel's salt. Brucite
is formed by the expense of CH and leads to decalci�cation of the C-S-H at a
later stage as the pH-value of the pore solution drops. Formation of brucite
and other magnesium phases may not always be a completely negative e�ect
seen from a durability perspective as they may create a sealed area near the
exposed surface which decreases the rate of mass transport. Chloride expo-
sure on cement paste may form Friedel's salt and Kuzel's salt, which interacts
chemically with other solid phases (Balonis et al., 2010). Chloride attack on
cement paste is extensively studied as the chloride is one of the main reasons
for initiation of reinforcement corrosion. The presence of chloride in the pore
solution in combination with a low pH value will remove the corrosion pro-
tection of the steel rebar surfaces. The formation of solid phases containing
chloride together with other binding mechanisms may work as retarders for
the ingress rate. The chemical processes in steel corrosion is not considered
in the durability model in this work, but calculated chloride concentrations
may be used in, e.g., the Hausmann's free concentration criterion for initia-
tion of steel corrosion, which is [Cl−]/[OH−] > 0.6 (Hausmann, 1967) or other
similar criteria see, e.g., Alonso et al. (2000).

External ion ingress causes a range of changes to the initial cement paste.
The changes described above are interlinked and some processes may preclude
others. This fact complicates a formulation of a chemical model which is
general and thereby usable for di�erent cement compositions and service
environments. It is also concluded that the solid phases are changed due to
the mass transport and thereby change the mass transport properties, which
complicates the formulation of a coupled durability model even more.
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1.3.2 Mass transport in concrete

Mass transport in concrete plays a signi�cant role for several durability con-
siderations. The mass transport in the porous system is the main reason for
establishing a chemical non-equilibrium state between the pore solution and
the solid phases. The mass transport properties evolves during the hydration
period which makes this process essential for the durability issues related to
mass transport. The mass transport properties of concrete are also strongly
dependent on the mix design of the speci�c concrete. The design criterion
for concrete mix designs is often only speci�ed in terms of the compressive
strength and durability aspects may be considered as secondary.

The porous network in concrete is very complex at the micro and nano
scale which makes the mass transport properties di�cult to understand.
The pores created are geometrically di�cult to quantify due to the di�erent
shapes of the hydration products. The irregular shapes have an e�ect on, e.g.,
capillary condensation and water adsorption properties. The pore formation
in concrete can be understood as a compaction of the reacted water, the
density of water bound in the hydration products of OPC is approximately
ρw,react u 1333[kg/m3].

The porous network is often quanti�ed by the total porosity ptot (t), which
is de�ned as

ptot (t) =
Vpore (t)

Vtot
(1.3.1)

where Vpore (t) is the pore volume and Vtot is the total volume which is as-
sumed constant. The pore volume is a function of time and evolves in the
hydration period but may also change in the service period due to chemical
interactions. The initial total porosity is dependent on the water to cement
ratio (w/c) and the degree of hydration, where an increasing w/c ratio will
increase the total porosity of the hydrated cement. The pores are divided into
two main groups the capillary pores and the gel pores, depending on their
size. The capillary pores are the water �lled space in the unhydrated mix
and gel pores are small pores in the C-S-H. The capillary pores are of great
interest for many durability aspects as the mass transport occurs mainly in
this part of the porous network. The capillary porosity pcap (t) is de�ned as

pcap (t) = ptot (t)− pgel (t) (1.3.2)

where pgel (t) is the gel porosity which is assumed to be 0.26 for a fully
hydrated cement (Mindess et al., 2003). An important theoretically lower
limit for the w/c ratio can be determined. A w/c = 0.41 will ensure that a
su�cient amount of water is available for full hydration and a minimum of
capillary porosity is created.
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The porosity de�nitions do not include any informations of the geomet-
rical con�guration of the porous system, which is important in relations to
the mass transport processes. A measure that is often used in concrete re-
search to quantify the pore geometry is the pore size distribution determined
by, e.g., mercury intrusion. The pore size distribution is, however, not a di-
rect measure of the connectivity of the porous network. Another measure is
the water permeability which is important, especially for non-saturated con-
cretes, as the rate of attack from the service environment may be controlled
by this factor. The �ow of water in cement paste obeys the Darcy's law. An
extended Darcy's law is studied through numerical examples in Paper I and
II. A simple form of Darcy's law is

v = −Kp
∆h

∆x
(1.3.3)

where v is the rate of �ow, Kp is the permeability coe�cient, ∆h is the
hydraulic pressure over the distance ∆x. The permeability, in terms of the
permeability coe�cient Kp, is related to the capillary porosity and w/c ra-
tio. An increase in w/c ratio and thereby the capillary porosity will increase
the permeability coe�cient for both cement paste and concrete. The water
transport carries ions from the service environment and initiates a chemi-
cal attack. Another important permeability measure is the gas permeability
which typically is higher than the water permeability. The gas phase trans-
ports water vapor and carbon dioxide which reacts with the pore solution.
Modeling of vapor transport is studied in Paper I.

Moisture �xation in terms of adsorption and capillary condensation is
related to the complex geometrical pore structure at the micro and nano
scale. Concrete shows a signi�cant sorption hysteresis e�ect on wetting and
drying cycles which a�ects the chemical equilibrium of the pore solution. A
fully theoretical understanding of the sorption hysteresis has not yet been
reached, so phenomenological modeling approaches are sought in order to
reproduce sorption hysteresis. A sorption hysteresis model which is included
in the durability model is studied in Paper I.

The mass transport in concrete includes transport of ions in the pore so-
lution which is a signi�cant process, especially in saturated concrete. The ion
transport is strongly a�ected by the moisture content in non-saturated pores
and depends thereby on the sorption mechanisms. The ion transport in sat-
urated pores is mainly di�usion and migration driven, which are dependent
on the self di�usion constant for each ion D0,i and the migration coe�cient
A0,i. The most simple case of ion transport is the di�usion of an uncharged
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and non-reacting ion, which follows the simple form of Fick's second law

∂ci
∂t

= Di
∂2ci
∂x2

(1.3.4)

where ci is the concentration of ion species i, t is time, Di is the e�ective
di�usion constant and x is distance. It is clear that the ions in the com-
plex pore solution in concrete is a�ected by charged species and chemical
reactions, this is described in more details in Paper I, II, III and IV. The
complex geometrical structure of the porous network has an in�uence on the
ion di�usion in terms of the di�usion coe�cient. A tortuosity factor τ is
often used to describe the relation between the self di�usion coe�cient D0,i

and the e�ective di�usion coe�cient Di of the pore system (Shen and Chen,
2007). The tortuosity factor can be de�ned as

1

τ²
=
D0,i

Di

(1.3.5)

Di�erent authors may de�ne the tortuosity factor di�erently (Latour et al.,
1995), but the main concept is the same.

Common for all the mass transport mechanisms are that they are de-
pendent on the geometrical con�guration of the porous matrix. This means
that changes in the geometrical con�guration due to, e.g., cracking caused
by volume expansion will change the e�ective di�usion coe�cients.

The main concluding remarks on the limited review of cement chemistry
and mass transport, Sec. 1.3.1 and 1.3.2, is that it is important to realize
that all chemical and physical processes occurring are interlinked and in�u-
ence each other. In other words, the quality of the raw materials has an
in�uence on the concrete performance until it is taken out of service and
maybe reused. All physical and chemical processes in this period may a�ect
di�erent durability aspects of the material. It should be the primary goal to
incorporate as many general physical and chemical processes into a durabil-
ity model in order to predict the behavior of any type concrete. Optimally,
the clinker composition, the mix design and the load from the service en-
vironment should be the only input for a complete durability analysis of a
concrete.

1.3.3 Durability and service life of concrete

The terms durability and service life are essential when the long term per-
formance of concrete and concrete structures are predicted. A numerical
service life framework based on numerical durability models is established in
this work. But how are the terms de�ned and how are they linked?
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Durability is a general term, so investigating concrete durability may
be challenging as it covers a wide range of topics and it make no sense to
study durability as a single measurable quantity. Durability is related to an
event that causes fundamental changes to the exposed material. Some of the
classical issues related to durability of concrete are

� Chemical attack

� Sulfates, causing volume changes.

� Carbonation, pore solution changes and formation of new phases.

� Reinforcement corrosion, cracking and spalling due to volume changes.

� Alkali-silica reaction, cracking.

� Leaching, dissolution of solid species.Mass transport

� Wetting and drying cycles

� Moisture transport

� Ion and gas transport

� Physical attacks

� Micro structure, including cracks and other defects

The list indicates that durability of concrete is used in many connections
and the listed subjects are considered as individually problems in many
cases. The use of the durability term for di�erent purposes for concrete
is highlighted by Mendoza-Rangel and Castro-Borges (2007) where it is con-
cluded that there is no common agreement on how durability for concrete is
de�ned. The term �ability� is highlighted by Mendoza-Rangel and Castro-
Borges (2007) as an important term in a durability context. This term is
adopted here to formulate a de�nition for durability of concrete for this work
as �The ability to withstand any exposure that causes an equilibrium state
that is di�erent from a similar material in an isolated environment at the
time t�. There is no distinction made between pure concrete and reinforced
concrete in the durability de�nition and it is de�ned solely for the material.
The de�nition is constructed from a theoretical and modeling point of view.
The time of concrete mixing corresponds to t = 0, so the de�nition covers,
e.g., the hydration process, which is considered as being in equilibrium at
all time but also reinforced structures as an equilibrium state is assumed
between the concrete and the reinforcement material.

Service life of concrete or, maybe more relevant service life of concrete
structures is also a general term, in the same way as the durability term.
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Figure 1.1: Schematic service life model, after Tuutti (1982).

Service life of concrete structures is often associated with the service life
of reinforced concrete as many de�nitions and models relate the service life
to corrosion of the reinforcement (Bazant, 1979; Tuutti, 1982). Most often
when service life is considered, the actual concern is about the end of ser-
vice life, at which state it occurs and the time until it occurs. One of the
most known schematic service life models for reinforced concrete structures
is proposed by Tuutti (1982) where the service life is described by an ini-
tiation phase and a propagation phase of reinforcement corrosion. At some
time in the propagation phase, the structure will reach a limit state, e.g.,
in terms of failure, which then is de�ned as the end of service life. The
schematic model by Tuutti (1982) has been extended in di�erent versions
and combined with probabilistic modeling of service life see, e.g., Li et al.
(2007); Cusson et al. (2011); Pease et al. (2011); �b (2006). Recent topics
within service life modeling includes further extensions where, e.g., monitor-
ing, maintenance planning, future loading scenarios, life-cycle cost, etc., are
considered, see Cusson et al. (2011); Kim et al. (2013).

A di�erent service life modeling approach is given by the deterministic
models. Some of these models are reviewed by Ahmad (2003); Mendoza-
Rangel and Castro-Borges (2007). The deterministic models may also use the
de�nitions of the initiation phase and the propagation phase of reinforcement
corrosion and estimate the service life based on that. A model proposed by
Bazant (1979) determines the time, to a de�ned volume expansion caused
by rust formation on a rebar. A certain amount of rust will eventually lead
to cracking or spalling which may be de�ned as the end of service life. A
question that is not clearly answered with respect to service life of concrete
structures is at which state the service life ends? The de�nitions of this is
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often di�cult to understand and to some degree very self-deciding, some of
these concerns regarding the use of the service life term in standards are
addressed by Helland (2013).

It should also be mentioned that the durability and service life terms may
di�er between applications of concrete, e.g., concrete used in nuclear energy
production may have other de�nitions of durability and service life compared
to infrastructure structures which are of main interest here. The numerical
service life framework initiated in this work do not give the end of the service
life as result, neither does it give the full picture of how durable a speci�c
concrete is. However, the durability model established, which is the �rst
module in the service life framework (see Fig. 1.2), will provide important
information, that can be used to evaluate the service life of a concrete.

1.4 Concrete modeling tools

The research devoted to numerical modeling tools for concrete has been ex-
tended over the last 3-4 decades, where increasing computational power has
enabled more complex problems to be solved within reasonable computa-
tional time. In general, the �eld of multi-physics modeling has gained cur-
rency and has become accepted as a reliable and useful tool in many indus-
tries. Modeling tools within concrete research are used for many di�erent
applications, e.g., a model by Svec et al. (2011) has been used to predict �ow
of fresh concrete with �ber reinforcement and a model for crack propagation
in concrete is shown by Gasser and Holzapfel (2005). Modeling tools devel-
oped speci�c for concrete durability or/and service life predictions have been
developed in terms of research models and more commercial models.

Modeling of the micro structural development during the hydration of
concrete is not a direct indicator of durability or service life, but this has a
signi�cant in�uence on the physical processes involved in di�erent durabil-
ity aspects as described previously. For this reason, modeling of the cement
paste micro structure is considered in di�erent models. Examples of such
models are hymostruct, cemhyd3d and µic proposed by van Breugel
(1995), Bentz (1999) and Bishnoi and Scrivener (2009), respectively. The
hymostruct model assumes spherical cement particles and calculates the
hydration of these to predict the cement paste micro structure. The model
uses, i.a., the particle size distribution of the cement powder and the w/c ratio
as input parameters and estimates the strength development and porosity as
function of time (Van Breugel, 1995). The cemhyd3d is a pixel based model
where cellular automata is used to describe the micro structural development.
The model uses information from digital scanning electron microscope (SEM)
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images and particle size distributions of the cement. The model output is
estimations of, i.a., strength development, percolation and di�usion proper-
ties. The µic model uses a spherical representation of the cement particles,
with focus on computational speed and updated hydration rules compared
to the hymostruct model. The assumptions made in the above described
models may be very rough, as for example the spherical representation and
the hydration rules associated with these.

The most widely used engineering way to evaluate the concrete durability
in aggressive environments is in terms of chloride ingress by using Fick's sec-
ond law solved by the error function. The ClinConc model by Luping (2008)
utilize the error function and extend the model by using a time-dependent
di�usion coe�cient (Luping and Gulikers, 2007) as well as a time dependent
binding isotherm of chloride. This type of model is easy to solve numerically
and this is properly the reason for the widespread use. The time dependent
material properties used for, e.g., the di�usion coe�cient and binding may
not by strictly physical, seen from a mechanical and thermodynamic point
of view. The time dependency is an attempt to invoke numerous of physical
and chemical processes into one or more, reduction or accelerating functions.

The most commercialized service life prediction tool is properly stadium
initiated by Samson et al. (1999a). stadium is one of the few service life
modeling tools for concrete structures which has a graphical user interface,
which makes it easy to use. The numerical model in the software package is
based on solving di�erential equations which describes the mass transport in
concrete coupled with chemical equilibrium. The model is capable of han-
dling booth saturated and non-saturated systems. The model uses the �nite
element method (FEM) as numerical solution method for the mass transport
and the chemical equilibrium is calculated by the Newton's algorithm. The
physical and chemical background of the model is described in di�erent pa-
pers, e.g., Samson and Marchand (2007a, 1999); Samson et al. (1999a). The
stadium software package o�ers to estimate the service life of a structure,
both as a design tool for new structures but also for evaluation of the re-
maining service life of existing structures. Concrete cores from the existing
structure are analyzed and the results are used as input values for the predic-
tion of the renaming service life. The stadium software o�ers even further
analysis of the structure than the service life prediction, such as, life-cycle
costs analysis, based on di�erent scenarios.

The DuCom (Durability COncrete Model) code is a durability predic-
tion tool for concrete structures that predicts the state of the concrete at a
given time (Maekawa et al., 2008). The code has recently been extended to
include features from the geochemical code phreeqc and thereby solve cou-
pled reactive transport problems, see Elakneswaran and Ishida (2013). The
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mass transport is described by di�erential equations solved by the FEM. A
DuCom durability calculation is initiated at the hydration of the cement and
the output is given as, e.g., the degree of hydration, micro structure, distri-
butions of moisture, pH in the pore water, corrosion rate, etc. The DuCom
code includes mechanical actions in terms of, e.g., temperature and shrinkage
e�ects, which introduces stress and strains. All the factors are included in
an assembled durability calculation.

A reactive mass transport model for long term predictions of concrete is
developed at Taiheiyo Cement in Japan and presented by Hosokawa et al.
(2011). The model solves the mass transport di�erential equations by the
FEM and utilize the features in phreeqc as chemical equilibrium solver.
The model uses the surface complexation equilibrium feature in phreeqc to
describe the C-S-H phase and determine the electrical double layer composi-
tion for this phase which enables, i.a., modeling of alkali binding. The model
predicts the state of the concrete in terms of pore solution composition and
amount of solid phases present.

A service life model for reinforced concrete structures is proposed by
Baroghel-Bouny et al. (2009) where �durability indicators� are used as input
in a service life estimation. The durability indicators are numerical durability
models which o�ers di�erent levels of detailing of ion ingress and moisture-
ion transport. One level is a coupled reactive mass transport model solved
by the Finite Volume Method (FVM). The model determines the service
life of reinforced concrete from the chloride content determined by solving
di�erential equations.

The models by Samson et al. (1999a), Elakneswaran and Ishida (2013),
Hosokawa et al. (2011) and Baroghel-Bouny et al. (2009) are in the same
category of multi-species reactive transport modeling of concrete. Di�erent
levels of calculations are o�ered by the models, from pure physical modeling
showing the state of the material to life-cycle cost analysis. The models are
seen as the state-of-art within multi-physics modeling of concrete although
with di�erent strengths and weaknesses in their current versions. The in-
dividual codes may focus on di�erent parts, e.g., complete life cycle cost
in stadium, hydration and structural considerations in DuCom, utilization
of advanced chemical modeling in Hosokawa et al. (2011) and wetting and
drying cycles in Baroghel-Bouny et al. (2009).
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1.5 Concluding remarks

Concrete is widely used in di�erent applications and a primary factor in the
global CO2 emission due to the extensive amount used per year. Infras-
tructure structures are responsible for a signi�cant part of the amount of
concrete used globally and it is therefore relevant to investigate optimal ce-
ment compositions in terms of increasing the service life of bridges, tunnels,
etc. The service life in this work is investigated in terms of durability (or
durability indicators adopting the terminology from Baroghel-Bouny et al.
(2009)) where physical and chemical processes are described by modern con-
tinuum mechanic approaches. It is concluded that numerous of physical and
chemical processes occurs over time and these are strongly coupled which re-
sults in non-linear numerical models. The concept for the numerical service
life framework initiated in this work is shown in Fig. 1.2 where the reactive
mass transport model established is the �rst durability indicator in the the
service life framework. Di�erent durability indicators may interact and the
service life prediction becomes an iterative process between these. It is also
concluded that the numerical service life framework is not complete in the
sense that a limited number of physical and chemical processes are included.
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Service life

Durability indicator 1: 

Ion and moisture ingress

Cement chemistry

Mass transport in concrete

Materials properties

Chemical composition

Porosity

Tortuosity factor

Di usion constants

Sorption hysteresis parameters

- Ion concentration in service environment

- Moisture cycles in service environment

+

Durability indicator 2: ...

Has the limit state been reached, based on the accumulated

durability calculations at the given time? 

A true statement corresponds to the end of service life.

Figure 1.2: Schematic illustration of the connection between service life,
durability and the modeling framework established in this project. The mod-
eling framework includes the material properties, cement chemistry and mass
transport which are coupled processes. The outcome of the framework is used
to evaluate the durability for the speci�c problem, which may in�uence other
durability aspects. The accumulated durability is used as basis for a service
life estimation for the concrete in use.
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Chapter 2

Numerical model description

2.1 Introduction of mixture theories

The complex durability aspects associated with concrete requires a sound
theoretical background in order to incorporate all physical and chemical pro-
cesses involved into a model. Modern continuum mixture theories are used
in this work to de�ne a set of balance laws, which together with appropriated
constitutive assumptions yields the governing equation system. The di�er-
ent balance laws used are balance of mass, balance of momentum, balance of
energy and an entropy inequality. The mixture theories are in general well
suited for describing cement based materials as they are in the category of re-
acting porous media. The durability model established in this work compiles
mass transport of ions, water and vapor and the chemical interactions into
a non-linear coupled model. The solid phases are only accounted for in the
chemical interactions with the liquid phase. It is important to note that the
limited descriptions of the solid phases are a simpli�cation as a description of
stress and strains are not included. The term species used in this description
corresponds to the term constituents used by other authors.

Two slightly di�erent mixture theories are considered in this work, the
classical single-phase mixture theory following the description of Bowen (1976)
together with the review by Johannesson (1998) and the hybrid mixture the-
ory (HMT) for multi-phase and multi-species mixtures following Bennethum
and Cushman (2002b,a), the review by Johannesson (2010a) and lecture notes
by Johannesson (2011b) from the course Introduction to Constitutive The-
ory and Continuum Physics with Numerical Applications using FEM at the
Technical University of Denmark Department of Civil Engineering. Other
related supplementary work used are Ristinmaa and Ottosen (2010); Tad-
mor et al. (2012); de Groot and Mazur (1984); Bear and Bachmat (1990);
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Gri�ths and College (1999).
The basic concept of mixture theory is shown schematically in Fig. 2.1

where the di�erent levels, for which the balance laws are de�ned according
to multi-phase and multi-species mixture theory. The whole mixture level,
is in fact described by balance laws equivalent to classical continuum theo-
ries. The phase level, represents the di�erent phases building up the whole
mixture, typically consisting of solid, liquid and gaseous phases. The phases
have a clear distinct boundary in the representative volume as illustrated on
the dashed borderline between the whole mixture and the phase level in Fig.
2.1. The species level, is the species building up the individual phases. Con-
tradictory to the phases the species are characterized by no distinct borders
between the species. Conservations of the balance laws are obtained by a
summation of all species for each phase and also a summation of all phases
which yields the whole mixture. The summations of the balance laws on
phase and species levels are used to obtain criteria for the exchange terms in
the balance laws for the di�erent levels. Exchanges of physical quantities are
allowed to exist between phases on the phase level and between species on
the species level. Exchange actions are also allowed among the species found
in the di�erent phases.

Figure 2.1: Multi-phase and multi-species mixture theory illustration. The
di�erent levels for which the balance equations are de�ned are shown and
the exchange terms between these.

The multi-phase and multi-species mixture theory approach leads to a
rather complex set of balance de�nitions which are shown in details in App.
A.2 and A.3. The balance equations for the more simple single-phase mixture
theory are shown in details in App. A.1. Detailed mathematical steps are
shown in the appendixes for the relation between the balance laws at the dif-
ferent levels. The detailed study emphasizes criteria related to the exchange
terms. The use of the balance laws and constitutive assumptions, to reach
the governing equations for a reactive mass transport model are shown in the
following sections using the single phase mixture theory. The derivation of
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multi-phase and multi-species governing equations are in many parts similar
but includes more mathematical steps which are brie�y discussed in App.
A.3.10.

2.1.1 Balance equations and mixture theory results

Essential mixture theory results in terms of restrictions on the exchange
terms for a single-phase case are shown in the following section. A single-
phase mixture, following Fig. 2.1 is to consider, e.g., the α phase as the
whole mixture and only consider the exchange term on the species level.
An extensive review showing all essential mathematical steps to obtain the
results given here is shown in App. A.1.

The spatial position x of an particle is described by the particle motion
function χj which is de�ned as x = χj (Xj, t), where Xj is the material
coordinate and t is the time. In this case, the species are ions in the pore
solution and it is therefore convenient to write the balance laws in terms of
the ion concentration. The density of species j is de�ned as ρj = ρj (x, t),
which leads to the species concentration ci = ci (x, t) = ρj/ρ, where ρ is the
density for the whole mixture.

Mass balance equations for the the species and the whole mixture are
de�ned where the mass balance for the species accounts for mass exchange
between the species in terms of the property ĉj. The local form of the mass
balance postulate for the species, is

∂ρj
∂t

+ div
(
ρjx

′
j

)
= ĉj (2.1.1)

where x′j is the velocity of the j'th species and t is time. The local form of
the mass balance postulate for the whole mixture is

∂ρ

∂t
+ div (ρx′) = 0 (2.1.2)

where x′ is the velocity of the whole mixture which is de�ned as the mass
weighted average of the species velocities. The balance equations (2.1.1) and
(2.1.2) are rewritten into compatible versions, which yields a criteria for the
mass exchange terms as

N∑

j=1

ĉj = 0 (2.1.3)

which is (A.1.43) repeated. The exchange term ĉj is in this case the chemical
interactions in the reactive transport model where the criteria (2.1.3) must
be ful�lled. An important rewriting, is the species mass balance law (2.1.1)
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written in terms of the materials derivative for the mixture D
Dt

and the di�u-
sion velocity uj which is de�ned as uj (x, t) = x′j (x, t)− x′ (x, t). The mass
balance law for the species, using the material derivative, can be formulated
as

ρ
Dcj
Dt

= −div (ρjuj) + ĉj (2.1.4)

which is (A.1.47) repeated.
The balance of momentum is described in terms of angular momentum

and linear momentum. The angular momentum is conserved by assuming
that the stress tensor T for the whole mixture is symmetric. The symmetry
condition is deduced from the postulate of angular momentum balance. The
local form of the angular momentum postulate for the whole mixture is

∂

∂t
(x× ρx′) = −div (ρ (x× x′)⊗ x′) + div (x×T) + ρx× b (2.1.5)

where b is the external body force density. The symmetry condition for the
stress tensor is

T = TT (2.1.6)

which is (A.1.67) repeated.
The linear momentum balance is described in terms of compatible balance

equations for the species and the whole mixture. The linear momentum
balance of the species includes a momentum supply term p̂j accounting for
interaction with other species and a supply involving the mass exchange term,
that is ĉjx

′
j. The local form of the linear momentum postulate for the species

is
∂ρjx

′
j

∂t
= −div

(
ρjx

′
j ⊗ x′j

)
+ divTj + ρjbj + p̂j + ĉjx

′
j (2.1.7)

The local form of the postulate for the whole mixture is

ρ
Dx′

Dt
= divT + ρb (2.1.8)

In order to make the linear momentum balance postulate for the species
compatible with the whole mixture, the following must hold

N∑

j=1

(ĉjuj + p̂j) = 0 (2.1.9)

which is (A.1.84) repeated. Note that the momentum contribution involving
the mass supply ĉjuj is written in terms of the di�usion velocity uj in order
to be compatible with the mass balance (2.1.4).
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The energy balance is described by a balance postulate for the species and
a postulate for the whole mixture. The energy balance for the species level
includes supply generated by the mass exchange term and the momentum
supply from other species. Furthermore, the interaction energy êj from the
species are included as a part of the energy balance. The local form of the
energy balance postulate for j'th species is

∂

∂t
ρj
(
ej + 1

2

(
x′j
)

2
)

+ div
(
ρj
(
ej + 1

2

(
x′j
)

2
)
x′j
)

= div
(
TT

j x
′
j − qj

)
+ ρjrj

+ ρjx
′
j · bj + x′j + xj ·′ p̂ + êj + ĉj

(
ej + 1

2

(
x′j
)

2
)

(2.1.10)

The local energy balance postulate for the whole mixture is

ρ
D

Dt

(
e+ 1

2
ẋ2
)

= div (Tx′ − q) + ρr +
N∑

j=1

(
ρjx

′
j · bj

)
(2.1.11)

Comparison of the species postulate and the whole mixture postulate yields
a criteria for the summation of the supply terms, as

N∑

j=1

(
ĉj
(

1
2
u2
j + ej

)
+ uj · p̂j + êj

)
= 0 (2.1.12)

which is (A.1.132) repeated.

The entropy inequality postulate is de�ned for the whole mixture. Dif-
ferent versions of the inequality can be derived as shown in App. A.1.5. The
entropy inequality used here is written in terms of the inner Helmholtz in-
ternal free energy density ψI which is de�ned as ψI = eI − ηθ, where eI is
the inner internal energy, η is the entropy and θ is the temperature which is
assumed to be the same for all species for this case. The single temperature
entropy inequality from which the governing equation is deduced is

0 ≤ ρ

(
−ηDθ

Dt
− DψI

Dt
+

N∑

j=1

Dcj
Dt

µj

)
−

N∑

j=1

ρjuj ·
[
θgrad

(
1

θ

(
µj + 1

2
u2
j

))

− bj +
Duj
Dt

]
−

N∑

j=1

(
µj + 1

2
u2
j

)
ĉj + tr (TL)− q

θ
· grad (θ) (2.1.13)

which is (A.1.182) repeated.
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2.1.2 Constitutive theory for reacting systems

The entropy inequality is used to derive the governing equation based on a
speci�c choice of the inner Helmholtz energy. Reacting mixtures are consid-
ered in this case, where the inner Helmholtz energy is constituted as

ψI = ψI (θ, ρ, c1, ..., cN) (2.1.14)

A di�erentiation of (2.1.14) is needed in order to evaluate each term in the
entropy inequality (2.1.13). The di�erentiation is

DψI

Dt
=
∂ψI

∂θ

Dθ

Dt
+
∂ψI

∂ρ

Dρ

Dt
+

N∑

j=1

∂ψI

∂cj

Dcj
Dt

(2.1.15)

Each of the terms in (2.1.13) are evaluated separately with the inner
Helmholtz energy in order validate the inequality. The di�erent parts are
denoted with 'case' here, in a sense that all statements in the cases must be
ful�lled.

Case 1:

The terms involving the material derivative of the temperature in (2.1.13)
are considered together with (2.1.15), that is

0 ≤ −ρDθ
Dt

(
η +

∂ψI

∂θ

)
(2.1.16)

where it is seen that the classical de�nition of the entropy η is obtained as
η = −∂ψI

∂θ
, for arbitrary temperature variations.

Case 2:

The terms involving the material derivative of the concentration is consid-
ered, that is

ρ
N∑

j=1

Dcj
Dt

(
µj −

∂ψI

∂cj

)
(2.1.17)

where the de�nition for the chemical potential µj is obtained as µj = ∂ψI

∂cj
,

for arbitrary concentration variations.
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Case 3:

Consider the terms involving the density of the system ρ together with the
term tr (TL), that is

0 ≤ −ρ
(
∂ψI

∂ρ

Dρ

Dt

)
+ tr (TL) (2.1.18)

The total stress tensor is assumed to be equal to the hydrostatic pressure,
T = −πI. The following relation will be used

trL = div (x′) =
Dρ

Dt

1

ρ
(2.1.19)

where the mass balance for the whole mixture (A.1.42) was used. Using
(2.1.19) and the stress tensor assumption in (2.1.18), yields the condition
involving the time derivative of the density of the mixture, as

0 ≤ Dρ

Dt

(
−ρ2∂ψI

∂ρ
+ π

)

where it is concluded that the total hydrostatic pressure needs to be de�ned
as: π = ρ2 ∂ψI

∂ρ
, for cases when the mixture density is allowed to change

arbitrarily.

Case 4:

The last term on the right hand side of (2.1.13) is considered in order to
obtain Fourier's Law. The term considered is

0 ≤ −q

θ
· grad (θ) (2.1.20)

This part of the inequality is valid, using a speci�c choice of q, which is
Fourier's Law, given as

q = −λgrad (θ) (2.1.21)

This speci�c constitutive relation will assure that the quadratic terms in
2.1.20 ful�ll the inequality dissipation.

Case 5:

In order to obtain a generalized Fick's law, the following part of (2.1.13) is
considered

0 ≤ −ρjuj ·
[
θgrad

(
1

θ

(
µj + 1

2
u2
j

))
− bj +

Duj
Dt

]
(2.1.22)
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It is assumed that the terms u2
j , bj and

Duj

Dt
are negligible so the inequality

2.1.22 reduces to

0 ≤ −ρjuj · θgrad

(
1

θ
µj

)
(2.1.23)

in which the choice of the di�usion velocity uj = −Djgrad (µj) will ful�ll the
inequality. In order to obtain a generalized version of Fick's law consider the
potential de�ned as µj = µ0

j +Rθ ln (ρjγ) where µ0
j is the reference potential,

R is the universal gas constant, γ is the activity coe�cient and the prod-
uct ρjγ can be interpreted as the activity aj of the species. The activity is
often used in chemical equilibrium calculations. Using the constituted chem-
ical potential for the choice of di�usion velocity uj and assuming constant
temperature θ, yields

ρjuj = −DjRθ

(
grad (ρj) +

ρj
γ

grad (γ)

)
(2.1.24)

If the density for the whole mixture ρ is assumed constant and the relation
ρj = ρcj is used on the right hand side of (2.1.22), and consequently the
following is obtained

ρjuj = −DjRθρ

(
grad (cj) +

cj
γ

grad (γ)

)
(2.1.25)

Combining (2.1.25) with the mass balance (A.1.47) yields

ρ
∂cj
∂t

+ ρẋ · grad (cj) =

− div

(
−DjRθρ

(
grad (cj) +

cj
γ

grad (γ)

))
+ ĉj (2.1.26)

It is convenient to rewrite (2.1.26) in terms of molar concentration c̃j by the
relation c̃j = cjρ/Mj where Mj is the molar mass. Furthermore, the di�usion
coe�cient D∗j is de�ned as D∗j = DjRθ, hence, one obtain

∂c̃j
∂t

= −div
(
−D∗j

(
grad (c̃j) +

c̃j
γ

grad (γ)

))
− ẋ · grad (c̃j) + ˆ̃cj (2.1.27)

It is very important to note that any charge, generated when considering
charged species such as ions, is not considered in the formulation (2.1.27).
The derivation of the di�usion equation (2.1.27) in terms of the the classical
chemical potential was shown to emphasize the close relation between the
di�usion and chemistry as this de�nition for chemical activity lead to the
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classical de�nition of the mass action law for solving chemical equilibrium.
In order to introduce a term accounting for charge balance in the concept
of mixtures, comprehensive derivations and assumptions are needed, e.g.,
see Bennethum and Cushman (2002a,b); Johannesson (2010a). The Nernst-
Planck equation, accounting for di�using charged species, is obtained by
de�ning the electrochemical potential as µj = µ0

j +Rθ ln (ρjγ) +FzjΦ where
F is Faraday's constant, zi is the valence state of a charged species and Φ is
the electrical potential (or streaming potential). This invoke an additional
term in (2.1.27) as

∂c̃j
∂t

= −div
(
−D∗j

(
grad (c̃j) +

c̃j
γ

grad (γ) +
F

Rθ
zj c̃jgrad (Φ)

))

− ẋ · grad (c̃j) + ˆ̃cj (2.1.28)

It should be carefully noted that the derivations made here is based on the
speci�c choice of the Helmholtz free energy (2.1.14) which does not include
the electric potential Φ. Of this reason the theory used here cannot de�ne
the electrical potential in terms of the inner Helmholtz free energy. More
importantly, in the format used here, it is not possible to check that the
Nernst-Planck equation ful�ll the entropy inequality.

Case 6:

The terms involving the chemical interactions ĉj in the adopted inequality
(2.1.13) is considered next. As in Case 5 it is assumed that u2

j is negligible
and the part examined is reduced to

0 ≤ −
N∑

j=1

ĉjµj (2.1.29)

In order to facilitate a direct relation to chemical reaction schemes, the condi-
tion described in (2.1.29) is reformulated into a matrix notation

∑N
j=1 ĉjµj =

ĉ∗ · µ∗. The j species considered in the mass exchange term ĉj are related
to r chemical reactions of the system with a stoichiometric matrix V∗ and a
reaction rate vector j∗. The mass exchanges is described as

ĉ∗ = V∗j∗ (2.1.30)

The stoichiometric matrix V∗ is constructed so that
∑N

j=1 Vji = 0, that is,
a stoichiometric normalization. The constitutive equation for the reaction
rates j∗ leading to the classical equilibrium chemistry approach, is

j∗ = L∗V∗Tµ∗ (2.1.31)
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where the diagonal terms of L∗ are rate constants for each reaction consid-
ered. Setting all j∗ values to zero corresponds to chemical equilibrium which
is the condition used in chemical equilibrium codes such as phreeqc and
GEM-Selektor. The solution to this is basically a minimization problem.
Combining (2.1.30) and (2.1.31) yields kinetic constitutive relations for the
mass gain/loss of the species of the system, as

ĉ∗ = V∗L∗V∗Tµ∗ (2.1.32)

By inserting (2.1.32) in the inequality (2.1.29), will assure ful�llment of the
inequality by noting that the dot product of µ∗ is always positive and making
sure that V∗L∗V∗T is positive de�nite by using a proper choice of L, that is

0 ≤
(
V∗L∗V∗Tµ∗

)
· µ∗ (2.1.33)

It is important to realize that (2.1.32) is not uniquely de�ned in the sense
of determining the chemical potential from the known values of the chemical
reaction rates and stoichiometric relations of the reactions.

2.1.3 Concluding remarks

The derivations shown in Secs. 2.1.1 and 2.1.2 and App. A do not contribute
with further development of the mixture theory, the HMT or the governing
equations compared to the indicated reference papers. The derivations shows
the concept of the mixture theory and the HMT which are non-standard
approaches within concrete durability modeling. The further development
of the service life framework should follow these or similar concepts in order
to ensure a sound thermodynamic description, which motivates the detailed
description of the balance laws for both the mixture theory and the HMT.
Studying the mixture theories in App. A helps to understand the complexity
of a material like concrete. It is generally accepted that concrete is a complex
material and the physical and chemical interactions are strongly coupled, but
studying these couplings in terms of mathematical equations underlines this
complexity.

The governing equation system for the coupled reactive mass transport
model used in this work is described in Paper I. The derived Nernst-Planck
equation (2.1.28) is extended further by a Poisson equation enforcing charge
balance in the pore solution and a two phase liquid and vapor transport
model accounting for sorption hysteresis.
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2.2 Numerical methods

The numerical solution of the coupled reactive mass transport system con-
sidered in this work, involves di�erent approaches. The di�erential equations
for the mass transport part of the durability model are solved by FEM, but
other approaches like the �nite volume approach, di�erent iterative methods,
the lattice Boltzmann method, etc. are suggestions of other available numer-
ical methods. The mass transport and the chemical equilibrium is decoupled
for the numerical solution in this work, facilitated by an operator splitting
approach, which is often used for solving reactive transport models. Chem-
ical equilibrium is often formulated as a minimization problem, where the
most used approaches are the mass action law (MAL) and the Gibbs energy
minimization (GEM).

2.2.1 Mass transport

The governing mass transport equations employed in the durability model are
solved by the FEM. A detailed formulation of the discrete system is shown in
Paper I and therefore not repeated in details here. The FEM is widely used
for solving mass transport systems and in general multi-physics problems
due to its general robustness. Other durability models for concrete that are
solved by the FEM are for instance Samson et al. (1999b) and Hosokawa
et al. (2011).

The FE formulation presented in Paper I shows the governing equations
in a strong form, which are derived from the HMT. The equations presented
in strong form are rewritten into a weak form, primarily by multiplying two
arbitrary weight functions and use the Green-Gauss method to rewrite the
surface integrals. The state variables in the weak form are discretized by a
linear expansion and the spatial weight function is discretized according to
the Galerkin's method. The global mass matrix, sti�ness matrix and load
vector are constructed and the discrete system is solved as an initial value
problem by a one-dimensional single parameter time stepping scheme.

Other numerical methods for solving di�erential equation systems are
available such as the classical �nite volume method (FVM) and the �nite
di�erence method. More recently the lattice Boltzmann method (LBM) has
proven to be a valuable method in terms of its computational speed. The
FVM is employed in di�erent numerical models for ion and moisture trans-
port in concrete. The method is used by Mainguy and Ulm (2001) for cou-
pled di�usion-dissolution processes in reactive porous media, separated by
a fracture channel and by Mainguy and Coussy (2000) for solving a more
simple concrete degradation model. The FVM is chosen by Mainguy and
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Ulm (2001) due to its ability to handle a sharp dissolution front. The FVM
is also employed by Nguyen et al. (2006, 2008) where coupled ion and mois-
ture transport is modeled. The module based reactive mass transport model
HYTEC by Van Der Lee et al. (2003) has a transport module using the FVM
for solving mass transport equations where it is emphasized that the FVM
is useful for problems with variable porosity.

The use of the LBM as a numerical solver has increased over the last
decade, especially within the �eld of �uid dynamics see, e.g., Svec et al.
(2011). The fundamental idea of the LBM is to construct simpli�ed kinetic
models that incorporates the essential physics of microscopic and mesoscopic
processes so that macroscopic averaged properties obeys the desired macro-
scopic equations (Chen and Doolen, 1998). The LBM is also used in, e.g.,
advection-di�usion problems which is related to concrete durability see Mo-
hamad (2011) and for solving electro-di�usion problems described by the
Nernst-Planck equation as in Minussi et al. (2013). Recently the LBM has
been used by Patel et al. (2014) to solve the mass transport of a multi-species
system in a reactive mass transport model. The chemical reactions in Patel
et al. (2014) are solved by the geochemical code phreeqc, which is a similar
approach to the reactive mass transport models solved by the FEM together
with an operator splitting approach. One of the main reasons for using the
LBM is the computational e�ciency and ease of parallelization, which also
is emphasized as an advantage by Patel et al. (2014).

The numerical methods highlighted here have advantages that could be
utilized in the durability model in this work, e.g. the FVM with its ability to
handle variable porosity and the computational speed by LBM. The compu-
tational speed is of great interest for durability simulations of concrete due
to the requirements of long term reactive multi-species simulations.

2.2.1.1 FEM development

The FE scheme, established in this work, is based on simple linear discretiza-
tion in both the spatial domain and the time domain. The FEM o�ers a range
of extensions of the computational scheme in order to minimize numerical er-
rors and optimize computational speed, see e.g., Larson and Bengzon (2010).
The suggestions for further development of the FE scheme given here is based
on the experience obtained during development and testing of the model.

The current version of the FEM may be referred to as the h-version of
the FEM where the only way to minimize the numerical error, introduced
by the discretization, is by increasing the number of spatial elements. A �ne
mesh is needed in the current version of the durability model when a non-
saturated system is exposed to a fully saturated boundary condition as shown
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in Paper I. The mesh re�ning increases the computational time signi�cantly
when chemical equilibrium is included, as chemical equilibrium is calculated
at each node. It is often a limited part of the spatial domain which needs the
�ne discretization in this type of problems and for that reason the adaptive
mesh re�nement method could be valuable in terms of optimizing the mesh.
Another FEM extension is the p-version of the FEM, which can be combined
with the h-versions. In the p-version, the order of the element polynomial
is increased to obtain convergence. Higher order elements could be useful
when the operator splitting method is used between the mass transport and
chemical equilibrium. The calculated chemical equilibrium concentrations
are used as initial values in the next time step and the concentrations may
have steep gradients over single elements in the spatial domain. Higher order
polynomials may describe these transition zones in a more smooth manner.

2.2.2 Operator splitting method

The reactive mass transport model is decoupled in the numerical scheme by
an operator splitting method in order to solve the chemical equilibrium sep-
arately. For this matter instantaneous chemical reactions are assumed. Split
operator approaches are widely used in reactive mass transport modeling,
see an extensive list of papers in Simpson and Landman (2007). Di�er-
ent approaches for using the split operator has been proposed, a review of
some of these is given by Carrayrou et al. (2004). The two most common
approaches used in reactive mass transport modeling are the iterative and
non-iterative method. The iterative method iterates between the mass trans-
port and chemical equilibrium until convergence for a given time step. The
non-iterative approach uses the result from the mass transport step as in-
put values and calculates a new equilibrium state which is the overall result
for the time step. The non-iterative method is used in two ways, either by
a mass transport calculation followed by chemical equilibrium calculation
or a chemical equilibrium calculation followed by a mass transport calcula-
tion. The non-iterative split operator approach introduces numerical errors
at the boundary and in the spatial domain which is analyzed by Simpson
and Landman (2007). The time step length in the numerical scheme should
be su�ciently small in order to reduce the error. Errors introduced by the
operator splitting is not explicitly evaluated and corrected for in this work.

2.2.3 Chemical equilibrium solvers

Chemical equilibrium in reactive mass transport models for cement based
materials is often solved by geochemical equilibrium codes together with an
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thermodynamic database valid for cement chemistry. Chemical equilibrium
is calculated bye the MAL approach in the durability model. A review of the
MAL approach is given in Paper II and III, based on the phreeqc manual
by Parkhurst et al. (1999) and the more general description by Bethke (1996).
The review in Paper II describes the MAL equations for aqueous reactions,
pure phase reactions and solid solution reactions. The review in Paper II is
extended in Paper III by a description of the surface complexation reactions
and an estimation of the electrical double layer (EDL) ion composition. The
ability to handle surface complexations and estimate the EDL on surfaces is
one of the main reasons for using phreeqc in this work.

The FE discretization and the operator splitting approach enables the
use of di�erent chemical equilibrium solvers, where the chemical composi-
tion is given as input and return a new chemical equilibrium state in terms
of concentrations of the ions in the pore solution. A chemical equilibrium
solver method which is widely used in cement chemistry is the GEM ap-
proach, which is implemented in the GEM-Selektor software, Kulik et al.
(2003). The GEM algorithm (GEMS3K) in GEM-Selektor has recently been
improved and a review of the numerical scheme is given by Kulik et al. (2013).
The GEMS3K is now available in a version for coupling to mass transport
codes which is of great interest for the future development of this service life
framework.

The thermodynamic theoretical background for calculating chemical equi-
librium, using either the MAL or GEM is in general the same so two identical
systems solved by the two methods should in theory give the same result.
The deviations between the two methods are found in the numerical schemes
and algorithms, some of these deviations are highlighted by Kulik et al.
(2013). One of the advantages of the GEM approach is the stability in �nd-
ing assemblages by minimizing the total Gibbs energy while maintaining a
detailed mass balance (Kulik et al., 2013), whereas a stable composition must
be known using the MAL approach by, e.g., phreeqc. The GEM approach
is on the other hand, according to Kulik et al. (2013), 2-10 times slower than
the MAL approach. Stability and computational speed are some of the most
important considerations in reactive mass transport modeling and pros and
cons for the two methods discussed here needs to be continuously evaluated
in relation to the overall service life framework.

