
Higher-Order Methods for Solving Maxwell's Equations

in the Time-Domain

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

von der Fakultät für Physik der Universität (TH)
Karlsruhe

genehmigte

DISSERTATION

von

Dipl. Phys. Jens Niegemann
aus Saarbrücken

Tag der mündlichen Prüfung: 16.01.2009
Referent: Prof. Dr. K. Busch

Korreferent: Prof. Dr. M. Wegener





Contents

1 Introduction to Nanophotonics 1
1.1 Integrated Photonics and Dielectric Resonators . . . . . . . . . . . . . . 1
1.2 Plasmonics and Metamaterials . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The Role of Numerics in Nanophotonics . . . . . . . . . . . . . . . . . . 4

2 Classical Electromagnetism 7
2.1 Maxwell's Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Constitutive Relations and Material Interfaces . . . . . . . . . . . . . . . 9
2.3 Symmetries and Reduction to Lower Dimensions . . . . . . . . . . . . . 11
2.4 Plane Wave Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Dyadic Green's Tensor and Sources . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Fields Generated by a Point Source . . . . . . . . . . . . . . . . . 18
2.6 Energy Density and the Poynting Vector . . . . . . . . . . . . . . . . . . 19
2.7 Rescaling to Dimensionless Units . . . . . . . . . . . . . . . . . . . . . . 20

3 Auxiliary Differential Equations 23
3.1 Models of Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 The Lorentz Model . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 The Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Derivation of the ADEs . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Perfectly Matched Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Uniaxial Perfectly Matched Layers . . . . . . . . . . . . . . . . . 28
3.2.2 Stretched Coordinates CFS-PMLs . . . . . . . . . . . . . . . . . 31

4 The Finite-Difference Time-Domain Method 35
4.1 Discretization with Finite Di�erences . . . . . . . . . . . . . . . . . . . . 35

4.1.1 The One-Dimensional Case . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Higher Dimensions and the Yee Cube . . . . . . . . . . . . . . . 38

4.2 Convergence, Stability and Accuracy . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Improvements by Using Higher-Order Discretizations . . . . . . . 44

4.3 Making it Work in Practice . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Discretization of Material Parameters . . . . . . . . . . . . . . . 47
4.3.2 Implementation of Sources . . . . . . . . . . . . . . . . . . . . . . 48
4.3.3 Boundary Conditions and PMLs . . . . . . . . . . . . . . . . . . 50
4.3.4 Dispersive Materials . . . . . . . . . . . . . . . . . . . . . . . . . 52

i



Contents

4.4 Veri�cation of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Empty Metallic Cavities . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 Half-Filled Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 Optimization of the PML Parameters . . . . . . . . . . . . . . . 55

5 The Discontinuous Galerkin Method 61
5.1 One-Dimensional Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Local mapping of the cells . . . . . . . . . . . . . . . . . . . . . . 62

5.1.2 Expansion into a Local Basis . . . . . . . . . . . . . . . . . . . . 62

5.1.3 The Numerical Flux and the Riemann Problem . . . . . . . . . . 64

5.1.4 The Choice of the Basis and the Nodal Points . . . . . . . . . . . 66

5.2 Two- and Three-Dimensional Systems . . . . . . . . . . . . . . . . . . . 69

5.2.1 The Numerical Flux in Higher Dimensions . . . . . . . . . . . . . 71

5.2.2 Brie�y on Boundary Conditions . . . . . . . . . . . . . . . . . . . 72

5.2.3 Derivation of the Semi-Discrete System . . . . . . . . . . . . . . 74

5.2.4 Mapping of the Cells and Node Generation . . . . . . . . . . . . 75

5.2.5 Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Convergence and Time-Stepping . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.2 Time-Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Sources, Dispersive Media and PMLs . . . . . . . . . . . . . . . . . . . . 83

5.5 Veri�cation and Comparison to FDTD . . . . . . . . . . . . . . . . . . . 84

5.5.1 Empty Metallic Cavities . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.2 Half-Filled Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.3 Optimization of the PML Parameters . . . . . . . . . . . . . . . 89