The chemical equilibrium solution is strongly dependent on the thermody-
namic database used in the calculation. The current version of the durability
model uses the standard databases preeqc.dat and wateq4f.dat from phreeqc

for the aqueous reactions, with additional solid phase dissolution reactions
found mainly in the Cemdata07 database (Möschner et al., 2009; Schmidt
et al., 2008; Möschner et al., 2008; Lothenbach et al., 2008; Lothenbach and
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Winnefeld, 2006; Jacques, 2008) and from the work by Balonis et al. (2010).
The solid phases reactions used in the numerical examples in the Papers
II, III and VI are shown in their respective appendix sections. Some of the
published thermodynamic databases like the Cemdata07 are continuously up-
dated in terms of dissolution reactions and their corresponding equilibrium
constants. It is therefore important that the durability model established is
adaptable for these updates and not �xed to a single chemical model.

2.2.4 Implementation of computer code

The FE scheme for the durability model described in Paper I is implemented
in a computer based algorithm. The algorithm is coded from scratch which
have advantages and disadvantages. All the details in the algorithm is known
and will ease a debugging process. It is relatively time consuming to code
all parts of such algorithm, like simple meshing algorithms but on the other
hand to acquaint oneself in larger existing software packages is also time
consuming.

The scienti�c programming language Matlab is used due to its ease of
use in matrix computations and it was found su�ciently fast for the one-
dimensional FEM used in this work. The computational speed is an im-
portant factor when solving multi-physics problems, especially when long
term non-linear problems are considered and 2D/3D simulations are of in-
terest. The matrices in the algorithm is constructed as sparse matrices. The
algorithm has continuously been evaluated, during the development, using
the build-in pro�ling tool in Matlab in order to optimize the speed of the
established functions.

Other high-level scripting languages like C++ can be considered in future
versions for computational speed and utilization of existing FEM software
packages that are available like FreeFem++, Elmer, MOOSE, OOFEM, etc.
Commercial programs like Comsol and ANSYS could also be considered as
numerical solver software in future versions. Some of the advantages of us-
ing existing software packages are that for instance basic meshing algorithms
are established and special features like adaptive mesh re�nement are imple-
mented in some of these and the e�ect of these features can easily be tested
with a given problem.

Chemical equilibrium is solved by using the geochemical code phreeqc
where the interface version iphreeqc (Charlton and Parkhurst, 2011) is uti-
lized. This part of the algorithm is based on the iphreeqc version 3.1.2
and compiled with the GNU gcc/g++ 4.4 compiler for Linux. The C++
library of iphreeqc is called from Matlab where the input statements for
the chemical equilibrium calculation are generated. The advantage of using
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the iphreeqc interface is the direct call to the input and output functions
in the library, whereas the use of the batch version of phreeqc requirer �le
exchanging. Solving the chemical equilibrium is by far the most computa-
tional costly as 90-95% of the total computational time is consumed by this
part. Chemical equilibrium is solved for each spatial node by a simple loop
routine, which facilitate that this function could run in parallel.

A parallel version of the Matlab calls to iphreeqc has been studied and
the computational time was reduced in a constructed beta version. The
actual parallel loop in Matlab was stable but some problems with the library
calculations was detected. The primary issue with the parallel version was
that some FE nodes did not converge in the iphreeqc calculation, even
though the non-parallel version was able to �nd a solution for the same
FE node. The beta version was not developed further and not used for
the simulations performed. The latest versions of the iphreeqc library have
special �modify� commands which should facilitate the coupling to, e.g., mass
transport algorithms and these should be considered in future versions of the
durability model.

2.2.5 Pseudo code of the framework algorithm

The main parts of the algorithm is presented in pseudo format in Alg. 1
to 4. The parts concerning the mathematical operations are shown in the
pseudo code. The algorithm is constructed so that all input parameters are
de�ned in an input �le in order to easily examine di�erent numerical settings
and material con�gurations. All kinds of input data validation are left out,
mesh generation procedures and details regarding the assembling of local FE
matrices in the global FE system are left out.

Algorithm 1

An essential part of the algorithm is shown in Alg. 1, where the �nite el-
ement time stepping scheme is implemented in the for-loop at line 5. The
input parameters has been validated and the initial global matrices has been
established prior to the entry of the for-loop. The linear matrix system is
solved for the current time step, with the applied boundary conditions at
line 9 and the result vector an+1 is updated with the new solution. The
non-linear parts of the matrix system are updated to the current state by
calling the function matrix_assemble at line 10. The Newton�Raphson opti-
mization function improve_solution is called at line 13, if the variable 'New-
tonRaphson' is true and the time stepping parameter is one, tested at line
12. The output of the improve_solution is an updated result vector an+1.
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Algorithm 1 Main multi-physics solver

1 def : ( i n t ) TimeSteps ∆t/ttotal ;
2 def : ( bool )NewtonRaphson ;
3 def : ( bool ) ChemicalEqui l ibr ium ;
4

5 for k = 1 : TimeSteps
6 K∗ = C/∆t+ Kθ
7 F∗ = (C/∆t−K + Kθ) an
8

9 [an+1, f ] = solve(F∗,K∗, fb) ;
10 matrix_assemble(K,C) ;
11

12 i f NewtonRaphson and θ == 1
13 improve_solution(K,C, an, an+1) ;
14 end
15

16 i f ChemicalEqui l ibr ium
17 solve_chemical_equilibrium(an+1) ;
18 end
19

20 an = an+1

21 end

The variable NewtonRaphson is a setting that enables/disables the Newton�
Raphson optimization routine. Chemical equilibrium is calculated by calling
the function solve_chemical_equilibrium at line 17 and the result vector an+1

is updated to the new equilibrium state. The variable 'ChemicalEquilibrium
is a setting that enables/disables the chemical equilibrium function by the
if-statement at line 16. The statement at line 20 updates the initial solution
vector an for the continuing FE time stepping.

Algorithm 2

The Newton�Raphson iteration scheme is shown in Alg. 2. The user de�ned
variables 'IterationPrecission', 'IterationNumLimit' and 'δacc' are the residual
criterion, a maximum number of iterations if the criterion is unreachable
and a convergence acceleration factor, respectively. The initial residual is
determined at line 6 and evaluated in the if-statement at line 8 against the
de�ned criterion, where a true statement will return to Alg. 1 and false will
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start the Newton�Raphson iteration at line 14. The iteration is controlled
by a while-statement, terminating when the residual criterion is meet or by
the if statement on line 17 evaluating the number of iteration compared to
the de�ned maximum. The new global matrices are calculated at line 20 and
21 and the new system is solved at line 23. The matrix assemble function
matrix_assemble is called at line 25 to update the global matrices and a new
residual is determined at line 28. The new residual is compared with the
residual from the previous iteration step at line 30. The iteration is stopped
if the residual from the previous iterations is smaller than the current and
the iteration number is larger than 50. In this case, the result vector from
the previous time step is given as output result.

Algorithm 3

The non-linear matrix assembling function, shown in Alg. 3 updates the
non-linear parts of the local sti�ness and damping matrices and place the
local matrices in their respective global systems. The initial call to ma-
trix_assemble generates the local to global matrix coordinates [i, j] at line
4 which are used in the following update calls to the function. The sorption
hysteresis function sorption_hysteresis at line 6 is explained in more details
in Alg. 4. The lines 7 and 8 assembles the local FE matrices and place these
in their respective global matrices in the lines 9 and 10.

Algorithm 4

The sorption hysteresis function shown in Alg. 4 is a sub-function of the
matrix assembling, Alg. 3. The function calculates the non-linear parameters
for the sorption hysteresis model. It is presented separately here as it is non-
standard method and the most complex part of the algorithm. The outer
if-statements, the lines 3 and 15, determines whether any of the discrete
nodes have changed the sorption direction1 from the previous time step to
the current. The if-statements at the lines 4 and 16 determines if the value
of any of the changed nodes are larger than the tangent humidity point on
the boundary sorption isotherm which was determined at the last change
in sorption direction. The nodes, for which the statement is true, is saved
and the boundary polynomial coe�cients are applied for these nodes. The
new tangent humidity point, according to the boundary isotherms, is set
at the lines 6 and 18. The if-statements at the lines 8 and 20 determines
the set of nodes for which a new scanning curve polynomial needs to be
established. The new polynomial coe�cients and the new boundary tangent

1From absorption to desorption or vice versa.
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Algorithm 2 Newton�Raphson iteration scheme

1 def : var ( double ) I t e r a t i o nP r e c i s s i o n
2 def : ( i n t )NeRaCounter
3 def : var ( i n t ) IterationNumLimit
4 def : var ( double ) δacc % Acce l e ra t i on f a c t o r
5

6 ψ = C0 1
∆t

(
a0
n+1 − an

)
+ Ki−1ai−1

n+1 − f
7

8 i f ψ •ψ < I t e r a t i o nP r e c i s s i o n
9 return

10 else
11 NeRaCounter = 0 ;
12 ψtest = ψ •ψ ;
13 i = 1
14 while ψ •ψ > I t e r a t i o nP r e c i s s i o n
15 NeRaCounter++;
16

17 i f NeRaCounter == IterationNumLimit
18 break
19 end
20 KNR = C/∆t+ K;

21 FNR = (C/∆t+ K)ai−1
n+1 −ψδacc;

22

23 [ain+1, f
i] = solve(FNR,KNR, fb) ;

24

25 matrix_assemble(K,C) ;
26 f = f − f i

27

28 ψ = C 1
∆t

(
ain+1 − an

)
+ Kain+1 − f

29

30 i f ψ •ψ > ψtest and NeRaCounter > 50

31 ain+1 = ai−1
n+1 ;

32 break
33 end
34 ψtest = ψ •ψ ;
35 i+ +
36 end
37 end
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Algorithm 3 Non-linear matrix assembler

1 def : var non_linear_vars ←
{
c̃li , ε̃l, vl,s, φ̃v, ε̃

l,eq(φ̃v, h
∗
1, h
∗
2, h
∗
3)
}

2 i f ' i n i t i a l ' or ' update '
3 i f ' i n i t i a l '
4 [i, j] = local2global_matrix_coordinate();
5 end

6 [h∗1, h
∗
2, h
∗
3] = sorption_hysteresis(φtv,φ

t−∆t
v );

7 Klocal = assemble_local_stifness_matrices(non_linear_vars);
8 Clocal = assemble_local_damping_matrices(non_linear_vars);
9 Kglobal = local2global(Klocal, i, j)

10 Cglobal = local2global(Clocal, i, j)
11 end

point is calculated at the lines 9 and 21. Polynomials coe�cients which
are out of range are sorted out at the lines 10 and 22 by a tolerance factor
set by the user. The polynomials that ful�ll the statement are reset to the
previous polynomials at the lines 11 and 23. The mathematical formulation
and �gures explaining the whole procedure are discussed in Paper I.

Algorithm 5

The chemical equilibrium function is shown in Alg. 5. The function calculates
the chemical equilibrium state in each FE node by the for-loop statement at
line 7. The input parameters for the iphreeqc calculation are stored in
the object accumulate_phreeqc_string as the concentration of the ions,
the amount of water, pure phases, solid solutions and surface complexes
at the lines 8 to 12. The concentrations of the ions and the amount of
water are results from the mass transport calculation, whereas the amounts
of solid phases are from the previous time step and thereby only updated
in this function. The new chemical equilibrium state is calculated by the
iphreeqc_run at line 14. The total result vector is distribute at line 16 where
the an+1 is returned to the FE calculation in Alg. 1 as initial values for the
next time step. All lines stored in the iphreeqc bu�er are cleared in every
loop at line 18.
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Algorithm 4 Sorption hysteresis function

1 def : var ( double )tolerance
2

3 i f φtchange ← any(φtv > φ
t−∆t
v )

4 i f x← any(φtchange = φtv,tang)
5 [h∗1(x),h∗2(x),h∗3(x)]← absorption_boundary_isotherm(x)
6 φtv,tang(x)← 1

7 end
8 i f z← any(φtchange 6= x)

9 [h∗1(z),h∗2(z),h∗3(z),φtv,tang(z)]← create_scanning_curve(z)

10 i f any(h∗1(z),h∗2(z),h∗3(z)) > tolerance
11 reset((h∗1(z),h∗2(z),h∗3(z))
12 end
13 end
14 end

15 i f φtchange ← any(φtv < φ
t−∆t
v )

16 i f x← any(φtchange 5 φtv,tang)
17 [h∗1(x),h∗2(x),h∗3(x)]← desorption_boundary_isotherm(x)
18 φtv,tang(x)← 0

19 end
20 i f z← any(φtchange 6= x)

21 [h∗1(z),h∗2(z),h∗3(z),φtv,tang(z)]← create_scanning_curve(z)

22 i f any(h∗1(z),h∗2(z),h∗3(z)) > tolerance
23 reset((h∗1(z),h∗2(z),h∗3(z))
24 end
25 end
26 end
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Algorithm 5 Chemical equilibrium solver

1 def : var ( i n t )NumOfNodes
2 def : ( ob j e c t ) accumulate_phreeqc_string % Assemble i ph reeqc
3 % input f i l e
4 def : ( vec to r ) s % Amount o f s o l i d s p e c i e s
5 def : ( vec to r ) d % New chemica l e qu i l i b r i um system
6

7 for 1 :NumOfNodes
8 accumulate_phreeqc_string ← add_water_amount(al)
9 accumulate_phreeqc_string ← add_ion_concentration(ai)

10 accumulate_phreeqc_string ← add_pure_phase_amount(sp)
11 accumulate_phreeqc_string ← add_solid_solution_amount(sss)
12 accumulate_phreeqc_string ← add_surface_compl_amount(ssc)
13

14 d← iphreeqc_run(accumulate_phreeqc_string)
15

16 [a, s]← distribute_result(d)
17

18 clear_accumulated_lines(accumulate_phreeqc_string)
19 end
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Chapter 3

Research �ndings and

conclusions

The research �ndings presented in the scienti�c papers in Part II of this the-
sis are summarized and related to the overall aim of the PhD project. An
example of a 100 years durability simulation is presented showing the poten-
tial of the model in relation to long term simulations. A general discussion
of the research �ndings together with suggestions for the future development
of the suggested durability model and the service life framework are given.
A conclusion of the project is presented based on the research �ndings.

3.1 Summary of research

A durability indicator in terms of a reactive mass transport model for the
numerical service life framework is studied and presented in the scienti�c
papers in Part II. The papers describes the �rst version of the reactive mass
transport model by the numerical documentation and show di�erent test
simulations. The individual scienti�c paper in Part II treats parts of the
aims de�ned for the overall project.

Paper I describes the governing equation system behind the reactive mass
transport model and shows the mathematical steps for establishing a discrete
FE system for the speci�c equation system. The governing equation system
combines two existing mass transport models, an ion transport model which
includes chemical interactions and a two phase, moisture transport model,
which accounts for sorption hysteresis. The numerical coupling of the two
mass transport models is new which encourage the detailed FE discretization
description, shown in Paper I. The sorption hysteresis loop, which couples the
liquid and vapor �ow, is described by a phenomenological part in the mois-
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ture transport. The reactive mass transport model described in Paper I is the
complete durability model established, from which it is possible to use sep-
arate parts, depending on the physical problem considered. It is concluded,
based on the simulations performed in Paper I, that the coupled di�erential
equation system, neglecting the chemical interactions, is successfully solved
by the suggested FEM. Paper I shows the e�ect of shifting between a sat-
urated and an non-saturated boundary condition for the liquid phase. The
phenomenological sorption hysteresis simulation is compared with a more
simple approach which do not account for the hysteresis loop e�ect. It is
concluded that including the sorption hysteresis loop in the durability model
has an important e�ect on the pore solution concentrations. The shifting
boundary conditions are important in service life modeling of concrete in-
frastructure constructions, for instance, the boundary humidity varies over
the year or exposures in tidal zones.

Simulations using the complete durability model are shown in Paper II.
A review of the MAL approach, as used by phreeqc to determine chem-
ical equilibrium is given in Paper II for the aqueous reactions, pure phase
reactions and solid solution reactions. The numerical implementation of the
degree of hydration for the clinker, in the initial chemical equilibrium cal-
culation is shown. Typical exposure conditions of concrete are used in two
simulations, a pure leaching simulation where the solid phases are dissolved
and a combined ion ingress and leaching simulation where penetrating ag-
gressive external ions change the chemical equilibrium state. The results
from the simulations are shown in terms of pore solution composition and
solid phase composition which can be used as durability indicators in a ser-
vice life evaluation. It is concluded that the numerical scheme in terms of
the FE scheme, the operator splitting approach and the phreeqc code is
fairly robust. The simulations shows the �exibility of the model in terms of
di�erent boundary conditions relevant for service life modeling of concrete.

A comparison between two di�erent state-of-art C-S-H chemical descrip-
tions incorporated in the reactive transport model is given in Paper III. The
comparison involves a C-S-H description by a four end-member solid solution
model and a surface complexation model where the EDL is taken into ac-
count. The paper extends the review of the MAL given in Paper II, to include
a review of the surface complexation and EDL theory used in phreeqc. Cal-
culations of a multi-species ion ingress in concrete using a boundary solution
corresponding to an averaged sea-water composition. The amount of solid
phases after 2 and 10 years simulated exposure are given as result. The cal-
culated solid phase compositions by means of the two C-S-H descriptions are
compared after 2 years and 10 years simulated exposure. The simulation re-
sults shows a clear di�erence in the amount of ettringite, brucite, calcite and
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hemicarbonate formed after 10 years exposure simulations but only minor
di�erences after 2 years exposure simulations.

Paper IV shows the current status of the suggested durability model in
terms of numerical simulations compared with laboratory controlled exper-
iments. Ion ingress experiments on a mortar with OPC with two di�erent
exposure solutions are used. The total chloride content at di�erent depths
from the exposed surface after 21, 90 and 180 days of exposure are studied.
The actual cement oxide composition and the boundary solution compo-
sitions are used as input parameters for the numerical simulations of the
experiment. The tortuosity factor τ , in the numerical durability model is
used as �tting parameter in order to obtain the best �t for the three ex-
posure times used in the experiment. The simulation results showed fairly
good agreement with the experimental results for both exposure solutions
studied. Some deviations are seen between the simulations results and the
experimental results but the overall �t is shown to be good. Suggestions for
the further development of the model are discussed in order to improve and
extend the durability model.

3.2 Long term durability simulations

As described in the introduction, the service life requirement for concrete
used in infrastructure structures is in the range of 80-125 years. The capa-
bility of the durability model to handle this relatively long period is shown
in this section by extending simulation period in the simulations from Pa-
per III. The results are presented in terms of simple durability indicators
related to reinforce concrete. The computational time is recorded in order to
evaluate the model in relation to the applicability as an engineering service
life tool. The detail level of the durability model and the simulation must
be su�ciently high in order not to loose valuable informations in numerical
errors. Increasing the numerical detail level in the durability model as it con-
structed in this work will increase computational time. Hence, a reasonable
combination between details and computational time is needed on order to
use the model as an engineering tool.

A direct estimation of the end of service life is out of the scope of this
work, instead the Hausmann's free concentration criterion is evaluated at
a distance of 0.1[m] from the exposed surface over a 100 years simulated
exposure period. The 0.1[m] is assumed to represent a reinforcement concrete
cover. The simulations are based on the model parameters and the sea water
service environment as described in Paper III. The total simulation time
is extended to 100 years and the total spatial length is extended to 0.1[m]
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discretized with 350 elements, compared to the simulation in Paper III. The
oxide composition for the cement simulated is shown in Tab. 3.1 and other
important adjustable simulation parameters are given in Tab. 3.2. Chemical
equilibrium is determined for every second mass transport step in order to
save computational time and obtain a stable solution for the whole spatial
domain.

Table 3.1: Oxide composition for the cement material used in the simula-
tion.

CaO SiO2 Al2O3 Fe2O3 SO3 K2O Na2O MgO

mass% 64.00 22.00 5.00 4.00 3.00 0.78 0.15 1.00

Table 3.2: Conditions for the numerical calculation and material parame-
ters.

Simulation parameters

w/c 0.45
Spatial elements 350
Total spatial distance [m] 0.1
Total Time ttotal [years] 100
Time step mass transport, ∆ttrans [h] 24
Time step chemical equilibrium, ∆tchem [h] 48
Tortuosity factor, τ 0.0039

The results from the two simulations are shown in Figs. 3.1a and 3.1b
where it is seen that the Hausmann criterion is exceeded between 34 and 35
years using this speci�c C-S-H solid solution model and between 35 and 36
years using this speci�c C-S-H surface complexation model. The pH starts
to decrease signi�cantly at the same points which are the main reason for
the Hausmann criterion is exceeded. The simulated pore solution changes
have an a�ect on the corrosion initiation and corrosion rate. It is, however,
beyond the scope of this work to study the exact conditions for corrosion ini-
tiation and propagation. The predicted pH is lower after 100 years simulated
exposure using the surface complexation model (Fig. 3.1b), compared to the
solid solution model (Fig. 3.1a). The reactions used to describe the C-S-H
phase have a signi�cant in�uence on the �nal results when these are used in
a reactive transport model, which is also one of the important conclusions of
Paper III.
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(a) Solid solution C-S-H model.

0 20 40 60 80 100
0

2

4

6

8

10

12

Years

[C
l−

]/
[O

H
−

]

0 20 40 60 80 100
12.6

12.8

13

13.2

13.4

13.6

13.8

p
H

(b) Surface complexation C-S-H model.

Figure 3.1: Hausmanns criterion for reinforcement corrosion and the pH-
value 0.1[m] from the exposed boundary.

The computational times for the two models are shown in Tab. 3.3.
The simulation is performed on a HP ProLiant SL2x170z G6 with the non-
graphical and r-mode settings in Matlab for Linux. The computational times
are reasonable, seen in the perspective of the actual simulation time of 100
years and the level of detail. It is also reasonable compared to many exper-
imental investigations where accelerated experimental setup are much more
time consuming in comparison. It is concluded that the current version of
the durability model is applicable as engineering tool with respect to the
computational time.

Table 3.3: Computational time for the 100 years simulations presented in
Fig. 3.1.

Surface complexation Solid solution

CPU time[days] 8.56 6.13

3.3 Discussion and future work

The durability model presented is only one, of the needed durability indi-
cators in the service life framework. The simulation tool is, therefore, not
complete as a tool for calculating the end of service life for any given con-
crete. Some issues in the model needs to be improved in future versions in
order to facilitate simulations used in the design of concrete structures.
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A general issue, for which similar reactive mass transport models may
su�er from as well, is related to the FE boundary node and the chemical
equilibrium calculated at this node. The ion concentrations at the boundary
node are prescribed in each FE time step, which eliminates the time depen-
dency for this node. The implicit dissolution rates of the solid phases at the
boundary node are only dependent on the number of time steps. The ulti-
mate future goal should be a complete kinetic description of the dissolution
reactions involved which would solve the above discussed problem. Other
di�erent solution methods may be relevant in this context, e.g., identi�ca-
tion of the primary solid phases and their dissolution rate description or the
assignment of multiple nodes in the FE system for the description of the
boundary solution itself.

The current version of the durability model is sensitive to the chemical
reactions used as input. The model requires that a single stable chemical
model is de�ned for the whole spatial and transient domains. Prior knowledge
of which chemical reactions occurs in speci�c environments is needed in order
to get a valid result. This is not optimal in the sense of using the service life
framework as an engineering tool. The durability model would be strengthen
if stable validated chemical models are prede�ned. On the other hand, the
model should continue the development in an open format where it also is
possible to de�ne custom chemical models for research purposes.

It is important that the model is continuously updated with the recent
thermodynamic databases which also includes descriptions of supplementary
cementitious materials. Supplementary cementitious materials are essential
in modern concretes and especially in the the development of new more
environmentally friendly concretes.

The durability model includes a description of water and vapor di�usion
in order to simulate non-saturated concrete. Di�usion of ions in the gas
phase is not accounted for in the current version of the model. The gaseous
species establish an equilibrium condition primarily with the pore solution
and thereby a�ects the whole chemical equilibrium. The di�usion of gaseous
carbonates are of interest in this context due to the e�ects of carbonation
of the concrete. A set of multi-species gaseous di�usion equations should be
added to the existing di�erential equations in a future version. The chemical
model needs to be extended along with the gaseous di�usion extension to
account for the gas-liquid equilibrium.

The mass transport rate of ions is sensitive to the di�erent reduction
factors on the di�usion coe�cient as shown in Paper IV. The tortuosity is
assumed constant over time in the current version of the durability model
even though the amount of solid phases are changed by ingress and leach-
ing and thereby change the geometrical con�guration of the pore structure.
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The model should account for the pore structure evolvement in terms of a
tortuosity factor which is dependent on the actual solid phase composition
at a given time and spatial position. The porosity could be calculated by
the solid phase composition and then relate the porosity and tortuosity. The
changed geometrical con�guration may also create stresses and strains in
the solid structure due to volume expansions. The mixture theory includes
the theoretical description of mechanical impacts, but it may be extremely
complicated to solve numerically, i.a. due to the strong non-linearities intro-
duced and fracture mechanical considerations needs to be taken into account
as well.

The service environment temperature and the variation of this is of great
importance for the physical and chemical properties. The mass transport
is therefore a�ected by temperature in the di�usion and convection process.
The sorption isotherms, are changed with temperature and thereby also the
sorption hysteresis described by the phenomenological model. The chemical
reactions are individually temperature dependent and the overall chemical
equilibrium state is a�ected. The temperature should be included as an
additional state variable into the established durability model. Coupling
of the temperature to the di�usion and chemical equilibrium calculations is
pretty much straight forward whereas the coupling to the sorption hysteresis
model may be more complex.

Computational speed is important in the further development of dura-
bility models but also for the complete service life framework calculation.
Parallelization should be investigated even though a simple parallel version
in some parts failed to succeed in this work. Computational speed is also
an issue for extending the current one-dimensional FE model to two- or
three-dimensions. Two- and three-dimensions are of interest for the durabil-
ity modeling when for instances cracks are taken into account or in systems
where di�erent types of materials are combined, like in a brick wall or foun-
dations with concrete combined with light weight blocks.

How should a coupled non-linear model be validated? The mass transport
models, coupled in this work are validated individually and the reactions in
the chemical models are validated by di�erent separated experiments. As-
sembling these models and compare them with assembled experimental tests
may not always give compatible results and a complex problem arises due
to this. Validation of coupled models are di�cult as it is di�cult to exper-
imentally separate the individual physical and chemical processes in order
to detect the reasons for inconsistency between simulation results and ex-
perimental results. It is therefore di�cult to know where to improve the
numerical model.
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3.4 Conclusions

A numerical service life framework for concrete is initiated in this project.
The �rst durability model in the framework is established in terms of a reac-
tive mass transport model. The reactive mass transport model is a durability
indicator in the service life framework, which is extensible. The reactive mass
transport model is based on a modern mixture theory approach which is suit-
able for describing porous media. The mixture theory approach is valuable
for the further development of the service life framework as it includes a
general physical description on the di�erent phases and species needed to de-
scribe concrete in a sound theoretically way. The mixture theory can help to
understand and constitute the coupling of the physical processes between the
phases which are essential in the understanding of the deterioration processes
of concrete.

A coupled numerical reactive mass transport model is established and a
FE solution scheme for this is suggested and tested. The reactive mass trans-
port model is a coupling of existing numerical models, describing physical
processes in concrete in terms of partial di�erential equations under expo-
sure of a given service environment. The physical processes treated involves,
ion di�usion, ion migration, liquid transport, vapor transport, sorption hys-
teresis and chemical interactions. The �nite element method is suggested for
solving the mass transport part of the model and the chemical equilibrium is
calculated by the geochemical code phreeqc. The numerical scheme is im-
plemented as a computer based algorithm, constructed in a format where the
parameter space easily can be investigated and the thermodynamic databases
are easily updated to adapt future extensions and modi�cations. The dura-
bility model is tested with di�erent parameters in terms of varying liquid
and vapor content at the boundary, simple leaching exposure, multi-species
ingress exposure and the use of di�erent chemical models. The numerical
method and algorithm are concluded to be stable for the parameters tested
in the project.

The current development status of the reactive transport model is evalu-
ated by comparing numerical simulations with experimental tests. The model
showed fairly good agreement between simulation results and experimental
measurements, on the total chloride content using multi-species exposure so-
lutions and multi-species simulations. It is concluded that the durability
model still needs to be updated in order to remove crude assumptions and
thereby make the model more general but it performs well at the current
development state.

It is shown that the model and the algorithm are capable of meeting the
requirements for multi-species long term simulations. Durability indicators
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for service life predictions over 100 years simulated exposure is performed
within reasonable computational time.
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The scienti�c publications produced in this PhD work is attached in this
part. The papers presents the background of the proposed coupled reactive
transport model for cement based materials and show the current state in
terms of the theoretical background of the model and the ability to repro-
duce experimental data. The description of the model is to some extended
repeated in the papers and some descriptions may be trivial, but it is impor-
tant that the reader is able to reproduce the results.

A pre-study, which is not a part of this PhD thesis, of the mass transport
model was published and presented at the Eighth International Conference
on Engineering Computational Technology. The paper is entitled A Cou-
pled Chemical and Mass Transport Model for Concrete Durability, by M. M.
Jensen, B. Johannesson and M. R. Geiker, in Proceedings of the Eighth Inter-
national Conference on Engineering Computational Technology. Civil-Comp
Press, 2012. (Civil-Comp Proceedings).
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Abstract A �nite element solution for a mass transport model for porous materials accounting
for sorption hysteresis is presented in this paper. The model is prepared for modeling of concrete
durability, but the general presentation makes it suitable for other porous materials like soil
and tissues. The model is an extended version of the Poisson�Nernst�Planck (PNP) system
of equations. The PNP extension includes a two-phase vapor and liquid model coupled by a
sorption hysteresis function and a chemical equilibrium term. The strong and weak solutions
for the equation system are shown and a �nite element formulation is established by Galerkin's
method. A single-parameter implicit time integration scheme is used for solving the transient
response, and the out-of-balance solution is minimized by using a modi�ed Newton�Raphson
scheme in which the tangential sti�ness is not computed exactly. The sorption hysteresis is
added to the solution procedure by a rate function. The hysteresis e�ect is described by scanning
curves de�ned between two boundary sorption isotherms. A numerical example was constructed
to show the applicability and compare a simple approach and a extended approach within the
sorption hysteresis model. The examples illustrate the impact of changing relative humidity at the
mass transport boundary on the adsorption and desorption stages of a cement-based material.
Changes in the pore solution ion concentrations is a result of the changing moisture content,
which is shown by the example. Comparing the two approaches showed signi�cant deviations in
the liquid content and ion concentrations, in parts of the domain considered.

Keywords Mass transport, Sorption hysteresis, Finite element method, Cement-based materials

Nomenclature

m̂l Mass exchange of liquid phase
m̂v Mass exchange of vapor phase

a State variables vector
C Mass matrix
f Force vector
jΦ Electrical displacement
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jφ Boundary �ux of vapor
jl Boundary �ux of liquid
jli Boundary �ux of species i
K Sti�ness matrix
N Global shape function
n Normal vector
vl,s Liquid phase l velocity with respect to

the solid s - [m/s]
Φ Electrical potential - [V]
φv Relative humidity - [-]
ρli Density of species i in the liquid phase l

-
[
kg/m3

]

ρvs Vapor saturation density -
[
kg/m3

]

ρw Water density -
[
kg/m3

]

�̃ Non-linear variable notation
εl,eq Sorption hysteresis function
εl Liquid phase volume fraction -

[
m3/m3

]

εp Porosity -
[
m3/m3

]

εv Vapor phase volume fraction -
[
m3/m3

]

ξ0 Dielectricity coe�cient of vacuum -
[V/m]

ξd Relative dielectricity coe�cient - [V/m]
Ali Ion mobility -

[
m2/(s V)

]

cli Ionic concentration of species i in liquid
phase l - [mol/l]

Dφ Di�usion coe�cient for the vapor phase
-
[
m2/s

]

Dεl Di�usion coe�cient for the liquid phase
-
[
m2/s

]

Dl
i Di�usion coe�cient for constituent i -[

m2/s
]

F Faraday's constant - [C/mol]
qi Chemical interactions - [1/s]
R Rate constant for mass exchange be-

tween liquid and vapor - [1/s]
Rg Universal gas constant - [V C/(K mol)]
S Surface -

[
m2
]

t Time - [h]
V Volume -

[
m3
]

W Weight function time domain W (t)
w Weight function spatial domain

w (x, y, z)
zi Valence - [-]

1 Introduction

Coupled mass transport modeling, based on continuum theories, is widely used and generally
accepted as a valuable tool within di�erent research �elds, e.g. materials science, chemical en-
gineering, soil mechanics and bio mechanics. The numerical solution described in this paper is
aimed at describing durability-related changes in the porous system of concrete. Changes in
concentration of the initial pore solution species lead to precipitation/dissolution reactions. To
evaluate the durability of concrete, which often is in a time frame of more than 100 years, detailed
and well-founded models for description of mass transport and chemical equilibrium are essen-
tial. The Poisson-Nernst-Planck (PNP) equations are often used for describing the �ux of ionic
components in the pore solution of concrete. The PNP system of equations is found in di�erent
extended/modi�ed versions and is based on di�erent assumptions. The extended PNP version
presented by Johannesson (2010) includes convection of the liquid phase using the saturation de-
gree of the porous system as driving potential. Chemical reactions are shown in the formulation
of the model by Johannesson (2010), but are omitted in the numerical solution. A PNP version
presented by Samson and Marchand (2007) takes into account ionic activity potential of the
species and chemical reactions between a limited number of species and solid-liquid interactions.
The extended PNP version used by Hosokawa et al. (2011) emphasizes the chemical reactions,
by introducing a coupling between the geochemical code PHREEQC and the PNP solution. The
models in (Johannesson, 2010; Samson and Marchand, 2007; Hosokawa et al., 2011) all include a
solution of the Poisson equation for the electrical �eld, compared to the zero-current approach,
e.g. presented by (Truc et al., 2000; Yuan et al., 2010). Di�erent solution methods are proposed
for the PNP system, where the �nite element method has been used in (Samson and Marchand,
1999; Johannesson, 2010), a �nite di�erent algorithm is used in (Rudolph, 1994; Truc et al., 2000;
Yuan et al., 2010) and a meshless solution approach is presented in La Rocca and Power (2005).
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A well-known e�ect from wetting and drying cycles of porous materials such as concrete is the
sorption hysteresis phenomenon, where the vapor-liquid ratio is dependent on the sorption his-
tory. The mechanisms causing the sorption hysteresis in concrete are not su�ciently understood
to construct a thermodynamical continuum-based model. Therefore treatment of hysteresis is to
a large extent limited to numerical approaches, see Ristinmaa et al. (2011). Di�erent numerical
approaches to model the sorption hysteresis are found for concrete, e.g. in Derluyn et al. (2012)
which adopts the independent domain theory, where the pressure and temperature are used as
driving potential for the moisture �ow. The independent domain theory was originally described
by Everett (1955). Another approach based on the pore connectivity is presented in Ranaivo-
manana et al. (2011), which was developed by Ishida et al. (2007). An approach suggested by
Johannesson and Nyman (2010) is a direct method for describing the hysteresis e�ect by a mass
exchange term. This model is based on a two-phase �ow model, where the saturation degree and
the relative humidity are used as driving potentials for the liquid and vapor phases, respectively.

In this paper a numerical �nite element solution for an extended version of the PNP system
of equations is given. The extended PNP system presented assembles the PNP system described
in Johannesson (2010) with the two-phase vapor and liquid convection model described in Johan-
nesson and Nyman (2010). The present paper focuses on the derivation of the numerical �nite
element (FE) solution and discusses the in�uence of the two-phase model on the pore solution.
Chemical interactions are omitted in the numerical solution, which is a signi�cant simpli�cation
of the physical system. The global responses from two di�erent approaches within the sorp-
tion hysteresis model are compared in order to see deviations between a simple approach and a
complex approach. The applicability and the simulation outcome are illustrated by a numerical
example of cement-based material exposed to external relative humidity variations.

2 Numerical model

The governing system of equations, describing the mass transport in the porous network, is
presented in terms of a strong form and a weak form, where the Dirichlet boundary conditions
are utilized. The weak form leads to a transient �nite element solution by a single-parameter
time stepping scheme. The FE formulation is written out in details, in order to facilitate the
reproducibility of the results presented in Sec. 3.

2.1 Governing system of equations (strong formulation)

The extended PNP equations are adopted from (Bennethum and Cushman, 2002a,b; Johannes-
son, 2010), where combined hybrid mixture theory and averaging are utilized to obtain macro-
scopic �eld equations for reactive mass transport problems. The complete set of �eld equations
for swelling porous materials, including general assumptions and the averaging procedure used,
is found in Bennethum and Cushman (2002a). Details for the appertaining constitutive the-
ory is found in Bennethum and Cushman (2002b) and a review of the two papers is given by
Johannesson (2010) together with a numerical solution procedure.

De�nitions following the hybrid mixture theory as described in Johannesson (2010); Ben-
nethum and Cushman (2002a) are introduced. The particle motion function χj is de�ned as
x = χj (Xj , t), where x is the spatial position, Xj is the material coordinate and t is the time.
The constituent i density in the liquid phase l is de�ned as ρli = ρli (x, t), leading to the con-
stituent concentration cli = cli (x, t) = ρli/ρ

l. The volume fraction of the liquid phase εl is de�ned
as εl = εl (x, t) = V l/V , where V l is representative volume of the liquid phase and V is the total
volume. The conservation of charge is described by Gauss' law, by the assumption that the total
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electrical �eld intensity E is the gradient of the total electric intensity potential Φ, so E = ∇Φ,
hence the electrical �eld is assumed to be curl free. Chemical interactions are introduced as qi, as
a mass exchange term in the mass balance equation. It follows from hybrid mixture theory that∑
i qi = 0 must be satis�ed. The general PNP equation in (Bennethum and Cushman, 2002b;

Johannesson, 2010) is obtained by the Coleman-Noll procedure assuming the Helmholtz free en-
ergy A for the whole mixture is expressed by A = A

(
εl, εlρli, T

)
, where T is the temperature.

The PNP system adopted here is derived in (Bennethum and Cushman, 2002b; Johannesson,
2010) and takes the form

εl
∂cli
∂t

+ cli
∂εl

∂t
= ∇ ·

(
Dl
iε
l∇cli +Dl

ic
l
i∇εl −Aliziεlcli∇Φ

)
+

vl,s · εl∇cli + vl,s · cli∇εl + qi; i = 1, 2..,m (1)

where Dl
i is the di�usion coe�cient for constituent i and Ali is the ionic mobility. The relation

Ali = Dl
iF/(RgT ) is used, see e.g. Johannesson (2010), where F is Faraday's constant and Rg is

the universal gas constant. zi is the valence state of constituent i and vl,s is the liquid velocity
with respect to the solid s. The liquid velocity is assumed by vl,s = −Dεl∇εl, see Johannesson
(2010), and will be determined as a lumped value in the numerical scheme.

The chemical equilibrium term qi is omitted in the further discretization towards the FE
formulation and in the numerical example. A common assumption in reactive transport modeling
is that the chemical reactions are in equilibrium and occur instantaneously upon changes in ionic
concentrations, see e.g. Hosokawa et al. (2011). These assumptions motivate an operator splitting
approach for the numerical solution method. The operator splitting approach completely de-
couples the chemistry and transport equations on a di�erential equation level. Solution methods
to chemical equilibrium are not given in this paper, see e.g. Parkhurst et al. (1999) for a mass
action law solution or Wagner et al. (2012) for Gibbs energy minimization.

The electrical potential of the problem considered is determined by Gauss' law together with
appropriate constitutive relations, see Johannesson (2010), which leads to the Poisson part of
the PNP equation system. The Poisson equation is coupled to the di�usion equation (1) by the
electrical potential Φ. The Poisson equation is given as

ξdξ0∇2Φ = F
m∑

i=1

clizi (2)

where ξd is the relative dielectricity coe�cient and ξ0 is the dielectricity coe�cient of vacuum.
A generalized version of Darcy's law is derived in Bennethum and Cushman (2002b) and

it is shown in (Bennethum and Cushman, 2002b; Johannesson, 2010) how the volume fraction
of an incompressible liquid in a porous material can be used as driving potential for the liquid
�ow. It is also shown how the liquid-phase di�usion constant Dεl is related to the unjacketed
compressibility K ′, the permeability Kl and the liquid viscosity µl. The liquid-�ow equation
from Bennethum and Cushman (2002b) is employed in (Nyman et al., 2006; Johannesson and
Nyman, 2010) and further modi�ed to account for vapor �ow in terms of the sorption hysteresis
coupling.

The mass balance equation for the liquid �ow in Johannesson (2010) is extended by a mass
exchange term m̂l in (Nyman et al., 2006; Johannesson and Nyman, 2010) and the same type
of mass balance equation is employed to the vapor �ow. The exchange terms for the liquid and
vapor phases are related as m̂l = −m̂v, which is a result from the mixture theory. It is assumed
in (Nyman et al., 2006; Johannesson and Nyman, 2010) that the solid skeleton of the porous
material is restricted by ∂ρs/∂t = ∂εs/∂t = 0. The volume fractions are restricted by εs+εp = 1
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and εl + εv = εp, where the indices s, p and v are the solid phase, the porosity and the vapor
phase, respectively. The liquid phase is assumed incompressible and the di�usion coe�cient is
a function of the liquid volume fraction Dεl = Dεl

(
εl
)
. The derived equation for the volume

fraction of liquid in (Nyman et al., 2006; Johannesson and Nyman, 2010) is

ρw
∂εl

∂t
= ∇ ·

(
Dεl∇εl

)
+ m̂l (3)

where ρw is the water density. Using the volume fraction restrictions and also assuming constant
porosity, together with the mass balance postulate, yields the vapor �ow expression, as presented
in (Nyman et al., 2006; Johannesson and Nyman, 2010), as

ρvs
(
εp − εl

) ∂φv
∂t
− ρvsφv

∂εl

∂t
= ∇ · (Dφ∇φv)− m̂v (4)

where ρvs is the vapor saturation density and φv is the relative humidity, de�ned as φv = ρv/ρvs,
where ρv is the actual mass density of the vapor in the pores of the material. In order to represent
experimental results, using the suggested model, the di�usion coe�cient Dφ needs to be strongly
dependent on the volume fraction of water in the pores of the material, that is, Dφ = Dφ

(
εl
)
.

The mass exchange term is a kinetic term involving the e�ect of the sorption hysteresis. The
proposed function in (Nyman et al., 2006; Johannesson and Nyman, 2010) is

m̂l = m̂v = R
(
εl,eq(φv)− εl

)
(5)

where R is a rate constant for the mass exchange and εl,eq(φv) is the function describing the
equilibrium state between the liquid and vapor phases. The numerical establishment of εl,eq(φv)
is explained in Section 2.3.

2.2 Finite element formulation (weak formulation)

A weak formulation of the governing system of equations (1)-(4) is established in order to obtain a
�nite element formulation of the complete equation system. The weighted residual method using
Galerkin's approximation is adopted, together with a direct single time stepping scheme for the
transient solution, see (Ottosen and Petersson, 1992; Zienkiewicz et al., 2005). The governing
equation system is non-linear in di�erent state variables and the FE solution from the single
time stepping scheme is improved by a modi�ed Newton-Raphson iteration scheme, see Ottosen
and Ristinmaa (2005). The modi�ed Newton-Raphson iteration scheme is employed as it reduces
computational time compared to the complete scheme and still e�ectively minimizes the residual
of the problem.

Two arbitrary weight functions are introduced, w (x, y, z) in the spatial domain and W (t) in
the time domain. The notation �̃ is introduced to emphasize the non-linear state variables, e.g.
ε̃l. Multiplying the weight functions, using matrix notation, with (1), and using the Green-Gauss
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theorem yields the weak form, as

t2
ˆ

t1

W

ˆ

V

wε̃l
∂cli
∂t

dV dt+

t2
ˆ

t1

W

ˆ

V

wc̃li
∂εl

∂t
dV dt = −

t2
ˆ

t1

W

ˆ

V

(∇w)
T
(
Dl
iε̃
l∇cli +Dl

ic̃
l
i∇εl −Alic̃liziε̃l∇Φ

)
dV dt+

t2
ˆ

t1

W

˛

S

w jlin dS dt+

t2
ˆ

t1

W

ˆ

V

w vl,sε̃l∇cli dV dt+ (6)

t2
ˆ

t1

W

ˆ

V

w vl,sc̃li∇εl dV dt

where jli is the boundary �ux at the surface S, of the i constituent, n is the outward pointing
normal to the surface and V is the volume considered.

The weak form of the Poisson equation (2) is obtained in the same fashion, multiplying the
arbitrary weight functions and using the Green-Gauss theorem. The weak form is given as

ˆ

V

(∇w)
T
ξdξ0∇Φ dV =

ˆ

V

wF

n∑

i=1

c̃izi dV −
˛

S

w jΦn dS (7)

where jΦi is the electrical displacement at the surface.
The weak form of the liquid-phase equation (3) is given as

t2
ˆ

t1

W

ˆ

V

w ρw
∂εl

∂t
dV dt = −

t2
ˆ

t1

W

ˆ

V

(∇w)
T
(
Dεl∇εl

)
dV dt+

t2
ˆ

t1

W

˛

S

w jln dSdt+

t2
ˆ

t1

W

ˆ

V

wR
(
εl,eq(φ̃v)− ε̃l

)
dV dt (8)

where jl is the liquid-phase �ux at the surface.
The weak form of the vapor-phase equation (4) is given as

t2
ˆ

t1

W

ˆ

V

w ρvs
(
εp − ε̃l

) ∂φv
∂t

dV dt−

t2
ˆ

t1

W

ˆ

V

w ρvsφ̃v
∂εl

∂t
dV dt = −

t2
ˆ

t1

W

ˆ

V

(∇w)
T

(Dφ∇φv) dV dT + (9)

t2
ˆ

t1

W

˛

S

w jφn dSdt−
t2
ˆ

t1

W

ˆ

V

wR
(
εl,eq(φ̃v)− ε̃l

)
dV dt

where jφ is the vapor-phase �ux at the surface.
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The state variables in the weak formulations are approximated by the general expansion Na,
where N is the global shape function and a contains the state variables. In the one dimensional
case, the local linear shape function is given as N = [1− x/le, x/le], where le is the element
length. The arbitrary spatial weight function w is approximated with the same general expansion
following Galerkin's method. The notation �̂ is introduced to indicate an approximated variable.
The approximated variables are

ĉli = Nai (a) ; Φ̂ = NaΦ (b) ε̂l = Nal (c) ; φ̂v = Naφ (d) ; ŵ = cTNT (e) (10)

where the index j is the number of spatial elements. The arbitrary property of the spatial weight
function and the fact that c contains scalars according to Galerkin's approximation, yields c = cT,
so that Nc = cTNT. The spatial discretization of spatial gradients are approximated by the
general expansion Ba, where B = ∇N. The approximated derivatives are

∇ĉli = Bai (a) ; ∇ε̂l = Bal (b) ; ∇Φ̂ = BaΦ (c) ; ∇φ̂v = Baφ (d) ; ∇ŵ = Bc (e) (11)

Substituting the approximated variables (10)-(11), into the weak formulations (6)-(9) and use
that the arbitrary property c is independent of x, y, z and the fact that the expression should hold
for any arbitrary cT-vector, yields the FE formulation

´ t2
t1
W [Cȧ + Ka− f ] dt. The sub-matrices

for the global mass matrix C, sti�ness matrix K and load vector f are formulated in terms of
the global matrix system. The time derivatives are de�ned as ȧ = da/dt. The sub-matrices of
the mass matrix C are determined as

Ci =

ˆ

V

NTε̃lN dV (a) ; Wi =

ˆ

V

NTc̃liN dV (b) ; Cε =

ˆ

V

NTρwN dV (c) (12)

Cφ =

ˆ

V

NTρvs
(
εp − ε̃l

)
N dV (a) ; M = −

ˆ

V

NTρvsφ̃vN dV (b) (13)

and the global mass matrix C is constructed as

Cȧ =




C1 0 0 0 0 W1 0

0 C2 0 0 0 W2 0
. . .

...

0 0 0 Ci 0 Wi 0
0 0 0 0 0 0 0
0 0 0 0 0 Cε 0

0 0 0 0 0 M Cφ







ȧ1

ȧ2

...
ȧi
ȧΦ

ȧε
ȧφ




(14)

The sub-matrices in the sti�ness matrix K are determined as

Ki =

ˆ

V

BTDl
iε̃
lB dV (a) ; Pi =

ˆ

V

BTDl
ic̃
l
iB dV (b) ; Vε =

ˆ

V

BTAlic̃
l
iziε̃

lB dV (c) (15)

KΦ =

ˆ

V

BTξdξ0B dV (a) ; Ei =

ˆ

V

NTFziN dV (b) ; K̃
i

=

ˆ

V

NTvl,sε̃lB dV (c) (16)

P̃
i

=

ˆ

V

NTvl,sc̃liB dV (a) ; Kε =

ˆ

V

BTDεlB dV (b) ; Rε =

ˆ

V

BTRB dV (c) (17)
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Req
ε =

ˆ

V

BTRε̃l,eq(φv)B dV (a) ; Kφ =

ˆ

V

BTDφB dV (b) (18)

and the sub-matrices are placed in the global system sti�ness matrix K, as

Ka =




K1 + K̃
1

0 0 0 V1 P1 + P̃
1

0

0 K2 + K̃
2

0 0 V2 P2 + P̃
2

0
. . .

...
...

0 0 0 Ki + K̃
i
Vi Pi + P̃

i
0

E1 E2 · · · Ei KΦ 0 0
0 0 0 0 0 Kε +Rε Req

ε

0 0 0 0 0 −Req
ε Kφ −Rε







a1

a2

...
ai
aΦ

aε
aφ




(19)

The load vector f is established as boundary loads only, as the load terms qi from the chemical
equilibrium are omitted:

f =




¸

S

NTjl1n dS
¸

S

NTjl2n dS

...
¸

S

NTjlin dS
¸

S

NTjΦn dS
¸

S

NTjln dS
¸

S

NTjφn dS




(20)

The matrix system can be solved by di�erent time discrete algorithms. A single parameter
time stepping scheme is adopted for this solution, see e.g. Zienkiewicz et al. (2005). The time
domain is discretized by

a (t) ≈ â (t) =

(
1− τ (t)

∆t

)
an +

(
τ (t)

∆t

)
an+1 (21)

where τ = t− tn and n is the discrete time step number and an+1 is the vector of the unknown
state variables. A weighing parameter θ, with a value between [0, 1] is introduced as

θ =
1

∆t

´ t2
t1
Wτdτ

´ t2
t1
Wdτ

(22)

where θ = 0 gives an explicit time integration scheme. Inserting (21) and (22) in the spatially
discretized matrix formulation and solve for an+1, yields

an+1 = (Cn +∆tθKn)
−1

[(Cn −∆t (1− θ)Kn)an + fn + θ (fn+1 − fn)] (23)

A modi�ed version of the Newton-Raphson algorithm is used to improve the solution of
the non-linear system, see e.g. Ottosen and Ristinmaa (2005) and Johannesson (2010). The
modi�ed Newton-Raphson algorithm does not consider the true tangential sti�ness with the cost
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of increasing the number of iterations before reaching a convergence criterion. Using θ = 1 in eq.
(23) and introducing a residual vector ψi yields

ψi−1 = Ci−1
n+1

1

∆t

(
ai−1
n+1 − an

)
+ Ki−1

n+1a
i−1
n+1 − fn+1 (24)

where i is the iteration number. Note that the non-linear parts of the mass and sti�ness matrices
are updated to n + 1 for the �rst Newton-Raphson iteration i = 1. Both the mass and sti�ness
matrices are updated in the following Newton-Raphson iterations. The iteration scheme is es-
tablished between eq. (24) and a modi�ed Taylor expansion of this, see Ottosen and Ristinmaa
(2005) and Johannesson (2010) for a detailed derivation. The Taylor expansion, where the higher
order terms are ignored, is

−δψi−1 =

[
Ci−1
n+1

1

∆t
+ Ki−1

n+1

] (
ain+1 − ai−1

n+1

)
(25)

where the improved result ain+1 is determined and δ is a type of constant acceleration factor
similar to that used in line search, see e.g. Ottosen and Ristinmaa (2005). The acceleration
factor is added for this work in order to solve the numerical examples in Sec. 3. The eqs. (24)
and (25) are solved sequentially until a su�cient convergence criterion is reached.

2.3 Sorption hysteresis

A recapitulation of the numerical procedure for establishment of εl,eq(φv) from the mass exchange
term in eq. (5) is given in the following section. The procedure adopted is from (Nyman et al.,
2006; Johannesson and Nyman, 2010) where the reader may �nd further details. The overall
concept for this approach is to de�ne two sorption boundary functions, an upper boundary for
desorption and a lower boundary for absorption. The equilibrium function, denoted the �current�
equilibrium function, that is, εl,eq(φv) = εl,eq,cu(φv), is a function with values between or equal
to the boundary function values. A sequence of values between the boundary functions is often
referred to as a scanning curve or an inner sorption curve.

The liquid-equilibrium function εl,eq,cu(φv) and the boundary functions are de�ned as a simple
third-order polynomial in (Nyman et al., 2006; Johannesson and Nyman, 2010), as

εl,eq,∗(φv) = h∗1φv + h∗2φ
2
v + h∗3φ

3
v

where the * is either, cu for current equilibrium function, lb for lower boundary function or ub
for upper boundary. The boundary functions εl,eq,lb(φv) and εl,eq,ub(φv) have constant polyno-
mial coe�cients {h∗1, h∗2, h∗3}, whereas the current equilibrium function εl,eq,cu(φv) depends on
the sorption history and the polynomial coe�cients change accordingly. A re-establishment of
εl,eq,cu(φv) is induced by a change in sorption 'direction' from absorption to desorption or des-
orption to absorption. The constructed function is in this case denoted εl,eq,in(φv). A sorption
change is determined between time steps n and n+1, so that the constructed function εl,eq,in(φv)
becomes the current function εl,eq,cu(φv) in the following time step. The determination of the
equilibrium function polynomial coe�cients for εl,eq,in(φv) is determined from a set of relations
given in (Nyman et al., 2006; Johannesson and Nyman, 2010) presented here in a general format,
as

dεl,eq,in

dφv

∣∣∣
φv=(φv)n+1

= Kβ
dεl,eq,cu

dφv

∣∣∣
φv=(φv)n+1

; 0 ≤ Kβ ≤ 1 (26)

εl,eq,in
(
(φv)n+1

)
= εl,eq,cu

(
(φv)n+1

)
(27)
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Figure 1: Illustration of a change from absorption to desorption according to the numerical
restrictions shown in eq. (26) to (29). Point A corresponds to eq. (28) and (29), which is the
tangent relative humidity φtangv using that α = ub. Point B corresponds to eq (26) to (27), in
which the current equilibrium function cu equals the lower boundary function lb in this case.

dεl,eq,in

dφv

∣∣∣
φv=φtang

v

=
dεl,eq,α

dφv

∣∣∣
φv=φtang

v

(28)

εl,eq,in(φtangv ) = εl,eq,(α)(φtangv );
[
εl,eq,in(φtangv ), φtangv

]
∈ [0, 1] (29)

where Kβ is a material parameter related to the angle at a sorption change point from absorption
to desorption or desorption to absorption, so β = ab → de or β = de → ab, and may di�er in
its value for these two cases. The notation tang is the tangent determined in eq. (28) and α is
either lb or ub depending on the change in sorption direction. The procedure from eqs. (26)-(29)
is graphically illustrated in Fig 1.

3 Numerical example � e�ect of sequential boundary conditions

A numerical example was constructed to show the �nite element solution of the extended PNP
system and to compare two approaches within the sorption hysteresis model. The example is
focused on the response of the porous material when subjected to a sequential boundary condition
in terms of the vapor phase. The response of the ionic concentrations in the pore solution is of
interest as this a�ects the chemical equilibrium. The sorption hysteresis model described in 2.3 is
compared with a more simple approach that is dependent on an average sorption curve de�ned
here as εl,eq,avg =

(
εl,eq,lb + εl,eq,ub

)
/2. The simple approach is employed so that εl,eq,in =

εl,eq,cu = εl,eq,avg regardless of any change in sorption from absorption to desorption or desorption
to absorption. In relation to cement-based materials, this example could for instance be a part of
a concrete bridge structure placed in seawater, where the tide changes the boundary conditions
for the vapor and liquid phases.
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Table 1: Clinker composition of a cement

CaO SiO2 Al2O3 Fe2O3 SO3 K2O Na2O

mass% 0.64 0.22 0.05 0.04 0.03 0.0078 0.0015

Table 2: Di�usion properties for ionic components used in this case study. The values are in line
with Hosokawa et al. (2011).

OH− H+ Al (OH)−4 Al (OH)3 Al (OH)+2 Al3+

Dl,0
i · 10−8 0.5300 0.9311 0.5040 0.1040 0.1040* 0.0541

Al,0
i · 10−6 0.2253 0.3958 0.2142 � 0.0442* 0.0229
zi −1 1 −1 � 1 3

cli,initial 3.4018 · 10−2 4.4998 · 10−13 1.6096 · 10−4 2.5167 · 10−11 8.2259 · 10−17 7.8315 · 10−24

CaOH+ CaSO4 CaHSO+
4 SO2−

4 HSO2−
4 H2SiO

2−
4

Dl
i · 10−8 0.0792 0.0471 0.0471* 0.1070 0.1385 0.1100

Al
i · 10−6 0.0337 � 0.0200* 0.0455 0.0589 0.0468
zi 1 � 1 −2 −2 −2

cli,initial 2.1678 · 10−2 5.0461 · 10−3 5.1576 · 10−3 1.4533 · 10−14 7.1111 · 10−3 1.3253 · 10−13

Al (SO4)
−
2 AlOH2+ H4SiO4 Ca2+ AlSO+

4 H3SiO
−
4

Dl
i · 10−8 0.1040* 0.1040* 0.1100* 0.0792 0.1040* 0.1100*

Al
i · 10−6 0.0442* 0.0442* � 0.0337 0.0442* 0.0468*
zi −1 1 � 2 1 −1

cli,initial 1.3680 · 10−30 1.2480 · 10−31 7.3585 · 10−7 1.4688 · 10−9 5.9757 · 10−31 2.6351 · 10−7

* is an estimated value.

3.1 Input data and databases

The initially de�ned ionic composition of the pore solution for the numerical example is deter-
mined by a chemical-equilibrium calculation in phreeqc, see Tab. 2. The clinker composition
used in the initial chemical-equilibrium calculation is shown in Tab. 1. A modi�ed version of the
Cemdata07 thermodynamic database was used for the calculation, see (Möschner et al., 2009;
Schmidt et al., 2008; Möschner et al., 2008; Lothenbach et al., 2008; Lothenbach and Winnefeld,
2006) for references to original Cemdata07 database. The database is modi�ed for this case by
substituting the jennite-type and tobermorite-type of phases by the solid solution as described
in Kulik (2011). The initial chemical-equilibrium calculation yields a total of 28 di�erent ionic
species, whereof 18 are included in this example. The reduced representation of the solution, see
Tab. 2, is in line with the reactive transport modeling of cement paste in Hosokawa et al. (2011).

The material parameters used in the numerical example are valid for a typical cement-based
material. The di�usion properties in liquids, denoted Dl,0

i , used in the example are given in

Tab. 2. The di�usion coe�cients Dl,0
i are modi�ed by a tortuosity factor τ = 0.009, so that

Dl
i = Dl,0

i τ , see e.g. Johannesson (2003) where τ = 0.009 is determined for a cement paste with
water/cement ratio 0.5. The physical constants in the Poisson equation (2), relative dielectricity,
dielectricity in vacuum and Faraday's constant, are ξd = 78.54, ξ0 = 8.854 ·10−12 and F = 96490,
respectively.
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The example is solved as a one-dimensional problem, with linear spatial elements. The spatial
length of the system considered is 0.05[m], discretized with 1999 elements. The transient part is
solved with a time step length of ∆t = 1[h] and the total time for the simulation is 1750[h]. The
weighting parameter for the time domain is θ = 1, which is required in order to utilize the adopted
Newton�Raphson scheme. The convergence criterion for the Newton�Raphson scheme is ψ ·ψ <
10−12 and a maximum of 50 iterations if the criterion was not reached. The introduced iteration
limit was reached in few time steps in the numerical example. The minimization minimum of the
residual is in this case coupled to the magnitude of the rate constant R, which is later described
by a penalty number. For this case we prioritize keeping the residual criterion low and the penalty
number high, at the expense of an upper iteration limit. The low residual criterion ensures that
the residual is minimized for non-linear parts of the system that are not directly coupled to R.
The acceleration factor is δ = 0.08.

The material properties for the vapor and liquid transport are the di�usion coe�cients for
the individual vapor and liquid phases, two boundary sorption isotherms and the Kβ values
describing the characteristics of the sorption hysteresis. The di�usion coe�cient for the vapor
phase is assumed constant atDφv = 2.6·10−11. The vapor di�usion coe�cient is dependent on the
liquid saturation, the constant value used here is an average value from the observations presented
in Johannesson and Nyman (2010), where it is found that the magnitude is more important than
its relation to the liquid content, see Johannesson and Nyman (2010). The di�usion coe�cient for
the liquid phase is assumed non-linear in terms of the liquid-phase volume ratio εl. The di�usion
coe�cient Dεl is de�ned by Dεl = D0 +D1ε

n where D0 = 10−12, D1 = 5 · 10−7 and n = 50. The
magnitude of n is set by the authors in order to emphasize the increased liquid transport when
εl → 1. The vapor-di�usion coe�cient and liquid-di�usion coe�cient and their relations to the
liquid-phase volume ratio are shown in Fig. 2c. The liquid-di�usion coe�cients adopted here are
in line with values determined by Johannesson and Nyman (2010). The vapor-saturation density
at room temperature is ρvs = 0.017 and the liquid-water density is ρw = 1000.

The sorption boundary functions εl,eq,lb(φv) and εl,eq,ub(φv) are experimentally �tted func-
tions. The functions used in this example correspond to the shape of the upper and lower sorption
boundaries of a typical cement-based material. The functions are restricted to be described by
polynomials of a third degree, which makes it possible to represent a wide range of di�erent
porous materials. In this case the coe�cients for the polynomial εl,eq,lb(φv) and ε

l,eq,ub(φv) are{
hlb1 , h

lb
2 , h

lb
3

}
= {13/8,−15/4, 25/8} and

{
hub1 , hub2 , hub3

}
= {7/4,−13/4, 5/2}. The polynomial

for the average approach is {havg1 , havg2 , havg3 } = {27/16,−7/2, 45/16}. The functions are shown
in Fig. 2a. Mass exchange rates between the vapor and liquid phases R are reported in Johan-
nesson (2002). A penalty number Rp is introduced for this case, as in Nyman et al. (2006),
R → Rp. Rp = 107 is assumed su�ciently high to assure that the equilibrium sorption state is
always followed. The material constant Kβ , used at changes in sorption direction, is assumed
here to be Kβ = 0.3, both in the case of adsorption and desorption scanning. The value is in
accordance with the values used in Johannesson and Nyman (2010). The initial vapor and liquid
content in the material is assumed to be at the relative humidity φv = 0.6, which yields the liquid
volume ratio εl,eq,cu(0.6) = εl,eq,lb(0.6) = 0.3, assuming the initial current equilibrium function
is equal to the lower boundary function. The initial vapor content using the average approach is
set to be the same as the approach including the scanning, which yields the liquid-phase content,
εl,eq,avg (0.6) = 0.36.

The example considered is established as a boundary value problem for the overall mass
transport, where a sequential function describes the relative humidity at the boundary. The
sequential boundary function φv (t) is shown in Fig. 2b. From the de�nitions of relative humidity
and the volume fraction of the liquid, we get that εl (φv) = εl (1) = 1 at saturation. Boundary
�uxes for the ions in the pore solution are established only when saturated boundary conditions
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Figure 2: The sorption boundary functions, together with the average function of these, is shown
in Fig. 2a. The sequential boundary condition for the vapor phase is shown in Fig. 2b. The
relation between the vapor and liquid phase di�usion coe�cients is shown in Fig. 2c.

occur, otherwise symmetric boundary conditions are applied. The boundary concentration for
the ions when εl (1) = 1 is set to zero, except [OH−] = [H+] = 10−7[mol/l] which represents the
pure water.

3.2 Results

The solution to the numerical example, determined by the hysteresis and the average approach
is shown and compared. The results in Fig. 3 show the solution of equations (3) and (4), where
'Distance' on the x-axis refers to the distance from the exposed mass transport boundary. This
yields that the exposed boundary (distance= 0.0[m]) corresponds to the relative-humidity func-
tion given in Fig. 2b. The calculated liquid and vapor contents in the material are shown for
three di�erent time steps in Fig. 3. The Figs. (3a) and (3b) show the liquid and vapor content
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at t = 587[h] for both the hysteresis approach and the average approach considered. The vapor
and liquid content shown at t = 587[h] is shortly after a local minimum on the vapor bound-
ary function was reached, see Fig. 2b. It is seen that the liquid content is slightly lower for the
average approach in the �rst part of the spatial domain and higher from around 0.017[m] and
further into the domain compared to the hysteresis approach. A signi�cant deviation in liquid
content between the two approaches is seen in the interval [0.03[m], 0.05[m]]. This is caused by
the deviation in the determined initial liquid content and the fact that the e�ect of the boundary
conditions have not reached this part of the domain yet. The Figs. 3c and 3d show the liquid and
vapor content after t = 1000[h]. At this time in the simulation we have that the vapor boundary
condition is φv = 1 so that εl = 1, which results in that the liquid-phase di�usion becomes domi-
nant in the �rst part of the spatial domain, according to the choice of di�usion coe�cient relation
shown in Fig. 2c. The average approach shows a larger or equal liquid content compared to the
hysteresis approach. Figs. 3e and 3f show the �nal liquid and vapor content after t = 1750[h].
The liquid content determined from the average approach is slightly lower in the �rst part of the
spatial domain and higher in the last part compared to the hysteresis approach.

Evaluating the solutions of the liquid and vapor content determined by the two approaches
shows that the average approach di�ers slightly from the hysteresis approach in the spatial
domain a�ected by the boundary conditions. This conclusion is only valid for the boundary
condition and the boundary functions εl,eq,lb(φv) and εl,eq,ub(φv) studied here. The di�erence
between the results from the two approaches decreases when the liquid content is εl → 1, which
is seen in Fig. 3c.

The history-dependent nodal sorption functions εl,eq,cu (φv, t) are shown for selected spatial
elements in Fig. 4. Figs. 4a-4d show a projection of the history-dependent function. The initial
liquid and vapor content for all elements are

(
εl, φv

)
= (0.3, 0.6) and

(
εl, φv

)
= (0.36, 0.6) for

the hysteresis and average approach, respectively. Figs. 4a and 4b show the average approach
and sorption hysteresis development at 0.0125[m] and 0.025[m] from the exposed boundary. The
current equilibrium functions εl,eq,cu (φv) for the hysteresis approach are initially equal to the
adsorption boundary isotherm εl,eq,lb (φv) and all spatial elements follow this towards saturated
conditions, which is a result of the increased vapor content at the boundary. The hysteresis
loops are clearly seen in the two �gures and di�erent scenarios handled by the numerical model
are shown. Fig. 4a and its detailing in Fig. 4e clearly show the shift from a constructed current
equilibrium function εl,eq,cu (φv, t) to the sorption boundary functions ε

l,eq,lb(φv) and ε
l,eq,ub(φv).

Fig. 4b and its detailing in Fig. 4f show a shift between two inner scanning curves. The results
shown in Figs. 4c and 4d are not a�ected by the hysteresis loop in the sense that the liquid
content is monotonically increasing, which is also seen in Fig. 3. The time dependency of the
average approach is di�cult to show in the type of plot in Fig 3, but it is shown here to emphasize
some of the di�erences between the approaches shown in Fig. 3. The Figs. 4d and 4c show very
well the di�erence in initial liquid content, which is seen at the end of the spatial domain in Fig.
3. Fig. 4c shows a signi�cant di�erence between the two approaches in both the liquid and vapor
contents.

A clear advantage of the two-phase sorption hysteresis model is also shown in Fig. 4, where it
is seen that each of the spatial elements follow an individual sorption hysteresis function, which
is only dependent on the sorption history in that element.

Some numerical issues were found for this particular numerical example, where the di�erence
between εl,eq,lb (φv) and ε

l,eq,ub (φv) is decreasing when φv → 1. It was found necessary to intro-
duce an upper limit on φv, for establishment of inner scanning curves, and restrict the magnitude
of polynomial coe�cient in εl,eq,in (φv). Tests showed that for this speci�c choice of εl,eq,lb (φv)
and εl,eq,ub (φv), a sorption direction change at φv > 0.99 should enforce a direct change from
εl,eq,lb (φv) → εl,eq,ub (φv). For this purpose an upper limit for the polynomials coe�cients was
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(a) εl at t = 584 [h]
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(b) φv at t = 584 [h]
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(c) εl at t = 1000 [h]
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(d) φv at t = 1000 [h]
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(e) εl at t = 1750 [h]
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(f) φv at t = 1750 [h]

Figure 3: The liquid and vapor content at the times t = 584 [h], t = 1000 [h] and t = 1750 [h]
calculated using the average sorption and hysteresis sorption approaches. The vapor boundary
variations on the mass transport boundary are de�ned in Fig. 2b.
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de�ned based on tests. It was found that
{
hin1 , h

in
2 , h

in
3

}
< 105 was su�cient to restrict the out-of-

balance solution in the following time step. The constructed function εl,eq,in (φv) was rejected if
the upper limit for the polynomial coe�cients was met and the element would follow εl,eq,cu (φv)
despite a sorption change. The numerical precision was reduced for the sorption change determi-
nation in order to save computational time. A change in sorption direction was only considered
if ∆φv > 9 · 10−6.

The response of the ion concentrations, caused by the applied boundary condition in terms
of the vapor phase is shown in Figs. 5 and 6. The concentration distributions after 1000 [h] are
shown in Fig. 5, where the exposed boundary is saturated by the presence of the liquid phase,
so that mass �ow of ions through the exposed boundary is allowed. This is clearly seen on the
concentration gradient near the exposed boundary, for most of the species. The applied boundary
concentration of [H+] is seen in Fig. 5b and represents the only species with �ow direction into
the domain. The concentration distributions after 1750 [h] are shown in Fig. 6 where the vapor
content at the boundary is φv < 1 so that mass �ow of pore solution ions through the boundary
is not physically possible.

The average and hysteresis approaches are compared in terms of the ionic concentrations
in Figs. 5 and 6, where it is seen that deviations, in the part of the domain where hysteresis
loops are established, are relatively small. The spatial sub-domain a�ected by the hysteresis in
Fig. 5 is ≈ [0 [m] , 0.022 [m]] and ≈ [0 [m] , 0.028 [m]] for Fig. 6. Both approaches show increased
ion concentrations and a steep concentration gradient for H+. The spatial position of the steep
gradient corresponds well to the position of increased liquid content, shown in Fig. 3 for the same
instance of time. A signi�cant di�erence between the two approaches is seen at the H+ gradient,
where the domain with high ionic concentrations determined by the average approach is wider
compared with the results from the hysteresis approach. This is related to the di�erence in the
calculated liquid content as shown in Fig. 3c, where the average approach determines a higher
liquid content than the hysteresis approach. Comparing the two di�erent exposure times in Figs.5
and 6 show that the di�erence, in position of the steep H+ gradient, increases with time for the
initial values and boundary conditions employed in this example. Di�erences in ion concentration
are also seen in the part of the domain where the liquid phase content is only changed slightly
(the sub-domain considered is ≈ [0.026 [m] , 0.05 [m]] for Fig. 5 and ≈ [0.034 [m] , 0.05 [m]] for Fig.
6). This a�ect is due to the di�erence in initial liquid and vapor content, in which the liquid
content for the average approach is higher compared with the hysteresis approach.

4 Discussion

The comparison between the two approaches studied in Sec.3.2 and the conclusion drawn from
these are valid for this speci�c choice of εl,eq,lb(φv) and εl,eq,ub(φv) and the average function
determined from these. Another scenario could be that e.g. εl,eq,lb(φv) = εl,eq,avg(φv) and the
conclusions may be di�erent from what is presented in Sec.3.2. In many cases, only a single
sorption curve is determined by experimental observations and where here it would be di�cult
to determine how far a measured curve is from the real average. It is also observed that in
many instances it is di�cult to �nd reasonable initial values of the vapor- and liquid-phase
concentrations since they are dependent on the sorption history before the start of the actual
simulation.

Numerical restrictions were introduced in order to handle elements close to the point around
fully saturated condition and cases involving very small changes in the sorption direction. Small
errors are introduced by these restrictions, but are not considered signi�cant compared with,
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(a) Hysteresis loop 0.0125[m] from the boundary
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(b) Hysteresis loop 0.025[m] from the boundary
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(c) Hysteresis loop 0.0375[m] from the boundary
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(d) Hysteresis loop 0.05[m] from the boundary
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(e) Detailing of 4a
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(f) Detailing of 4b

Figure 4: The current sorption function εl,eq,cu (φv, t) for selected elements in discretized system.
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Figure 5: (- -) Average approach, (�) Hysteresis approach. Concentration of solution species
after 1000[h] where the boundary function for the vapor phase is φ = 1 and consequently mass
�ow of ions is allowed through the boundary.

e.g., the precision of experimentally determined sorption boundary functions at high relative
humidities.

Chemical equilibrium, described by qi, is omitted in the numerical treatment in this work as
it would be di�cult to evaluate the e�ect of the sorption hysteresis on the ionic concentration
with chemical equilibrium included in the numerical solution. However, omitting chemical in-
teractions limits direct comparison with experimental observations for cement-based materials.
The precipitation/dissolution reaction model would feed the pore solution due to the assumption
of instantaneously equilibrium. It is also noted that if chemistry were included in the model,
the precipitation/dissolution would change the solid structure and thereby also the mass �ow
properties. These facts motivate that parts of the framework for reactive mass transport eqs. (1)
- (5) are evaluated separately.
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Figure 6: (- -) Average approach, (�) Hysteresis approach. Concentration of solution species
after 1750[h] where the boundary function for the vapor phase is φv < 1 and consequently the
mass �ow of ions at the boundary is set to zero.

5 Conclusion

A coupled model for ionic mass transport coupled to a moisture transport model including
sorption hysteresis was presented and a �nite element solution was derived. A strong form and
a weak form of an extended version of the Poisson�Nernst�Planck system of equations were
presented. The weak form of the system was derived together with a discretization of the spatial
domain and the time domain. The general �nite element matrix system was established and
the local global sti�ness and mass matrices were derived. The time domain was solved by a
single-parameter implicit scheme and the solution was improved by a modi�ed Newton�Raphson
scheme. A review of the numerical implementation of the sorption hysteresis model was given,
where the numerical criteria for modeling inner scanning curves were covered.

A numerical example was constructed in order to demonstrate the numerical approach and
compare two approaches for describing the history-dependent sorption. One approach included
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the sorption hysteresis and another utilized a more simple average approach. The simulation
results showed the global transient and spatial response of the ionic concentrations in the pore
solution, the liquid and vapor contents in the material, when a relative-humidity variation is
applied at the boundary. The spatial variation in the liquid and vapor content showed that
the model is capable of handling both non-saturated and saturated boundary conditions and
simulating an increased liquid ingress with increasing saturation degree. The average approach.
in which the sorption isotherm was described by a constant third-order polynomial. was compared
with an approach in which the sorption isotherm polynomial was assumed history-dependent.
The results of the two studied approaches deviated mostly for ionic species with �ow direction
into the domain from a saturated boundary condition. The average sorption approach showed
comparably higher ionic concentrations than compared the results from the sorption hysteresis
approach. Future work should focus on improving the strong non-linearity related to the liquid
phase and implementation of chemical equilibrium into the framework.
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a b s t r a c t

Reactive transport modeling is applicable for a range of porous materials. Here the modeling framework
is focused on cement-based materials, where ion diffusion and migration are described by the Poisson–
Nernst–Planck equation system. A two phase vapor/liquid flow model, with a sorption hysteresis descrip-
tion is coupled to the system. The mass transport is solved by using the finite element method where the
chemical equilibrium is solved explicitly by an operator splitting method. The IPHREEQC library is used as
chemical equilibrium solver. The equation system, solved by IPHREEQC, is explained for aqueous, pure phase
and solid solution reactions. Numerical examples, with cement-based materials, are constructed to dem-
onstrate transient phase change modeling. A simulation of pure multi-species leaching from the material,
showing deterioration of the solid phases is described and calculated. A second simulation, showing
multi-species ingress with formation of new solid phases in the domain is described and calculated. It
is shown that the numerical solution method is capable of solving the reactive mass transport system
for the examples considered.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Chemical phase changes as a consequence of a reactive mass
transport process in porous media are well known phenomena.
For example, cement-based materials show phase changes when
exposed to aggressive environments, both from liquid solutions
and gases. The alterations of cement-based materials are strongly
related to durability and service life. The phase changes in most
cement-based materials are often very slow processes due to the
complex matrix of the porous network. Modeling frameworks for
describing phase changes over a long period of time are useful in
the sense of evaluating the long term durability of the material
and as indicator for service life estimation.

Reactive mass transport modeling of cement-based materials is
in many cases focused on single ionic species transport, especially
chloride ingress due to its influence on reinforcement corrosion.
Single ionic ingress modeling is often related to a modified diffu-
sion coefficient. Time-depended diffusion coefficients are used in
different engineering models see e.g. Thomas and Bamforth [1],
Tang and Gulikers [2]. This approach compensates for all chemical
and physical changes over time in a single parameter. Other
suggested diffusion coefficient dependencies are, e.g., a function

of diffusion depth Yuan et al. [3], a function of concentration Bigas
[4], Tang [5], Francy and François [6].

Over the last decade multi-species transport modeling has
gained acceptance, where a constant species dependent intrinsic
diffusion coefficient is considered in these types of models and
the transient change of the diffusion properties is a consequence
of the ionic composition development. Transport models of this
type are found in, e.g., Nguyen et al. [7], Truc et al. [8]. Multi-
species transport modeling within porous media is often described
by the Nernst–Planck equation or the Poisson–Nernst–Planck
(PNP) system of equations, see e.g. Samson et al. [9], Johannesson
[10], and Johannesson [11]. The multi-species transport
approaches enable establishment of extended reactive transport
modeling, where each ionic species is considered in chemical reac-
tions, both in aqueous reactions and solid/liquid reactions. It has
been concluded that the flexibility of the multi-species approach
is a great advantage in long term simulations of cement-based
materials see e.g. Marchand and Samson [12], Baroghel-Bouny
et al. [13] even though the models are often associated with a
range of input parameters, which can be difficult to measure
separately.

A coupled reactive mass transport model within cement-based
materials was proposed by Hosokawa et al. [14] based on an
extended version of the Poisson–Nernst–Planck equation system
coupled to a chemical model. In their work a surface complexation

http://dx.doi.org/10.1016/j.commatsci.2014.05.021
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model of the C–S–H phase was utilized, see Nonat and Lecoq [15],
Hosokawa et al. [16]. The chemical equilibrium system of
equations was solved by the PHREEQC code in which it is possible
to estimate the electrical double layer composition on the C–S–H
surface and thereby include binding of ionic species from the pore
solution. Another model was proposed by Samson and Marchand
[17], based on a Poisson–Nernst–Planck type of equation, coupled
with a liquid diffusion equation in order to model non-saturated
systems. A chemical model having a limited number of ions and
solids was solved together with the mass transport system. Both
models were solved under the assumption of instantaneous local
equilibrium, which enables an operator splitting method (also
known as staggered method).

The framework presented in this paper is mainly based on the
work by Johannesson [10], Hosokawa et al. [14]. The model from
these papers is extended with a two phase vapor/liquid model
described in Johannesson and Nyman [18]. The mass transport
model is coupled to the chemical equilibrium code IPHREEQC (see
Parkhurst et al. [19], Charlton and Parkhurst [20]). The proposed
model presented here differs from earlier work by coupling of
the extended vapor/liquid transport model with the chemical equi-
librium code, where all features and calculation methods are
available.

The coupled model is solved numerically by the finite element
method (FEM) and a brief overview of the chemical equilibrium
calculation is given, based on Parkhurst et al. [19]. Precondition
calculations and non-linear material parameters related to
cement-based materials are shown. Numerical examples are con-
structed to show a numerical solution for a cement-based system,
exposed to different boundary conditions. An important aspect in
this framework is the capability of modifying and testing various
chemical models together with a mass transport code. The con-
structed examples demonstrate this by combining a well known
thermodynamic database CEMDATA07 (see Möschner et al. [21],
Schmidt et al. [22], Möschner et al. [23], Lothenbach et al. [24],
Lothenbach and Winnefeld [25]), with recent external phase
descriptions, see Kulik [26].

2. Methods

2.1. Reactive mass transport

Mass transport in the porous system of a cement-based mate-
rial is in this model described by an extended version of the PNP
system of equations. The equation system describing the mass
transport is based on the work of Johannesson [10] with the excep-
tion that chemical interactions are taken into account in the solu-
tion procedure as described in Hosokawa et al. [14]. The transport
of the individual ionic species in the pore solution is described by
individual transport equations. The governing mass transport
equation in use is

el @cl
i

@t
þ cl

i
@el

@t
¼ r � Dl

i el
� �

elrcl
i þ Dl

ic
l
irel � Al

ic
l
izielrU

� �

þ v l;selrcl
i þ v l;scl

irel þ qi; i ¼ 1;2; . . . ;m ð1Þ

where cl
i is the concentration of the ith ion in the liquid phase l; el

is the volume saturation of the liquid phase in the pore system,
Dl

i el
� �

is the diffusion coefficient for the ith ion, Al
i is the ionic

mobility, zi is the valence state of the ith ion, U is the total elec-
trical potential of the liquid, v l;s is the liquid velocity with respect
to the solid s and qi is a source/sink term accounting for chemical
equilibrium. The numerical solution of chemical equilibrium is
introduced in the transport equation as an operator splitting
approach, by assuming an instantaneous local chemical equilib-
rium state after each mass transport step performed. The operator

splitting approach for reactive transport models is simply to deter-
mine a transient solution for the mass transport part and use these
results as input for the chemical equilibrium calculation. This solu-
tion is then used as a set of initial values for the next transport
calculation. Through this approach chemical equilibrium is solved
for each discrete element in the spatial domain at all considered
time steps.

The electrical potential of the solution considered is determined
by the Gauss law, see Johannesson [10], this is the Poisson part of
the PNP equation system. The Poisson equation is coupled to the
diffusion Eq. (1) by the electrical potential U. The Poisson equation
is given as

ndn0r2U ¼ F
Xm

i¼1

cizi ð2Þ

where nd is the relative dielectricity coefficient, n0 is the dielectricity
coefficient of vacuum and F is the Faraday’s constant.

The liquid transport for non-saturated porous materials is
described by a two phase model proposed by Nyman et al. [27],
Johannesson and Nyman [18]. The proposed model uses the satu-
ration degree as driving potential for moisture transport. The two
phase model enables a detailed transient description of changing
boundary conditions, e.g. tidal zone modeling. The governing
equation for the liquid transport is given as

qw
@el

@t
¼ r � Del el

� �
rel

� �
þ R el;eqð/vÞ � el

� �
ð3Þ

where qw is the water density, Del el
� �

is the transport coefficient for
the liquid phase, R is a penalty number and el;eqð/vÞ is the liquid vol-
ume fraction equilibrium function. The function el;eqð/vÞ is a history
dependent function, describing the sorption hysteresis. An individ-
ual function is established for each spatial element in the numerical
discretization, based on a third order polynomials. The function is
established between a set of initially defined adsorption and
desorption boundary isotherms, see Johannesson and Nyman [18],
Nyman et al. [27] for details.

The governing equation for the vapor phase transport, which is
coupled to (3) is given by

qvs ep � el
� � @/v

@t
� qvs/v

@el

@t
¼ r � D/r/v

� �
� R el;eqð/vÞ � el

� �
ð4Þ

where qvs is the vapor saturation density, ep is the porosity of the
system, /v is the relative humidity and D/ is the diffusion coeffi-
cient for the vapor phase. It is seen that the penalty function in
Eq. (4) has opposite sign compared to Eq. (3) in order to establish
an equilibrium between the vapor and liquid phase, based on the
volume fraction equilibrium function el;eqð/vÞ.

2.2. Numerical calculation method

The mass transport equations are solved by the FEM, where
weak formulations of Eqs. (1)–(4) are established and discretized
by Galerkins method, see Ottosen and Petersson [28]. The transient
system is solved by a single parameter implicit time integration
scheme, given as

anþ1 ¼ Cþ DthKð Þ�1 Cþ Dt 1� hð ÞKð Þan þ fn þ h fnþ1 � fnð Þ½ � ð5Þ

where anþ1 is the solution at the time step nþ 1, C is the
global damping matrix, Dt is the time stepping length, h is the
time stepping parameter, K is the global stiffness matrix, f is
the load vector and an the initial values for the time step. The
numerical solution is improved, due to the non-linearities intro-
duced, by a modified version of the Newton–Raphson scheme,
see Ottosen and Ristinmaa [29]. The residual w of the solution
is given by
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where i is the iteration number. The improved solution is deter-
mined from

wi�1 ¼ Ci�1 1
Dt
þ Ki�1

� �
ai

nþ1 � ai�1
nþ1

� �
ð7Þ

by solving for ai
nþ1. The Newton–Raphson iteration scheme is con-

trolled by a convergence criterion on w.
The volume fraction equilibrium function el;eqð/v Þ is a third

order polynomial which enables a detailed description of sorption
hysteresis. The polynomial coefficients change, with a change in
sorption direction determined by Da ¼ anþ1 � an. Third order poly-
nomials are well suited for the description of inner scanning curves
in cement-based materials. The adsorption and desorption bound-
ary are also described by third order polynomials, see Johannesson
and Nyman [18].

The mass transport equation system is an initial value problem,
where the initial values at t ¼ 0 are determined from different pre-
conditioning models. A hydration model adopted from Hosokawa
et al. [14] is used to determine the amount of oxides reacted at a
given degree of hydration for the individual clinker minerals. The
oxide content with respect to the degree of hydration of the differ-
ent hydrates is determined by

u ¼ Adiag aMð ÞA�1b ð8Þ

where u is the reacted amount of oxides in mass%, with respect to
the degree of hydrations, A is a mass balance matrix between the
clinker mineral, aM is the degree of hydrations where M refers to
the clinker considered and b is initial oxide amount in mass%.
The clinker minerals considered are M ¼ C3S;C2S;C3A;C4AF;CS�;½
K�S�;K�3N�S�4�, where the notation S�;K� and N� refers to SO4;K2O
and Na2O, respectively. The oxides considered are
N ¼ CaO;SiO2;Al2O3; Fe2O3; SO3;K2O;Na2O½ �. The mass balance
matrix shown here is in this case where Al2O3ð Þ= Fe2O3ð ÞP q0:64
given as

A¼

0:7368 0:6512 0:3420 0:4616 0:4119 0 0
0:2632 0:3488 0 0 0 0 0

0 0 0 0:2098 0 0 0
0 0 0:4870 0:3286 0 0 0
0 0 0 0 0:5881 0:4594 0:5060
0 0 0 0 0 0:5406 0:4466
0 0 0 0 0 0 0:0979

2
666666666664

3
777777777775

The mass balance matrix is an extended Bogue calculation see e.g.
Taylor [30] for the standard Bogue calculation. The oxide content
is used in the chemical equilibrium calculation in order to deter-
mine the composition and amount of the solid phases and pore
solution. The water/cement ratio for the cement paste is given as
input parameter and used as initial water in the chemical model.

Three types of diffusion mechanisms are considered in this
model, each with their individual diffusion coefficient, Dl

i;Del and
D/. It is assumed that these diffusion properties are dependent on
the saturation degree of the porous network, see e.g. Shackelford
and Daniel [31] and Hu and Wang [32] . The ion diffusion is
depended on a tortuosity factor s, a constrictivity factor di and the
saturation of the porous system. Different definitions of the tortuos-
ity and constrictivity factors can be found in the literature, this work
follows the method analogue to Hosokawa et al. [14]. A non-linear
relation between Dl

i and el is described in, e.g. Shackelford and Daniel
[31]. For this model an exponential relation is defined, as

Dl
i ¼ em

l
di

s
Dl

0;i

� 	
ð9Þ

where Dl
0;i is a free ion diffusion coefficient. The diffusion coeffi-

cients for the liquid and vapor phase are assumed to depend on
the saturation index, see e.g., Hu and Wang [32]. In a similar fashion
an exponential development for the liquid phase diffusion coeffi-
cient, as a function of the liquid saturation degree, is adopted in this
work. This is in line with, e.g., Johannesson and Nyman [18]. The
liquid diffusion coefficient is determined from

Del ¼ D0;el þ D1;elen
l ð10Þ

where D0;el and D1;el are diffusion coefficients determined from
experimental observations and n is the exponential factor. With n
sufficiently high and a constant vapor diffusion coefficient D/, one
can model a fast ingress of liquid at high saturation degree using
this model. D/ is implicitly dependent on el due to the vapor/liquid
coupling of (3) and (4). This is an implicit way of simulating capil-
lary suction, which is responsible for relatively fast transport of the
boundary solution into the porous material, compared to a pure
diffusion process.

2.3. Chemical equilibrium

Chemical equilibrium, defined as qi in Eq. (1), is solved by the
external geochemical code IPHREEQC, see Charlton and Parkhurst
[20]. In order to illustrate the compatibility of the transport
module and the chemical module adopted a brief review of the
equation system solved by IPHREEQC to calculate chemical equilib-
rium state is presented, based on Parkhurst et al. [19]. The IPHREEQC

code solves the mass action laws, derived from thermodynamics.
The IPHREEQC library includes several methods to handle different
chemical reactions, the equation system shown here is limited to
aqueous species, pure phases and solid solutions.

The mass action equation for aqueous species can be written as

Ki ¼ ai

Y
j

a
�cji
j ð11Þ

where Ki is the temperature dependent solubility constant, ai is the
activity of the aqueous species i; aj is the activity of the defined mas-
ter species j; cji is the stoichiometric coefficient for master species j
in aqueous species i. Master species are defined as pure elements
and elements at different valence state, e.g., Caþ2; Feþ2 and Feþ3.
All constituents in the chemical system are described in terms of
the master species. Eq. (11) can be written in terms of

ai ¼ cibi ni ¼ bimaq ð12Þ

to yield

ni ¼ maqKi

Y
j

a
�cji
j

ci
ð13Þ

where ni is moles of the aqueous species i in the solution, maq is the
mass of solvent water and ci is the activity coefficient of the aque-
ous species i. bi is the molality of species i, introduced in Eq. (12).

The activity coefficient ci is determined from either the Davies
equation or by the extended WATEQ Debye–Hückel equation
depending on the material data available. The Davies equation is
defined as

log ci ¼ �Az2
i

ffiffiffiffilp
1þ ffiffiffiffilp � 0:3l
� 	

ð14Þ

where A is a temperature dependent constant, zi is the ionic charge
of the aqueous species i and l is the ionic strength. The WATEQ
Debye–Hückel equation is defined as

log ci ¼ �
Az2

i
ffiffiffiffilp

1þ Bai
þ bil ð15Þ
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where B is a temperature dependent constant, ai and bi are con-
stants for species i derived from mean salt activity coefficient data.