6 Advanced Time Integration 93
6.1 Linear Matrix Exponential Integrators . . . . . . . . . . . . . . . . . . . 93

6.1.1 Krylov Subspace Techniques . . . . . . . . . . . . . . . . . . . . . 95

6.1.2 Implementation of Sources . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.1 One-Dimensional Systems . . . . . . . . . . . . . . . . . . . . . . 102

6.2.2 Two-Dimensional Systems . . . . . . . . . . . . . . . . . . . . . . 103

6.2.3 Testing of the Sources . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Conclusions on the Choice of Time-Integration . . . . . . . . . . . . . . 106

7 Optical Micro-Resonators 109
7.1 Fundamentals of Optical Micro-Resonators . . . . . . . . . . . . . . . . . 109

7.1.1 Numerical Extraction of the Resonance Frequencies . . . . . . . . 110

7.2 Analytic Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.1 In�nite Cylinders under Normal Incidence . . . . . . . . . . . . . 111

7.3 Microcavity Disk and Ring Resonators . . . . . . . . . . . . . . . . . . . 115

7.3.1 Disk Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.2 Ring Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

ii



Contents

8 Metallic Nanostructures 125
8.1 Plasmons and Surface Plasmon Polaritons . . . . . . . . . . . . . . . . . 125

8.1.1 SPP Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . 125
8.2 Metallic Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.3 Transmission through Metallic Nano-Apertures . . . . . . . . . . . . . . 132
8.4 Metallic Rods and V-Shaped Particles . . . . . . . . . . . . . . . . . . . 136

8.4.1 The Nanobar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.4.2 Metallic V Structure . . . . . . . . . . . . . . . . . . . . . . . . . 139

9 Summary and Outlook 143

iii



Contents

iv



1 Chapter 1

Introduction to Nanophotonics

The fascination of light is probably as old as mankind itself. Already the Greek philoso-
phers Empedokles, Plato and Aristotle were debating over what causes the colors and
how light and colors are related [1]. Over the course of the following 2500 years, hun-
dreds or even thousands of people contributed to our modern understanding of light.
Some of the more recent milestones on this route were the formulation of Maxwell's
equations (1865) [2] and Einstein's concept of the photon (1905) [3]. In the 1940s, the
development culminated in the formulation of quantum electrodynamics (QED), which
allows a consistent description of light and its interaction with matter. While the �eld
of QED and quantum optics is undeniably fascinating, in this thesis we will concentrate
on systems where light can be described as a classical electromagnetic wave.

Despite the fact that Maxwell's theory is almost 150 years old, it still poses signi�-
cant theoretical challenges. While analytic solutions can be found for certain simpli�ed
systems, there exists no universal method to exactly predict the behavior of light in ar-
bitrary systems. Over the past decades, this shortcoming became particularly apparent
when fabrication technology advanced to a point where it is possible to create almost
arbitrary geometrical structures on the nanometer scale. As it turns out, these nano-
structures expose a rich variety of qualitatively new physical e�ects, thereby allowing
us to gain unprecedented control over light propagation and light-matter interaction.
Some of these e�ects have sparked the imagination of scientists, leading to futuristic
visions ranging from single-photon all-optical computing [4] to cloaking in the visible
spectrum [5]. In addition, there is a variety of practical problems where nanophotonic
devices might present a solution.

1.1 Integrated Photonics and Dielectric Resonators

Some of the most promising near-term applications can be found in data communi-
cation, where light already plays a dominant role. Almost the entire backbone of the
modern telecommunication networks is based on optical �bers. While the transport
of information is well under control, it is the processing of the data that still presents
major challenges. Today, these processing tasks are usually performed by electronic
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1 Introduction to Nanophotonics

(a) (b)

Figure 1.1: Electron micrographs of two di�erent realizations of dielectric res-
onators: (a) An integrated photonic circuit with ring resonators (adapted from
Ref. [6]). (b) A toroidal microresonator used for single-molecule detection (adapted
from Ref. [8]).

devices, so that information �rst needs to be converted from light to electric signals
and, afterwards, the processed data must be converted back again. Here, integrated
nanophotonic devices which allow to �lter, delay or switch signals all-optically could
deliver signi�cantly higher data rates at reduced cost and with less energy consumption.