The activity of the water aH2O is considered as a special case in
IPHREEQC and approximated by

aH2O ¼ 1� 0:017
X

i

ni

maq
ð16Þ

which formula is based on Raoult’s law.
The ionic strength l of the solution is determined by

l ¼ 1
2

X
i

z2
i

ni

maq
ð17Þ

Note that the ionic strength is one of the unknowns for which the
complete system is solved for.

2.3.1. Pure phase and solid solution equilibrium
Pure phase equilibrium is probably the simplest solid–liquid

chemical equilibrium calculation to establish and solve. In theory
the number of pure phases in the model is unlimited. Phases must
be described by a valid dissolution reaction scheme and with its
solubility constant in order to fit the solution algorithm in IPHREEQC.
The mass-action equation for pure phases is given by the same
type of formula as used for the aqueous reactions, that is

Kp ¼
Y

j

a
�cpj

j ð18Þ

where Kp is the solubility constant for the pure phase p described by
a dissolution reaction and cpj

is the stoichiometric coefficient of the
jth master species in the pth pure phase. For multiple phase assem-
blages, Gibbs’ phase rule must be satisfied. The activity of the pure
phase itself is assumed to equal 1.0. The saturation index, SI is intro-
duced for the numerical solution procedure. The saturation index
shows whether the phase is supersaturated, in equilibrium or
undersaturated, by SI > 0; SI ¼ 0 and SI < 0, respectively. The defini-
tion is given as

SI ¼ log
Y

j

a
cpj

j ð19Þ

Solid solution is a widely used method for describing an inter-
nal coupling between two or more solid phases and their dissolu-
tion reaction with respect to each other. Two main methods are
included in the IPHREEQC code, non-ideal solid solution, limited to
binary solid assemblages and ideal solid solution with two or more
end-members in the solid assemblages. Only ideal solid solution is
considered here, where the unknowns for solving the system are
the moles of each end-member. The activity of the end-member
is determined by assp ¼ kssp xssp , where notation ssp refers to the p
pure phase in solid solution ss and xssp is the mole fraction of the
pth component in the solid solution. This differs from the pure
phase assumption, where the activity of the solid phase is
1.0. For the ideal solid solution it is assumed that kssp ¼ 1 for all
p, so the activity reduces to assp ¼ xssp where the mole fraction is
defined as

xssp ¼
nsspP
pnssp

ð20Þ

where nssp is the moles of the pure phase p in the solid solution ss.
The general mass-action law for solid solution is given as

Kssp ¼

Y
j

a
csspj

j

assp

¼ nssp

Y
j

a
csspj

j

P
pnssp

ð21Þ

In a similar fashion to Eq. (19) a solubility quotient Qssp is intro-
duced as

Qssp ¼

Y
j

a
csspj

j

Kssp assp

ð22Þ

where Qssp ¼ 1 at solid solution equilibrium.

2.3.2. Mole balance and charge balance
The mole balance for the reacting system includes all the chem-

ical elements present in the different phases. Mole balance for the
reaction mechanisms aqueous reaction, pure phase reaction and
solid solution reactions is shown. The mole balance is given as

0 ¼ Tm �
X

p

Cj;pnp �
X

ss

X
p

Cj;ssp nssp �
X

i

Cj;ini ð23Þ

where Tm is the total moles of master species and Cj is the moles of
element j per mole of each entity, in this case np;nssp and ni.

The charge balance in the aqueous solution is determined from
the valence state and amount of each ionic species represented, the
charge balance equation being defined as

Tz ¼
X

i

zini ð24Þ

where Tz is the residual charge of the calculations. Natural systems
are always in charge balance, whereas numerical simulations may
introduce small errors in terms of charge balances.

2.3.3. Numerical solution for chemical equilibrium
The IPHREEQC code for forward modeling of chemical equilibrium

uses the Newton–Raphson iteration scheme to find the equilibrium
solution based on the equations defined in the previous sub-sections.
The system is solved for the unknowns ln aj; ln maq; ln aH2O, l;nss

and np, with an equal number of equations. For the Newton–
Raphson scheme, Eqs. (16), (17), (19), (22),(23) and (24) are used
and their derivative with respect to the unknowns. All equations
involved are solved for zero residuals. Different numerical optimi-
zation techniques are applied to the solution procedure, e.g. to
avoid singular matrices.

3. Numerical examples

Numerical examples were constructed to demonstrate the
potential of this framework in reactive transport modeling for
porous materials and particularly for cement-based materials.
The examples will show that it is possible to solve the equations
system numerically and also illustrate the open format of this
framework. The term ‘‘open format’’ is used here for the ability
to adjust all the material parameters, chemical reactions, boundary
settings, etc. The key feature to emphasize in the open format is the
ability to modify the chemical components considered, both in
terms of the pore solution, solid matrix composition and the
boundary conditions. The framework is not fixed to a single chem-
ical composition, but it is possible to adjust with experimental
findings or to test different thought scenarios, such as different
exposure conditions.

The coupled model described in this work includes a range of
input parameters, which should be determined or estimated
directly from experiments. The material parameters were divided
into two groups related to the mass transport part of the model
and the chemical part, with reaction schemes and the parameter
related to these. The ionic species considered in the mass transport
calculation are shown in appendix A.3 together with the diffusion
coefficients, electromigration coefficients, valences and tortuosity
factors. The approach was to allow all solid phases and ionic com-
plexes in the database to be formed and then invoke the ionic spe-
cies in the mass transport. The phreeqc.dat database and additional
elements defined in Jacques [33] was used. The initial solid matrix
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was described by the phases defined in appendix B.4, which is
based on the CEMDATA07 Möschner et al. [21], Schmidt et al.
[22], Möschner et al. [23], Lothenbach et al. [24], Lothenbach and
Winnefeld [25], where the C–S–H model by Kulik [26] substitute
the jennite and tobermorite C–S–H description. The IPHREEQC formu-
lation of the original CEMDATA07 database is from Jacques [33].

The examples are:

1. A cement-based material is considered. The material was
exposed to pure water at the boundary, which yields that the
concentration for OH�½ � ¼ 1:0 � 10�7 and Hþ

� �
¼ 1:0 � 10�7 mol/l

was prescribed at the boundary and the rest of the ionic concen-
trations was set to be zero. The material is assumed to be fully
water-saturated, so el ¼ 1 and v l;s ¼ 0.

2. The second numerical example was constructed to simulate a
multi-species exposed cement-based material. A multi-species
solution was defined at the boundary in order to determine
the ingress and the chemical effect from their presences in
the pore solution. The initial pore solution of the cement-based
material was enabled to diffuse through the boundary. The
boundary was assumed water-saturated in the whole time
domain so vapor/liquid diffusion, with sorption hysteresis was
taken into account.

3.1. Input parameters and databases

The oxide composition for the cement used in the simulations is
given in Table 1. The cement composition is in line with values
used in Hosokawa et al. [14]. The same degree of hydration was
chosen for each element for simplicity and to increase stability in
the chemical equilibrium calculation. The initial pore solution
and solid matrix composition was modeled by IPHREEQC, where the
oxide amount from the extended Bogue was treated as solution
species together with an amount of water corresponding to the
water/cement ratio, see Table 2. The excess water from the hydra-
tion model was used to determine the initial water saturation
degree and this was introduced as initial water for the numerical
example 2.

The simulations were solved as 1-dimensional boundary value
problems. The spatial and transient constants for the numerical
calculation, together with some of the material constants are
shown in short form in Table 2, the individual diffusion properties
are given in Table A.3. The general tortuosity factor is in agreement
with Johannesson [34]. The exponential factor, relating the satura-
tion degree and diffusion is solely to facilitate a high diffusion rate
at high saturation degree. The relatively high number of elements
used is mainly a consequence of the liquid/vapor terms, which
have been proven to be difficult to solve with sufficient accuracy,
see Jensen et al. [35]. The time step length is relatively short,
compared to the total time, and the time scale for the liquid/vapor
diffusion combined with the chemical equilibrium behavior, in all
essential parts determines an acceptable time step length. The pore
solution composition changed relatively much when these two
mechanism were solved in the coupled system and if Dt was too
large, the initial value for the following time step, would not be
sufficiently good. Chemical equilibrium was solved at every fifth
time step for these examples in order to save computational time

and obtain a sufficiently change in the pore solution from the mass
transport calculation in the spatial domain. The increased time
step length for the split operator scheme will increase the trun-
cated boundary error as a result, see e.g. Simpson and Landman
[36]. The vapor and liquid diffusion properties are in agreement
with values reported in literature, see Johannesson and Nyman
[18]. The exponential relation for the liquid phase was chosen such
that the liquid phase diffusion was dominant at /’0:97. The poros-
ity qp is considered constant for these examples despite the fact
that precipitation/dissolution reactions would change the porosity
over time.

3.2. Results from leaching simulation (example 1)

Results from the leaching simulation are shown in Figs. 1 and 2
as the spatial pore solution distribution and solid phase composi-
tion, respectively. The solid phase changes are only dependent on
the change in the pore solution composition and thereby the mass
flow in the porous system. The mass transport system was solved
for 28 ionic species and it is seen from Fig. 1 that the concentra-
tions of the different species have developed differently in the
spatial domain over time, according to their individual boundary
concentration and diffusion properties.

The effect from the boundary conditions, on the pore solution is
clearly seen in Fig. 1. Hþ was the only ion resulting in a diffusion
direction into the domain, which is seen in Fig. 1b. Local peak val-
ues are seen on some concentration profiles near the boundary,
which is mainly due to the effect from the imposed charge balance
of the system. Species with exact zero concentration were seen in

the transient solution, e.g. Al3þ
h i

. Zero concentration is seldomly

seen in numerical simulations of the kind studied here, where a
gradient is almost always established towards the boundary. The

Table 1
Oxide composition for the cement material used in the simulation

CaO SiO2 Al2O3 Fe2O3 SO3 K2O Na2O Minor oxidesa

Mass% 0.64 0.22 0.05 0.04 0.03 0.0078 0.0015 0.0107

a The minor oxides are not considered in the simulation.

Table 2
Constant material and model parameters for the numerical calculation.

Simulation parameters

W/C 0.6
Spatial elements 2000
Total spatial distance (m) 0.06
Total time (year) 2.5
Time step, Dt (h) 10
Time parameter1, h 1
Tortuosity factor, s 0.009
Exponential relation for ions, n 20
Liquid diffusion coef. D0;el m2=s 1 � 10�12

Liquid diffusion coef. D1;el m2=s 2 � 10�8

Liquid density qw kg=m3 1000
Porosity ep 0.2
Exponential relation for liquid phase, m 50
Liquid diffusion coef. D/ m2=s 1 � 10�12

Vapor saturation density, qvs kg=m3 0.017
Penalty number R 106

Relative dielectricity 78.54
Dielectricity in vacuum 8:854 � 10�12

Faraday’s constant 96490

1 h ¼ 1 due to the Newton–Raphson scheme adopted.
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Fig. 1. Concentration profiles in the pore solution of a cement-based material, after a leaching simulation. The plots are from the chemical equilibrium calculation at the last
time step considered.
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Fig. 2. Solid phases in a cement-based material after a leaching simulation. The plots are from the chemical equilibrium calculation at the last time step considered. Note that
only 0.01 m of the domain is shown in order to emphasize the changes near the boundary.
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effect seen here, is from the chemical equilibrium part where
elements can have zero concentration in the individual nodes, if
the chemical conditions for their presences is not there. The
following mass transport step for such case would re-establish a
concentration gradient in the affected domain.

The solid phase dissolution is clearly seen in Fig. 2a for the
pure equilibrium phase portlandite. This is in line with the
simulation results of the C–S–H solid solution, by Kulik [26].
The C–S–H model used here is described by Kulik [26] as a four
end-member solid solution, together with the pure equilibrium
phases portlandite and amorphous silica. Portlandite is dissolved
first, relative to the C–S–H end-members and as a function of
decreasing Ca½ �= Si½ � ratio in the solids. The internal ratio between
the C–S–H end-members starts to evolve after complete dissolu-
tion of portlandite. The increase of jennite-H and decrease of
jennite-D as seen in Fig. 2b is in line with the single solid-solution
simulation in Kulik [26].

3.3. Results from ingress simulation (example 2)

The external species set on the boundary, of a non-saturated
cement-based material, are typically ions found in sea-water. In
total 46 ionic species were considered in the mass transport where
25 species had a boundary value >0. The ionic species were solved
together with 32 solid phases in the chemical equilibrium calcula-
tion. The boundary was assumed saturated in the whole time
domain, so changes in sorption direction did not occur. The initial
saturation degree was determined to be 0.87 (using the chemical
module to initiate the calculations) and it was assumed that the
adsorption would follow the adsorption isotherm, defined as
el;eqð/v Þ ¼ 13

8 /v � 15
4 /2

v þ 25
8 /3

v . The liquid equilibrium state was
evaluated at each node in the spatial domain in each time step.

The example was solved for 49 unknowns in the mass transport
and 78 unknowns in the chemical equilibrium calculation. The
cause of the transient change in the individual calculated ionic
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Fig. 3. Concentration profiles after ingress and chemical interaction of a multi-species solution into the pore solution of a cement-based material. The plots are just before the
chemical equilibrium calculation at the last time step considered.
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concentration profiles is difficult to evaluate due to the size of the
system considered and the number of physical phenomenon
involved. General tendencies are seen by comparing Figs. 3 and
4, where the chemical interactions are a significant factor for the
changes in the pore solution in the spatial domain at 0–0.02 m.
Some concentration profiles in, e.g., Fig. 3e and d show a significant
change in the concentration gradient near 0.05–0.06 m. This effect
is related to the liquid diffusion gradient, where the liquid velocity
increases the mass flow of ionic species.

For this simulation the strong non-linearity introduced by the
liquid/vapor phase transport, caused numerical stability problems
in the Newton–Raphson iteration scheme for this simulation. It
was found that the criteria el

51 were not satisfied after the
Newton–Raphson improvement. A damping constant on the step
size was introduced in the Newton–Raphson scheme. The method
is analogue to line search, with the cost of increasing the number of
iterations compared to more detailed search methods.

The solid phase changes due to the changing pore solution com-
position can be seen in Fig. 4. It is seen in Fig. 4a that, e.g. brucite
formation is simulated near the left boundary, which contains
magnesium. Magnesium is not a part of the initial oxide compo-
nents, see Table 1 and indicates that magnesium diffusion into
the domain is simulated by the model.

The relationship between the portlandite and the C–S–H solid
solution as observed in example 1, is also seen in this example.
The C–S–H end-members change in the time domain, is similar
to what observed in the leaching example 1 and the reported
results in Kulik [26]. Furthermore, it is seen that the amorphous sil-
ica SiO2ð Þ is formed near the exposed boundary, see Fig. 4a. This is
formed, according to the model by Kulik [26], at low Ca=Si ratio in
the solids and when tobermorite-H has reached its maximum

share in the C–S–H solid solution ratio. The dissolution of the
C–S–H and the change to amorphous silica indicates that
leaching processes were simulated by the model, parallel with
the ingress.

The minor solid solutions are shown in Fig. 4b where, e.g.,
ettringite is formed. Note that ettringite occurs twice in Fig 4b,
which shows that it changes solid solution from AFt (1) to AFt
(2). The ettringite is further changed to C2ASH8 close to the
exposed boundary. The sharp interfaces between solid solutions
increased the number of required iterations by the IPHREEQC library.
Less than 0.1% of the total number of chemical calculations did not
converge. A non-converged node n adopted the values from the
n� 1. The error introduced by this operation was assumed to be
small due to the relative small element length used.

4. Discussion

The number of input parameters is extensive in the presented
framework, e.g. for all ions the free diffusion coefficient is needed
for all ions and the number of assumed/estimated values in the
example calculations are significant. One could argue whether all
the minor relevant ions are needed in such calculations. The expe-
rience from this work has shown that it is very difficult to separate
the effect from single elements or processes when working with
such large coupled system, across different physics. When the
numerical solution method allows for a large number of ions and
the computational times are reasonable, one should include all
the ions formed in this framework. Testing of the framework and
especially the coupling to the chemical equilibrium library showed
that including all ions increased the stability of the chemical equi-
librium calculation.
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The local instantaneous chemical equilibrium assumption and
the boundary value description chosen in this work, may not
reflect the true solution in the boundary node. Chemical equilib-
rium is calculated on the boundary node, but the boundary values
are forced on this node in the following mass transport step. All
transient properties are eliminated for the boundary node by this
operation. The chemical equilibrium assumption is thereby no
longer diffusion and time dependent. Increasing the number of
spatial elements and decrease the time step length would help to
overcome the problem. A more sound solution would be to

introduce kinetic rate laws in the chemical reactions. The assump-
tion is in some sense valid if the boundary is considered as an infi-
nite buffer.

5. Conclusion

A coupled reactive mass transport model was presented based
on an extended PNP system of equations, coupled with a two phase
liquid/vapor model and chemical equilibrium determined by an
operator splitting method. The FEM with Galerkins approximation
was used as numerical solver for the non-linear problem, together
with a modified Newton–Raphson iteration scheme. A brief review
of the chemical equilibrium algorithm in IPHREEQC was given, with
focus on the aqueous reactions, pure equilibrium phases and solid
solutions. Methods for describing non-linear material constants
related to cement-based materials where found in the literature
and presented here in the context to the modeling framework.
An extended Bogue model, for preconditioning of the input param-
eters was suggested, which also included minor chemical elements
in cement oxide composition.

The numerical examples addressed leaching and ingress sim-
ulation of ions in a cement-based material and the impact on
the solid composition. The numerical solutions indicated that
the coupling of chemistry and mass transport was working
for the examples examined. Comparing simulation results of
the C–S–H solid-solution model used with the multi-species
model of this work showed the same internal type of changes
in the end-member composition of the C–S–H. Furthermore it
was shown for the ion ingress simulation (example 2), that solid
phases that were not initially present could be formed (in this
example brucite).

The FEM approach adopted was shown to be robust for the
numerical examples under consideration. The change in the initial
values by the operator splitting method did not seem to cause any
problems as long as the residual was sufficiently minimized in
both the mass transport part and the chemical equilibrium part.
It was found that a damping factor for the step size in the
Newton–Raphson iteration was necessary in order to satisfy
restrictions on the liquid saturation.

The two examples considered the general open format of the
framework developed, further, the examples demonstrate that
both simple and complex boundary conditions can be simulated
by the suggested framework. In the same way, it was shown that
the chemical model was flexible in the sense of changing the
number of unknowns and combining models included in different
thermodynamic databases.

It was indicated in the discussion, that future work should focus
on implementing kinetic rate laws in the chemical part, although
this is a complicated topic on its own. Furthermore, implementa-
tion of other chemical reaction types, like surface complexation
and gas phase reactions into the framework would improve the
generality and open format of the framework.

Appendix A. Diffusion properties

The diffusion properties for the pore solution are given in
Table A.3.

Appendix B. Solid phase reaction database

Thermodynamic database based on CEMDATA07 [21–25] and
rewritten for PHREEQC by Jacques [33]. The CSH solid solution model
is changed from the original CEMDATA07 database, to the latest
C–S–H model proposed by Kulik [26] (see Tables B.4 and B.5).

Table A.3
Diffusion properties for ionic components in the numerical examples.

Dl
i � 10�8 Al

i � 10�6 zi di Boundary Ex. 2 mol=l

OH� 0.5300a 0.2253 �1 1.0a 1.621e�07
Hþ 0.9311c 0.3958 1 1.0b 1.327e�07
Al OHð Þ�4 0.5040a 0.2142 �1 1.0a –
Al OHð Þ3 0.5040f – – 1.0b –
Al OHð Þ�2 0.5040f 0.2142 �1 1.0b –

Al3þ 0.0541c 0.0229 3 1.0b –

AlSOþ4 0.5040f 0.0442 1 1.0b –

Al SO4ð Þ�2 0.5040f 0.0442 �1 1.0b –

AlOH2þ 0.5040f 0.0442 1 1.0b –

CaOHþ 0.0792a 0.0337 1 0.2a 5.330e�09
CaSO4 0.0471a – – 1.0a 1.196e�03
CaHSOþ4 0.0471b 0.0200 1 1.0b 1.099e�09

SO2�
4

0.1070a 0.0455 �2 1.0a 1.609e�02

HSO�4 0.1385c 0.0589 �2 1.0b –

H2SiO2�
4

0.1100a 0.0468 �2 0.02a –

H3SiO�4 0.107e 0.0468 �1 1.0b –
H4SiO4 0.107e – – 1.0b –

Ca2þ 0.0792a 0.0337 2 0.2a 9.879e�03

CaHCOþ3 0.107e 0.0200 1 1.0b 3.880e�05
CaCO3 0.0446a – – 1.0a 1.368e�06
Cl� 0.203a 0.0862 �1 1.0a 6.183e�01
Kþ 0.1957a 0.0405 1 0.02a 9.911e�03
KSO�4 0.1070a 0.0454 �1 1.0a 1.648e�04
KOH 0.196a – – 1.0a 1.771e�10

Mg2þ 0.0705a 0.0299 2 1.0a 4.861e�02

MgSO4 0.0705b 0.0299 – 1.0b 8.019e�03
MgHCOþ3 0.0705b 0.0299 1 1.0b 1.819e�04
MgCO3 0.0705b – – 1.0b 4.436e�06
MgOHþ 0.0705a 0.0299 1 1.0a 6.656e�07

Naþ 0.133a 0.0565 1 0.02a 4.898e�01
NaSO�4 0.618a 0.0262 �1 1.0a 6.625e�03
NaHCO3 0.133g – – 1.0b 1.373e�04
NaCO�3 0.0585a 0.0405 �1 1.0a 3.345e�06
NaOH 0.133g – – 1.0b 1.902e�08
CO2 0.191e – – 1.0b 1.618e�04

CO2�
3

0.0955a 0.0405 �2 1.0a 1.903e�06

HCO�3 0.118a 0.0501 �1 1.0a –
FeCO3 0.0719d – – 1.0b –
FeHCOþ3 0.0719d 0.0299 1 1.0b –

FeClþ 0.0719d 0.0299 1 1.0b –
FeSO4 0.0719d – – 1.0b –
FeHSOþ4 0.0719d 0.0299 1 1.0b –
Fe OHð Þ�4 0.0719d 0.0299 �1 1.0b –
Fe OHð Þ3 0.0719d – – 1.0b –
Fe OHð Þþ2 0.0719d 0.0299 1 1.0b –

FeOH2þ 0.0719d 0.0299 2 1.0b –

FeOHþ 0.0719d 0.0299 1 1.0b –

Fe2þ 0.0719c 0.0299 2 1.0b –

a Data from Hosokawa et al. [14].
b Estimated value.
c Data from Lide and Haynes [37].
d Etsimated from Fe2þ .
e Data from Shen et al. [38].
f Estimates from Al OHð Þ�4 .
g Estimated from Naþ .
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Solid solution
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Table B.5
The reaction schemes for formation of chloride phases [39].
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C4AH13 + Friedel’s salt (ss)
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Abstract

Reactive transport modeling of cement based materials are investigated in terms of a numerical comparison between two
C-S-H descriptions. The governing equations for the reactive transport model is the Poisson�Nernst�Planck equations
and the chemical equilibrium is solved by the geochemical code phreeqc. A short review of the mass actions laws,
used by phreeqc to determined the equilibrium state is given. The two C-S-H models used are a four end-member
solid-solution model and a surface complexation model accounting for the double layer binding of ions. Multi-species
ingress simulations are used to compare the results from the two C-S-H models in terms of the predicted amount of
solid phases formed or dissolved. The results are compared after 2 and 10 years simulated exposure, where the exposure
solution is an average sea-water composition. The main di�erences in the solid phase composition, using the two models
are found in the amount of ettringite and carbonate containing phases formed.

1. Introduction

of many cement based materials is the calcium silicate
hydrate (C-S-H) phase and therefore one of the most stud-
ied parts. Chemical structural models are often used as a
basis for the development of more phenomenological de-
scriptive models. The term descriptive chemical model is
used here for a chemical model that is described by a dis-
solution reaction and a solubility product. The descriptive
chemical models are used in reactive mass transport mod-
els, where the mass transport is described at the macro
level.

The structural complexity of the C-S-H phase has been
debated in several papers over the last century and is to
some extended still ongoing [1, 2]. Essentially, the discus-
sions are about describing the calcium-to-silica ratio (C/S)
in the C-S-H phase and to some extend incorporate other
physical changes related to this. It is well known that the
C/S ratio varies within the C-S-H phase for, e.g., ordinary
Portland cement [3]. The variations have been measured
by di�erent techniques and the results have been inter-
preted di�erently in terms of natural analogs and struc-
tural formulas [4, 5, 6, 7]. The most used natural analogs
for the C-S-H are properly tobermorite and jennite like
structures [4, 6, 7]. Di�erent structural models are sum-
marized and compared to a model proposed by Richardson
and Groves [8] in [5, 4]. It is to some extent concluded by
Richardson [5, 4] that the basic formulation of the struc-
tural models proposed by di�erent authors may not di�er

∗Mads Mønster Jensen
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signi�cantly and the di�erences can be considered as spe-
cial cases of one another.

Some descriptive thermodynamic models, used in reac-
tive transport simulations of cement based materials, take
into account the structural properties in order to keep the
descriptive thermodynamic structurally consistent. A list
of proposed thermodynamic C-S-H models is summarized
by Soler [9], where the �rst models presented was empirical
or semi-empirical and later evolved to solid-solution mod-
els. The thermodynamic solid-solution model proposed by
Kulik and Kersten [10] and the later improvement by Ku-
lik [11] takes into account structural considerations. Other
thermodynamic models like Sugiyama and Fujita [12] and
Carey and Lichtner [13] are based on dissolution data from
di�erent papers, where the structural consistency over the
C/S range is only considered limited in these models.

Another type of thermodynamic C-S-H model is pro-
posed in terms of surface complexations. This type of C-
S-H model is, e.g., proposed by Nonat et al. [14] and later
discussed by Nonat [6]. The complexation model proposed
is in some sense directly related to the structural proper-
ties as the surface reactions are related to, e.g., bridging
of elements and interlayer composition. The thermody-
namic surface complexation model by Nonat [6] is, to the
authors knowledge, the only model of this type for C-S-H
suggested in the literature.

The use of thermodynamic chemical models in reactive
mass transport models, for cement based materials, are
relatively common see, e.g., Marchand and Samson [15],
Hosokawa et al. [16], Carey and Lichtner [13], Le Bescop
et al. [17]. The chemical C-S-H models used in these reac-
tive mass transport models are often supported by a more
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or less detailed list of thermodynamic reactions related to
cement paste. A well known thermodynamic database for
cement based materials is the Cemdata07 which contains
data assembled from di�erent papers and it is continuously
updated [18, 19, 20, 21, 22].

This work will show two di�erent thermodynamic C-S-
H models, employed in a reactive mass transport model.
The C-S-H models considered are, an ideal four end-member
solid-solution model proposed by Kulik [11] and a sligltly
modi�ed version of the surface complexation model pro-
posed by Nonat [6] accounting for electrical double layer
(EDL) binding of ions. The C-S-H models are combined
with relevant solid phases from the Cemdata07 thermody-
namic database in order to obtain a detailed description
of a cement paste. The combination of the selected reac-
tions from the Cemdata07 thermodynamic database with
the two di�erent C-S-H models and the use of this in a re-
active mass transport model is new. A review of the mass
transport model and the chemical equilibrium calculations
are given. The C-S-H models are used in a multi-species
ion ingress simulations. Results from the ingress simula-
tions are shown in terms of the solid phase compositions.
The solid phase compositions are compared after 2 and 10
years exposure simulations in order to evaluate any di�er-
ences in the solid phase composition using the two di�erent
C-S-H models.

2. Numerical models and methods

The governing equations for the mass transport part
of the model are shown together with a brief description
of the �nite element scheme used. An operator splitting
approach is adopted for the numerical solution of the cou-
pled mass transport and the chemical equilibrium. The
operator splitting approach enables the use of an exter-
nal chemical equilibrium solver, where the phreeqc code
is employed in this case. A review of the mass action
laws used in phreeqc to determine chemical equilibrium
is given in order to present the complete mathematical
structure of the adopted models.

2.1. Governing equations and solution method

The reactive mass transport is described by an ex-
tended Poisson�Nernst�Planck (PNP) system of equations,
where a mass exchange term qi is added to the classical rep-
resentation of the PNP equation system. The exchange
term qi takes into account the chemical interactions be-
tween the species in the system and the supply from solid
phases. A more generalized extended PNP version can, for
instance, be obtained by hybrid mixture theory as decribed
in Bennethum and Cushman [23, 24] which is essentially
the PNP version presented here with the assumption of
a fully saturated pore structure. An essential result from
mixture theory is that

∑
i qi = 0 must be satis�ed to ob-

tain mass balance in the system, see, e.g., Bowen [25], Ben-
nethum and Cushman [23]. The extended Nernst-Planck
part of the system is given as

∂ci
∂t

= ∇ · (Di∇ci −Aicizi∇Φ) + qi; i = 1, 2..,m (1)

where ci is the concentration of specie i, t is time, Dl
i is

the e�ective di�usion coe�cient for constituent i, Al
i is the

ionic mobility. The relation Al
i = Dl

iF/(RgT ) is used see,
e.g., Johannesson [26], where F is Faraday's constant and
Rg is the universal gas constant. The property zi is the
valence state of constituent i and Φ is the total electric
potential or streaming potential. The relation Dl

i = Dl,0
i τ

for the e�ective di�usion coe�cient is used, where Dl,0
i

is the self di�usion coe�cient and τ is the tortuosity fac-
tor. The di�usion coe�cients Dl,0

i are shown in Tab. B.6.
The chemical equilibrium term qi is solved by an operator
splitting approach in the numerical solution scheme. Oper-
ator splitting is a common approach in reactive transport
modeling, e.g., [27, 16, 28, 29]. The chemical reactions
are assumed to take place instantaneously with respect to
the mass transport, which facilitate the operator splitting
method. The species concentrations determined by the
mass transport are used as input values for the chemical
equilibrium calculation and the species concentration de-
termined from this are used as initial values for the mass
transport calculation in the following discrete time step.
The interface version of PHREEQC, the IPHREEQC li-
brary [30] is employed in this case, which use the mass
action laws to solve chemical equilibrium. A review of the
relevant parts of PHREEQC manual Parkhurst et al. [31]
of the mass action laws is given in section 2.2.

The pore solution charge balance is considered by the
Poisson part of the PNP system and coupled to Eq. (1)
by the total electric intensity potential Φ. The Poisson
equation is given as

εdε0∇2Φ = F
M∑

i=1

cizi (2)

where εd is the relative dielectricity coe�cient, ε0 is the di-
electricity coe�cient of vacuum andM is the total number
of species considered.

The mass transport part of the PNP system is for this
case solved by the �nite element method using a single
parameter time integration scheme. The �nite element
formulation is obtained by re-writing the strong forms of
Eqs. (1) and (2) into weak forms. The system is multi-
plied with an arbitrary spatial weight function w (x, y, y)
and a arbitrary transient weight function W (t), followed
by integration over the spatial domain and the time do-
main of interest. The weak form is then obtained by using
the Green-Gauss theorem [32, 33]. The state variables are
approximated by the general expansionNa whereN is the
global shape function and a contains the state variables at
the nodal points. The Galerkin's method is used for the
approximation of the spatial weight function. The prob-
lem considered in Section 3 is one-dimensional using linear
spatial elements, which yields the shape function as N =
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[1− x/le, x/le] where le is the element length. The global

approximated equation system is:
´ t2
t1
W [Cȧ + Ka− f ] dt,

where C is the global mass matrix, K is the global sti�-
ness matrix, ȧ is the time derivatives of the state variables
and f is the load vector. A linear expansion in the time
domain is employed to obtain a single parameter time inte-
gration scheme see, e.g., Zienkiewicz et al. [33]. The time
integration scheme is

an+1 = (C + ∆tθK)
−1

[C + ∆t (1− θ)Kan (3)

+fn + θ (fn+1 − fn)]

where n is the discrete time step number and θ is the sin-
gle weighting parameter between 0 ≤ θ ≤ 1 for the time
domain. The initial value problem in Eq. (3) is solved for
an+1 and the solution is improved by a modi�ed Newton-
Raphson scheme, see, e.g., Ottosen and Ristinmaa [34].
The modi�ed Newton-Raphson scheme is employed to save
computational time as the calculation of the true tangen-
tial sti�ness is omitted. A system residual ψ is according
to Ottosen and Ristinmaa [34] determined by

ψl−1 = Cl−1 1

∆t

(
al−1
n+1 − an

)
+ Kl−1al−1

n+1 (4)

−
(
f l−1
n+1 − f ln

)

where l is the iteration number. The improved solution
aln+1 is determined from

ψl−1 =

[
Cl−1 1

∆t
+ Kl−1

] (
aln+1 − al−1

n+1

)
(5)

The Newton-Raphson scheme iterates between Eqs. (4)
and (5) until a de�ned criteria for the residual is reached.
For this particular case it is observed that θ = 1 is used in
the modi�ed Newton-Raphson scheme adopted.

2.2. Chemical equilibrium solution methods

The chemical interaction term qi introduced in the mass
transport Eq. 1 is decoupled from the di�erential equa-
tions in the �nite element algorithm by an operator split-
ting approach. The decoupling facilitate the use of, e.g.,
mass action laws to obtain chemical equilibrium. The
chemical equilibrium is considered between aqueous species
and precipitation/dissolution reactions between solids and
aqueous species in the liquid phase for this case.

As stated in Section 2.1, the geochemical code phreeqc
by Parkhurst et al. [31] is employed as solver and more spe-
ci�c the iphreeqc interface is utilizes [30]. The phreeqc
code has the capability of determine chemical equilibrium
for aqueous reactions, pure phase reactions, solid-solution
reactions and surface complexation reactions with explicit
determination of the electrical double layer (EDL). All of
the above listed features are used in this work. A review of
the mass action laws as presented in Parkhurst et al. [31]
is given in the following, the description of the equation
system is supported by the descriptions in Bethke [35] and
Appelo and Postma [36].

The description follows the terminology in [31] where
master species are pure elements and elements at di�erent
valence state, e.g., Ca+2, Fe+2 and Fe+3. All other compo-
nents in the chemical system considered is only allowed to
contain these elements. This is a pure numerical separa-
tion of the components. The species activity ai is obtained
by de�ning the chemical potential µi as: µi ≡ ∂Gi/∂ni

where Gi is the Gibb's free energy and ni the mole number,
see [35]. Equilibrium of a given reaction is found when the
sum of all the species Gibb's free energies of the reaction
G is at its minimum under the condition that the pressure
and and temperature are �xed. The chemical potential µi

is de�ned as µi = µ0
i +RT ln ai, where µ

0
i is the standard

reference potential, R is the universal gas constant, T is
the temperature and ai is the activity of the species. The
equilibrium constant K is de�ned in terms of the standard
free energy G0 as: K =

∑
∆G0

/RT , which leads to the gen-
eral expression for aquas species equilibrium in phreeqc.

The mass action equation for the solution specie i, can be
written as

Ki = ai
∏

j

a
−bij
j (6)

where aj is the activity of the master species j and bij
denotes the stoichiometric coe�cient of master species j
in solution species i. The complete numerical system in
phreeqc includes a determination of the total moles of a
solution specie ni which in phreeqc is derived from the
mass action law Eq. (6), by re-writing the activity in terms
of the activity coe�cient γi, the molality mi and the mass
of water waq, so that ai = γimi and ni = miwaq. The
relation for the total moles of the i'th species in phreeqc

is

ni = waqKi

∏
j a
−bij
j

γi
(7)

The activity coe�cient in phreeqc is determined by ei-
ther, the Davies equation, de�ned as

log γi = −Az2
i

( √
µs

1 +
√
µs
− 0.3µs

)
(8)

or the extended wateq Debye-Hückel equation, de�ned as

log γi = −Az
2
i

√
µs

1 +Bαi
+ βiµs (9)

where zi is the valence, A and B are temperature depended
parameters, αi and βi are ion-speci�c parameters and µs

is the ionic strength given by Eq. (11). According to [31],
the Eq. (9) is denoted extended Debye-Hückel if βi = 0
and αi is an ion size parameter. The use of either Eq. (8)
or (9) is determined by the data available in the database.

In phreeqc the activity of the water aH2O
is deter-

mined by an approximation based on Raoult's law in phreeqc
and is given as

aH2O
= 1− 0.017

∑

i

ni
waq

(10)

3



The ionic strength µs of the pore solution is determined
in phreeqc, as

µs =
1

2

∑

i

z2
i

ni
waq

(11)

The mass-action equation for the equilibrium solid phase
equilibrium is similar to the mass action equation for the
aqueous reactions Eq. (6). The activity of the equilibrium
phase p is assumed to be 1.0, which results in the mass
actions law, as

Kp =
∏

j

a
cpj
j (12)

A saturation index SI is introduced in phreeqc for the
equilibrium phase calculation: SI = log

∏
j a

cpj
j . The sat-

uration index is a numerical factor for the state of the
phase in terms of supersaturated, equilibrium or under
saturated, by SI > 0, SI = 0 and SI < 0, respectively.

Solid-solution equilibrium calculations are incorporated
in phreeqc and are of great importance in cement based
material modeling. The mass action equation for solid-
solutions in phreeqc is based on the end-member activ-
ity, de�ned as: assp = λsspxssp , where the notation ssp
refers to the p'th equilibrium phase in solid-solution ss
and xssp is the mole fraction of the p'th equilibrium phase
in the solid-solution de�ned as: xssp = nssp/

∑
p nssp . Solid-

solution equilibrium can be di�cult to solve numerically,
as described in, e.g., Bethke [35] and is often restricted
to ideal solid-solutions. For the ideal solid-solutions, it is
assumed that λssp = 1 for all p, so the activity reduces
to assp = xssp . The general mass-action law for solid-
solutions in phreeqc is given as

Kssp =

∏
j a

csspj
j

assp
= nssp

∏
j a

csspj
j∑

p nssp
(13)

A solubility quotient Qssp for the solid-solution is intro-

duced as: Qssp =
∏

j a
csspj
j /Ksspassp which is similar to the

saturation index SI for the equilibrium phases.
Surface complexation modeling including electrical dou-

ble layers is a feature included in phreeqc. The surface
complexation theory in phreeqc is based on Dzombak
and Morel [37] and the explicit calculation of the double
layer composition is based on Borkovec and Westall [38].
The phreeqc algorithm de�nes surface species separated
from the aqueous species and surface master species are
de�ned for the same matter. The presentation of the the-
ory here is limited to a single surface site for simplicity.
The mass action law for surface species is

Ksi =

(
asi
∏

m

a
−cm,si
m

)
e

FΨs
RT ∆zsi (14)

where the subscript si denotes the i'th surface species in
the s surface, Ksi is the equilibrium constant of the sur-
face reaction, asi is the activity for the surface species, am

is the activity for the master species m including the sur-
face master species, cm,si is the stoichiometric coe�cient
of master species m in the association reaction for surface
species, Ψs denotes the surface potential and ∆zsi is the
net change in surface charge and F is Faraday's constant.
The total moles of surface species nsi are determined by
phreeqc, as

nsi = Ksia
−2∆zsi
Ψs

∏

m

a
−cm,si
m (15)

where the de�nition ln aΨs
= FΨs

2RT is used. Explicit calcu-
lation of the double layer composition, related to a speci-
�ed surface is included in phreeqc. The phreeqc algo-
rithm uses an explicit solution to the Poisson-Boltzmann
equation obtained by Borkovec and Westall [38]. It is as-
sumed in phreeqc that the water density ρaq is constant
ρaq = 1000 [kg/m3]. The excess of ions Γs,i on surface s of
species i is determined in phreeqc by the relation

Γs,i =

ˆ ∞

xd,s

(cs,i (x)− ci) dx (16)

where cs,i (x) is the ion concentration of species i as a
function of the distance x from the surface s, c0i is the bulk
concentration of species i and xd,s is the location of the
outer Helmholtz plane, d, s. Note that the total list of ion
species i may be di�erent from the species list considered
in the bulk solution. The molality of the surface excess
species ms,i is related to Γs,i by the surface area As for 1.0
kg water, by ms,i = AsΓs,i and the surface excess molality
is related to the bulk molality mi by ms,i = gs,imi. The
gs,i function in phreeqc is a function of the potential at
the surface, the species concentrations and charges of all
species in the bulk solution [31]. The gs,i in phreeqc is
given as

gs,i = Assgn (xs,d − 1) δ (17)
ˆ xs,d

1

(Xzi − 1)

[X2
∑

imi (Xzi − 1)]
1/2
dX

where the de�nition X = e−
FΨs
RT and δ =

(
εdε0

RT
2

)1/2

are used and where εd is the relative dielectricity coe�-
cient and ε0 is the dielectricity coe�cient of vacuum. In
the phreeqc algorithm, aΨs

is de�ned as unknown for
the double layer calculation, this variable is related to the
gs,i function in phreeqc by aΨs = X−2. With the gs,i
function and the molality relation between the bulk and
excess surface, phreeqc is then able to determine the to-
tal moles of a species ns,i in the double layer. This is the
sum of the amount from the double layer and the bulk
amount. phreeqc assumes that Waq,bulk

∼= Waq and the
mass of water in the double layer Waq,EDL is known from
Waq,EDL = tEDLAs, where tEDL is the thickness of the
double layer. The total moles ns,i is determined by

ns,i = Waq,bulkgs,ii
ni
Waq

+Waq,EDL
ni
Waq

(18)

∼= gs,iini +Waq,EDL
ni
Waq
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The surface species in phreeqc is de�ned separately
from the aqueous species as described earlier, in order to
obtain charge balance for the surface, phreeqc determines
the charge balance between the surface and the double
layer, as

fz,s =
∑

si

zsinsi +
∑

i

zins,i (19)

where fz,s is the charge imbalance. Note that if several
surface sites are considered, a summation over these should
be considered. The total charge balance for the system
with the reaction types considered is given in phreeqc as

fz = Tz −
∑

i

zini +
∑

s

fz,s (20)

where fz is the charge imbalance and Tz is the total charge
balance. A natural chemical solution is always in charge
balance, so the imbalances described must be minimized
to a su�ciently low level. The charge balance is particular
important in the coupling to the mass transport system
considered here.

The mass balance, or mole balance in this context, is
obtained in phreeqc by summarizing the total moles of all
di�erent chemical elements participating in the di�erent
chemical reactions described. The mole balance for all
reaction types considered is given in phreeqc as

fj = Tj −
∑

p

Cj,pnp −
∑

ss

∑

p

Cj,sspnssp −
∑

i

Cj,ini

−
∑

s

∑

i

Cj,sinsi −
∑

s

∑

i

Cj,i,sni,s

(21)

where fj is the mole imbalance of the system, Tj is the
total moles of the elements and Cj is moles of element j
per mole of each entity. Cj is usually, but not always,
equal to the stoichiometric coe�cient c in the mass action
laws considered.

The phreeqc code for forward modeling of chemical
equilibrium uses a Newton-Raphson iteration scheme to
�nd chemical equilibrium for a given system. A system
with the components as described above is solved for the
unknowns ln aj , lnmaq, ln aH2O, lnWaq, µs, nss, np, lnasi
and lnaΨs

. Di�erent numerical optimization techniques
are applied by the phreeqc algorithm to the solution pro-
cedure, e.g., to avoid singular matrices.

2.3. Extended EDL thickness iteration

The operator splitting approach used in the numerical
solution to the coupled mass transport enables an extended
determination of the double layer thickness which is an in-
put parameter in phreeqc. The approximated thickness
of the di�use layer is the Debye-length κ, given by

κ−1 =

[
2NAe

2
cµs

εε0kBT

]−1/2

(22)

where NA is Avogadro's number, ec is the electron charge
and kB is the Boltzmann's constant. Assuming constant
temperature, yields that the Eq. (22) is a function of the
ionic strength µs, which is determined by phreeqc. The
initial guess on the double layer thickness may not �t the
calculated ionic strength and thereby change the chemi-
cal equilibrium. For this reason an extra chemical equi-
librium calculation for each spatial location considered is
introduced in this model. The double layer thickness is
optimized by determining a double layer thickness from
the initial chemical equilibrium calculation and use this
in the additional chemical equilibrium calculation to im-
prove the solution. The initial guess in the discrete time
domain is the thickness determined from the ionic strength
determined in the previous accepted time step.

2.4. Chemical models

Two thermodynamic C-S-H models are investigated in
this paper; a solid-solution model by Kulik [11] and a
sligltly modi�ed version of a surface complexation model
proposed by Nonat [6]. Both models have undergone devel-
opment and improvements since their initial publication,
see Kulik and Kersten [10] and Nonat [6]. The models con-
sidered here are the state of the art within thermodynamic
C-S-H models described by solid-solution and surface com-
plexation.

The models considered are originated from chemical
structural models of C-S-H and the reaction schemes are
constructed based on these, in order to construct a sound
predictive models that is valid in a broad C/S ratio range.
The predictive solid-solution model proposed by Kulik [11]
is based on a structural model proposed by Richardson
[4] and experimental data from Chen et al. [39] and the
model is valid in the range of 0.67<C/S<1.7. The surface
complexation model in Nonat [6] is based on a structural
model proposed by Nonat and Lecoq [40], together with
experimental data in Nonat et al. [14] and the model is
valid in the range of 1<C/S<1.5.

As described in the introduction several structural C-
S-H models are proposed and discussions regarding their
performance are ongoing. It is beyond the scope of this
paper to contribute to this discussion but some conclu-
sions regarding the structural background are emphasized.
Such conclusions are relevant because results from the use
of two di�erent C-S-H models are compared in this work.
According to Richardson [4], parts of the modeling work
in Nonat and Lecoq [40] is similar to parts of the struc-
tural model in Richardson [4] and di�ers only regarding
the presences of interlayer Ca2+ ions. It is emphasized
in Nonat [6] that the elemental description of the C-S-H
is chemically equivalent to that given by Richardson and
Groves [41], but the formulation is directly related to the
structural model Nonat and Lecoq [40]. From the above
referred papers, it is concluded that the basic principals in
the structural models are comparable and the thermody-
namic models are comparable only to a certain extend.
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2.4.1. C-S-H surface complexation model with di�use dou-
ble layer

The surface complexation model described in Nonat [6]
has been implemented in a reactive mass transport model
for cement paste by Hosokawa et al. [16]. The surface com-
plexation model used in this work di�ers slightly from the
original work, see Tab. 1 for the reactions considered. The
di�use double layer is taken into account, assuming that
tEDL/κ

−1 = 1.55, which is based on data from Glasser
et al. [42] and Hirao et al. [43]. The same assumption for
the double layer thickness tEDL will be used in Sec. 3.

Table 1: Reaction schemes for the surface complexation
model and the C-S-H particle. The model di�ers slightly
from the orignial work by Nonat [6].

External sites

Reaction scheme Solubility constant logK

−SiOH↔ −SiO− + H+ -11.8
−SiOH + Ca2+ ↔ −SiOCa+ + H+ -9.0
−SiOH + CaOH+ ↔ −SiOCaOH + H+ -12.0
−SiOH + 0.5H4SiO4 ↔ −SiOSi0.5OH + H2O 3.5
−SiOSi0.5OH + 0.5Ca2+ ↔ −SiOSiO0.5Ca0.5 + H+ -10.2
−SiOSi0.5OH↔ −SiOSi0.5O− + H+ -11.8
−SiOSi0.5OH + Ca2+ ↔ −SiOSi0.5OCa+ + H+ -9.0

Internal sites

Reaction scheme Solubility constant logK

−SiOH + 0.5Ca2+ ↔ −SiOCa0.5 + H+ -10.2
−SiOH + CaOH+ ↔ −SiOCaOH + H+ -12.0
−SiOH + 0.5H4SiO4 ↔ −SiOSi0.5OH + H2O 3.5
−SiOSi0.5OH + 0.5Ca2+ ↔ −SiOSiO0.5Ca0.5 + H+ 10.2

C-S-H particle Solubility constant logK

Ca2Si2O5(OH)2 + 4H+ + H2O↔ 2Ca2+ + 2H4SiO4 29.6

The amount of the surface complexes is related to a
equilibrium phase C-S-H particle, where 0.5 sites per moles
is used for the internal sites and 1.5 sites per mole is used
for the external sites. The internal and external sites have
a speci�c surface area of 0

[
m2
/mol

]
and 83638.7

[
m2
/mol

]
,

respectively .

2.4.2. C-S-H solid-solution model Kulik [11]

The ideal solid-solution is adopted from Kulik [11] and
has four end-members, each described by the reactions in
Tab. 2. The solid-solution model is denoted CSHQ in
Kulik [11]. The solid-solution coexist with SiO2 at C/S <
0.67 and with Ca (OH)2 at C/S > 1.7.

3. Simulation setup

The simulations with the two di�erent C-S-H models
are considered as boundary value problems solved with a
one-dimensional FE scheme with linear spatial elements as
described in Sec. 2.1. Both simulations are using the same
parameters and constants for the mass transport part in
order to compare the results. The total time simulated is
ttotal = 10 years, with a time step length of ∆t = 30 hours.
The time step length and the associated error induced by
the operator splitting approach for the chemical reactions

is not considered here. It is assumed that the boundary
error due to the operator splitting approach is the same
for the two simulations as the applied boundary values
are the same. A summary of the input parameters and
physical standard values used, is given in Tab. 4. The
cement composition is shown in Tab. 3 and is used as input
parameters for the chemical equilibrium model where it is
assumed that the cement paste is fully hydrated.

Table 3: Oxide composition for the cement material used
in the simulation

CaO SiO2 Al2O3 Fe2O3 SO3 K2O Na2O

mass% 64.00 22.00 5.00 4.00 3.00 0.78 0.15

Table 4: Constants parameters for the numerical calcula-
tion and material parameters.

Simulation parameters

w/c 0.45
Spatial elements 250
Total spatial distance [m] 0.05
Total Time ttotal [years] 10
Time step, ∆t [h] 30
Time parameter1, θ 1
Tortuosity factor, τ 0.0039
Relative dielectricity εd [V/m] 78.54
Dielectricity in vacuum ε0 [V/m] 8.854 · 10−12

Faraday's constant F [C/mol] 96490
1θ = 1 due to the Newton-Raphson scheme adopted

4. Results

The solid phases that are formed or dissolved after a
simulation of 10 years with the use of the C-S-H models in
Tab. 1 and 2 are presented in Figs. 1 and 2, respectively.
Only the phases that are present at the exact time are
shown. Sub-sets of the transient solution are shown in
terms of the phase compositions after 2 years exposure
simulations in order to show the transient development.
The simulation using the solid-solution C-S-H is denoted
C-S-H(ss) and using the surface complexation model is
denoted C-S-H(sc).

4.1. Solid-solution C-S-H

The calculated distribution of the equilibrium phases
from the C-S-H(ss) simulation, are shown in Figs. 1a and
1b after 2 and 10 years simulation time, respectively. The
portlandite is dissolved in two steps over the spatial do-
main after 2 years simulated exposure as shown in Fig. 1a.
The dissolution front of portlandite at ≈ 0.02[m] is approx-
imately equal to the spatial position of the Friedel's salt
and ettringite formation fronts, which are a result of the
external ion ingress. The portlandite has one dissolution
front near the exposed boundary, after 10 years simulated
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Table 2: C-S-H solid-solution model from Kulik [11].

solid-solution

Name Reaction scheme Solubility constant

Tobermorite H (CaO)0.66(SiO2)(H2O)1.5 + 1.32H+ ↔ 0.66Ca2+ + H4SiO4 + 0.16H2O 8.272
Tobermorite D (CaO)0.83(SiO2)0.66(H2O)1.83 + 1.66H+ ↔ 0.83Ca2+ + 0.66H4SiO4 + 1.34H2O 13.624
Jennite H (CaO)1.33(SiO2)(H2O)2.16 + 2.66H+ ↔ 1.33Ca2+ + H4SiO4 + 1.49H2O 22.173
Jennite D (CaO)1.5(SiO2)0.66(H2O)2.5 + 3.00H+ ↔ 0.66Ca2+ + H4SiO4 + 0.16H2O 28.713

exposure and this is properly due to leaching. The base
level amount of portlandite present after 10 years simu-
lated exposure is equal to the bottom amount of the dis-
solution front at ≈ 0.02[m] after 2 years simulation.

A small amount of additional brucite is formed near the
exposed boundary due to the simulated ingress of magne-
sium. The additional brucite amount and its formation
front is only increased slightly from 2 to 10 years simu-
lated exposure.

The C-S-H(ss) is shown in Figs. 1c and 1d. The in-
ternal composition of the end-members is only changed
slightly from its initial values in the transient and spatial
domains. The simulated exposure and its e�ects on the
additional solid-solutions, given in Tab. A.5, are shown
in Figs. 1e and 1f. The formation of Friedel's salt is
very pronounced for the two exposure times presented.
The Friedel's salt and ettringite formations substitutes the
monosulfoaliminate and the C4AH13 which is seen in Fig.
1e. The Friedel's salt and ettringite have completely sub-
stituted the monosulfoaliminate and C4AH13 phases af-
ter 10 years simulated exposure. The total ettringite for-
mation is the sum of the two end-members in the solid-
solution AFt(1). The regular ettringite (or Al-ettringite)
is initially formed and increases due to the ingress of ex-
ternal ions and its consequences in terms of changes in
the pore solution composition. The Fe-ettringite is formed
primarily near the exposed boundary where it substitutes
the initially formed C4FH13. The amount of Fe-ettringite
is increased in the spatial and transient domains. Fe-
hemicarbonate is formed near the exposed surface after
2 years simulated exposure and increased into the spatial
domain after 10 years simulated exposure. The carbonate
containing phases are formed due to the ingress of dis-
solved carbonates from the exposure solution. Monocar-
boaluminate and hemicarboaluminate are formed parallel
to the Fe-hemicarbonate in the order of 2 · 10−6[mol] and
2 · 10−7[mol], respectively. The C4AH13 is present paral-
lel with C4FH13 after 10 years simulation in the order of
1 · 10−5[mol]. Calcite is formed as an equilibrium phase
at the �rst two nodes from the exposed boundary with a
maximum of 4.24 · 10−3[mol]. The calcite is only present
in the case of the10 years simulation, see Fig. 1b.

4.2. Surface complexation C-S-H

The Fig. 2 shows the solid phases formed and dissolved
by using of the C-S-H(sc) model in Tab. 1 with EDL bind-

ing of ions included. The portlandite dissolution after 2
years exposure is comparable with the two step dissolution
evolvement for the C-S-H(ss) simulation in Fig. 1a and the
dissolution front at ≈ 0.02[m] is equivalent with the forma-
tion front of Friedel's salt and ettringite. The portlandite
has a single dissolution front after 10 years simulated expo-
sure which is similar to the C-S-H(ss) simulation results.
Brucite is initially formed in the cement paste and an addi-
tional amount is formed near the exposed boundary. The
additional amount of brucite formed is higher for both ex-
posure times considered, compared to the corresponding
calculated results using the C-S-H(ss) model. Calcite is
formed to a larger extent using the C-S-H(sc) model at
2 and 10 years simulated exposure and penetrates further
into the spatial domain compared to the results for the
C-S-H(ss) model. The C-S-H(sc) reaction schemes as de-
scribed in Tab. 1 are dependent on the actual amount of
C-S-H particle and it is seen that the particle is only dis-
solved slightly near the exposed boundary after 10 years
simulated exposure.

The amount of formed end-members from the included
solid-solutions are shown in Figs. 2b and 2d. The formed
amount of Friedel's salt and ettringite are comparable with
the results obtained from the C-S-H(ss) model and their
interchanging characteristics with respect to monosulfoa-
luminate and C4AH13 are simulated in a similar way as
the for the case of the C-S-H(ss) model. Both ettringite
end-members considered are formed in a greater amount
near the expose surface using the C-S-H(sc) model com-
pared to the C-S-H(ss) model. The system is in favor of
the ettringite end-members, so that none of the carbonate
containing end-members are formed near the surface after
10 years simulated exposure as seen from the C-S-H(ss)
modeling results. Fe-hemicarbonate is formed near the
exposed boundary after 2 years, similar to the C-S-H(ss)
simulation results, but in contrast, most of this is substi-
tuted by the ettringite end-members after 10 years simula-
tion. The hemicarboaluminate and monocarboaluminate
are formed in parallel with the Fe-hemicarbonate in the
order of 2 · 10−6[mol] and 2 · 10−7[mol], respectively. The
C4AH13 is present in parallel with C4FH13 after 10 years
simulation in the order of 1 · 10−5[mol].

It is clear from the two presented simulations that the
di�erent C-S-H models considered yields di�erent results
for some of the phases considered in addition to the C-S-
H. The most signi�cant di�erence is seen for the amount

7



0 0.02 0.04
0

0.2

0.4

0.6

0.8

Distances [m]

S
o
li

d
 p

h
as

e 
[m

o
l]

 

 
Brucite
Portlandite

(a) Equilibrium phases after 2 years exposure simulation.

0 0.02 0.04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distances [m]

S
o
li

d
 p

h
as

e 
[m

o
l]

 

 
Calcite

Brucite
Portlandite

(b) Equilibrium phases after 10 years exposure simulation.

0 0.02 0.04
0

0.2

0.4

0.6

0.8

Distances [m]

S
o
li

d
 p

h
as

e 
[m

o
l]

 

 
Jennite H

Jennite D

Tobermorite D

Tobermorite H
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(d) C-S-H Solid-solution end-members after 10 years exposure simula-
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Figure 1: The composition of equilibrium phases and solid-solution end-members after 2 and 10 years simulated sea-water
exposure, using the C-S-H(ss) model. The amount is given as moles in the element.
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Figure 2: The composition of equilibrium phases and solid-solution end-members after 2 and 10 years simulated exposure,
using the C-S-H(sc) model. The amount is given as moles in the element.
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of ettringite and hemicarbonate formed. The exact reason
for these kinds of di�erent results are di�cult to point out
due to the coupled characteristics of the overall reactive
transport model. It is beyond the scope of this work to in-
dicate which of the models that will perform best in terms
of reproducing experimental tests.

5. Discussion

It is important to emphasize that the results presented
here are used to compare numerical calculations of two
di�erent chemical models. A signi�cant assumption made
in numerical modeling of reactive transport, used here, is
that all constituents are available for reaction. However, in
a natural system, the complex structure of the nano-scale
porous matrix may limit the availability of some compo-
nents to react because they are not in physical contact
with each others.

The di�usion properties in the pore solution are also
signi�cantly a�ected by the changes in the solid phase
composition. The tortuosity factor is for instance kept
constant in time and spatial position which may be an
unsound assumption compared to a real system.

6. Conclusion

Two di�erent thermodynamic C-S-H models are used
in a reactive transport model and the solid phase compo-
sitions are compared after 2 and 10 years simulated multi-
species exposure. The chemical C-S-H models considered
are a four end-member solid-solution model and a surface
complexation model accounting for electrical double layer
binding of ions. The numerical mass transport model is
based on the Poisson�Nernst�Planck system of equations
which are coupled to the thermodynamic chemical equilib-
rium code phreeqc. The transport part of the model is
solved by the �nite element method and the chemical equi-
librium problem is solved by the mass action laws by using
an operator splitting approach. A review of the chemical
equilibrium calculation using the mass action laws is pre-
sented in a fashion similar to what being described in the
manual of phreeqc.

Two simulations, with the same exposure conditions
and with di�erent C-S-H descriptions are conducted. The
total simulation time is 10 years. The solid phase com-
position determined by the two di�erent simulations are
compared at a simulation time of 2 and 10 years in or-
der to show the transient evolvement. The simulations
showed a signi�cant di�erence, using the two di�erent C-S-
H models, in the amount of solid phases predictedbesides
the C-S-H phases. The di�erences are especially signi�-
cant after 10 years simulated exposure. The most signi�-
cant e�ect is observed for the ettringite formation, where
the amount simulated with the C-S-H surface complexa-
tion model is signi�cant higher near the exposed boundary,
compared to the case using the C-S-H solid-solution model.

The amount of carbonate containing phases estimated are
di�erent using the two C-S-H models. These phases are
formed to a greater extent using the solid-solution C-S-
H model than compared to the case of the C-S-H surface
complexation model.

The comparison of the two C-S-H models is purely nu-
merical. The future work with the models should include
some comparison with experimental data in order to eval-
uate the performance of predicting real cement based sys-
tems.
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Table A.5: Thermodynamic database for the chemical equilibrium model, describing solid phase reactions included in
the chemical model.

Reactions

Equilibrium phases logK

Portlanditeb Ca(OH)2 + 2 H + ↔ Ca 2+ + 2 H2O 22.799
Silica(am)b SiO2 + 2 H2O↔ H4SiO4 -2.714
Bruciteb Mg(OH)2 + 2 H+ ↔ Mg 2+ + H2O 16.839
Calciteb CaCO3 ↔ CO 2−

3 + Ca 2+ 1.849

Solid�solution

AFm(1) (ss)

C4AH13
c Ca4Al2(OH)14 : 6 H2O↔ 4 Ca 2+ + 2 Al(OH)−4 + 6 OH− + 6 H2O -25.403

C4FH13
c Ca4Fe2(OH)14 : 6 H2O↔ 4 Ca 2+ + 2 Fe(OH)−4 + 6 OH− + 6 H2O -29.403

AFt(1) (ss)

Ettringite
(Al�Ettringite)b

Ca6Al2(SO4)3(OH)12 : 26 H2O↔ 6 Ca 2+ + 2 Al(OH)−4 + 3 SO 2−
4 + 4 OH− + 26 H2O -44.909

Fe�Ettringiteb Ca6Fe2(SO4)3(OH)12 : 26 H2O↔ 6 Ca 2+ + 2 Fe(OH)−4 + 3 SO 2−
4 + 4 OH− + 26 H2O -44.008

AFm(2) (ss)

Monosulfo-aluminateb Ca4Al2(SO4)(OH)12 : 6H2O↔ 4Ca2+ + 2Al(OH)−4 + SO2−
4 + 4OH− + 6H2O -29.263

C4AH13
c Ca4Fe2(OH)14 : 6 H2O↔ 4 Ca 2+ + 2 Fe(OH)−4 + 6 OH− + 6 H2O -29.403

Hemicarbonate

Hemicarbo-aluminateb Ca4Al2(CO3)0.5(OH)13 : 5.5H2O↔ 4Ca2+ + 2Al(OH)−4 + 0.5CO2−
3 + 5OH− + 5.5H2O -29.133

Fe�hemicar-bonateb Ca4Fe2(CO3)0.5(OH)13 : 5.5H2O↔ 4Ca2+ + 2Fe(OH)−4 + 0.5CO2−
3 + 5OH− + 5.5H2O -33.103

Monocarboaluminate + Friedel's salt (ss)
Friedel's salta Ca4Al2Cl2(OH)12 : 4 H2O↔ 4Ca 2+ + 2Al(OH)−4 + 4OH− + 2Cl− + 4H2O -27.300
Monocarbo-aluminateb Ca4Al2(CO3)(OH)12 : 5H2O↔ 4Ca2+ + 2Al(OH)−4 + CO2−

3 + 4OH− + 5H2O -25.403
aBalonis et al. [44]; bJacques [45]; c Lothenbach et al. [21], Matschei et al. [46], Möschner et al. [20].
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Table B.6: Di�usion properties for ionic components in
the numerical examples. The boundary condition for sea-
water is found in Cotruvo [47].

Dl,0
i · 10−8 Al

i · 10−6 zi δi Boundary

condition
mol/l

OH− 0.5300a 0.2253 -1 1 1.608e-07

H+ 0.9311c 0.3958 1 1 1.324e-07

Al (OH)−4 0.5040a 0.2142 -1 1 0.0

Al (OH)3 0.5040f - - 1 0.0

Al (OH)−2 0.5040f 0.2142 -1 1 0.0

Al3+ 0.0541c 0.0229 3 1 0.0

AlSO+
4 0.5040f 0.0442 1 1 0.0

Al (SO4)
−
2 0.5040f 0.0442 -1 1 0.0

AlOH2+ 0.5040f 0.0442 1 1 0.0

CaOH+ 0.0792a 0.0337 1 0.2 5.451e-09

CaSO4 0.0471a - - 1 1.026e-03

CaHSO+
4 0.0471b 0.0200 1 1 9.384e-10

SO2−
4 0.1070a 0.0455 -2 1 1.406e-02

HSO−
4 0.1385c 0.0589 -2 1 3.869e-08

H2SiO
2−
4 0.1100a 0.0468 -2 0.02 9.587e-14

H3SiO
−
4 0.107e 0.0468 -1 0.02 4.682e-08

H4SiO4 0.107e - - 0.02 1.719e-05

Ca2+ 0.0792a 0.0337 2 0.2 9.261e-03

CaHCO+
3 0.107e 0.0200 1 1 4.741e-05

CaCO3 0.0446a - - 1 1.738e-06

Cl− 0.203a 0.0862 -1 1 5.544e-01

K+ 0.1957a 0.0405 1 0.02 9.898e-03

KSO−
4 0.1070a 0.0454 -1 1 1.657e-04

Mg2+ 0.0705a 0.0299 2 1 4.650e-02

MgSO4 0.0705b 0.0299 - 1 6.971e-03

MgHCO+
3 0.0705b 0.0299 1 1 2.766e-04

MgCO3 0.0705b - - 1 5.728e-06

MgOH+ 0.0705a 0.0299 1 1 6.777e-07

Na+ 0.133a 0.0565 1 0.02 4.690e-01

NaSO4
− 0.618a 0.0262 -1 1 6.332e-03

NaHCO3 0.133g - - 1 1.777e-04

NaCO−
3 0.0585a 0.0405 -1 1 4.748e-06

CO2 0.191e - - 1 2.186e-04

CO2−
3 0.0955a 0.0405 -2 1 2.487e-06

HCO−
3 0.118a 0.0501 -1 1 1.641e-03

FeCO3 0.0719d - - 1 0.0

FeHCO+
3 0.0719d 0.0299 1 1 0.0

FeCl+ 0.0719d 0.0299 1 1 0.0

FeSO4 0.0719d - - 1 0.0

FeHSO+
4 0.0719d 0.0299 1 1 0.0

Fe (OH)−4 0.0719d 0.0299 -1 1 0.0

Fe (OH)3 0.0719d - - 1 0.0

Fe (OH)+2 0.0719d 0.0299 1 1 0.0

FeOH2+ 0.0719d 0.0299 2 1 0.0

FeOH+ 0.0719d 0.0299 1 1 0.0

Fe2+ 0.0719c 0.0299 2 1 0.0

(a)Data from Hosokawa et al. [16]. (b)Estimated value.(c)Data from

Lide and Haynes [48]. (d)Etsimated from Fe2+. (e)Data from Shen

et al. [49]. (f)Estimates from Al (OH)−4 .
(g)Estimated from Na+
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Use of a multi-species reactive transport model to simulate chloride ingress in mortar

exposed to NaCl solution or sea-water

M. M. Jensena,∗, K. De Weerdtb, M. R. Geikerb, B. Johannessona

aDepartment of Civil Engineering, Technical University of Denmark, Denmark
bDepartment of Structural Engineering, Norwegian University of science and Technology, Norway

Abstract

A multi-species reactive transport model is in comparison with experimental test results of ion ingress in cement mor-
tar. The model is an extended version of the Poisson�Nernst�Planck equations, accounting for chemical equilibrium.
Saturated mortar samples were exposed to a NaCl-solution and sea-water for the experimental part. The samples were
analyzed for the total chloride content after di�erent exposure times and di�erent depths. The usability of the model
is shown by modeling of the experiments and compare the results. The model predicts the total chloride content fairly
well. Improvements and further development of the model are discussed based on the comparison.

Keywords: Numerical modeling; Cement; Ion ingress

1. Introduction

goal is often to predict the long term behavior of the
material exposed to natural environments. In the devel-
opment state of numerical models, the �rst attempt to
reproduce experimental observations should be simpli�ed
laboratory setups in order to, as far as possible, to limit
chemical and physical processes that are not described in
the numerical model. A simpli�cation of a cement based
system is di�cult as the structure at nano-scale is com-
plex and many chemical reactions have an in�uence on
the system.

Chloride ingress into the cement paste is of special in-
terest, especially for reinforced concrete as it plays an im-
portant role in initiation of rebar corrosion. Numerical
models that predicts chloride ingress in concrete have been
proposed over the last decades and only a limited num-
ber are referred to here. A common approach for model-
ing of chloride ingress in concrete is to use a time depen-
dent di�usion coe�cient together with di�erent versions of
Fick's law, see e.g., Conciatori et al. [4], Luping [14] and
Sugiyama et al. [24]. The time dependent di�usion coef-
�cient should account for all chemical and physical pro-
cesses that change the system over time. Chloride binding
isotherms are considered together with a time-dependent
chloride di�usion coe�cient [6]. Another approach is to di-
rectly describe the chemical interactions, together with the
mass transport and solve the coupled model numerically.
Reactive transport codes presented in e.g., Marchand [15]
and Hosokawa et al. [7] solves multi-species ion transport
coupled with chemical reactions. The chemical reactions

∗Mads Mønster Jensen Brovej 118, 2800 Kgs. Lyngby, Denmark
Email address: mmoj@byg.dtu.dk (M. M. Jensen)

di�ers signi�cantly for existing models and there is no de-
tailed agreement on the chemical description of concrete.
Solving chemical equilibrium direct from the chemical re-
actions enables investigation of the solid phases considered
in a model. A change in the solid phase amount and com-
position will change the porosity which can be used as
input data in a mass transport calculation.

The papers referred to above shows results of compari-
son between numerical modeling results and experimental
data of di�erent kinds. The work by Sugiyama et al. [24]
shows modeling and experimental results of ion ingress in
self-compacting concrete. Conciatori et al. [4] are using
their model to predict ingress of ions from deicing salts.
Concrete used in marine structures is often exposed to a
harsh environment in terms of ion ingress. The chloride
ingress from sea-water exposure is modeled and compared
with experimental data in Luping [14]. The model pro-
posed by Marchand [15] is used to model ingress of di�er-
ent species and results has been compared with experimen-
tal data where simple salt solutions were used as exposure
solution. The same model is used in Marchand et al. [16]
to reproduce �eld exposed concrete slabs. The model by
Hosokawa et al. [7] is used to reproduce experimental data
from sodium chloride exposed samples and show examples
of long term prediction of sea-water exposed concrete.

The purpose of this paper is to compare numerical
multi-species reactive transport modeling with laboratory
controlled measurements of ion ingress in a mortar and
thereby illustrate the applicability. The numerical model
used is a durability model in a larger service life framework
under development. The current status of the durability
model is shown rather than a validation of the model. The
numerical model is based on the Poisson�Nernst�Planck
(PNP) system of equations coupled with the chemical equi-

Preprint submitted to Elsevier July 2, 2014



librium code phreeqc. The mortar samples were exposed
to two di�erent solutions, a NaCl solution and sea-water
from Trondheim fjord in Norway. The total chloride con-
tent in the experimental samples was measured after 21,
90 and 180 days of exposure. The tortuosity factor in the
transport model is used as adjustment parameter to obtain
the best reproduction of the experimental data.

2. Numerical model and experimental setup

The governing equations for the numerical model and
the solution method is brie�y explained in this section.
The PNP equations are employed and solved by the �-
nite element method (FEM). The chemical equilibrium is
solved by an operator splitting method in the transient
�nite element scheme.

2.1. Governing equations and numerical solution method

The governing equation for the mass transport of the
ions in the pore solution is described by an extended ver-
sion of the Nernst�Planck equation. The equation is ex-
tended from its original form by an mass exchange term qi,
accounting for chemical interactions between ions and the
solid phases see e.g., Samson and Marchand [21], Hosokawa
et al. [7] and Jensen et al. [9]. The Nernst�Planck equation
is a mass balance equation describing the change in con-
centration of each constituent ci, taking into account the
total electrical potential of the solution Φ and its e�ect
on the charged constituents. The change in constituent
concentrations over time is determined by

∂ci
∂t

= ∇ · (Di∇ci −Aicizi∇Φ) + qi; (1)

i = 1, 2..,m

whereDi is the e�ective di�usion coe�cient for constituent
i in a porous material, Ai is the ionic mobility and zi
the valence. The e�ective di�usion coe�cient Di is ob-
tained from the self di�usion coe�cient Di,0, by the rela-
tion Di = Di,0

δi/τ2 where τ is the tortuosity factor of the
material and δi is the constructivity of the pore structure
[7]. The relation Ali = Dl

iF/(RT ) is used for the ionic
mobility, where F is Faraday's constant, R is the univer-
sal gas constant and T is the temperature. The chemical
equilibrium term is solved by operator splitting, where the
solution from the mass transport is used as initial values
for the chemical equilibrium calculation. In order to use
the operator splitting approach, instantaneous local chem-
ical equilibrium with respect to the mass transport is as-
sumed. The chemical equilibrium condition is determined
by the geochemical code phreeqc [20] where the interface
module iphreeqc [3] is utilized.

The Poisson equation, which enforces charge neutrality
in the pore solution, is given as

εdε0∇2Φ = F
m∑

i=1

cizi (2)

where εd is the relative dielectricity coe�cient and ε0 is
the dielectricity coe�cient of vacuum.

The governing equation system for the mass transport
Eqs. (1) and (2) are solved by the FEM. A weak form
of Eqs. (1) and (2) are needed for discretization of the
problem, see e.g., Samson et al. [22] and Johannesson [10].
The state variables in the weak formulations are approxi-
mated by the general expansion Na where N is the global
shape function and a contains the state variables at the
nodal points of the domain. For the one dimensional case,
which is used in this work, the local linear shape function is
given as N = [1− x/le, x/le] where le is the element length.
The arbitrary spatial weight function w is approximated
with the same general expansion following the Galerkin's
method. The discretization of the gradients of the state
variables are approximated by the general expansion Ba
where B = ∇N. The global shape function and its gra-
dient are assembled in the global sti�ness matrix K. The
time derivative of the state variables are denote ȧ and their
shape functions are arranged in the global mass matrix C.
Employing these matrices in single parameter time inte-
gration scheme, yields the discrete solution for time step
n+ 1, as

an+1 = (C + ∆tθK)
−1

[C + ∆t (1− θ)Kan (3)

+fn + θ (fn+1 − fn)]

where θ is the time integration parameter , which is a
number between zero and one and f is the force vector.

The non-linearity in the second term of Eq. (1) requires
an improvement of the result obtained in Eq. (3). A mod-
i�ed Newton�Raphson scheme, which ignore the higher
order terms in the Taylor expansion, is employed for this
study, see e.g., Ottosen and Ristinmaa [19] and Johan-
nesson [10]. The used Newton�Raphson scheme require
a truly implicit time integration scheme, (θ = 1), which
reduces Eq. (3).

2.2. Chemical equilibrium

The chemical equilibrium state is calculated by us-
ing the mass actions laws where the geochemical code
phreeqc is used as solver algorithm. Mass action laws
are de�ned for the aqueous reactions, the pure phase reac-
tions and the solid-solution reactions in use. Common for
these three types of reactions is the introduction of a solu-
bility product K, which is related to the speci�c chemical
reaction considered. The mass action law, as in Parkhurst
et al. [20], for the aqueous reactions, is

Ki = ai
∏

j

a
−cji
j (4)

where Ki is the temperature dependent solubility product,
ai is the activity of the aqueous species i, aj is the activity
of the de�ned master species j, cji is the stoichiometric
coe�cient for the master species j in the aqueous species
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i. The heterogeneous mass-action equation for the pure
phases is

Kp =
∏

j

a
cpj
j (5)

where Kp is the solubility constant for the pure phase p
described by a dissolution reaction and cpj is the stoichio-
metric coe�cient of the j'th master species in the p'th
pure phase. The heterogeneous mass-action equation for
the solid-solution reactions is

Kssp =

∏
j a

csspj
j

assp
(6)

where Kssp is the solubility product for the p end-member
in the solid-solution ss, csspj is the stoichiometric coef-
�cient of the j'th master species in the p end-member
in the solid-solution, ss and assp is the activity of the p
end-member in the solid-solution ss. The activity assp
is, for ideal solid solutions, equal to the mole fraction
assp = nssp/

∑
p nssp of the end-members.

The system of mass action laws is solved as a min-
imization problem in phreeqc using a Newton-Raphson
scheme. The complete equation system solved by phreeqc
takes into account, a.i., the total element balance and the
total charge balance.

2.3. Experimental setup [5]

The experimental test samples used were cement mor-
tar samples, using CEM I and Norm sand [1]. The water
to cement (w/c) ratio was 0.4 and the sand to cement
mass ratio was 2.5:1. The samples were casted in plastic
containers with diameter 50[mm] and height 60[mm] and
cured sealed for 3 days at 20[oC]. The casting containers
were removed after 3 days of curring and the top of the
samples were cut o�. The samples were then epoxy im-
pregnated, except at the top. The samples were left in
a small amount of distillated water for 2 additional days
prior to the exposure in order to saturate the samples.

The samples were exposed to the two di�erent solutions
by placing them in plastic boxes on small plastic grids, in
order to have the whole non-epoxy coated surface exposed.
The exposure solutions were �lled in the plastic boxes, so
the samples were submerged 3-5[mm] in the solution. The
exposure solutions were changed every 3-4 day for the �rst
3 weeks and every week in the following period.

Three parallel mortar samples were analyzed for the
chloride pro�les. The mortar samples were pro�le ground
in the following sections: 0-1, 1-3, 3-5, 5-7, 7-9, 9-13, 13-
17 and 17-23[mm]. About 4[g] of the resulting concrete
powder was weighed prior and after drying over night at
105[oC] in order to determine the moisture content. The
dried powder was dissolved in 40[ml] 80[oC] HNO3 (1:10).
After 1 hour the suspension was �ltrated. The chloride
content of the �ltrate was determined by potentiometric
titration with a Titrando 905 titrator from Metrohm using
0.01[M] AgNO3 solution.

2.4. Model parameters
The reactive transport model has an extensive list of in-

put parameters for establishing a simulation, especially the
speci�c choice of thermodynamic database for the chemical
reactions is of great importance for the results. The di�u-
sion coe�cients used are based on standard values for the
self-di�usion and adjusted by the tortuosity factor τ and
the constituent parameter δi in order describe the di�usion
in speci�c material considered. The constituent parame-
ters δi are dependent on both the pore structure and the
type of species considered [7] but are assumed constant
here for both exposure conditions. The values for δi are
adopted from Hosokawa et al. [7]. The di�usion properties
Di,0 and δi used in this case are given in Tab. A.4.

The thermodynamic database used, is a modi�ed ver-
sion of the wateq4f.dat database, which comes with the
geochemical software phreeqc. The aqueous reactions
are updated with additional reactions described in Jacques
[8] and the majority of solid-phases from the Cemdata07
database is added. The solid-solution including Friedel's
salt and the pure phase Kuzel's salt are adopted from
Balonis et al. [2] for carbonate free systems. The pure
solid-phases and solid-solutions considered in the numeri-
cal model are shown in Tab. B.5. The C-S-H phase in the
model is an ideal solid-solution proposed in Kulik [11] de-
noted the CSHQ model. The C-S-H solid-solution has four
end-members, described by the dissolution reactions and
solubility constants shown in Tab. 1. The solid-solution
coexist with SiO2 at C/S < 0.67 and with Ca (OH)2 at
C/S > 1.7.

The experimental samples were assumed fully satu-
rated and the temperature was kept constant for the whole
exposure period. The same conditions are used for the
numerical model. Chemical shrinkage and self-desiccation
are not considered in the numerical model; i.e. the amount
of water is calculated by the model as the initial water
amount deducted the water bound in hydrates. The oxide
composition of the cement used was determined by X-ray
�uorescence (XRF), see Tab. 2. The oxide composition is
used as a direct input in the model to determine the initial
chemical composition of solid and liquid components using
the proposed thermodynamic database.

The experimental test samples were analyzed at 21,
90 and 180 days after exposure initiation, where the to-
tal chloride content was determined. The total simulation
time for numerical model is therefore 4320[h](180 days)
and simulation results for 504[h] (21 days) and 2160[h]
(90 days) are sub results of the total simulation. Two
time stepping intervals are considered, one time stepping
scheme for the mass transport which is set to ∆tmt = 2[h]
and one the chemical equilibrium which is solved for every
∆tce = 4[h]. The experimental samples were analyzed to
a depth of which is used as the total length for the spatial
domain in the numerical model. The experimental samples
are analyzed in up to eight points in the spatial domain
and the spatial domain is discretized into 150 elements in
the numerical model.

3



Table 1: End members in the C-S-H solid-solution model proposed by Kulik [11].

Solid solution

Name Reaction scheme Solubility constant
logK

Tobermorite H (CaO)0.66(SiO2)(H2O)1.5 + 1.32H+ ↔ 0.66Ca2+ + H4SiO4 + 0.16H2O 8.272
Tobermorite D (CaO)0.83(SiO2)0.66(H2O)1.83 + 1.66H+ ↔ 0.83Ca2+ + 0.66H4SiO4 + 1.34H2O 13.624
Jennite H (CaO)1.33(SiO2)(H2O)2.16 + 2.66H+ ↔ 1.33Ca2+ + H4SiO4 + 1.49H2O 22.173
Jennite D (CaO)1.5(SiO2)0.66(H2O)2.5 + 3.00H+ ↔ 0.66Ca2+ + H4SiO4 + 0.16H2O 28.713

Table 2: Oxide composition of a cement.

CaO SiO2 Al2O3 Fe2O3 SO3 K2O Na2O MgO* LOI

mass% 61.6 19.62 4.51 3.45 3.36 1.00 0.45 2.43 2.41

* Note that MgO is inserted directly and is not a part of the hydration calculation.

Table 3: Boundary conditions for the exposure of the ce-
ment paste. Concentration of the di�erent species.

Sea-water [mol/l] NaCl solution [mol/l]

Na 4.11e-1 5.45e-1
Cl 5.48e-1 5.45e-1
Ca 8.76e-3
K 8.89e-3
Mg 4.66e-2
S 2.69e-2
Si 2.25e-4
Fe 7.84e-8
Al 1.86e-6

The experimental test samples were exposed to two dif-
ferent boundary solutions, a sodium chloride solution and
sea-water from Trondheim fjord in Norway. The concen-
tration of the boundary solutions are given in Tab. 3. The
ion complexes in the sea-water are calculated by a stan-
dard equilibrium calculation in phreeqc using the stan-
dard wateq4f.dat database in order to set boundary condi-
tions for all considered ions in the exposure solution. Ions
from the pore solution that are not present in the exposure
solution are allowed to leach into the exposure solution,
which is assumed to have an in�nite bu�er capacity. The
experimental exposure solution were changed on regular
basis which corresponds fairly well with the assumption of
an in�nite bu�er capacity used in the numerical calcula-
tions. The calculated exposure concentrations of the ion
complexes included are given in Tab. A.4. It should be
noted that a small charge imbalance of 6% were found in
the calculated boundary solution. The charge imbalance
imposed in the domain by this is reduced by the Poisson
equation (2).

3. Results

The results from the numerical calculation and its com-
parison with the experimental test results are presented in
this section. The numerical simulations are adjusted by
the tortuosity factor τ in order to obtain the best overall
reproduction of the experimental test results.

3.1. NaCl exposure results

The results from the experimental test and modeling
results for mortars exposed to a NaCl solution are pre-
sented. The best overall reproduction of the experimen-
tal results by the numerical model is found for the 1/τ2 =
2.12·10−2. The results are presented in terms of total chlo-
ride contents as mass% of the dry cement paste, shown in
Fig. 1a, where the experimental data and numerical mod-
eling results are compared. The experimental results are
shown with the standard deviations for two measurements
at each spatial point. The results shown by the experimen-
tal data points are the average value of a certain distance
which are much greater than the spatial elements in the
numerical simulation, this should be taken into account in
the evaluation of the comparison. The modeling results
predicts the experimental results well in most parts of the
spatial and time domains. The modeling and experimental
results after 21 days of exposure show a good agreement
in the whole domain. The modeling result show a thin
peak value which is not shown directly by the experimental
measurements, but the �rst measured value has an higher
standard deviation compared to the other data points at
the same exposure time. This may indicate that some de-
viations occurs in over the section 0-0.001[m] which are
di�cult to capture by the experimental resolution. The
model prediction of the total chloride content after 90 and
180 days of exposure �ts well from around 0.005[m] to the
end of the spatial domain and to some extent at the �rst
experimental data data points from the exposed bound-
ary. The modeling results show an increasing peak value
in both the spatial and time domain, starting from around
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0.001[m]. The maximum mass% of chlorides estimated by
the model is around 0.5 mass% higher than the maximum
value determined by the experimental test.

The total amount of chloride is the sum of the amount
in the pore solution, the chloride in the pure phase Kuzel's
salt and the chloride present in the end-member Friedel's
salt. The chloride molality in the pore solution for the
di�erent exposure times are shown in Fig. 3b, where peak
values are seen near the exposed surface. The solid phases
formed estimated by the numerical model after 180 days
of exposure are shown in Fig. 2. The Kuzel's salt is
formed in a small amount near the exposed surface see
Fig 4a, in this domain the Friedel's salt is present at a
low amount. According to the investigations performed
by Balonis et al. [2] on designed systems, the Kuzel's salt
should form prior to the Friedel's salt, this was not ob-
served for any time steps in this calculation and the rea-
son for this is unknown to the authors. The combination
of the solid phases included in the model, which in some
parts di�er from Balonis et al. [2], may be one possible
explanation to the above mentioned di�erence in results.
The Friedel's salt is formed to a great extent in the spatial
domain, which substitutes the monosulfoaluminate shown
in Fig. 2a. The Friedel's salt contains the majority of
the chlorides in the cement paste using this model and the
calculated over estimation compared to the experimental
test may originate from this fact. The C4AH13, C4FH13,
C2AH8 and C2FH8 phases shown in Fig. 2a are present
initially as predicted by the model. The C4AH13 is reduced
towards the exposed boundary, which may be caused by
the chloride ingress. The C2AH8 and C2FH8 seems to dis-
solve and C4FH13 is formed. Ettringite is calculated to be
formed near the exposed surface, this end member phase
binds a signi�cant amount of water.

The amount of water in the pores calculated by the
model is shown in Fig. 1c for the three di�erent exposure
times. The remaining water represents the total porosity,
then it is seen that the porosity is predicted to decrease
signi�cantly near the boundary. The decreasing porosity
will have an e�ect on the transport of ions both into and
out of the domain, this is not taken into account in this
model. The pure phases brucite and portlandite in Fig. 4a
and the internal composition of the end members in the
C-S-H are only changed slightly.

3.2. Sea-water exposure results

The results from the experimental test and modeling
results for mortars exposed to natural sea-water are pre-
sented. The best overall reproduction of the experimental
results by the model is found with 1/τ2 = 3.44 · 10−2. The
modeling results compared to the experimental data are
shown in Fig. 3a and the modeling results are in good
agreement with the experimental tests. The total modeled
chloride contents for sea water exposure are similar to the
modeled results for the NaCl exposure in Fig. 1a, so it
seems that the additional ions considered at the bound-
ary have a minor e�ect using this particular model. It is

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

3

Distance [m]

C
l 

[M
as

s%
 o

f 
ce

m
en

t 
p

as
te

]

 

 

21 days Mod.

21 days Exp.

90 days Mod.

90 days Exp.

180 days Mod.

180 days Exp.

(a) Comparison of modeled and measured total chloride content.

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

3

Distance [m]

C
l 

[m
o
l/

K
g

 w
at

er
]

 

 

21 days

90 days
180 days

(b) Modeled chloride concentration in the pore solution.

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Distance [m]

W
at

er
 [

K
g
]

 

 

21 days

90 days

180 days

(c) Modeled amount of pore water in the discrete nodes.

Figure 1: Results from modeling simulations and experi-
mental tests of mortar exposed to a NaCl solution.
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Figure 2: Modeled solid phases formed after 180 days of
NaCl exposure. The amount is given as moles in the ele-
ment.

seen that the maximum chloride content predicted by the
model and measured experimentally have the same mag-
nitude, around 2.5 mass% of the dry cement paste. The
modeled maximum values are found deeper in the domain
compared to the maximum value from the experimental
test.

The majority of the total chloride content is bound in
the Friedel's salt and the remaining in the pore solution,
see Figs. 4a and 3b respectively. The Kuzel's salt is not
formed in any parts of the domain, which is di�erent from
the result for the NaCl exposure shown in Fig. 2a. Et-
tringite is formed near the exposed boundary and a minor
peak of ettringite is seen further into the domain. The
reason for the minor ettringite peak has not been deter-
mined. The end members C4AH13, C4FH13, C2AH8 and
C2FH8 shown in Fig. 4a evolves over time similar to the
results in Fig. 2a. The higher tortuosity factor used used
in this case compared to the NaCl exposure has increased
the chemical composition changes further into the spatial
domain. The end member composition of the C-S-H shown
in Fig. 4c changes slightly over the spatial domain after
180 days exposure.

It is important to note that the modeling results in the
comparison, Figs. 1a and 3a are not only dependent on
the predicted chloride content as the amount of cement
paste is also a modeling result. Leaching of ions is allowed
which may change the amount of the solid phases which
forms the cement paste and thereby have an in�uence on
the modeled chloride mass% of the dry cement paste.

4. Discussion

The numerical model predicts the total amount of chlo-
rides relative to the mass of dry cement paste fairly well
in most part of the spatial domain. As it is described in
the introduction, the comparison of the modeling results
and the experimental results are to show current status of
the model development. The discussion here is focused on
the future development of the model in order to improve
it in terms of accuracy and make it more general.

The �rst issue to address is the use τ as adjustment
parameter which takes into account for all physical and
chemical phenomena that are not included in the numer-
ical model. This is beyond the classical de�nition of the
tortuosity factor τ , which is purely a geometrical factor
describing the complexity of the porous system.

The samples in the experimental test are exposed to
the solutions at a relatively young age in terms of the hy-
dration process, which means that the degree of hydration
evolves simultaneously with the ingress of the external ex-
posure solution. The ions may a�ect the hydration process
near the exposed surface and change the equilibrium state.
The development of the hydration is not taken into account
in the model presented here, which may explain the devia-
tions between model results and experimental data in the
�rst part of the domain (0.0− 0.005[m]). The numerical
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Figure 3: Results from modeling simulations and experi-
mental tests of mortar exposed to sea-water from Trond-
heim fjord in Norway.
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model is solved as an initial value problem, where any de-
viations introduced early in the time domain will in�uence
the proceeding time steps.

The in�uence of the added silica fume in the samples
is not taken into account in the model which may in�u-
ence the results both in terms of the micro structure and
the chemical interactions. The widespread use of supple-
mentary cementitious materials in concrete urge a proper
implementation of these in reactive transport models.

The phase diagrams Figure 2 and 4 do not fully agree
with the experimental observations [5]. Brucite was ob-
served at the surface of the sea water exposed sample;
but not predicted by the model. On the other hand the
predicted formation of monosulfoaluminate at the exposed
surface was not been observed experimentally. In addition,
the model only predicts a slight di�erence in the amount
of ettringite between NaCl and sea water exposed samples;
in the experimental study a sulphate enrichment� and an
increase in the amount of ettringite - was observed near
the surface for the sea water exposed samples, but not for
the NaCl exposed samples. The reasons for this will be ex-
plored in future papers. The sea-water was taken from a
natural source and may contained carbonates which were
not accounted for. Including carbonates in the chemical
model will introduce a list of new aqueous species and solid
phases which may a�ect the results signi�cantly. The level
of detail of analyzing e.g., exposure solutions and cement
composition is very important in order to validate models
like the one presented here. The model should be vali-
dated against strictly controlled laboratory experiments,
with designed multi species exposure solutions similar to
natural analogs.

General issues for reactive transport models should also
be taken into account, like the operator splitting method
which introduce a numerical error at the boundary. For
the same reason kinetics of the reactions should be con-
sidered in more details to make the model less sensitive to
the choices of time step sizes in relation to the operator
splitting approach. The assumption that all solid phases
are available to the pore water and thereby available for
reactions is another example of action that may change
the overall results signi�cantly.

5. Conclusion

The current development status of a numerical reactive
mass transport model, aimed for durability simulations of
cement based materials is described and simulation results
are compared with experimental tests. The experimental
results are simulated by a reactive transport model using
the Poisson-Nernst-Planck equations and the geochemical
code phreeqc. The experimental tests are saturated mor-
tar samples subjected to two di�erent exposure solutions,
a NaCl solution and natural sea-water from Trondheim
fjord in Norway. The chloride content was measured after
21, 90 and 180 days of exposure. The tortuosity factor

in the model is adjusted in order to reproduce the exper-
imental results. The model reproduced the experimental
results well in the majority of the domain considered, but
over estimated the chloride content relative to the cement
paste in parts of the domain close to the exposed surface.
Reasons for the observed deviations between the model re-
sults and the experimental data is discussed and areas for
further development of the model are suggested.
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AppendixA. Di�usion properties

The di�usion parameters and boundary conditions for
the sea-water exposure are shown is Tab. A.4.

AppendixB. Chemical reactions

The thermodynamic database used in the model is shown
in Tab. B.5.
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Table A.4: Di�usion properties for ionic components in the numerical examples.

Dl,0
i · 10−8 Ali · 10−6 zi δi Sea-water mol/l

OH− 0.5300a 0.2253 -1 1.0a 1.600e-07
H+ 0.9311c 0.3958 1 1.0b 1.321e-07

Al (OH)
−
4 0.5040a 0.2142 -1 1.0a 1.793e-06

Al (OH)3 0.5040f - - 1.0b 6.223e-08

Al (OH)
+
2 0.5040f 0.2142 -1 1.0b 6.698e-08

Al3+ 0.0541c 0.0229 3 1.0b 8.125e-11
AlSO+

4 0.5040f 0.0442 1 1.0b 7.694e-11

Al (SO4)
−
2 0.5040f 0.0442 -1 1.0b 6.632e-12

AlOH2+ 0.5040f 0.0442 1 1.0b 2.127e-09
CaOH+ 0.0792a 0.0337 1 0.2a 4.479e-09
CaSO4 0.0471a - - 1.0a 9.604e-04
CaHSO+

4 0.0471b 0.0200 1 1.0b 8.759e-10

SO2−
4 0.1070a 0.0455 -2 1.0a 1.457e-02

HSO−
4 0.1385c 0.0589 -2 1.0b 3.569e-08

H2SiO
2−
4 0.1100a 0.0468 -2 0.02a 8.856e-13

H3SiO
−
4 0.107e 0.0468 -1 0.02b 5.328e-07

H4SiO4 0.107e - - 0.02b 2.321e-04

Ca2+ 0.0792a 0.0337 2 0.2a 8.105e-03
Cl− 0.203a 0.0862 -1 1.0a 5.666e-01
K+ 0.1957a 0.0405 1 0.02a 9.052e-03
KSO−

4 0.1070a 0.0454 -1 1.0a 1.466e-04
KOH 0.196a - - 1.0a 1.674e-10
Mg2+ 0.0705a 0.0299 2 1.0a 4.160e-02
MgSO4 0.0705b 0.0299 - 1.0b 6.644e-03
MgOH+ 0.0705a 0.0299 1 1.0a 5.770e-07
Na+ 0.133a 0.0565 1 0.02a 4.200e-01
NaSO4

− 0.618a 0.0262 -1 1.0a 5.459e-03
NaOH 0.133g - - 1.0b 1.665e-08
FeCl+ 0.0719d 0.0299 1 1.0b 0.0
FeSO4 0.0719d - - 1.0b 0.0
FeHSO+

4 0.0719d 0.0299 1 1.0b 0.0

Fe (OH)
−
4 0.0719d 0.0299 -1 1.0b 0.0

Fe (OH)3 0.0719d - - 1.0b 0.0

Fe (OH)
+
2 0.0719d 0.0299 1 1.0b 0.0

FeOH2+ 0.0719d 0.0299 2 1.0b 0.0
FeOH+ 0.0719d 0.0299 1 1.0b 0.0
Fe2+ 0.0719c 0.0299 2 1.0b 0.0

(a)Data from Hosokawa et al. [7], (b)Estimated value in this work,(c)Data from Lide and Haynes [12], (d)Estimated from Fe2+, (e)Data from

Shen et al. [23], (f)Estimates from Al (OH)−4 ,
(g)Estimated from Na+.
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Table B.5: Thermodynamic database for the chemical equilibrium model.

Reactions

Pure phases
logK

Portlanditea
Ca(OH)2 + 2H+ ↔ Ca2+ + 2H2O 22.799

Silica(am)a
SiO2 + 2H2O↔ H4SiO4 -2.714

Brucitea
Mg(OH)2 + 2H+↔ Mg2+ + H2O 16.839

Kuzel's saltb Ca4Al2(SO4)0.5Cl(OH)12 : 6H2O↔ 4Ca2+ + 2Al(OH)4 −+4OH−+0.5SO2−
4 + 6H2O

-28.53

Solid Solutions

AFm(1) (ss)

C2AH8
a,c

Ca2Al2(OH)10 : 3 H2O↔ 2 Ca 2+ + 2 Al(OH)−4 + 2 OH− + 3 H2O -13.562

C2FH8
a,c

Ca2Fe2(OH)10 : 3 H2O↔ 2 Ca 2+ + 2 Fe(OH)−4 + 2 OH− + 3 H2O -17.602

AFm(2) (ss)

C4AH13
a,c

Ca4Al2(OH)14 : 6 H2O↔ 4 Ca 2+ + 2 Al(OH)−4 + 6 OH− + 6 H2O -25.403

C4FH13
a,c

Ca4Fe2(OH)14 : 6 H2O↔ 4 Ca 2+ + 2 Fe(OH)−4 + 6 OH− + 6 H2O -29.403

AFt(1) (ss)

Ettringitea,c
Ca6Al2(SO4)3(OH)12 : 26 H2O↔ 6 Ca 2+ + 2 Al(OH)−4 + 3 SO 2−

4 + 4 OH− + 26 H2O -44.909

Fe-Ettringitea,c
Ca6Fe2(SO4)3(OH)12 : 26 H2O↔ 6 Ca 2+ + 2 Fe(OH)−4 + 3 SO 2−

4 + 4 OH− + 26 H2O -44.008

C4AH13 + Friedel's salt (ss)

Friedel's saltb
Ca4Al2Cl2(OH)12 : 4 H2O↔ 4Ca 2+ + 2Al(OH)−4 + 4OH− + 2Cl− + 4H2O -27.300

C4AH13
a,c

Ca4Al2(OH)14 : 6 H2O↔ 4 Ca 2+ + 2 Al(OH)−4 + 6 OH− + 6 H2O -25.403

C4AH13 + Monosulfoaluminate (ss)

Monosulfo-
aluminatea,c

Ca4Al2 (SO4) (OH)12 : 6H2O↔ 4Ca2+ + 2Al (OH)
−
4 + SO2−

4 + 4OH− + 6H2O -29.263

C4AH13
a,c

Ca4Al2(OH)14 : 6 H2O↔ 4 Ca 2+ + 2 Al(OH)−4 + 6 OH− + 6 H2O -25.403

a is from Jacques [8], b is from Balonis et al. [2] and c is from Lothenbach et al. [13], Matschei et al. [17], Möschner et al. [18].
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Appendix A

Mixture Theory and Hybrid

Mixture Theory

The governing equation system for coupled reactive mass transport is derived
from the continuum theories, mixture theory and hybrid mixture theory. The
mixture theory consider multiple species in a single phase and the hybrid
mixture theory extend this concept to consider a mixture of multi-species
in multi-phases. The presentation of the theories are relatively detailed in
terms of showing all the essential mathematical steps for obtaining a result.
The detailed derivation will facilitate the understanding, as these continuum
approaches are not standard, especially within modeling of cement based
materials. At the same time it is also important to show that the work
conducted can be extended in terms of a general background theory.

The derivation presented is based on several published papers and non-
published lecture notes where no direct references are given in the text. It is
important to emphasize that this presentation of the theory do not extend the
theory from the original papers but reproduce the mathematical derivation
with explanations by the author of this thesis.

The theory for multi-species mixtures in a single phase is reproduced
from Bowen (1976) and Johannesson (1998). The hybrid mixture theory
is reproduced from Bennethum and Cushman (2002a,b) and lecture notes
by Johannesson (2011b) from the course Introduction to Constitutive The-
ory and Continuum Physics with Numerical Applications using FEM at the
Technical University of Denmark department of civil engineering. In addition
to the main references Ristinmaa and Ottosen (2010); Tadmor et al. (2012);
de Groot and Mazur (1984); Bear and Bachmat (1990); Gri�ths and College
(1999) has been used.
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Thermodynamics is a funny subject. The �rst time you go
through it, you don't understand it at all. The second time you
go through it, you think you understand it, except for one or two
small points. The third time you go through it, you know you
don't understand it, but by that time you are so used to it, it
doesn't bother you any more.

Arnold Johannes Wilhelm Sommerfeld



Mixture theories A.1 Single phase mixture theory

A.1 Mixture theory for multi-species in a sin-

gle phase

The following section derive essential results within mixture theory for single
phase and multi-species mixtures. The kinematic de�nitions, balance equa-
tions, the second axiom of thermodynamics and constitutive relations are
presented in order to obtain a model for reactive mass transport problems.

A.1.1 Kinematics

For the kinematic de�nition of a single phase (mixture) with multi-species,
consider a body B in a three dimensional space. The body is build up by
constituents labeled with the material coordinate Xj in its reference con�g-
uration. It is assumed for the single phase that two constituents from the
same body X1 and X2 cannot exist in the same spatial reference position in
the three dimensional space considered.

The spatial position xj of a species in a body is described by a function
χj, which is the deformation function or motion function for the species. The
motion is de�ned as

x = χj (Xj, t) (A.1.1)

where t is the time. The constituent can overlap i.e., occupy the same x
but not in the reference con�guration Xj. The inverse of the deformation
function χ−1

a is assumed to exist and given as

Xj = χ−1
j (x, t) (A.1.2)

The velocity and acceleration of the species are de�ned as

x′j = ∂χj (Xj, t) /∂t (A.1.3)

x′′j = ∂2χj (Xj, t) /∂t
2 (A.1.4)

The de�nitions in (A.1.3) and (A.1.4) are material derivatives following
the motion of the j'th species. From the inverse function of the motion Eq.
(A.1.2) it is seen that material coordinate Xj are given as a function of (x, t),
i.e.

x′j = x′j (x, t) (A.1.5)

x′′j = x′′j (x, t) (A.1.6)
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A.1 Single phase mixture theory Mixture theories

The deformation gradient Fj for the j'th species is de�ned in terms of
the deformation function χj as

Fj = GRADχj (Xj, t) ; F(j)ik =
∂xi

∂X(j)k

(A.1.7)

where the gradient notation 'GRAD' refer to the derivative with respect
to the material coordinates. It was assumed in (A.1.2) that the inverse
of the deformation function exist, which give the following result for the
determinant of the deformation gradient

detFj 6= 0 (A.1.8)

and the inverse of deformation gradient Fj is thereby given as

F−1
j = gradχ−1

j (x, t) ; F−1
(j)kj =

∂X(j)k

∂xj
(A.1.9)

where the notation 'grad' is the derivative with respect to the spatial position.
From the de�nition of the deformation gradient and its inverse, it is concluded
that

FjF
−1
j = F−1

j Fj = I;
∂xi∂X(j)k

∂X(j)k∂xj
= δij (A.1.10)

A velocity gradient Lj for the j'th specie is de�ned in a similar matter,
by use of the velocity x′j de�ned in (A.1.5), as

Lj = gradx′j (x, t) ; L(j)ij =
∂x′(j)i
∂xi

(A.1.11)

The velocity gradient can be decomposed in two parts, a symmetric part Dj

and a skew-symmetric part Wj, as

Lj = Dj + Wj (A.1.12)

The symmetric part Dj is referred to as the strain or stretching tensor and
the skew-symmetric part Wj is the spin tensor. The two parts are de�ned
as

Dj =
1

2

(
Lj + LT

j

)
(A.1.13)

Wj =
1

2

(
Lj − LT

j

)
(A.1.14)
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Mixture theories A.1 Single phase mixture theory

A relation between the deformation gradient Fj and the velocity gradient Lj
can be found, by using the chain rule with the de�nition of Lj in A.1.7, that
is

L(j)ij =
∂x′(j)i
∂xi

=
∂x′(j)i∂X(j)k

∂X(j)k∂xi
(A.1.15)

and the fact that Xj is independent of the time t, is

L(j)ij =

(
∂x(j)i

∂X(j)k

)′ ∂X(j)k

∂xi
= F ′(j)ikF

−1
(j)kj (A.1.16)

and written in matrix notation as

Lj = F′jF
−1
j (A.1.17)

Each of the j species considered have a density ρj which is a function of
the current spatial position and time, as

ρj = ρj (x, t) (A.1.18)

The density of the mixture ρ is de�ned as the sum of the constituents building
up the mixture, that is

ρ = ρ (x, t) =
N∑

j=1

ρj (x, t) (A.1.19)

By using A.1.18 and A.1.19, the mass concentration cj of the j'th species is
de�ned as

cj = cj (x, t) =
ρj
ρ

(A.1.20)

where the summation of A.1.20 over the species yields

N∑

j=1

cj = 1 (A.1.21)

The velocity of the mixture or the mean velocity x′, is de�ned as a mass
averaged velocity, based on the density and the velocity of each individual
species, that is

x′ = x′ (x, t) =
1

ρ

N∑

j=1

ρjx
′
j (x, t) (A.1.22)

The di�usion velocity uj of the j'th species in the mixture is de�ned in terms
of (A.1.22) and (A.1.3), as

uj = uj (x, t) = x′j (x, t)− x′ (x, t) (A.1.23)
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A.1 Single phase mixture theory Mixture theories

where it directly follows from (A.1.19), (A.1.22) and (A.1.23) that

N∑

j=1

ρjuj = 0 (A.1.24)

Similar to the velocity gradient Lj of the j'th species in (A.1.11) the
velocity gradient of the mixture L is de�ned as

L = gradx′ (x, t) ; Lmn =
∂x′m
∂xn

(A.1.25)

A relation between L and Lj can be established by examine the identity

grad (ρjuj) = uj ⊗ grad ρj + ρjgraduj (A.1.26)

where ⊗ is the dyad product. From (A.1.24) it is seen that the left-hand side
of (A.1.26) is

grad
N∑

j=1

ρjuj = 0 (A.1.27)

which reduces (A.1.26) to

−
N∑

j=1

uj ⊗ grad ρj =
N∑

j=1

ρjgraduj (A.1.28)

The relation for ρL is obtained by

ρL =
N∑

j=1

ρjL =
N∑

j=1

ρa gradx
′ =

N∑

j=1

ρj grad
(
x′j − uj

)
(A.1.29)

where (A.1.19) and (A.1.23) are used. Finally the de�nition in (A.1.11) and
the relations in (A.1.28) and (A.1.29) are combined to give

ρL =
N∑

j=1

(ρjLj + uj ⊗ grad ρj) (A.1.30)
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General de�nition 1:

Consider the arbitrary function Γ represented as

Γ [χ (X, t) , t] = Γ (x, t) (A.1.31)

The relation between the spatial derivative and the material derivative fol-
lowing the j'th phase is de�ned as

DjΓ

Dt
=
∂Γ (x, t)

∂t
+ gradΓ (x, t)x′j (x, t) (A.1.32)

A similar relation is de�ned between the material derivative and the spatial
derivative for the whole mixture, this is

DΓ

Dt
=
∂Γ (x, t)

∂t
+ gradΓ (x, t)x′ (x, t) (A.1.33)

by expressing ∂Γ (x, t) /∂t in (A.1.32) and (A.1.33) and further use (A.1.23)
it is concluded that

DjΓ

Dt
− DΓ

Dt
= (gradΓ)uj (A.1.34)

As an example of the use of the relation (A.1.32), the mass concentration cj
is inserted as Γ to get

Djcj
Dt

=
∂cj
∂t

+ grad (cj) · x′j (A.1.35)

A.1.2 Mass balance

The mass balance for a mixture with N species is considered in the following
section. The overall purpose is to demonstrate that the mass balance is
established for each of the species and the summation of these is the whole
mixture. It is important to note the mass exchange term introduced for the
mass balance of the species, as an essential result for mixtures is derived
involving this term.

The postulate for the mass balance for the j'th species is

∂

∂t

ˆ

Ω

ρj dv = −
˛

∂Ω

ρjx
′
j · ds +

ˆ

Ω

ĉj dv (A.1.36)

where Ω is a �xed volume, ∂Ω is the surface of the volume and ĉj is the mass
exchange of the j'th species. The mass exchange represent the internal ex-
change of species, this could be a chemical reaction where reactions exchange

Department of Civil Engineering - Technical University of Denmark 143



A.1 Single phase mixture theory Mixture theories

species to established an equilibrium state. The �rst term on the left-hand
side is the integration of the �ux of mass over the surface ∂Ω, where x′j · ds
is the outward drawn normal to the same surface.

The postulate for the mass balance of the whole mixture is

∂

∂t

ˆ

Ω

ρ dv = −
˛

∂Ω

ρx′ · ds (A.1.37)

which is similar in its form with (A.1.36) but without the mass exchange
term. In order to compare the species in the mixture with the whole mixture,
summation of Eq. (A.1.36) over the j'th species is used as

N∑

j=1

∂

∂t

ˆ

Ω

ρj dv =
N∑

j=1

˛

∂Ω

ρjx
′
j · ds +

N∑

j=1

ˆ

Ω

ĉj dv (A.1.38)

where the de�nitions (A.1.19), (A.1.22) are used to obtain a relation between
(A.1.36) and (A.1.37). It follows directly from the comparison that the sum-
mation of the mass exchange term must be zero in order to obtain mass
balance, that is

N∑

j=1

ˆ

Ω

ĉj dv = 0 (A.1.39)

This is a fundamental result that states that the net production/exchange of
mass should be zero in order to make. (A.1.36) and (A.1.37) to be compara-
ble.

It is convenient to write the mass balance postulate for the j'th species
(A.1.36) in a local form. By the use of the divergence theorem on the surface
integral of (A.1.36), one obtain

ˆ

Ω

[
∂ρj
∂t

+ div
(
ρjx

′
j

)
− ĉj

]
dv = 0 (A.1.40)

assuming that (A.1.40) is valid in the whole volume Ω, the local form of
(A.1.40) is

∂ρj
∂t

+ div
(
ρjx

′
j

)
= ĉj (A.1.41)

The local form for the whole mixture (A.1.37), that is

∂ρ

∂t
+ div (ρx′) = 0 (A.1.42)

which results in the local version of (A.1.39) as

N∑

j=1

ĉj = 0 (A.1.43)
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It is convenient for di�usion problems to express the mass balance in terms
of the mass concentration cj de�ned in (A.1.20) and the di�usion velocity
uj. The velocity x′j in (A.1.41) is rewritten in terms of the di�usion velocity
(A.1.23), as

∂ρj
∂t

+ div (ρjx
′) = −div (ρjuj) + ĉj (A.1.44)

Using the product rule for the divergence operator and the de�nition (A.1.20),
the second term on the left-hand side of (A.1.44) can be expressed as

div (ρjx
′) = div (cjρx

′) = cjdiv (ρx′) + ρx′ · grad (cj) (A.1.45)

Using the de�nition (A.1.20) for the �rst term of the left-hand side of (A.1.44)
and applying the product rule for this term, combined with (A.1.45) to yields

cj

[
∂ρ

∂t
+ div (ρx′)

]
+ ρ

[
∂cj
∂t

+ x′ · grad (cj)

]
= −div (ρjuj) + ĉj (A.1.46)

The �rst term in the square brackets cancels due to (A.1.42) and the general
de�nition (A.1.33) used for the second term in square brackets of the left-
hand side of (A.1.46), reduces (A.1.46) to

ρ
Dcj
Dt

= −div (ρjuj) + ĉj (A.1.47)

A.1.3 Momentum balance

Momentum balance is considered for the j'th species and the whole mixture,
the equations are analyzed in a similar fashion as the mass balance postulates.
Both linear and angular momentum balance needs to be considered.

Linear momentum balance

The postulate for linear momentum for the j'th species integrated over the
volume Ω and the surface ∂Ω of interest is given as

∂

∂t

ˆ

Ω

ρjx
′
j dv = −

˛

∂Ω

ρjx
′
j

(
x′j · ds

)
+

˛

∂Ω

Tj ds (A.1.48)

+

ˆ

Ω

(
ρjbj + p̂j + ĉjx

′
j

)
dv

where Tj is the partial stress tensor for the j'th species, p̂j is the momentum
supply from other species in the mixture and bj is the external body force
density. The presence of di�erent species and mass supply of the j'th species
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in the mixture will cause interactions and create local forces. These local
forces are described by

´

Ω

(
p̂j + ĉjx

′
j

)
dv, in which p̂j is the momentum from

the surrounding species and ĉjx
′
j is momentum caused by the mass supply

of the j'th species, due to e.g., chemical reactions.
The surface integrals in (A.1.48) is rewritten by the divergence theorem,

as
˛

∂Ω

ρjx
′
j

(
x′j · ds

)
=

ˆ

Ω

div
(
ρjx

′
j ⊗ x′j

)
dv (A.1.49)

˛

∂Ω

Tj ds =

ˆ

Ω

divTj dv (A.1.50)

which give the postulate for the linear momentum for the j'th species in
terms of volume integrals only, as

∂

∂t

ˆ

Ω

ρjx
′
j dv =

ˆ

Ω

(
−div

(
ρjx

′
j ⊗ x′j

)
+ divTj + ρjbj

+p̂j + ĉjx
′
j

)
dv (A.1.51)

By assuming that (A.1.51) is valid for the whole volume Ω, the local form is
obtained as

∂ρjx
′
j

∂t
= −div

(
ρjx

′
j ⊗ x′j

)
+ divTj + ρjbj + p̂j + ĉjx

′
j (A.1.52)

Using the product rule and (A.1.32) on the left-hand side of (A.1.52) yields

∂ρjx
′
j

∂t
= x′j

∂ρj
∂t

+ ρj
∂x′j
∂t

= x′j
∂ρj
∂t

+ ρj
Djx

′
j

Dt
+ ρj

(
gradx′j

)
x′j (A.1.53)

Consider the �rst term one the right-hand side of (A.1.51) with the product
rule to obtain

div
(
ρjx

′
j ⊗ x′j

)
= x′jdiv

(
ρjx

′
j

)
+ ρj

(
gradx′j

)
x′j (A.1.54)

The linear momentum balance (A.1.52) is rewritten by using (A.1.53) and
(A.1.54) to obtain

ρj
Djx

′
j

Dt
+ x′j

[
∂ρj
∂t

+ div
(
ρjx

′
j

)
− ĉj

]
= divTj + ρjbj + p̂j (A.1.55)

where the terms in the square brackets cancels due to the mass balance
(A.1.41), which reduce the local form of the linear momentum balance for
the j'th species to

ρa
Djx

′
j

Dt
= divTj + ρjbj + p̂j (A.1.56)
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The postulate for the local form of the momentum balance of the whole
mixture is

ρ
Dx′

Dt
= divT + ρb (A.1.57)

In order to compare the two postulates, angular momentum is examined
where an important property in relation to the linear momentum is derived.
The comparison of the linear momentum is continued at page 148.

Angular momentum balance

The global postulate for the angular momentum of the whole mixture is

∂

∂t

ˆ

Ω

x× ρx′ dv = −
˛

∂Ω

x× ρx′ (x′ · ds) +

˛

∂Ω

x×T ds

+

ˆ

Ω

x× ρb dv (A.1.58)

and the local form of (A.1.58) is obtained by the divergence theorem and by
assuming that it is valid for the whole volume Ω, that is

∂

∂t
(x× ρx′) = −div (ρ (x× x′)⊗ x′) + div (x×T) + ρx× b (A.1.59)

The equation (A.1.59) is reduced further by expanding the left-hand side by
the product rule and using (A.1.33) with Γ = x× x′ which yields

∂

∂t
(x× ρx′) = ρ

∂

∂t
(x× x′) + (x× x′)

∂ρ

∂t

= (x× x′)
∂ρ

∂t
+ ρ

D

Dt
(x× x′)

+ρgrad (x× x′)x′ (A.1.60)

The �rst divergence term on the right-hand side in (A.1.59) is expanded by
the product rule, that is

div (ρ (x× x′)⊗ x′) = (x× x′) div (ρx′) + ρgrad (x× x′)x′ (A.1.61)

Using (A.1.61) and (A.1.60) together with (A.1.59) eliminates the gradient
term and one obtains

(x× x′)

(
div (ρx′) +

∂ρ

∂t

)
+ ρ

D

Dt
(x× x′) = div (x×T) + ρx× b (A.1.62)

where re-arranging shows that the mass balance for the whole mixture is
identi�ed and the angular momentum balance reduces to

ρ
D

Dt
(x× x′) = div (x×T) + ρx× b (A.1.63)
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Consider the left-hand side of (A.1.63) written as

ρ
D

Dt
(x× x′) = x× ρDx′

Dt
(A.1.64)

where it is used that x′ × x′ = 0. The divergence term in (A.1.63) can be
written as

div (x×T) = x× div (T) + T× div (x)

= x× div (T) + (T32 − T23) i1 + (T12 − T21) i2

+ (T31 − T13) i3 (A.1.65)

inserting (A.1.64) and (A.1.65) in (A.1.63) yields

x×
(
ρ
Dx′

Dt
− div (T)− ρb

)
= (T32 − T23) i1 + (T12 − T21) i2

+ (T31 − T13) i3 (A.1.66)

The equation of linear momentum is identi�ed in (A.1.66) so the left-hand
side cancels out and as a result

T = TT (A.1.67)

need to be ful�lled.

Linear momentum balance (continued)

Consider the linear momentum balances (A.1.56) and (A.1.57), where the
summation over the j'th constituent for the postulate (A.1.56), must be
equal to the postulate of the whole mixture (A.1.57).

Some de�nitions for the summation over j are stated in the following.
The summation of the body force bj to yield the whole mixture is

b =
1

ρ

N∑

j=1

ρjbj (A.1.68)

which is the weighted average of the body force of each species with respect
to the mass density. The inner part of the stress tensor is de�ned as

TI =
N∑

j=1

Tj (A.1.69)
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and the stress tensor for the whole mixture is de�ned as

T = TI+
N∑

J=1

ρjuj ⊗ uj (A.1.70)

the second term on the right-hand side is known as the Reinholds stress
tensor, which is observed to be symmetric. It is observed that the inner part
of the stress tensor must be symmetric, i.e. TI =TT

I , which is a consequence
of the angular momentum balance. Symmetry of Tj is not imposed in this

case and therefore the property M̂j is introduced as

M̂j = Tj −TT

j (A.1.71)

where M̂j is the skew-symmetric linear transformation, which lead to the
important result

N∑

j=1

M̂j = 0 (A.1.72)

The summation of the momentum balance for the j'th species (A.1.56) is

N∑

j=1

ρj
Djx

′
j

Dt
= divTI + ρb +

N∑

j=1

p̂j (A.1.73)

where the de�nitions (A.1.68) and (A.1.69) are used.

General relation 1:

A relation between the general property Γj (x, t) for the j'th species and the
material time derivative D

Dt
Γ (x, t) of the whole mixture is established. The

general relation between Γj (x, t) and Γ (x, t) is used, together with (A.1.20)
to give

Γ (x, t) =
1

ρ

N∑

j=1

ρjΓj (x, t) =
N∑

j=1

cjΓj (x, t) (A.1.74)

Di�erentiation and using of the product rule, one obtain

DΓ (x, t)

Dt
=

N∑

j=1

(
cj
DΓj
Dt

+
Dcj
Dt

Γj

)
(A.1.75)
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Multiplying (A.1.75) with ρ, using (A.1.34) with D
Dt

Γj and using (A.1.47)
with the product ρ D

Dt
ca, yields

ρ
DΓ (x, t)

Dt
=

N∑

j=1

(
ρj
DjΓj
Dt
− ρj (gradΓj)uj (A.1.76)

−Γjdiv (ρjuj) + ĉjΓj

)

The divergence and gradient term in (A.1.76) is the divergence of the product
(ρjΓjuj), that is

div (ρjΓjuj) = ρj (gradΓj)uj + Γjdiv (ρjuj) (A.1.77)

The relation (A.1.77) inserted into (A.1.76) show the sought general relation,
that is

ρ
DΓ (x, t)

Dt
=

N∑

j=1

(
ρj
DjΓj
Dt
− div (ρjΓjuj) + ĉjΓj

)
(A.1.78)

Using (A.1.78) with Γ = x′ yields

ρ
Dx′

Dt
=

N∑

j=1

(
ρj
Djx

′
j

Dt
− div

(
ρjx

′
j ⊗ uj

)
+ ĉjx

′
j

)
(A.1.79)

and re-writing the divergence term with (A.1.23) results in

ρ
Dx′

Dt
=

N∑

j=1

(
ρj
Djx

′
j

Dt

)
− div

N∑

j=1

(ρjuj ⊗ uj)− div
N∑

j=1

(ρjuj)⊗ x′

+
N∑

j=1

(ĉjuj) +
N∑

j=1

ĉjx
′ (A.1.80)

Equation (A.1.80) can be reduced, by using (A.1.24) and (A.1.43), to give

ρ
Dx′

Dt
=

N∑

j=1

(
ρj
Djx

′
j

Dt
+ ρjuj ⊗ uj + ĉjuj

)
(A.1.81)

Re-arrange (A.1.81) in terms of
∑N

j=1

(
ρj

Dj

Dt
x′j

)
and inserting into (A.1.73),

yields

ρ
Dx′

Dt
= div

(
TI−

N∑

j=1

(ρjuj ⊗ uj)

)
+ ρb +

N∑

j=1

(ĉjuj + p̂j) (A.1.82)
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and with the de�nition (A.1.70), (A.1.82) can be written as

ρ
Dx′

Dt
= divT + ρb +

N∑

j=1

(ĉjuj + p̂j) (A.1.83)

Comparing (A.1.57) and (A.1.83), yields the following result for the supply
terms in the momentum balance for the j species

N∑

j=1

(ĉjuj + p̂j) = 0 (A.1.84)

which is the requirement for (A.1.48) in order to represent the whole mixture.

A.1.4 Balance of energy

The balance of energy is presented in a similar format as to the balance
postulates considered in the previous sections. That is, to introducing bal-
ance equations of energy for j'th species and for the whole mixture. Some
important results are determined in order to show that the mixture can be
represented by the sum of species, building up the mixture. The global bal-
ance of energy is the �rst axiom of thermodynamics and is for the j'th species
given as,

∂

∂t

ˆ

Ω

ρj
(
ej + 1

2

(
x′j
)

2
)
dv =−

˛

∂Ω

ρj
(
ej + 1

2

(
x′j
)

2
)
x′j · ds

+

˛

∂Ω

(
TT

j x
′
j − qj

)
· ds

+

ˆ

Ω

(
ρjrj + ρjx

′
j · bj + x′j · x′jp̂ + êj

)
dv

+

ˆ

Ω

ĉj
(
ej + 1

2

(
x′j
)

2
)
dv (A.1.85)

where x′j
2 = x′j ·x′j, ej is the internal energy density of the j'th species, qj is

the heat �ux for the j'th species, rj is the external heat supply to the j'th
species and êj is interaction energy (energy supply) to the j'th species from
all other species present in the mixture. The term ρj

1
2

(
x′j
)

2 is the kinetic
energy supply.

The surface integrals in (A.1.85) is written in terms of volume integrals
by using the divergence theorem, as
˛

∂Ω

ρj
(
ej + 1

2

(
x′j
)

2
)
x′j · ds =

ˆ

Ω

div
(
ρj
(
ej + 1

2

(
x′j
)

2
)
x′j
)
dv (A.1.86)

˛

∂Ω

(
TT

j x
′
j − qj

)
· ds =

ˆ

Ω

div
(
TT

j x
′
j − qj

)
dv (A.1.87)
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Inserting (A.1.86) and (A.1.87) in (A.1.85) together with the assumption
that (A.1.85) is valid for all parts of the volume Ω, gives the local form of
the balance of energy expressed as

∂

∂t
ρj
(
ej + 1

2

(
x′j
)

2
)

+ div
(
ρj
(
ej + 1

2

(
x′j
)

2
)
x′j
)

= div
(
TT

j x
′
j − qj

)
+ ρjrj + ρjx

′
j · bj + x′j

+ xj ·′ p̂ + êj + ĉj
(
ej + 1

2

(
x′j
)

2
)

(A.1.88)

The terms on the left-hand side of (A.1.88) is rewritten in terms of the
product rules for di�erentiation and divergence, to yield

∂

∂t
ρj
(
ej + 1

2

(
x′j
)

2
)

= ρj
∂

∂t

(
ej + 1

2

(
x′j
)

2
)

+
(
ej + 1

2

(
x′j
)

2
) ∂
∂t
ρj (A.1.89)

div
(
ρj
(
ej + 1

2

(
x′j
)

2
)
x′j
)

=
(
ej + 1

2

(
x′j
)

2
)
· div

(
ρjx

′
j

)

+grad
(
ej + 1

2

(
x′j
)

2
)
· ρjx′j (A.1.90)

The general de�nition (A.1.32) with the property Γ =
(
ej + 1

2

(
x′j
)

2
)
is

Dj

Dt

(
ej + 1

2

(
x′j
)

2
)

=
∂

∂t

(
ej + 1

2

(
x′j
)

2
)

+ grad
(
ej + 1

2

(
x′j
)

2
)
x′j (A.1.91)

Multiplying (A.1.91) by ρj and combined with (A.1.90), yields

div
(
ρj
(
ej + 1

2

(
x′j
)

2
)
x′j
)

=
(
ej + 1

2

(
x′j
)

2
)
· div

(
ρjx

′
j

)

+ρj
Dj

Dt

(
ej + 1

2

(
x′j
)

2
)

−ρj
∂

∂t

(
ej + 1

2

(
x′j
)

2
)

(A.1.92)

Consider the mass balance equation (A.1.41), multiplied with
(
ej + 1

2

(
x′j
)

2
)
,

to obtain

(
ej + 1

2

(
x′j
)

2
)
·div

(
ρjx

′
j

)
= ĉj

(
ej + 1

2

(
x′j
)

2
)
−
(
ej + 1

2

(
x′j
)

2
) ∂ρj
∂t

(A.1.93)

which is the �rst term in (A.1.92). Combining (A.1.93) and (A.1.92) yields

0 = div
(
ρj
(
ej + 1

2

(
x′j
)

2
)
x′j
)
− ĉj

(
ej + 1

2

(
x′j
)

2
)

+
(
ej + 1

2

(
x′j
)

2
) ∂ρj
∂t

−ρj
Dj

Dt

(
ej + 1

2

(
x′j
)

2
)

+ ρj
∂

∂t

(
ej + 1

2

(
x′j
)

2
)

(A.1.94)
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It is seen from (A.1.94) that the two terms involving the spatial time deriva-
tives is equal to (A.1.89) and (A.1.94) reduces to

∂

∂t
ρj
(
ej + 1

2

(
x′j
)

2
)

= −div
(
ρj
(
ej + 1

2

(
x′j
)

2
)
x′
)

+ ĉj
(
ej + 1

2

(
x′j
)

2
)

+ρj
Dj

Dt

(
ej + 1

2

(
x′j
)

2
)

(A.1.95)

Using (A.1.95) together with (A.1.88) is

ρj
Dj

Dt

(
ej + 1

2

(
x′j
)

2
)

= div
(
TT

j x
′
j − qj

)
+ ρjrj + ρjx

′
j · bj

+x′j + x′j · p̂j + êj (A.1.96)

Consider the identities

Dj

Dt
1
2

(
x′j
)

2 = x′j ·
Djx

′
j

Dt
(A.1.97)

and

div
(
TT

j x
′
j

)
= x′j · divTT

j + TT

j · gradx′j = x′j · divTT

j + trTT
j Lj (A.1.98)

where the de�nition (A.1.11) is used in (A.1.98). Using the identities (A.1.97)
and A.1.98 in (A.1.96) yields the energy balance as

ρj
Djej
Dt

= trTT
j Lj − divqj + ρjrj + êj

+x′j ·
(
ρj
Djx

′
j

Dt
− divTj − ρjbj − p̂j

)
(A.1.99)

where the term in brackets cancels due to (A.1.56) and the �nal expression
is obtained as

ρj
Djej
Dt

= trTT
j Lj − divqj + ρjrj + êj (A.1.100)

Consider now the energy balance for the whole mixture, which is the
postulate

ρ
D

Dt

(
e+ 1

2
ẋ2
)

= div (Tx′ − q) + ρr +
N∑

j=1

(
ρjx

′
j · bj

)
(A.1.101)

Some relations between the constituent description (A.1.85) and the whole
mixture is de�ned directly by weighted summation. The external heat supply
r in (A.1.101) is de�ned in terms of the heat supply from each specie rj as

r =
1

ρ

N∑

j=1

ρjrj (A.1.102)
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The inner part of the internal energy density eI is de�ned as

eI =
1

ρ

N∑

j=1

ρjej (A.1.103)

and the internal energy e for the whole mixture is de�ned as

e = eI +
1

2ρ

N∑

j=1

ρju
2
j (A.1.104)

where u2
j = uj · uj. The inner part of the heat �ux qI is de�ned as

qI =
N∑

j=1

(
qj −TT

j uj + ρjejuj
)

(A.1.105)

and the heat �ux for the whole mixture q is de�ned as

q = qI +
1

2

N∑

j=1

ρju
2
juj (A.1.106)

A quantity k is introduced and de�ned from (A.1.105) and (A.1.106) as

k =
N∑

j=1

(qj + ρjejuj) = qI +
N∑

j=1

(
TT
j uj
)

(A.1.107)

= q−
N∑

j=1

ρj
(
−TT

j /ρj + 1
2
u2
jI
)
uj

Three terms from the energy postulate (A.1.101) is rewritten in order to
express the momentum balance in the energy balance. Consider the left-
hand side of energy postulate for the mixture (A.1.101) written in terms of
the mixture velocity x′, as

ρ
D

Dt

(
e+ 1

2
x′2
)

= ρ
De

Dt
+ ρ

D

Dt

(
1
2
x′ · x′

)
= ρ

De

Dt
+ ρx′ · x′ (A.1.108)

Furthermore, consider the last term on the right-hand side of (A.1.101) to-
gether with the di�usion velocity uj (A.1.23), which is

N∑

j=1

(
ρjx

′
j + bj

)
=

N∑

j=1

(ρj (x′ + uj) + bj)

=
N∑

j=1

(ρjbj) · x′ +
N∑

j=1

ρjuj · bj (A.1.109)
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It is seen from the momentum balance (A.1.68), that (A.1.109) can be written
as

N∑

j=1

(
ρjx

′
j + bj

)
= ρb · x′ +

N∑

j=1

ρjuj · bj (A.1.110)

The divergence term div (Tx′) in (A.1.101) written in terms of (A.1.25) is

div (Tx′) = x′ · divT + trTL (A.1.111)

Inserting the three rewritten terms (A.1.108), (A.1.110) and (A.1.111) into
(A.1.101) yields

ρ
De

Dt
= trTL−divq+ρr+

N∑

j=1

ρjuj ·bj−x′ ·
(
ρ
Dx′

Dt
− divT− ρb

)
(A.1.112)

where the momentum balance of the mixture (A.1.57) is obtained in the
brackets and cancels out. The energy postulate (A.1.112) is thereby reduced
to

ρ
De

Dt
= trTL− divq + ρr +

N∑

j=1

ρjuj · bj (A.1.113)

Consider the left-hand side of (A.1.113) where the material derivative of
the internal energy for the mixture e is extended by the de�nition (A.1.104).
The relation u2

j = uj · uj is used to obtain the form presented here, as

ρ
De

Dt
= ρ

DeI
Dt

+ ρ
N∑

j=1

1
2

(
cju

2
j

)
(A.1.114)

The summation term in (A.1.114) expressed by the general relation (A.1.78)
using Γ =

∑N
j=1 cj

1
2
u2
j and Γj = 1

2
u2
j as

ρ

N∑

j=1

1
2

D

Dt

(
cju

2
j

)
=

N∑

j=1

(
ρj

1
2

Dj

Dt

(
u2
j

)
− div

(
ρj

1
2
u2
juj
)

+ ĉj
1
2
u2
j

)
(A.1.115)

Examine the �rst summation term on the right-hand side of (A.1.115) and
expand it with u2

j = uj · uj to obtain

N∑

j=1

ρj
1
2

Dj

Dt

(
u2
j

)
=

N∑

j=1

ρj
1
2

Dj

Dt
(ua · ua) =

N∑

j=1

ρjuj ·
Djuj
Dt

(A.1.116)
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where the di�usion velocity u′j in (A.1.116) written in terms of its de�nition
(A.1.23), is

N∑

j=1

ρjuj ·
Djuj
Dt

=
N∑

j=1

ρjuj ·
(
Djx

′
j

Dt
− Djx

′

Dt

)
(A.1.117)

Furthermore, the last term in the brackets of (A.1.117) written in terms of
(A.1.34) with Γ = x′ and the de�nition (A.1.25), is

N∑

j=1

ρjuj ·
(
Djx

′
j

Dt
− Djx

′

Dt

)
=

N∑

j=1

ρjuj ·
(
Djx

′
j

Dt
− Dx′

Dt
− Luj

)
(A.1.118)

The term
∑N

j=1 ρjuj · (Luj) in (A.1.118) can be formulated as

N∑

j=1

ρjuj · (Luj) = tr
N∑

j=1

ρjL (uj ⊗ uj) (A.1.119)

Combining (A.1.116) and (A.1.118) with (A.1.115), yields the energy balance
equation as

ρ
N∑

j=1

1
2

D

Dt

(
cju

2
j

)
=

N∑

j=1

ρjuj ·
Djx

′
j

Dt
−

N∑

j=1

(ρjuj) ·
Dx′

Dt

−tr
N∑

j=1

ρjL (uj ⊗ uj)

−
N∑

j=1

(
div
(
ρj

1
2
u2
juj
)

+ ĉj
1
2
u2
j

)
(A.1.120)

where the second term on the right-hand side cancels out due to the summa-
tion of the di�usion velocities (A.1.24).

Consider (A.1.113) written in terms of (A.1.70), (A.1.106) and (A.1.114),
which is

ρ
DeI
Dt

+ ρ
N∑

j=1

1
2

D

Dt

(
cau

2
a

)
= tr

(
TI −

N∑

j=1

ρjuj ⊗ uj

)
L

−div

(
qI + 1

2

N∑

j=1

ρju
2
juj

)

+ρr +
N∑

j=1

ρjuj · bj (A.1.121)
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Solving for the second term on the left-hand side of (A.1.121), show that this
equals (A.1.120). Combining (A.1.121) and (A.1.120) gives

ρ
DeI
Dt

= trTIL−divqI+ρr−
N∑

j=1

uj ·
(
ρj
Djx

′
j

Dt
− ρjbj

)
−

N∑

j=1

ĉn
1
2
u2
j (A.1.122)

A reformulation of the term trTIL in (A.1.122) is needed. First consider
the term tr

∑N
j=1 T

T
j Lj, combined with (A.1.11) and (A.1.23), that is

tr
N∑

j=1

TT
j Lj = tr

N∑

j=1

TT
j grad (uj + x′) (A.1.123)

The equation (A.1.123) combined with (A.1.25) and (A.1.69), is

tr
N∑

j=1

TT
j Lj = tr

N∑

j=1

TT
j graduj + trTIL (A.1.124)

where the �rst term on the right-hand side can be written in terms of a
divergence product as

tr
N∑

j=1

TT
j graduj = div

N∑

j=1

TT
j uj −

N∑

j=1

uj · divTj (A.1.125)

Combining (A.1.125) and (A.1.124) yields

tr
N∑

j=1

TT
j Lj = div

N∑

j=1

TT
j uj −

N∑

j=1

uj · divTj + trTIL (A.1.126)

Solving (A.1.126) for trTIL and insert the result in (A.1.122) yields

ρ
DeI
Dt

= tr
N∑

j=1

TT
j Lj − div

(
qI −

N∑

j=1

TT
j uj

)
+ ρr

−
N∑

j=1

uj ·
(
ρj
Djx

′
j

Dt
− ρjbj − divTj

)

−
N∑

j=1

ĉj
1
2
u2
j (A.1.127)
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where the terms in the �rst bracket equals the de�nition of k shown in
(A.1.107) and the terms in the second bracket are reduced by the momentum
balance (A.1.56), so the internal energy balance for the whole mixture is

ρ
DeI
Dt

= tr
N∑

j=1

TT
j Lj − divk + ρr −

N∑

j=1

uj · p̂j −
N∑

j=1

ĉj
1
2
u2
j (A.1.128)

As for the mass balance and momentum balance, mixture theory require
that the sum of j species for the postulate (A.1.85) corresponds to the energy
postulate for the whole mixture. The sum of (A.1.100) with direct use of
(A.1.102) gives

N∑

j=1

ρa
Djej
Dt

=
N∑

j=1

trTT
j Lj −

N∑

j=1

divqj + ρr +
N∑

j=1

êj (A.1.129)

The general relations (A.1.78) and (A.1.74) together with the de�nition
(A.1.103) is used to express the left-hand side of (A.1.129) as

N∑

j=1

ρj
Djej
Dt

= ρ
DeI
Dt

+
N∑

j=1

div (ρjejuj)−
N∑

j=1

ĉjej (A.1.130)

Inserting (A.1.130) in (A.1.129) and arrange the terms to obtain k, from the
de�nition (A.1.107), yields

ρ
DeI
Dt

= tr
N∑

j=1

TT
j Lj − divk + ρr +

N∑

j=1

êj +
N∑

j=1

ĉaej (A.1.131)

The summed species energy balance equations (A.1.131) and the energy
balance for the mixture (A.1.127) equals the left-hand side and the require-
ment for the postulate of the j specie is therefore,

N∑

j=1

(
ĉj
(

1
2
u2
j + ej

)
+ uj · p̂j + êj

)
= 0 (A.1.132)

A.1.5 Second axiom of thermodynamics

The second axiom of thermodynamics has been postulated in di�erent forms.
The general postulate is an inequality where each j species have individual
temperatures θj. However, a postulate for the whole mixture is considered
and rewritten to a form where all species have the same temperature.
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The entropy density of the mixture η is de�ned as a weighted sum as

η = η (x, t) =
1

ρ

R∑

j=1

ρjηj (x, t) (A.1.133)

The temperature θj for each species is assumed by a positive value function

θj = Θj (x, t) (A.1.134)

The second axiom of thermodynamics for the mixture, valid in the volume
Ω is the postulate

∂

∂t

ˆ

Ω

ρη dv ≥ −
˛

∂Ω

ρηx′ · ds−
˛

∂Ω

R∑

j=1

(hj/θj) · ds

+

˛

Ω

R∑

j=1

(ρjrj/θj) dv (A.1.135)

where hj is an entropy in�ux vector the j'th species. To obtain the local form
of (A.1.135), the surface integrals are rewritten by the divergence theorem,
that is

˛

∂Ω

ρηx′ · ds =

ˆ

Ω

div (ρηx′) dv (A.1.136)

and
˛

∂Ω

N∑

j=1

(hj/θj) · ds =

ˆ

Ω

div
N∑

j=1

(hj/θj) dv (A.1.137)

Combining (A.1.136), (A.1.138) with (A.1.135) yields the local form of the
second axiom of thermodynamics as

∂ (ρη)

∂t
≥ −div (ρηx′)− div

N∑

j=1

(hj/θj) +
N∑

j=1

(ρjrj/θj) (A.1.138)

Using the product rule for the �rst term on the right-hand side and �rst term
on the left-hand side of (A.1.138) is

div (ρηx′) = ηdiv (ρx′) + ρx′ · grad (η) (A.1.139)

and
∂ (ρη)

∂t
= η

∂ρ

∂t
+ ρ

∂η

∂t
(A.1.140)
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Inserting (A.1.139) and (A.1.140) in (A.1.138) yields the following inequality

η

(
∂ρ

∂t
+ div (ρx′)

)
+ ρ

∂η

∂t
≥ −ρx′ · grad (η)− div

N∑

j=1

(hj/θj)

+
R∑

j=1

(ρjrj/θj) (A.1.141)

It is seen that the �rst term on the left-hand side cancels due to the mass
balance (A.1.42) and the second term can be expressed by (A.1.33) with
Γ = η, which reduce (A.1.141) to

ρ
Dη

Dt
≥ −div

N∑

j=1

(hj/θj) +
N∑

j=1

(ρjrj/θj) (A.1.142)

It is convenient to introduce another form of the inequality, in order to
examine the de�nition of hj, with the postulate

∂

∂t

ˆ

Ω

ρη dv ≥ −
˛

∂Ω

N∑

j=1

ρjηjx
′
j · ds−

˛

∂Ω

N∑

j=1

(qj/θj) · ds

+

˛

Ω

N∑

j=1

(ρjrj/θj) dv (A.1.143)

Following the same mathematical steps as performed from (A.1.136) to (A.1.142)
leads to a reduced local form of (A.1.143), that is

ρ
Dη

Dt
≥ −div

N∑

j=1

(qj/θj + ρjηjuj) +
N∑

j=1

(ρjrj/θj) (A.1.144)

Comparing (A.1.142) and (A.1.144) shows that the form of the entropy in�ux
vector hj must be identi�ed as

hj = qj + ρjθjηjuj (A.1.145)

Further rewriting of (A.1.144), using (A.1.78) whit Γj = ηj, gives an
alternative form of the inequality, as

N∑

j=1

(
ρj
Djηj
Dt

+ div (qj/θj)− ρjrj/θj + ĉjηj

)
≥ 0 (A.1.146)
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which also can be written as

N∑

j=1

1

θj

(
θjρj

Djηj
Dt

+ θjdiv (qj/θj)− ρjrj + θj ĉjηj

)
≥ 0 (A.1.147)

The second term in (A.1.147) is written in terms of the divergence product
rule is

divqj = div (θjqj/θj) = θjdiv (qj/θj) + grad (θj) · qj/θj (A.1.148)

and substitution of (A.1.148) into (A.1.147), yields

N∑

j=1

1

θj

(
θjρj

Djηj
Dt

+ div qj − grad (θj) · qj/θj

−ρjrj + θj ĉjηj

)
≥ 0 (A.1.149)

The energy equation (A.1.100) is solved for the term ρjrj and inserted into
(A.1.149), in order to obtain

N∑

j=1

1

θj

(
ρj

(
θj
Djηj
Dt
− Djej

Dt

))
≥

N∑

j=1

1

θj

(
−trTT

j Lj + grad (θj) · qj/θj
)

+
N∑

j=1

(
1

θj
uj · p̂j − ẽj

+ĉj
(
ej − θjηj + 1

2
u2
j

))
(A.1.150)

where

ẽj = êj + uj · p̂j + ĉj
(
ej + 1

2
u2
j

)
(A.1.151)

The Helmholtz free energy density ψj is de�ned as

ψj = ej − ηjθj (A.1.152)

which implies that the material derivative is

Djψj
Dt

=
Djej
Dt
− Djηj

Dt
θj − ηj

Djθj
Dt

(A.1.153)
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Using (A.1.152) and (A.1.153) with (A.1.150), yields

N∑

j=1

1

θj

(
−ρj

(
Djψj
Dt

+ ηj
Djθj
Dt

))
≥

N∑

j=1

1

θj

(
−trTT

j Lj + grad (θj) · qj/θj
)

+
N∑

j=1

(
1

θj
uj · p̂j − ẽj

+ĉj
(
ψj + 1

2
u2
j

))
(A.1.154)

The inequality for the case of the same temperature for the whole mixture
is considered in the following. The temperature constraint is given as

θ = Θ (x, t) (A.1.155)

so that
Θ1 = Θ2...ΘN (A.1.156)

Consider the term
∑N

j=1 ρjηj
Djθj
Dt

written in terms of (A.1.34) with Γj = θ
which results in

N∑

j=1

ρjηj
Djθj
Dt

= ρη
Dθ

Dt
+

N∑

j=1

ρjηjgrad (θ) · uj (A.1.157)

where
∑N

j=1 ρjηj = ρη. Furthermore, consider the equation (A.1.145) with

the constraint (A.1.155) and h =
∑N

j=1 hj, that is

N∑

j=1

qj = h−
N∑

j=1

ρjηjθuj (A.1.158)

multiplying (A.1.158) with grad (θ) /θ yields

N∑

j=1

qj · grad (θ) /θ = h · grad (θ) /θ −
N∑

j=1

ρjηjgrad (θ) · uj (A.1.159)

It is seen that the second term on the left-hand side of (A.1.154) is equal to
(A.1.157) and the second term on the right-hand side is equal to (A.1.159),
where inserting cancels out the term

∑N
j=1 ρjηjgrad (θ) · uj in (A.1.154) and

consequently (A.1.154) can be written as

0 ≤ −
N∑

j=1

ρj
Djψj
Dt

− ρηDθ
Dt

+
N∑

j=1

1

θj

(
trTT

j Lj − h·grad (θ) /θ
)

−
N∑

j=1

(
uj · p̂j − ĉj

(
ψj + 1

2
u2
j

))
(A.1.160)
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where
∑N

j=1 ẽa = 0 due to (A.1.132) and (A.1.155).

Internal free energy inequality

The inequality presented in (A.1.160) can be written in di�erent formats, in
the following case in terms of the internal free energy ψI of the mixture as

0 ≤ −ρ
(
DψI

Dt
+ η

Dθ

Dt

)
+ trTT

j Lj −
N∑

j=1

(
uj · p̂j + ĉj

1
2
u2
j

)

−h·grad (θ) /θj − div

(
N∑

j=1

ρjψjuj

)
(A.1.161)

which is (A.1.160) combined with (A.1.78), the contracted term

N∑

j=1

(
ρj
Djψj
Dt

+ ĉjψj

)
= ρ

DψI

Dt
+ div

(
N∑

j=1

ρjψjuj

)
(A.1.162)

and the internal free energy ψI for the mixture de�ned as

ψI =
1

ρ

N∑

j=1

ρjψj = eI − ηθ (A.1.163)

Chemical potential inequality

Another form of (A.1.160) introduces the chemical potential Kj for the gen-
eral mixtures as

0 ≤ −
N∑

j=1

Dj

Dt
(ρjψj)− ρη

Dθ

Dt
− tr

N∑

j=1

ρjKjLj − h · grad (θ)
1

θ

−
N∑

j=1

(
uj · p̂j + ĉj

1
2
u2
j

)
(A.1.164)

where Kj is de�ned as

Kj = ψjI−TT
j

1

ρa
(A.1.165)

note that only if Tj = −πjI, with π being the hydrostatic pressure, then the
chemical potential for general mixtures reduces to Kj = µjI, where µj is the
classical scalar chemical potential.
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Energy balance in terms of chemical potential and Helmholtz free
energy

As a supplement to the di�erent forms of the entropy inequality, the energy
balance (A.1.131) can be expressed in terms of the Helmholtz free energy ψj
and the chemical potential Kj. The material derivative of (A.1.152) is

Dψj
Dt

=
Dej
Dt
− Dηj

Dt
θj − ηj

Dθj
Dt

(A.1.166)

The term divk in (A.1.131) can be rewritten in terms of the de�nitions
(A.1.145) and (A.1.107) as

k = h−
N∑

j=1

ρjηjθuj +
N∑

j=1

ρjεjuj (A.1.167)

Using the entropy ηj expressed in terms of the Helmholtz free energy ψj and
inserting in (A.1.167), yields

k = h +
N∑

j=1

ρjψjuj (A.1.168)

Combining (A.1.131), (A.1.166) and (A.1.168), one obtains

ρ
Dηj
Dt

θj + ρηj
Dθj
Dt
− ρr

+
N∑

j=1

uj · p̂j +
N∑

j=1

ĉj
1
2
u2
j = −ρDψj

Dt
+ tr

N∑

j=1

TT
j Lj

−divh− div
N∑

j=1

ρjψjuj (A.1.169)

Using (A.1.78) with Γ = ψ and combining with (A.1.169) yields the following
format of the energy equation

ρ
Dηj
Dt

θj + ρηj
Dθj
Dt
− ρr

+
N∑

j=1

uj · p̂j +
N∑

j=1

ĉj
1
2
u2
j =

N∑

j=1

(
ρjψ

′
j + ĉjψj

)

+tr
N∑

j=1

TT
j Lj − divh (A.1.170)
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A.1.5.1 Entropy inequality for the whole system

The use of the entropy inequality to obtain governing equations is demon-
strated in the following. It is shown how Fick's law can be derived from the
classical de�nition of chemical potential µ, with a speci�c choice of Helmholtz
free energy ψ. Consider the entropy inequality for the case with a single tem-
perature for the whole system, as

ρ
Dη

Dt
≥ −div (h/θ) + ρr/θ (A.1.171)

where the entropy in�ux vector h can be expressed as (A.1.168) and (A.1.107)
to yield the form

ρ
Dη

Dt
≥ −div

(
q/θ −

N∑

j=1

ρj
θ

(
−TT

j /ρj + ψj + 1
2
u2
jI
)
uj

)
+ ρr/θ (A.1.172)

Using the de�nition of the chemical potentialKj in (A.1.165) reduce (A.1.172)
to

ρ
Dη

Dt
≥ −div

(
q/θ −

N∑

j=1

ρj
θ

(
Kj + 1

2
u2
jI
)
uj

)
+ ρr/θ (A.1.173)

The chemical potential Kj is assumed simpli�ed as Kj = µjI, using this in
(A.1.173) and rewrite (A.1.173) in terms of the temperature θ, for further
use, yields

θρ
Dη

Dt
≥ −θdiv

(
1

θ

(
q−

N∑

j=1

ρj
(
µj + 1

2
u2
j

)
uj

))
+ ρr (A.1.174)

The last term in (A.1.174) is found in the energy balance for the system
(A.1.113) and inserting this yields

θρ
Dη

Dt
− ρDe

Dt
≥ −θdiv

(
1

θ

(
q−

N∑

j=1

ρj
(
µj + 1

2
u2
j

)
uj

))
− trTL

+ divq−
N∑

j=1

ρjuj · bj (A.1.175)

The terms divq and θdiv
(
q
θ

)
in (A.1.175) can be rewritten as

θdiv
(q
θ

)
= −q

θ
· grad (θ) + divq (A.1.176)
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Inserting (A.1.176) in (A.1.175), yields

θρ
Dη

Dt
− ρDe

Dt
≥ θdiv

(
1

θ

(
N∑

j=1

ρj
(
µj + 1

2
u2
j

)
uj

))
− trTL

+
q

θ
· grad (θ)−

N∑

j=1

ρjuj · bj (A.1.177)

For the further rewriting of (A.1.177) consider the following relation

θdiv

(
1

θ

(
N∑

j=1

ρj
(
µj + 1

2
u2
j

)
uj

))
= θ

N∑

j=1

ρjuj · grad

(
1

θ

(
µj + 1

2
u2
j

))

+
N∑

j=1

(
µj + 1

2
u2
j

)
div (ρjuj) (A.1.178)

and the mass balance (A.1.47) multiplied by
(
µj + 1

2
u2
j

)
, which is

ρ
N∑

j=1

Dcj
Dt

(
µj + 1

2
u2
j

)
= −

N∑

j=1

(
µj + 1

2
u2
j

)
div (ρjuj)

+
N∑

j=1

(
µj + 1

2
u2
j

)
ĉj (A.1.179)

Substituting the �rst term on the right-hand side of (A.1.177) in (A.1.178)
and substituting the last term on the right-hand side of (A.1.178) in (A.1.179),
yields the inequality

θρ
Dη

Dt
− ρDe

Dt

+ ρ

N∑

j=1

Dcj
Dt

(
µj + 1

2
u2
j

)
≥

N∑

j=1

ρjuj ·
[
θgrad

(
1

θ

(
µj + 1

2
u2
j

))
− bj

]

+
N∑

j=1

(
µj + 1

2
u2
j

)
ĉj − trTL +

q

θ
· grad (θ) (A.1.180)

For future use consider the relation between the internal energy e and the
inner internal energy eI, as shown in (A.1.104), with the expansion u2

j =

uj · uj. The material derivative of the internal energy De
Dt

in (A.1.180) is

De

Dt
=
DeI
Dt

+
1

2

N∑

j=1

Dcj
Dt

u2
j +

N∑

j=1

cj
Duj
Dt
· uj (A.1.181)
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Substituting (A.1.181) into (A.1.180) and using the derivative of (A.1.163)
for the inner internal energy eI yields the sought entropy inequality form

0 ≤ ρ

(
−ηDθ

Dt
− DψI

Dt
+

N∑

j=1

Dcj
Dt

µj

)

−
N∑

j=1

ρjuj ·
[
θgrad

(
1

θ

(
µj + 1

2
u2
j

))
− bj +

Duj
Dt

]

−
N∑

j=1

(
µj + 1

2
u2
j

)
ĉj + trTL− q

θ
· grad (θ) (A.1.182)

A.2 Mixture theory for multi�species in multi�

phases

The following section will show a detailed review of the derivation of multi-
phase and multi-constituent mixture theory also referred to as hybrid mixture
theory (HMT). Consider a mixture of R continuous bodies B1, ...BR in a
three dimensional physical space, with the possibility of the di�erent bodies
to occupy common physical space. As a result of thisXaj andXbj are allowed
to occupy the the same spatial position in the space.

The notation of the derivatives is extended compared to the single phase
mixture in order to include multiple phases. The velocity of the constituents,
the phases and the whole mixture are de�ned as

x′αj
=
∂χαj

(
Xαj

, t
)

∂t
; x′α =

∂χα (Xα, t)

∂t
; x′ =

∂χ (X, t)

∂t
(A.2.1)

The material time derivatives are also extended to include multiple phases
where Γ is an arbitrary property. The material time derivative following the
j constituent in the α phase is

Dαj
(Γ)

Dt
=
∂Γ

∂t
+ grad(Γ)x′αj

(A.2.2)

The material time derivative following the α phase is

Dα(Γ)

Dt
=
∂Γ

∂t
+ grad(Γ)x′α (A.2.3)

The material time derivative for the whole mixture is given as

D(Γ)

Dt
=
∂Γ

∂t
+ grad(Γ)x′ (A.2.4)
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The di�usion velocity is de�ned in two levels, one for the constituents
with respect to a phase and one for the phases with respect to the whole
mixture, these are de�ned as

uαj
= x′αj

− x′α; uα = x′α − x′ (A.2.5)

The de�nitions of the material derivatives and the di�usion velocities, leads
to the following relations between the material derivatives

(a) :
Dαj

(Γ)

Dt
− Dα(Γ)

Dt
= grad(Γ)uαj

(b) :
Dα(Γ)

Dt
− D(Γ)

Dt
= grad(Γ)uα

(A.2.6)

which is used in the the following derivations.
The di�erence between describing multiple-phases and multiple-species is

that a clear boundary exist between phases, whereas the species do not have
clear physical boundaries. In HMT a volume ratio εα of the phases α in a
body B is de�ned as

εα =
dvα
dv

(A.2.7)

where va is the volume of the phase α and v is the volume of the whole
mixture. The de�nition (A.2.7) implies that

N∑

α=1

εα = 1 (A.2.8)

must be satis�ed. The density of the whole mixture determined from the
summation of the phase masses dm =

∑N
α=1 ραdvα is the mass of the total

mixture, determines as

dm = ρdv =
M∑

α=1

ραdvα (A.2.9)

which yields the density of the whole mixture as

ρ =
M∑

α=1

εαρα (A.2.10)

The density of the whole mixture is described by summation of the den-
sities of the phases, recall from Sec. A.1.1 that the density of a phase is
described by the summation of densities of the species, see equation (A.1.19)
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and repeated here with the phase index α and j = 1...N as the total number
of species in the phase

ρα =
N∑

j=1

ραj
(A.2.11)

The equations (A.2.10) and (A.2.11) relates the phases and species to the
mixture.

A.2.1 Mass balance

The mass balance postulate for an M - phase and N - species mixture is
given as

∂

∂t

ˆ

Ω

εαραj
dv = −

˛

∂Ω

εαραj
x′αj
· ds +

ˆ

Ω

(
r̂αj

+ ĉαj

)
dv (A.2.12)

where r̂αj
is the mass exchange term between the phases. Using the diver-

gence theorem for the �rst term on the right hand side of (A.2.12), yields the
local form of mass balance as

∂εαραj

∂t
+div

(
εαραj

x′αj

)
= r̂αj

+ ĉαj
α = 1, ...,M j = 1, .., N (A.2.13)

The local form of the mass balance for the phase α given as

∂εαρα
∂t

+ div (εαραx
′
α) = r̂α (A.2.14)

where the summation of the mass exchange term r̂αj
yields the left-hand side

of (A.2.14)

r̂α =
N∑

j=1

r̂αj
(A.2.15)

Summation of the constituents in (A.2.13), together with (A.1.19) and (A.1.22)
enables the comparison of (A.2.13) and (A.2.14), Using (A.2.15) yeilds the
summation of the chemical interactions in the α phase as

N∑

j=1

ĉαj
= 0 (A.2.16)

which is equal to the result obtained in (A.1.43) for the single phase system.
The further derivation to include multiple phases in the mixture is similar to
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the constituent derivation. The postulate for the mass balance of the mixture
is

∂ρ

∂t
+ div (ρx′) = 0 (A.2.17)

summation of (A.2.14), over the phases and use

x′ =
1

ρ

R∑

α=1

ραx
′
α (x, t) (A.2.18)

with (A.2.8), (A.2.10) and �nally compare with (A.2.17), yields

N∑

α=1

r̂α = 0 (A.2.19)

With the results in (A.2.16) and (A.2.19), it is shown that a summation over
the constituents and the phases yields the result for the mixture as a whole.

As described earlier, it is convenient to work with the concentrations of
the species due to the fact no direct boundary exist between the species. The
mass balance for a single phase written in terms of species concentrations is
given in (A.1.47) and extended in the following to include multiple-phases.

The equation (A.2.13) written in terms of the di�usion velocity (A.1.23),
yields

∂εαραj

∂t
+ div

(
εαραj

uαj

)
+ div

(
εαραj

x′α
)

= r̂αj
+ ĉαj

(A.2.20)

The �rst term on the left-hand side of (A.2.20) written in terms of the species
concentration, cαj

, is

∂εαραj

∂t
=
∂εαcαj

ρα

∂t
= cαj

∂εαρα
∂t

+ εαρα
∂cαj

∂t
(A.2.21)

The divergence product rule used on the third term in (A.2.20) together with
(A.1.20) gives the result

div
(
cαj
εαραx

′
α

)
= cαj

div (εαραx
′
α) + εαραx

′
αgradcαj

(A.2.22)

Inserting (A.2.21) and (A.2.22) into (A.2.20) and collect the terms including
cαj

, yields

r̂αj
+ ĉαj

= cαj

[
∂εαρα
∂t

+ div (εαραẋα)

]
+ εαρα

∂cαj

∂t

+div
(
εαραj

uαj

)
+ εαραẋαgradcαj

(A.2.23)
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where the mass balance for the phase (A.2.14) is identi�ed in the square
bracket. Using (A.1.33) with Γ = cαj

simpli�es (A.2.24) to

εαρα
Dαcαj

Dt
+ div

(
εαραj

uαj

)
= r̂αj

+ ĉαj
− cαj

r̂α (A.2.24)

which is the material derivative of the mass balance for the species, expressed
in terms of the di�usion velocity and the concentration of the species.

The mass balance for the phase can be rewritten in terms of the di�usion
velocity of the phase, using Γ = εαρα in (A.2.3) to obtain

Dα(εαρα)

Dt
=
∂εαρα
∂t

+ grad(εαρα)x′α (A.2.25)

and the identity

div (εαραx
′
α) = εαραdiv (x′α) + grad(εαρα)x′α (A.2.26)

Combining (A.2.25) and (A.2.26) with (A.2.14), yields

Dα(εαρα)

Dt
+ εαραdiv (x′α) = r̂α (A.2.27)

The equation (A.2.27) written in terms of the di�usion velocity, with respect
to the whole mixture is

D(εαρα)

Dt
+ div (εαραuα) + εαραdiv (x′) = r̂α (A.2.28)

The mass balance for the whole mixture is obtained by using ρ in (A.2.4)
to get

D(ρ)

Dt
=
∂ρ

∂t
+ grad(ρ)x′ (A.2.29)

and using the identity

div (ρx′) = ρdiv (x′) + grad(ρ)x′ (A.2.30)

Combining (A.2.29) and (A.2.30) yields the mass balance of the whole mix-
ture, that is

D(ρ)

Dt
+ ρdiv (x′) = 0 (A.2.31)
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A.2.2 Momentum balance

The momentum balance for a mixture, with α phases and j species is derived.
Consider a system of α phases and j species which expands the postulate of
momentum balance (A.1.48) to include momentum gain for the j species
from other phases in the mixture by t̂αj

. The local form of the momentum
balance is

∂
(
εαj

ραj
x′αj

)

∂t
= −div

(
εαj

ραj
x′αj
⊗ x′αj

)
+ div

(
εαj

Tαj

)
+ εαj

ραj
bαj

+t̂αj
+ p̂αj

+ ĉαj
x′αj

+ r̂αj
x′αj

(A.2.32)

where the mass balance (A.2.13) can be identi�ed by similar mathematical
steps as shown from (A.1.53) to (A.1.55) and therefore (A.2.25) reduces to

εαραj

Dαj
x′αj

Dt
= div

(
εαTαj

)
+ εαραj

bαj
+ t̂αj

+ p̂αj
(A.2.33)

The local postulate for the momentum balance of the phases is de�ned as

εαρα
Dαx

′
α

Dt
= div (εαTα) + εαραbα + t̂α (A.2.34)

Summation over the species of (A.2.33) yields

N∑

j=1

εαραj

Dαj
x′αj

Dt
=

N∑

j=1

(
div
(
εαTαj

)
+ εαραj

bαj
+ t̂αj

+ p̂αj

)
(A.2.35)

where the inner stress tensor TI,α of the α phase is de�ned as

TI,α =
N∑

j=1

Tαj
(A.2.36)

and the body force for the phase is de�ned as

bα =
1

ρα

N∑

j=1

ραj
bαj

(A.2.37)

Inserting (A.2.36) and (A.2.37) into (A.2.35), yields

N∑

j=1

εαραj

Dαj
x′αj

Dt
= div (εαTI,α) + εαραbα +

N∑

j=1

t̂αj
+

N∑

j=1

p̂αj
(A.2.38)
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General relation 2:

A general relation for a arbitrary property Γ(x, t) is shown in order to com-
pare the summation of the species (A.2.38) to the postulate of the phase
(A.2.34). Consider the property Γ(x, t) and assume that the relation be-
tween the species level and the phase level is described by

Γα =
1

ρα

N∑

j=1

ραj
Γαj

=
N∑

j=1

cαj
Γαj

(A.2.39)

The material time derivative of the general property is

DαΓα
Dt

=
N∑

j=1

Dα

(
cαj

Γαj

)

Dt
=

N∑

j=1

[
Γαj

Dα

(
cαj

)

Dt
+ cαj

Dα

(
Γαj

)

Dt

]
(A.2.40)

For the further derivation, consider (A.2.6)-(a) with Γ = Γαj
which yields

the time derivative of the last term in the square brackets in (A.2.40). Mul-
tiplying (A.2.40) by εαρα, shows that a part of the �rst term in the square
brackets is equal to the mass balance shown in (A.2.24). Inserting these
relation into (A.2.40) yields the form

εαρα
DαΓα
Dt

= εαρα

N∑

j=1

[
Γαj

Dα

(
cαj

)

Dt
+ cαj

Dα

(
Γαj

)

Dt

]

=
N∑

j=1

[
Γαj

εαρα
Dα

(
cαj

)

Dt
+ εαραcαj

(
Dαj

(Γαj
)

Dt
− grad(Γαj

)uαj

)]

=
N∑

j=1

[
εαραcαj

Dαj
(Γαj

)

Dt
− εαραcαj

grad(Γαj
)uαj

− Γαj
div
(
εαραj

uαj

)
+ Γαj

(
r̂αj

+ ĉαj
− cαj

r̂α
)]

(A.2.41)

The divergence term in (A.2.41) is rewritten by the identity

div
(
εαραj

Γαj
uαj

)
= εαραj

grad
(
Γαj

)
uαj

+ Γαj
div
(
εαραj

uαj

)
(A.2.42)

Combining (A.2.41) and (A.2.42) yields the desired �nal relation as

εαρα
DαΓα
Dt

=
N∑

j=1

[
εαραcαj

Dαj
(Γαj

)

Dt
− div

(
εαραj

Γαj
uαj

)

+Γαj

(
r̂αj

+ ĉαj
− cαj

r̂α
)]

(A.2.43)
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Using the general relation (A.2.43), with Γ = x′, yields

εαρα
Dαx

′
α

Dt
=

N∑

j=1

[
εαραcαj

Dαj
(x′αj

)

Dt
− div

(
εαραj

x′αj
⊗ uαj

)

+x′αj

(
r̂αj

+ ĉαj
− cαj

r̂α
)]

(A.2.44)

Applying the di�usion velocity for the j'th species, x′αj
= uαj

+ x′α in the
divergence term of (A.2.44) yields

εαρα
Dαx

′
α

Dt
=

N∑

j=1

εαραcαj

Dαj
(x′αj

)

Dt
− div

N∑

j=1

(
εαραj

u′αj
⊗ uαj

)

−div
N∑

j=1

(
εαραj

uαj

)
⊗ x′α +

N∑

j=1

(
r̂αj

+ ĉαj
− cαj

r̂α
)
x′α

+
N∑

j=1

(
r̂αj

+ ĉαj
− cαj

r̂α
)
uαj

(A.2.45)

The fact that
∑N

j=1(ραj
uαj

) = 0 is used to reduce (A.2.45) further, which
eliminates the second divergence term in (A.2.45). Furthermore, it is noted
that

∑N
j=1

(
r̂αj

+ ĉαj
− cαj

r̂α
)

= 0 is obtained for the mass balance and the

fact that
∑N

j=1 cαj
= 1, which yields a reduced form of (A.2.45), as

εαρα
Dαx

′
α

Dt
=

N∑

j=1

εαραcαj

Dαj
(x′αj

)

Dt
− div

N∑

j=1

(
εαραj

uαj
⊗ uαj

)

+
N∑

j=1

(
r̂αj

+ ĉαj
− cαj

r̂α
)
uαj

(A.2.46)

by substituting the �rst term on right-hand side of (A.2.46) with (A.2.38),
to get

εαρα
Dαx

′
α

Dt
= div

(
εαTI,α −

N∑

j=1

(
εαραj

u′αj
⊗ uαj

)
)

+ εαραbα

+
N∑

j=1

t̂αj
+

N∑

j=1

p̂αj
+

N∑

j=1

r̂αj
u′αj

+
N∑

j=1

ĉαj
u′αj

− r̂α
ρα

N∑

j=1

ραj
u′αj

(A.2.47)
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where the last term is eliminated by
∑N

j=1(ραj
uαj

) = 0 with the use of the
expansion of cαj

.

The momentum balance for the species (A.2.47) and the phase (A.2.34)
are compatible which yields the criteria

εαTα = εαTI,α −
N∑

j=1

(
εαραj

uαj
⊗ uαj

)
(A.2.48)

t̂α =
N∑

j=1

t̂αj
+

N∑

j=1

r̂αj
uαj

(A.2.49)

and
N∑

j=1

p̂αj
+

N∑

j=1

ĉαj
uαj

= 0 (A.2.50)

where the second order tensor ραj
u′αj
⊗ u′αj

is the so-called Reinholds stress
tensor.

A similar approach is used to show that the summation of the phases is
compatible with the postulate for the whole mixture. The local postulate for
the momentum balance of the whole mixture is

ρ
Dx′

Dt
= divT + ρb (A.2.51)

Direct de�nition for summations over the phases are given for the stress
tensor and the body force as

TI =
N∑

α=1

εαTα (A.2.52)

and

b =
1

ρ

N∑

α=1

εαραbα (A.2.53)

where (A.2.8) is used. By use of the de�nitions (A.2.52) and (A.2.53) in
(A.2.34) yields

N∑

α=1

εαρα
Dαx

′
α

Dt
= divTI + ρb +

N∑

α=1

t̂α (A.2.54)

Department of Civil Engineering - Technical University of Denmark 175



A.2 Multi-phase hybrid mixture theory Mixture theories

General relation 3:

A relation similar to (A.2.43), is established between the phase description
an the whole mixture description. First consider the arbitrary variable Γ,
with the de�nition

ρΓ =
N∑

α=1

εαραΓα (A.2.55)

The material derivative of (A.2.55) with respect to the mixture is

D (ρΓ)

Dt
=

N∑

α=1

(
Γα
D (εαρα)

Dt
+ εαρα

D (Γα)

Dt

)
(A.2.56)

The �rst term on the left-hand side of (A.2.56) is (A.2.28), substituting this
and using (A.2.6)-(b) with Γ = Γα, yields

D (ρΓ)

Dt
=

N∑

α=1

(
Γα (−div (εαραuα)− εαραdiv (x′) + r̂α)

+εαρα

(
Dα(Γα)

Dt
− grad(Γα)uα

))
(A.2.57)

The �rst divergence term and the gradient term on the left-hand side, is
equivalent to the divergence of the product of the variables

div (εαραΓαuα) = εαραgrad (Γα)uα + Γαdiv (εαραuα) (A.2.58)

Substituting (A.2.58) into (A.2.57), yields

D (ρΓ)

Dt
=

N∑

α=1

(
−div (εαραΓαuα)− εαραΓαdiv (x′)

+Γαr̂α + εαρα
Dα(Γα)

Dt

)
(A.2.59)

Applying the product rule to the right-hand side of (A.2.59) and by using∑N
α=1 εαραΓαdiv (x′) = ρΓdiv (x′), show that the mass balance for the whole

mixture (A.2.31) is identi�ed in the below square brackets, that is

Γ

[
D (ρ)

Dt
+ ρdiv (x′)

]
+ ρ

D (Γ)

Dt
=

N∑

α=1

(
−div (εαραΓαuα)

+ Γαr̂α + εαρα
Dα(Γα)

Dt

)
(A.2.60)
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which reduce (A.2.60) to

ρ
D (Γ)

Dt
= −div

N∑

α=1

(εαραΓαuα) +
N∑

α=1

Γαr̂α +
N∑

α=1

εαρα
Dα(Γα)

Dt
(A.2.61)

Using the general relation (A.2.61) with Γ = x′and the de�nition of the
di�usion velocity for the phase x′α = uα + x′, yields

ρ
D (x′)

Dt
= −div

N∑

α=1

(εαραuα ⊗ uα)− div
N∑

α=1

(εαραuα)⊗ x′

+
N∑

α=1

r̂αuα +
N∑

α=1

r̂αx
′ +

N∑

α=1

εαρα
Dα(x′α)

Dt
(A.2.62)

The relation between the momentum for the whole mixture and the summa-
tion of the momentum of the phases is established in (A.2.62). The second di-
vergence term in (A.2.62) is eliminated by the de�nition

∑N
α=1 (εαραuα) = 0

and it is shown by the compatible mass balance terms that
∑N

α=1 r̂α = 0.
Furthermore, combining (A.2.62) and (A.2.54) reduces (A.2.62) to

ρ
D (x′)

Dt
= div

N∑

α=1

(Tα − εαραuα ⊗ uα) + ρb +
N∑

α=1

t̂α +
N∑

α=1

r̂αuα (A.2.63)

Comparing (A.2.63) with (A.2.51) show that

T =
N∑

α=1

(Tα − εαραuα ⊗ uα) (A.2.64)

and
N∑

α=1

t̂α +
N∑

α=1

r̂αuα = 0 (A.2.65)

A.2.3 Angular momentum balance

The angular momentum is derived for the whole mixture in Sec. A.1.3, where

it is shown that the stress tensor must be symmetric T = TT and also that
the inner stress tensor must be symmetric TI = TI

T. Since the symmetry
condition is decduced from the whole mixture, then it is directly transferable
to the multi-phase and multi-species approach. The summation over the
species yields

N∑

j=1

Mαj
=

N∑

j=1

(
Tαj
−TTαj

)
= 0 (A.2.66)
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and with summation over the phases yields

N∑

α=1

N∑

j=1

Mαj
=

N∑

α=1

N∑

j=1

(
Tαj
−TTαj

)
= 0 (A.2.67)

A.2.4 Energy balance

Energy balance postulates are given in Sec. A.2.4.2 where compatible ver-
sions of the postulates between the whole mixture, the phases and the species
are obtained. The compatible versions is deduced with help from, among
other things, relations given in Sec. A.2.4.1.

A.2.4.1 De�nitions for energy balances

The relation for summation of the external heat rα and the inner internal
energy eI,α for the α phase is

rα =
1

ρα

N∑

j=1

ραj
rαj

; eI,α =
1

ρα

N∑

j=1

ραj
eαj

(A.2.68)

The internal energy of the phase is related to the energy density eα for the
phase, as

eα = eI,α −
1

2ρα

N∑

j=1

ραj

(
uαj

)2
(A.2.69)

where
(
uαj

)2
= uαj

· uαj
.

The inner heat �ux qI,α for the α phase is de�ned as

qI,α =
N∑

j=1

(
qαj
−TT

αj
uαj

+ ραj
eαj

uαj

)
(A.2.70)

which is related to the heat �ux qα for the phase as

qα = qI,α +
1

2

N∑

j=1

ραj

(
uαj

)2
uαj

(A.2.71)
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A quantity kα related to the heat �ux is introduced as

kα =
N∑

j=1

(
qαj

+ ραj
eαj

uαj

)

= qI,α +
N∑

j=1

TT
αj
uαj

= qα −
N∑

j=1

ραj

(
− 1

ραj

TT
αj

+
1

2

(
uαj

)2
I

)
uαj

(A.2.72)

Similar de�nitions is given for the whole mixture, The de�nition for the
external heat rα and the inner internal energy eI,α for the whole mixture is
given as

r =
1

ρ

N∑

α=1

εαραrα; eI =
1

ρ

N∑

α=1

εαραeα (A.2.73)

The internal energy eI is related to the energy density e the whole mixture
as

e = eI −
1

2ρ

N∑

α=1

εαρα (uα)2 (A.2.74)

where (uα)2 = uα · uα.
The inner heat �ux for the mixture is de�ned as

qI =
N∑

α=1

(
qα −TT

αuα + εαραeαuα
)

(A.2.75)

which is related to the heat �ux q for the whole mixture as

q = qI +
1

2

N∑

α=1

εαρα (uα)2 uα (A.2.76)

A quantity k related to the heat �ux q is introduced as

k =
N∑

α=1

(εαqα + εαραeαuα)

= qI +
N∑

α=1

TT
αuα

= q−
N∑

j=1

(
−TT

α + εαρα
1

2
(uα)2 I

)
uα (A.2.77)
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A.2.4.2 Energy balance for constituents

The energy balance postulate for the j'th specie in the α phase is

∂

∂t

ˆ

Ω

εαραj

(
eαj

+ 1
2

(
x′αj

)
2
)
dv =

−
˛

∂Ω

εαραj

(
eαj

+ 1
2

(
x′αj

)
2
)
x′αj
· ds

+

˛

∂Ω

εα

(
Tαj

x′αj
− qαj

)
· ds

+

ˆ

Ω

[
εαραj

rαj
+ εαραj

x′αj
· bαj

+x′αj
·
(
p̂αj

+t̂αj

)
+ êαj

+ Q̂αj

]
dv

+

ˆ

Ω

ĉαj

(
eαj

+ 1
2

(
x′αj

)
2
)
dv

+

ˆ

Ω

r̂αj

(
eαj

+ 1
2

(
x′αj

)
2
)
dv (A.2.78)

Using the mathematical operations similar to (A.1.86)-(A.1.98) yields the
local form of the energy balance for the species, that is

εαραj

Dαj
eαj

Dt
= tr

(
εαTαj

Lαj

)
− div

(
εαqαj

)
+

+x′αj
·
[
div
(
εjTαj

)
+ εαραj

bαj
+
(
p̂αj

+t̂αj

)

−εαραj

Dαj
x′αj

Dt

]
+ εαραj

rαj
+ êαj

+ Q̂αj
(A.2.79)

The momentum balance for the species is identi�ed in the square brackets in
(A.2.79) and cancels out. The reduced form of (A.2.79) is

εαραj

Dαj
eαj

Dt
= tr

(
εαTαj

Lαj

)
− div

(
εαqαj

)
+ εαραj

rαj

+êαj
+ Q̂αj

(A.2.80)

The summation over the species of (A.2.80) where the de�nition (A.2.68)-(b)
is used, is

εα

N∑

j=1

ραj

Dαj
eαj

Dt
= tr

N∑

j=1

(
εαTαj

Lαj

)
− div

N∑

j=1

(
εαqαj

)
+ εαραrα

+
N∑

j=1

êαj
+

N∑

j=1

Q̂αj
(A.2.81)
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The left-hand side of (A.2.81) is the �rst term of the right-hand side of
(A.2.43) with Γ = e. The summation of eαj

over the species is (A.2.68)
which is the internal energy of the phase eI,α, which change the notation of
the left-hand side of (A.2.39) to ΓI,α with Γ = e and further into (A.2.43),
which is

εα

N∑

j=1

ραj

Dαj
eαj

Dt
= εαρα

DαeI,α
Dt

+ div
N∑

j=1

(
εαραj

eαj
uαj

)

−
N∑

j=1

(
r̂αj

+ ĉαj
− cαj

r̂α
)
eαj

(A.2.82)

Combining (A.2.81) and (A.2.82) yields

εαρα
DαeI,α
Dt

= tr
N∑

j=1

(
εαTαj

Lαj

)
− div

N∑

j=1

(
εαqαj

)
+ εαραrα

+
N∑

j=1

êαj
+

N∑

j=1

Q̂αj
− div

N∑

j=1

(
εαραj

eαj
uαj

)

+
N∑

j=1

(
r̂αj

+ ĉαj
− cαj

r̂α
)
eαj

(A.2.83)

where kα is identi�ed by combining the divergence terms and (A.2.83) reduces
to

εαρα
DαeI,α
Dt

= tr
N∑

j=1

(
εαTαj

Lαj

)
− div (εαkα) + εαραrα +

N∑

j=1

êαj
+

N∑

j=1

Q̂αj

+
N∑

j=1

(
r̂αj

+ ĉαj
− cαj

r̂α
)
eαj

(A.2.84)

In the following, the energy balance postulate for the α phase is brought
to a form, which is compatible with (A.2.84). The postulate for the energy
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balance for the α phase is

∂

∂t

ˆ

Ω

εαρα
(
eα + 1

2
(x′α) 2

)
dv = −

˛

∂Ω

εαρα
(
eα + 1

2
(x′α) 2

)
x′α · ds +

+

˛

∂Ω

εα (Tαx
′
α − qα) · ds +

+

ˆ

Ω

[εαραrα + εαραx
′
α · bα+

+x′α · t̂α + Q̂α

]
dv +

+

ˆ

Ω

r̂α
(
eα + 1

2
(x′α) 2

)
dv (A.2.85)

Using the divergence theorem on the �rst and second term on the right-
hand side and rewrite the left-hand side by mathematical steps similar to
(A.1.86)-(A.1.96), yields a reduced local form of (A.2.81) as

εαρα
Dα

Dt

(
eα + 1

2
(x′α) 2

)
= div (εα (Tαx

′
α − qα)) + εαραrα

+εαραx
′
α · bα + x′α · t̂α + Q̂α (A.2.86)

Note that the momentum balance for the α phase has not been identi�ed in
(A.2.86). The left-hand side of (A.2.86), where the velocity term is written
by its de�nition (x′α) 2 = x′α · x′α and expanded by the product rule is

εαρα
Dαeα
Dt

+ εαρα
Dα

Dt

(
1
2
x′α · x′α

)
= εαρα

Dα

Dt
eα + εαραx

′
α ·

Dαx
′
α

Dt
(A.2.87)

The �rst part of divergence term on the right-hand side of (A.2.86), expanded
by the product rule and using the de�nition of the velocity gradient, Lα =
grad (x′α), is

div (εαTαx
′
α) = x′α · div (εαTα) + εαtr (TαLα) (A.2.88)

The third term in (A.2.86), expressed in terms of the phase velocity and the
di�usion velocity (A.2.5)-(a), is

N∑

j=1

εαραj
x′αj
· bαj

=
N∑

j=1

εαραj

(
uαj

+ x′α
)
· bαj

(A.2.89)

It is shown in (A.2.37) that summation over the species of the body force
bαj

yields the body force of the phase bα. Using this condition with (A.2.89)
results in

N∑

j=1

εαραj

(
uαj

+ x′α
)
· bαj

= εαραbα · x′α + εα

N∑

j=1

ραj
uαj
· bαj

(A.2.90)
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The three rewritten terms (A.2.87), (A.2.88) and (A.2.90) substituted into
(A.2.86), yields

εαρα
Dα

Dt
eα = −x′α ·

[
εαρα

Dαx
′
α

Dt
+ div (εαTα) + εαραbα + t̂α

]

+εαtr (TαLα)− div (εαqα) + εαραrα

+εα

N∑

j=1

ραj
uαj
· bαj

+ Q̂α (A.2.91)

where the momentum balance for the α phase is identi�ed in the square
brackets which reduces (A.2.91) to

εαρα
Dαeα
Dt

= εαtr (TαLα)− div (εαqα) + εαραrα

+εα

N∑

j=1

ραj
uαj
· bαj

+ Q̂α (A.2.92)

The reduced energy balance written in terms of the de�nitions (A.2.48),
(A.2.69) and (A.2.71), is

εαρα
2

N∑

j=1

Dα

Dt

(
cαj

(
uαj

)2
)

= εαtr

((
TI,α −

N∑

j=1

(
ραj

u′αj
⊗ uαj

)
)
Lα

)

− div

(
εα

(
qI,α +

1

2

N∑

j=1

ραj

(
uαj

)2
uαj

))

+ εαραrα + εα

N∑

j=1

ραj
uαj
· bαj

+ Q̂α (A.2.93)

It is convenient to rewrite the left-hand side by considering (A.2.43) with
Γ = 1

2
(u)2, which results in

εαρα
2

N∑

j=1

Dα

Dt

(
cαj

(
uαj

)2
)

=
N∑

j=1

[
εαραj

Dαj

1
2

(
uαj

)2

Dt

− div

(
εαραj

1

2

(
uαj

)2
uαj

)

+
1

2

(
uαj

)2 (
r̂αj

+ ĉαj
− cαj

r̂α
)
]

(A.2.94)
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where the left-hand side of (A.2.133) is written as a summation, according to
(A.2.39). The �rst term in the square brackets, expanded by the de�nitions
uαj

= uαj
· uαj

and uαj
= x′αj

− x′α are

εαραj

Dαj

1
2

(
uαj

)2

Dt
= εαραj

uαj
· Dαj

Dt
uαj

(A.2.95)

= εαραj
uαj
· Dαj

Dt

(
x′αj
− x′α

)
(A.2.96)

Consider now (A.2.6)-(a) with Γ = x′, where the last di�erential term in
(A.2.96) and the de�nition Lα = grad (x′α) is used, this yields

εαραj
uαj
·Dαj

Dt

(
x′αj
− x′α

)
= εαραj

uαj
·
(
Dαj

x′αj

Dt
− Dαx

′
α

Dt
− grad (x′α)uαj

)

= εαραj
uαj
·
(
Dαj

x′αj

Dt
− Dαx

′
α

Dt
− Lαuαj

)
(A.2.97)

The last term in (A.2.97) is rewritten to obtain

εαραj
uαj
· Lu′αj

= εαtr
(
ραj

Lα
(
uαj
⊗ uαj

))
(A.2.98)

Combining (A.2.98) and (A.2.97) and inserting (A.2.97) into (A.2.133), yields

εαρα

N∑

j=1

1

2

Dα

Dt

(
cαj

(
uαj

)2
)

=
N∑

j=1

[
εαραj

uαj
·
Dαj

x′αj

Dt
− εαραj

uαj
· Dαx

′
α

Dt

−εαtr
(
ραj

Lα
(
uαj
⊗ uαj

))

−div
(
εαραj

1

2

(
uαj

)2
uαj

)

+
1

2

(
uαj

)2 (
r̂αj

+ ĉαj
− cαj

r̂α
)]

(A.2.99)

The second term in the square brackets in (A.2.99) cancels due to the con-
dition

∑N
j=1 ραj

uαj
= 0.

The second term of the left-hand side of (A.2.93) is (A.2.99) and combin-
ing these yields

εαρα
DαeI,α
Dt

= εαtr (TI,αLα)− div (εαqI,α) + εαραrα + Q̂α

−
N∑

j=1

1

2

(
uαj

)2 (
r̂αj

+ ĉαj
− cαj

r̂α
)

−
N∑

j=1

εαuαj
·
(
ραj

Dαj
x′αj

Dt
− ραj

bαj

)
(A.2.100)
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Consider the term tr
(
TTαj

Lαj

)
in (A.2.100) written by the de�nition Lαj

=

grad (x′α) and the di�usion velocity uαj
, as

tr
N∑

j=1

(
TTαj

Lαj

)
= tr

N∑

j=1

(
TTαj

grad
(
uαj

+ x′α
))

= tr
N∑

j=1

(
TTαj

graduαj

)
+ tr

N∑

j=1

(
TTαj

gradx′α

)

= tr
N∑

j=1

(
TTαj

graduαj

)
+ tr

N∑

j=1

(
Tαj

Lα

)
(A.2.101)

Furthermore, the �rst term on the right-hand side is

tr
N∑

j=1

(
TTαj

graduαj

)
= div

N∑

j=1

(
TTαj

uαj

)
−

N∑

j=1

uαj
· divTαj

(A.2.102)

Combining (A.2.102) and (A.2.101) and inserting into (A.2.100), yields

εαρα
DαeI,α
Dt

= εα

(
div

N∑

j=1

(
TTαj

uαj

)
− div

N∑

j=1

(
TTαj

uαj

))
− div (εαqI,α)

−
N∑

j=1

εαuαj
·
(
ραj

Dαj

Dt
x′αj
− ραj

bαj
− divTαj

)

−
N∑

j=1

1

2

(
uαj

)2 (
r̂αj

+ ĉαj
− cαj

r̂α
)

+εαραrα + Q̂α (A.2.103)

where the momentum balance for the constituent is identi�ed and using,
further, (A.2.72) in (A.2.103) in order to obtain

εαρα
DαeI,α
Dt

= εαdiv
N∑

j=1

(
TTαj

uαj

)
− div (εαkα) + εαραrα + Q̂α

−
N∑

j=1

1

2

(
uαj

)2 (
r̂αj

+ ĉαj
− cαj

r̂α
)

−
N∑

j=1

uαj
·
(
t̂αj

+ p̂αj

)
(A.2.104)
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Compatible versions of the energy balance are obtained in (A.2.104) and
(A.2.84), where a comparison show that

Q̂α =
N∑

j=1

(
êαj

+ Q̂αj
+ uαj

·
(
t̂αj

+ p̂αj

)

+
(
eα +

(
uαj

)2
) (
r̂αj

+ ĉαj
− cαj

r̂α
))

(A.2.105)

Similar to the derived mass balance and momentum balance equations,
one can compare a summation of the phases with the whole mixture to reach
a restriction for

∑N
j=1 Q̂α. The comparison is established by similar mathe-

matical steps as for the species. Here the calculation steps are shown in less
detailed fashion compared to the species level.

Consider the energy balance postulate for phases (A.2.86), with (A.1.97)
and (A.1.98), where the j is substituted by α, written as

εαρα
Dαeα
Dt

= tr
(
εαT

T
α Lα

)
− div (εαqα) + εαραrα + Q̂α

+ x′α ·
[
div (εαTα) + εαραbα+t̂α − εαρα

Dαx
′
α

Dt

]
(A.2.106)

The momentum balance for the phases is identi�ed and reduces (A.2.106) to

εαρα
Dαeα
Dt

= tr
(
εαT

T
α Lα

)
− div (εαqα) + εαραrα + Q̂α (A.2.107)

Summation over the phases of (A.2.107), together with (A.2.77) and (A.2.61)
using Γ = e (note for this case that the left-hand side of (A.2.61) is eI due
to (A.2.73)-(b)), yields

ρ
DeI
Dt

= −div (k) + tr
N∑

α=1

(
εαT

T
α Lα

)
+

N∑

α=1

(εαραrα + eαr̂α)

+
N∑

α=1

Q̂α (A.2.108)

Consider now the energy balance postulate for the whole mixture

∂

∂t

ˆ

Ω

(
e+ 1

2
(x′) 2

)
dv = −

˛

∂Ω

(
e+ 1

2
(x′) 2

)
x′ · ds +

˛

∂Ω

(Tx′ − q) · ds

+

ˆ

Ω

[
ρr +

N∑

α=1

(εαραx
′
α · bα)

]
dv (A.2.109)
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where the body force bα is written as the sum of phases which is used later.
Using the divergence theorem, together with similar mathematical steps as
shown in (A.1.89) to (A.1.96), yields the local energy balance postulate for
the whole mixture, as

ρ
D

Dt

(
e+ 1

2
(x′) 2

)
= div (Tx′ − q) + ρr +

N∑

α=1

(εαραx
′
α · bα) (A.2.110)

The left-hand side of (A.2.110) is rewritten with the de�nition (x′) 2 = x′ ·x′
as

ρ
D

Dt

(
e+ 1

2
(x′) 2

)
= ρ

De

Dt
+ ρx′ · Dx′

Dt
(A.2.111)

The �rst divergence term on right-hand side of (A.2.110) with the de�nition
L = grad (x′), is

div (Tx′) = x′ · div (T) + tr (TL) (A.2.112)

The last term on right-hand side of (A.2.110) using the di�usion velocity of
the phases (A.2.5) and summation over the phases of the body force (A.2.53),
is

N∑

α=1

(εαραx
′
α · bα) = ρb +

N∑

α=1

(εαραuα · bα) (A.2.113)

Combining (A.2.111), (A.2.112) and (A.2.113) with (A.2.110) show that
the momentum balance for the mixture (A.2.51) is identi�ed and reduces
(A.2.110) to the following expression

ρ
De

Dt
= tr (TL) + ρr − div (q) +

N∑

α=1

(εαραuα · bα) (A.2.114)

The equation (A.2.114) written in terms of the de�nitions (A.2.74), (A.2.76)
and the results from the momentum balance (A.2.64) is

ρ
DeI
Dt
− 1

2

D

Dt

(
N∑

α=1

εαρα (uα)2

)
= tr

((
TI −

N∑

α=1

εαραuα ⊗ uα

)
L

)

+ρr − div

(
qI +

1

2

N∑

α=1

εαρα (uα)2 uα

)

+
N∑

α=1

(εαραuα · bα) (A.2.115)

It is convenient to rewrite the second term on the left-hand side of (A.2.115).
The approach is similar to the mathematical steps taken from (A.2.133) to
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(A.2.99), using the di�usion velocity and the property de�nitions for the
phases and mixture. The left-hand side of (A.2.115) is

1

2

D

Dt

(
N∑

α=1

εαρα (uα)2

)
= −tr

N∑

α=1

(εαραLuα ⊗ uα) +
1

2

N∑

α=1

r̂α (uα)2

+
N∑

α=1

εαραuα ·
Dαx

′
α

Dt
−

N∑

α=1

εαραuα ·
Dx′

Dt

−div
(

1

2

N∑

α=1

εαρα (uα)2 uα

)
(A.2.116)

Inserting (A.2.116) into (A.2.115) and using that
∑N

α=1 εαραuα = 0, yields

ρ
DeI
Dt

= tr (TIL) + ρr − div (qI) +
N∑

α=1

(εαραuα · bα)

+
N∑

α=1

εαραuα ·
Dαx

′
α

Dt
+

1

2

N∑

α=1

r̂α (uα)2 (A.2.117)

The �rst term on the right-hand side written by an expression similar to
(A.2.101) and (A.2.102) summed over the phases. Inserting this into (A.2.117)
show that the momentum balance (A.2.54) for the phases is identi�ed and
(A.2.117) reduces to

ρ
DeI
Dt

= tr
N∑

α=1

(
εαT

T
α Lα

)
+ ρr − div (k) +

N∑

α=1

(εαραuα · bα)

+
N∑

α=1

uα · t̂α +
1

2

N∑

α=1

r̂α (uα)2 (A.2.118)

where also the de�nition (A.2.77) is used.
It is now possible to compare (A.2.118) which is the re-written version

of the energy balance for the whole mixture and the energy balance for the
phases (A.2.108). The comparison yields the restriction for the phases to be

N∑

α=1

(
Q̂α + uα · t̂α + r̂α

(
eα +

1

2
(uα)2

))
= 0 (A.2.119)

A.2.5 Entropy inequality

Di�erent versions of the entropy inequality are considered in Sec. A.2.5. One
postulate is considered for the case with multiple phases and species. The
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second axiom postulate used in HMT, is

∂

∂t

ˆ

Ω

εαραηα dv ≥ −
˛

∂Ω

εα

R∑

j=1

ραj
ηαj

x′αj
· ds−

˛

∂Ω

εα

R∑

j=1

(
1

θ
qαj

)
· ds

+

˛

Ω

εα

R∑

j=1

(
1

θ
ραj

rαj

)
dv (A.2.120)

which is an extended version of (A.1.143). The entropy for multiple phases
is the summation given as

ηα =
1

ρ

N∑

j=1

ραj
ηαj

=
N∑

j=1

cαj
ηαj

The local form of (A.2.120), obtained by using the divergence theorem, is

∂

∂t
(εαραηα) ≥ −div

(
N∑

j=1

εαραj
ηαj

x′αj

)
− div

(
εα

N∑

j=1

1

θ
qαj

)

+εα

N∑

j=1

(
1

θ
ραj

rαj

)
(A.2.121)

Using the product rule for �rst divergence term on the right-hand side of
(A.2.121), yields

div (εαραηαx
′
α) = ηαdiv (εαραx

′
α) + εαραx

′
αgrad (ηα) (A.2.122)

The product rule on the left-hand side of (A.2.121) and (A.2.120) for Γ = η,
yields

∂

∂t
(εαραηα) = εαρα

∂ηα
∂t

+ ηα
∂

∂t
(εαρα) (A.2.123)

= εαρα
Dαηα
Dt

− εαραx′αgrad (ηα)

+ηα
∂

∂t
(εαρα) (A.2.124)

The species velocity x′αj
written in terms of the di�usion velocity by (A.2.5)-

(a), combined with the rewritings in (A.2.122) and (A.2.123) inserted into
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(A.2.121), yields

εαρα
Dαηα
Dt

≥ −ηα
[
∂

∂t
(εαρα) + div (εαραx

′
α)

]

-div

(
N∑

j=1

εαραj
ηαj

uαj

)
− div

(
εα

N∑

j=1

1

θ
qαj

)

+εα

N∑

j=1

(
1

θ
ραj

rαj

)
(A.2.125)

where the grad terms in (A.2.122) and (A.2.123) cancels. The mass balance
for the α-phase is identi�ed in the square brackets of (A.2.125). Inserting
(A.2.14) into, reduces (A.2.125) into the expression

εαρα
Dαηα
Dt

≥ −div
(
εα

N∑

j=1

(
ραj

ηαj
uαj

+
1

θ
qαj

))

+εα

N∑

j=1

(
1

θ
ραj

rαj

)
− ηαr̂α (A.2.126)

The inequality (A.2.126) is rewritten into a form, which involves the en-
ergy balance equation. This form have a more physical intuitive formulation.
First consider the general relation (A.2.43) with Γ = η, which is

εαρα
Dαηα
Dt

=
N∑

j=1

[
εαραj

Dαj
(ηαj

)

Dt
− div

(
εαραj

ηαj
uαj

)

+ηαj

(
r̂αj

+ ĉαj
− cαj

r̂α
)]

(A.2.127)

Substituting (A.2.127) into (A.2.126) and multiply by the temperature θ
yields

0 ≤ θεα

N∑

j=1

ραj

Dαj
(ηαj

)

Dt
+ div

N∑

j=1

(
εαqαj

)
− εα

N∑

j=1

(
ραj

rαj

)

+θηαr̂α + θ

N∑

j=1

ηαj

(
r̂αj

+ ĉαj
− cαj

r̂α
)

(A.2.128)

Expanding the divergence term in (A.2.128) and re-writing, by use of the
product rule, yields

div
(
εαqαj

)
= div

(
θεα

qαj

θ

)
= θdiv

(
εα

qαj

θ

)
+ εα

qαj

θ
gradθ (A.2.129)
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Inserting (A.2.129) into (A.2.128) and by dividing by the temperature θ for
the mixture, yields

0 ≤ εα

N∑

j=1

ραj

Dαj
(ηαj

)

Dt
+ div

(
εα

qαj

θ

)
+ εα

qαj

θ2
gradθ − εα

1

θ

N∑

j=1

(
ραj

rαj

)

+ηαr̂α +
N∑

j=1

ηαj

(
r̂αj

+ ĉαj
− cαj

r̂α
)

(A.2.130)

The energy balance for the constituents (A.2.81) divided by the temper-
ature θ, give the result

εα
θ

N∑

j=1

ραj

Dαj
eαj

Dt
=

1

θ
tr

N∑

j=1

(
εαTαj

Lαj

)
− div

N∑

j=1

(
εα

qαj

θ

)

+
1

θ

N∑

j=1

(
εαραj

rαj
+ êαj

+ Q̂αj

)
(A.2.131)

Combining the presented versions of the energy balance and the inequality
gives

εα

N∑

j=1

ραj

(
Dαj

(ηαj
)

Dt
− 1

θ

Dαj
eαj

Dt

)
≥ εα

qαj

θ2
gradθ − 1

θ
tr

N∑

j=1

(
εαTαj

Lαj

)

−ηαr̂α −
N∑

j=1

ηαj

(
r̂αj

+ ĉαj
− cαj

r̂α
)

−1

θ

N∑

j=1

(
êαj

+ Q̂αj

)
(A.2.132)

The last summation term in (A.2.132) is evaluated. The term is identi�ed in
the results from the energy balance of the constituents and phases, (A.2.105)
and (A.2.119), respectively,

−
N∑

α=1

N∑

j=1

(
êαj

+ Q̂αj

)
=

N∑

α=1

N∑

j=1

[
uαj
·
(
t̂αj

+ p̂αj

)

+
(
eα +

(
uαj

)2
) (
r̂αj

+ ĉαj
− cαj

r̂α
)

+uα · t̂α + r̂α

(
eα +

1

2
(uα)2

)]
(A.2.133)
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Summation of (A.2.132) over the phases and inserting into (A.2.133), yields

N∑

α=1

N∑

j=1

εαραj

(
Dαj

(ηαj
)

Dt
− 1

θ

Dαj
eαj

Dt

)
≥

N∑

α=1

εα
qαj

θ2
gradθ − 1

θ
tr

N∑

α=1

N∑

j=1

(
εαTαj

Lαj

)

−
N∑

α=1

ηαr̂α −
N∑

α=1

N∑

j=1

ηαj

(
r̂αj

+ ĉαj
− cαj

r̂α
)

+
N∑

α=1

N∑

j=1

1

θ

[
uαj
·
(
t̂αj

+ p̂αj

)
+
(
eα +

(
uαj

)2
)

(
r̂αj

+ ĉαj
− cαj

r̂α
)

+ uα · t̂α + r̂α

(
eα +

1

2
(uα)2

)]
(A.2.134)

It is convenient to write the inequality (A.2.134) in terms of the Helmholtz
free energy, that is

ψαj
= eαj

− θηαj
(A.2.135)

The free energy for the species is related to the phase, by the species density
and concentration, as

ψα =
1

ρα

N∑

j=1

ραj
ψαj

=
N∑

j=1

cαj
ψαj

(A.2.136)

The material time derivative of (A.2.135), is

Dαj
ψαj

Dt
=
Dαj

eαj

Dt
− θDαj

ηαj

Dt
− ηαj

Dαj
θ

Dt
(A.2.137)

The inequality (A.2.134) multiplied by the temperature θ and using the
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Helmholtz energy de�nition (A.2.135) and (A.2.137), yields

−
N∑

α=1

N∑

j=1

εαραj

(
Dαj

(ψαj
)

Dt
+ ηαj

Dαj
θ

Dt

)
≥

N∑

α=1

εα
qαj

θ
gradθ − tr

N∑

α=1

N∑

j=1

(
εαTαj

Lαj

)

−
N∑

α=1

ψαr̂α +
N∑

α=1

N∑

j=1

ψαj

(
r̂αj

+ ĉαj
− cαj

r̂α
)

+
N∑

α=1

N∑

j=1

[
uαj
·
(
t̂αj

+ p̂αj

)
+
(
uαj

)2

(
r̂αj

+ ĉαj
− cαj

r̂α
)

+ uα · t̂α + r̂α
1

2
(uα)2

]
(A.2.138)

The equation (A.2.138) is the second axiom of thermodynamics following the
material time derivative of the species. This expression is further rewritten
to follow the α phase. Consider the (A.2.6)-(a) with Γ = θ and multiplied
by ραj

ηαj
, that is

N∑

j=1

ραj
ηαj

Dαj
θ

Dt
− ραηα

Dαθ

Dt
=

N∑

j=1

ραj
ηαj

grad(θ)uαj
(A.2.139)

The entropy �ux (A.1.145) for the species using the de�nition
∑N

α=1 hαj
=

hα, is

N∑

α=1

qαj
= hα −

N∑

α=1

(
ραj

θηαj
uαj

)
(A.2.140)

Multiplying (A.2.140) by grad(θ)/θ, yields

N∑

α=1

qαj
· grad(θ)

1

θ
= hα · grad(θ)

1

θ
−

N∑

α=1

(
ραj

ηαj
uαj
· grad(θ)

)
(A.2.141)
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Substituting (A.2.141) and (A.2.139) into (A.2.138), yields

N∑

α=1

(
−

N∑

j=1

(
εαραj

Dαj
(ψαj

)

Dt

)
− ραηα

Dαθ

Dt

)
≥

N∑

α=1

εα
θ
hα · grad(θ)− tr

N∑

α=1

N∑

j=1

(
εαTαj

Lαj

)

−
N∑

α=1

ψαr̂α +
N∑

α=1

N∑

j=1

ψαj

(
r̂αj

+ ĉαj
− cαj

r̂α
)

+
N∑

α=1

N∑

j=1

[
uαj
·
(
t̂αj

+ p̂αj

)
+
(
uαj

)2

(
r̂αj

+ ĉαj
− cαj

r̂α
)

+ uα · t̂α + r̂α
1

2
(uα)2

]
(A.2.142)

The material derivative of the Helmholtz free energy on the left-hand side
of (A.2.142) written by the relation (A.2.43), with Γ = ψ and summarizing
over the phase, is

N∑

α=1

εαρα
Dαψα
Dt

=
N∑

α=1

N∑

j=1

[
εαραcαj

Dαj
(ψαj

)

Dt
− div

(
εαραj

ψαj
uαj

)

+ψαj

(
r̂αj

+ ĉαj
− cαj

r̂α
)]

(A.2.143)

Substituting (A.2.143) into (A.2.142), which yields the desired form of the
entropy inequality, is

−
N∑

α=1

(
εαρα

Dαψα
Dt

+ ραηα
Dαθ

Dt

)
≥

N∑

α=1

εα
θ
hα · grad(θ)− tr

N∑

α=1

N∑

j=1

(
εαTαj

Lαj

)

−
N∑

α=1

ψαr̂α + div
(
εαραj

ψαj
uαj

)

+
N∑

α=1

N∑

j=1

[
uαj
·
(
t̂αj

+ p̂αj

)
+
(
uαj

)2

(
r̂αj

+ ĉαj
− cαj

r̂α
)

+ uα · t̂α + r̂α
1

2
(uα)2

]
(A.2.144)
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Note that the entropy �ux hα is identi�ed as

hα = qα +
N∑

j=1

(
TTαj

uαj
− ραj

ψαj
uαj

+
1

2
ραj

(
uαj

)2
uαj

)
(A.2.145)

where the heat �ux qα is identi�ed as

qα =
N∑

j=1

(
qαj
−TTαj

uαj
− ραj

eαj
uαj

+
1

2
ραj

(
uαj

)2
uαj

)
(A.2.146)

A.3 Multi-species, multi-phase balance laws

with electroquasistatics

The following chapter introduces the quasi-static versions of Maxwell's equa-
tions into the hybrid mixture theory framework as described by Bennethum
and Cushman (2002a).

Maxwell's equations are introduced for each species, but the momentum
and energy balance for the species are based on the total electrical �eld. The
electrical �eld for each species is well described by Gauss law. It is assumed
for all balance laws in this section that the interface between the phases are
massless and holds no thermodynamic properties. A superscript β indicates
the gain of a physical quantity of the j specie in the α phase from the β
phase, where α 6= β.

A.3.1 Mass balance with massless interface.

The material time derivative of the mass balance for the j specie in the α
phase is

Dαj
εαραj

Dt
= −εαραj

div
(
x′αj

)
+ εαραj

ĉαj
+
∑

α 6=β
εαραj

r̂βαj
(A.3.1)

where r̂βαj
is net rate of mass of the f 'th species the from β phase to the α

phase. The mass balance for the phase is

Dαεαρα
Dt

= −εαραj
div
(
x′αj

)
+
∑

α 6=β
εαραj

ĉαj
(A.3.2)

The restriction for the chemical reaction in the α phase is

N∑

j=1

εαραj
ĉαj

= 0 (A.3.3)
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The assumption of the massless interface between phases yields the restriction

εαραj
r̂βαj

+ εβρβj r̂
α
βj

= 0 (A.3.4)

which di�ers from what is presented in Sec. A.2.1.

A.3.2 Macroscopic form of Gauss' Law

The macroscopic form of Gauss' Law for the species is

div
(
εαDαj

)
= εαq

e
αj

+ εαd̂αj
+
∑

α 6=β
εαd̂

β
αj

(A.3.5)

where Dαj
is the volume averaged electric displacement, de�ned as

Dαj
= ε0Eαj

+ Pαj
(A.3.6)

where ε0 is the permittivity in vacuum, Eαj
is the electrical �eld density for

the j'th species in the α phase and Pαj
is the polarization density of the

j'th species. Moreover in (A.3.5) where qeαj
is the charge density of the

j'th species, d̂αj
is the excess charge density from other species and d̂βαj

is the
excess charge e�ect, from the j'th species in phase β, on the same constituent
in phase α. The electrical �eld is de�ned so that

∑N
j=1 Eαj

= ET, where ET

is the total electrical �eld.

Summation of (A.3.5) over the species yields Gauss law for the α phase,
as

div (εαDα) = εαq
e
αj

+
∑

α 6=β
εαd̂

β
α (A.3.7)

A restriction for the sum of the excess charge density of the species is iden-
ti�ed directly by comparing (A.3.5) and (A.3.7), which yields

N∑

j=1

d̂αj
= 0 (A.3.8)

The net e�ect from the the species in the α phase must be zero in order to
ful�ll the assumption that the interface holds no physical properties, that is,
a second restriction is invoked by

εαd̂
β
αj

+ εαd̂
α
βj

= 0 (A.3.9)
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A.3.3 Macroscopic form of Faraday's law

The macroscopic form of Faraday's law for the j'th species in the α phase is

curl
(
εαEαj

)
= εασ̂αj

+
∑

α6=β
εασ̂

β
αj

(A.3.10)

where σ̂αj
is the e�ect of the electrical �eld from species in the α phase and

σ̂βαj
incorporates the e�ects from the β phases. Summation of (A.3.10) yields

curl (εαEα) =
∑

α 6=β
εασ̂

β
α (A.3.11)

By comparing (A.3.10) and (A.3.11), a restriction for summing σ̂αj
over the

species, is
N∑

j=1

εασ̂αj
= 0 (A.3.12)

No net e�ects from the electrical �elds between the surface phases is allowed,
which is the restriction

εασ̂
β
αj

+ εασ̂
α
βj

= 0 (A.3.13)

A.3.4 Macroscopic form of Ampère's law

The quasi-static macroscopic form of Ampère's law for the j'th species is

εαJαj
= −∂

(
εαDαj

)

∂t
+ curl

(
εαHαj

)
− curl

(
εαPαj

× x′αj

)

+εαĥαj
−
∑

α 6=β
εαĥ

β
αj

(A.3.14)

where Hαj
is the magnetic �eld intensity, Jαj

is the free current density of

the j'th species in a �xed frame, ĥαj
is the free current density supply from

other species in the same phase and ĥβαj
is the free current density supply

from the j'th species in the β phase.

Summation of (A.3.14) over the j'th species yields the macroscopic form
of Ampère's law for the α phase, that is

εαJα = −∂ (εαDα)

∂t
+ curl (εαHα)− curl (εαPα × x′α)−

∑

α 6=β
εαĥ

β
α (A.3.15)
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By comparing (A.3.14) and (A.3.15) gives the restriction for ĥαj
as

N∑

j=1

ĥαj
= 0 (A.3.16)

and the assumption of a mass less phase interface yields

εαĥ
β
αj

+ εαĥ
α
βj

= 0 (A.3.17)

A.3.5 Macroscopic form of conservation of electrical

charge

The conservation of charge is derived from the divergence of Ampère's law
together with the time derivative of Gauss' law, which is

div
(
εαJαj

+ εαq
e
αj
x′αj

)
+
∂

∂t

(
εαq

e
αj

)
= εαq̂

e
αj

+ εαραj
zαj

ĉαj

+
∑

α6=β
εαραj

(
Ẑβ
αj

+ zαj
r̂βαj

)
(A.3.18)

where zαj
is the charge per unit mass, q̂eαj

is the rate of charge gain from
the j'th species, due to interactions with other species in the α phase and
Ẑβ
αj

is the rate of charge from other phases than α. The free current density
relative to the species Jαj

, is related to Jαj
by the relation

Jαj
= Jαj

− qeαj
x′αj

(A.3.19)

Using the mass balance equation (A.3.1) together with (A.3.18) yields the
form

εαραj

Dαj
zαj

Dt
+ div

(
εαJαj

)
= εαq̂

e
αj

+
∑

α 6=β
εαραj

Ẑβ
αj

(A.3.20)

Summation of (A.3.18) over the species yields

div (εαJα + εαq
e
αx
′
α) +

∂

∂t
(εαq

e
α) =

∑

α 6=β
εαρα

(
Ẑβ
α + zαr̂

β
α

)
(A.3.21)

where a comparison between (A.3.18) and (A.3.21) yields the restriction

N∑

j=1

(
q̂eαj

+ ραj
zαj

ĉαj

)
= 0 (A.3.22)

198 Department of Civil Engineering - Technical University of Denmark



Mixture theories A.3 Multi-phase HMT with Maxwell's equations

and

εαραj

(
Ẑβ
αj

+ zαj
r̂βαj

)
+ εβρβj

(
Ẑα
βj

+ zβj r̂
α
βj

)
= 0 (A.3.23)

The combination of Ampère's law and Gauss' law implies more restric-
tions for the exchange terms. It can be shown that

div

(
εαĥαj

+
∑

α 6=β
εαĥ

β
αj

)
−
∂
(
εαd̂αj

)

∂t

−
∑

α 6=β

∂
(
εαd̂αj

)

∂t
= εαq̂

e
αj

+ εαq̂
e
αj
ĉαj

+
∑

α 6=β
εαραj

(
Ẑβ
αj

+ zαj
r̂βαj

)
(A.3.24)

A.3.6 Linear momentum with electromagnetic forces

The linear momentum in (A.2.32) is expanded when electromagnetic forces
are introduced. The macroscopic form of linear momentum for the species,
introduced in HMT, is de�ned as

εαραj
îαj

+
∑

α 6=β
εαραj

T̂β
αj

= εαραj

Dαj
x′αj

Dt
− div

(
εαTαj

)
− εαqeαj

ET

+
1

2
ε0ET · Eαj

grad (εα)− εαραj

(
bαj

+ bI,αj

)

−εαPαj
grad (ET ) (A.3.25)

where îαj
is the gain of linear momentum from other species, except chemical

reaction,Tαj
is the partial Cauchy stress tensor, bαj

is the external body
force acting on j'th species in the α phase, bI,αj

is an additional inner body

force, due to di�erences in the electromagnetic �elds and T̂β
αj

is the rate
of mechanical momentum from the j'th species in the β phase to the same
constituent in the α phase.

Summation of (A.3.25) over the phases yields

∑

α 6=β
εαραT̂

β
α =

Dαx
′
α

Dt
− div (εαTα)− 1

2
ε0ET · Eαgrad (εα)

− εαρα (bα + bI,α)− εαqeαET − εαPαgrad (ET ) (A.3.26)
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Comparing (A.3.25) and (A.3.26) yields the restriction

N∑

j=1

ραj

(
îαj

+ ĉαj
x′αj

)
= 0 (A.3.27)

and for the interface between the phases, the following condition is obtained

εαραj

(
T̂β
αj

+ r̂βαj
x′αj

)
+ εβρβj

(
T̂α
βj

+ r̂αβjx
′
βj

)
= 0 (A.3.28)

A.3.7 Angular momentum with electromagnetic forces

The balance postulate for the macroscale form of angular momentum, written
with index notation using the permutation tensor εklm, is

−εαεklmT(αj)kl − εαεklmP(αj)k (ET )l = εαραj
m̂(αj)m +M(αj)m

+
∑

α 6=β
εαραj

m̂β
(αj)m (A.3.29)

where m̂(αj)m is the exchange of momentum from the j'th species in the α

phase, m̂β
(αj)m is the exchange of momentum in from the j'th species in the

β phase to the α phase and M(αj)m rate of angular momentum gain due to
the microscale angular momentum terms.

Summation of (A.3.29) over the phases is

−εαεklmT(α)kl − εαεklmP(α)k (ET )l = M(α)m +
∑

α 6=β
εαραm̂

β
(α)m (A.3.30)

The following restriction in the bulk phase must hold in order to ensure
momentum transfer in the phase

N∑

j=1

ραj
m̂αj

= 0 (A.3.31)

and the interface restriction between the phases is

εαραj
m̂β

αj
+ εαραj

m̂β
αj

= 0 (A.3.32)

A.3.8 Energy balance with electromagnetic forces

The energy balance for the species accounting for the electromagnetic forces
is an further extension of the form presented in Sec. A.2.4. The macroscopic
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form of the HMT quasi-static energy balance, is given by

εαραj

Dαj
eαj

Dt
= tr

(
εαTαj

Lαj

)
+ div

(
εαqαj

)
+

1

2
ε0ET · Eαj

Dαj
εα

Dt

+εαJαj
· ET +

∂
(
εαPαj

)

∂t
· ET + div

(
εαx

′
αj
Pαj

)
· ET

+εαj
ραj

rαj
+ εαραj

Q̂αj
+
∑

α 6=β
εαραj

Q̂β
αj

(A.3.33)

where rαj
is the external energy supply, Q̂αj

is the rate of energy gain from

other species in the same phase, Q̂β
αj
is the rate of energy gain from constituent

j in the β phase on the same constituent in the α phase. Additional terms
are added to qαj

and Q̂αj
compared to A.2.4.2, due to the electromagnetic

�eld and that the third term on the right-hand is to account for electro quasi-
static e�ects for swelling materials (Bennethum and Cushman, 2002a). The
sum of the three terms in the second row of (A.3.33) is the electrical induced
energy source.

Summation of (A.3.33) over the species yields

εαρα
Dαeα
Dt

= tr (εαTαLα) + div (εαqα) +
1

2
ε0ET · Eα

Dαj
εα

Dt

+εαJα · ET +
∂ (εαPα)

∂t
· ET + div (εαx

′
αPα) · ET

+εαj
ραj

rα +
∑

α6=β
εαραQ̂

β
α (A.3.34)

Comparing (A.3.33) with (A.3.34) one obtain the restriction

N∑

j=1

(
ραj

Q̂αj
+ ραj

îαj
· x′αj

+ ραj
ĉαj

(
eαj

+
1

2

(
x′αj

)2
))

= 0 (A.3.35)

The energy is assumed to be transferred to other species in the bulk and the
phase interface restriction is

[
εαραj

Q̂β
αj

+ εαραj
T̂β
αj
· x′αj

+ εαραj
r̂αj

(
eαj

+
1

2

(
xαj

)2
)]

+

[
εαραj

Q̂α
βj

+ εβρβjT̂
α
βj
· x′βj + εβρβj r̂βj

(
eβj +

1

2

(
xβj
)2
)]

= 0 (A.3.36)

which is the condition describing that no energy is accumulated at the inter-
faces.
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A.3.9 Entropy balance with electromagnetic forces

The entropy balance for the j'th species is

εαραj

Dαj
ηαj

Dt
− div

(
εαhαj

)
− εαραj

gαj
=

∑

α 6=β
εαραj

ĥβαj
+ εαραj

η̂αj

+εαραj
Λ̂αj

(A.3.37)

where hαj
is the entropy �ux, ĥβαj

is the entropy transfer from mechanical
interactions between phases, gαj

is an external entropy source, η̂αj
is the

entropy gain from other species in the same phase and Λ̂αj
is the energy

production per unit mass.
Summation of (A.3.37) over the species yields

εαρα
Dαηα
Dt

− div (εαhα)− εαραgα =
∑

α 6=β
εαραĥ

β
α + εαραΛ̂α (A.3.38)

Comparing (A.3.37) and (A.3.38) yields the restriction for the entropy gain,
as

N∑

j=1

ραj

(
η̂αj

+ ĉαj
ηαj

)
= 0 (A.3.39)

and the restriction for the interface between phases, as

εαραj

(
ĥβαj

+ êβαj
ηαj

)
+ εβρβj

(
ĥαβj + êαβjηβj

)
= 0 (A.3.40)

In order to obtain an entropy inequality for a system with a solid part
(α = s) and a liquid part (α = l), one should consider the assumption for
the entropy generation for the whole mixture, given as

ρΛ̂ =
N∑

α=1

N∑

j=1

εαραj
Λ̂αj

> 0 (A.3.41)

It is further assumed that the whole mixture have the same temperature θ,
which results in the following conditions

hαj
=

qαj

θ
; gαj

=
rαj

θ
; hα =

qα
θ

; gα =
rα
θ

(A.3.42)

where it follows that

N∑

α=1

εαhα =
N∑

α=1

εαqα
θ

;
N∑

α=1

εαgα =
N∑

α=1

εαrα
θ

(A.3.43)
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As shown in Sec. A.2.5, it is convenient to introduce and write the in-
equality in terms of the Helmholtz free energy, which is de�ned as

ψαj
= eαj

− θηαj
; ψα =

N∑

j=1

cαj
ψαj

(A.3.44)

An extended de�nition of the Helmholtz free energy is introduced due to the
inclusion of electrical �elds and polarization e�ects , which is

ψ̃αj
= eαj

− θηαj
− 1

ραj

ET ·Pαj
; ψ̃α =

N∑

j=1

cαj
ψ̃αj

(A.3.45)

A useful form of the entropy inequality, including the Helmholtz free en-
ergy, is obtained by the same procedure as shown in Sec. A.2.5, where the
energy balance is introduced in the inequality together with the de�nition
of Helmholtz free energy. For the case with electromagnetic forces consid-
ered here, the entropy balance (A.3.37) together with (A.3.41), (A.3.33),
in which the de�nitions (A.3.42) are used, together with the restrictions
(A.3.35),(A.3.36),(A.3.39) and (A.3.40), are used to establish the following

∑

α

εαραθΛ̂α =
∑

α=l,s

N∑

j=1

[
−εαραj

Dαj
ψ̃αj

Dt
− εαραj

Dαj
θ

Dt

+
εα
θ
ET ·Pαj

Dαj
ραj

Dt
− εαPαj

· Dαj
ET

Dt
− εαET ·

Dαj
Pαj

Dt

+
εα
θ
grad (θ) · qαj

+ tr
(
εαT

T
αj
Lαj

)
+ εαJα · ET

+
∂
(
εαPαj

)

∂t
· ET +

∂
(
εαPαj

)

∂t
· ET + div

(
εαx

′
αj
Pαj

)
· ET

+ εαραj
θ

(∑

α 6=β
êβαj

ηαj
+ ĉαj

ηαj

)
− εαραj

(∑

α 6=β
T̂β
αj
· x′αj

+êβαj

(
ψ̃αj

+ θηαj

1

ραj

ET ·Pαj
+

1

2

(
xαj

)2
))
− εαραj

îαj
· x′αj

−εαj
ραj

cαj

(
ψ̃αj

+ θηαj

1

ραj

ET ·Pαj
+

1

2

(
xαj

)2
)]

> 0 (A.3.46)

Additional relations are used to obtain the desired inequality, where the
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following is used

qα · grad (θ) =
N∑

j=1

qαj
· grad (θ) ; ηα

Dαθ

Dt
= ηαj

N∑

j=1

Dαj
θ

Dt
;

TαLα =
N∑

j=1

Tαj
Lαj

(A.3.47)

Another relation of importance to reach a useful form of the entropy inequal-
ity, is

−
N∑

j=1

εαραj

Dαj
ψ̃αj

Dt
= −εαραj

Dαψ̃αj

Dt
− ψ̃αj

Dαεαραj

Dt
+

N∑

j=1

[
ψ̃αj

Dsεαραj

Dt

+ψ̃αj
x′αj ,α

· grad
(
εαραj

)
+ ψ̃αj

x′α,s · grad
(
εαραj

)

−x′αj ,α
· grad

(
εαραj

ψ̃αj

)
(A.3.48)

= −εαραj

Dαψ̃αj

Dt
+

N∑

j=1

[
ψ̃αj

Dsεαραj

Dt

+εαραj
ψ̃αj

div (x′α) + ψ̃αj
x′α,s · grad

(
εαραj

)

+εαραj
div
(
ψ̃αj

)
· x′αj ,α

−
∑

α 6=β

(
εαραj

ψ̃αê
β
αj

)]
(A.3.49)

where the notation α, s refers to a relative velocity of the α-phase with respect
to the solid s, (x′α,s = x′α − x′s).
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Summation of (A.3.46) and using (A.3.47) and (A.3.49) yields the desired
inequality, as

∑

α

εαραθΛ̂α = −
∑

α

εαρα

(
Dαψ̃α
Dt

+ ηα
Dαθ

Dt

)
+
∑

α

Jα · ET

+
∑

α

[
εαTα + εαPα · ET I +

N∑

j=1

εαραj

(
ψ̃αj

I
)]

: Lα

+
∑

α

N∑

j=1

[
εαTαj

+ εαPαj
· ET I

]
: Lαj ,α

+
∑

α

Dsεα
Dt

[
1

2
ε0ET · Eα + ET ·Pα + ραψα

]
+
∑

α

εα
θ
gradθ

×
[
qα +

N∑

j=1

[
ραj

x′αj ,α

(
ψ̃αj

+
1

2
x′αj ,α

· x′αj ,α

)
−Tαj

· x′αj ,α

]]

+
∑

α

N∑

j=1

Dsραj

Dt

[
1

ραj

ET ·Pαj
+ ψαj

]
−
∑

α

εα
DsET

Dt
·Pαj

+ x′l,s ·
[
−εlρlT̂l

s +
N∑

j=1

(
ψljgrad

(
εlρlj

)
+

1

ρlj
ET ·Pljgrad

(
εlρlj

))

−εlgrad (ET ) ·Plj +
1

2
ε0ET · Eljgrad (εl)

]
+
∑

α

N∑

j=1

x′αj ,α

×
[
−εαραj

(
îαj

+
∑

α 6=β
T̂β
αj

)
− εαραj

grad
(
ψ̃αj

)
− εαqeαj

ET−

− εαPαj
grad (ET ) +

1

2
ε0ET · Eαj

grad (εα) +
1

ραj

ET ·Pαj
grad

(
εαραj

)]

−
∑

α

N∑

j=1

∑

β 6=α
εαραj

êβαj

[
ψ̃αj

+ θηαj

1

ραj

ET ·Pαj
+

1

2

(
x′αj ,α

)2

+ψ̃α +
1

2

(
x′α,s
)2
]

+
∑

α

N∑

j=1

εαραj
ĉαj

[
−1

2

(
x′αj ,α

)2

− ψ̃αj

− 1

ραj

ET ·Pαj

]
(A.3.50)

The �nal form can be used to de�ne constitutive relations and to de�ne
de�nitions of physical properties such as the hydrostatic pressure and the
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entropy, to form governing equation systems.

A.3.10 Constitutive theory with electroquasistatic ef-

fects

A short review of parts of the constitutive theory used in Bennethum and
Cushman (2002b), where the inequality (A.3.50) is used to derive thermody-
namic de�nitions and constitutive assumptions is presented in the following.
The mathematical steps for evaluating the inequality (A.3.50) is similar to
the more simple cases described in Sec. 2.1.2. A two phase system, including
a solid and liquid phase is considered by Bennethum and Cushman (2002b),

where the choice of Helmholtz free energy ψ̃α, are

ψ̃l = ψ̃l

(
εl, θ, ρlj , x

′
l,s, x

′
lj ,l
, Es, ET , zlj , ∇θ, ∇ρlj , dl, ωl, ∇x′lj ,l

)
(A.3.51)

and

ψ̃s = ψ̃s

(
εl, θ, ρsj , x

′
sj ,s
, Es, ET , zsj , ∇θ, ∇ρsj , ωs

)
(A.3.52)

where Es is the Green-Lagrange strain tensor of the solid, zlj is the charge
per unit mass density of the j'th species in the α phase, dl is the rate of
deformation tensor of the liquid and ω is the vorticity tensor. The material
time derivative of (A.3.51) and (A.3.52) are used to evaluate the terms in
(A.3.50) in order to satisfy the inequality.

A Lagrange multiplier Λ is introduced by Bennethum and Cushman
(2002b) from which the streaming (or electrical) potential is de�ned. The
total charge balance is introduced as

Ds

Dt
(εlq

e
l + εsq

e
s) = 0 (A.3.53)

where qel and q
e
s is the charge density of the liquid and solid phases, respec-

tively.
The Lagrange multiplier Λ is multiplied with (A.3.53) and added to the

inequality (A.3.50). The speci�c choice of the Helmholtz free energy yields
the de�nition of the Lagrange multiplier, as

Λ =
ρα
ραj

∂ψ̃α
∂zαj

(A.3.54)

It is noted that the Lagrange multiplier, in this case, is identi�ed to be of
reference character, since one reference species (in this case the j'th species)
needs to be chosen for the de�nition of Λ.
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The Fick's law for di�usion using the entropy inequality with electroqua-
sistatics, the speci�c choice of the Helmholtz free energy and the de�nition
of the Lagrange multiplier, is

N∑

k=1

rljk · x′lk,l = −εlρlj∇µlj + εlρlj
(
blj − bI,lj

)
+ εlρl

∂ψ̃l
∂zlj
∇zlj

+εlq
e
l∇Λ + εlρljzlET + εlρlj

∂ψ̃l
∂θ
∇θ

−
(
rlj
)θ · x′l,s (A.3.55)

where rljk is the material coe�cient tensor for the coupled di�usion. The
�rst term on the right hand side of (A.3.56) is similar to that derived for
the more simple case in Sec. 2.1.2. The fourth term on the right hand side
is the electrical potential gradient, which is a part of the Poisson-Nernst-
Planck system. If the total electrical �eld is constituted as ET = gradΛ then
the Gauss law can be used to calculate Λ which is the Poisson part of the
Poisson-Nernst-Planck system.

The liquid �ow, following a generalized Darcy's law, is derived as

R · x′l,s = −εl∇pl + εlρl
(
blj − bI,lj

)
+ πl∇εl + εlq

e
lET

+εlq
e
l∇Λ + εlρl

∂ψ̃l
∂Es

: (∇Es)θ − εlρl
∂ψ̃l
∂ET

· (∇ET )θ

−εlρl
∂ψ̃l
∂θ
·
(
∇2θ

)
−
∑

j=1

rljk · x′lk,l (A.3.56)

whereR is a second-order material coe�cient tensor, pl is the thermodynamic
pressure and πl is the swelling pressure. This constitutive relation for the
liquid �ow is much more involved than compared to the relation used in the
papers of this thesis in which only the third term on the right hand side is
used. It should be mentioned that even though the HMT results shown here
is very general, it does not account for history dependent sorption hysteresis
e�ects. Attempts to check the thermodynamic relevance of using di�erent
history dependent sorption hysteresis laws within continuum mixture theories
is rare and no consensus in this matter has been reached, e.g., see Ristinmaa
et al. (2011).
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