Recently, some progress was made in that direction, when researchers at IBM pre-
sented realizations of compact optical bu�ers [6] and of high-throughput optical switches
[7] on a chip. Both devices are based on nanophotonic ring-resonators similar to those
depicted in Fig. 1.1(a). Particularly impressive in this work is the enormous precision
achieved in manufacturing those integrated photonic devices. For the delay line shown
in Fig. 1.1(a), the authors reported a mean surface roughness of only 1.1 nm, while the
rings have a radius of 6.8 µm.

Besides their applications in optical data processing, there is a second fascinating
�eld, where optical resonators truly excel. In recent experiments [8], it was demon-
strated that one can utilize photonic microresonators as ultra-sensitive biological sen-
sors. Employing a particular resonator structure (see Fig. 1.1(b)), the authors managed
to reliably detect single biological molecules. It should be noted that sensing and infor-
mation processing are only two examples out of the repertoire of possible applications
of dielectric resonators. They can also be used to enhance nonlinear e�ects [9] or
to study quantum-electrodynamical e�ects [10]. Furthermore, microresonators were
recently considered for investigating optomechanical interactions [11].

What most applications of dielectric resonators have in common is that the structures
need to be manufactured to very high precision. Consequently, this accuracy must also
be re�ected in corresponding theoretical calculations if reliable predictions or tangible
design proposals are desired. It is this problem of modeling nanophotonic structures
with high precision that will be the main topic of the present thesis.
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1.2 Plasmonics and Metamaterials

(a) (b)

Figure 1.2: Typical examples of metallic nanostructures: (a) A plasmonic chan-
nel waveguide splitting (adapted from Ref. [14]). (b) Electron micrograph of a
metamaterial consisting of tiny split-ring resonators (adapted from Ref. [15]).

1.2 Plasmonics and Metamaterials

Besides dielectric microresonators, the past years also witnessed an upsurge of interest
in metallic nanostructures. Traditionally, besides their application as mirrors, metals
did not play a major role as optical materials. It was only in the past decade that re-
searchers realized how nanostructured metals can provide unique ways of manipulating
light at length scales much smaller than its wavelength.

One of the pivotal experiments in this direction was performed by T. Ebbesen and
coworkers in 1998 [12]. They manufactured a very basic array of subwavelength holes
in a thin metallic �lm and measured the transmission. For certain wavelengths, the
transmission exceeded theoretical estimates by several orders of magnitude. This result
demonstrated clearly, that the traditional theory of optics often breaks down in the
context of nanostructures. To properly understand the observed e�ects, one has to
rigorously solve the fundamental equations governing light propagation, i.e., Maxwell's
equations.

Today, there is a whole �eld of research focused on exploring the optical properties
of metallic nanostructures. This area is often termed �plasmonics� and, within a few
years, this young �eld has already brought forward a number of exciting ideas and dis-
coveries. One of the key points of plasmonic structures is that they allow to concentrate
electromagnetic �elds in very small volumes. Thereby, for certain applications, they
e�ectively allow to overcome the di�raction limit. Potential applications of plasmonic
devices are manifold and range from the improvement of spectroscopy [13] to signal
transport on very small length scales [14] (see Fig. 1.2(a)).

Closely related to plasmonics is the �eld of optical metamaterials. These man-made
media consist of periodic arrangements of metallic nanostructures (see Fig. 1.2(b))
which should ideally be much smaller than the wavelength of the incoming light. If this
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1 Introduction to Nanophotonics

is the case, the light is not able to resolve the individual scatterers and instead �feels�
an e�ective medium. By varying the shape, orientation and material of the building
blocks, it becomes possible to tailor the optical properties of the metamaterial. In
particular, it was demonstrated that one can achieve a material with negative refractive
index [16] for visible light.

As alluded to above, an accurate theoretical description of metallic nanostructures
mandates a rigorous solution of Maxwell's equations. Here, a particular problem is the
e�ect that a sharp metallic corner can lead to a singularity in the electric �eld. This
phenomenon�known as the lightning-rod e�ect�can, on the one hand, be exploited
to create strongly enhanced electric �elds. On the other hand, it massively complicates
the accurate theoretical treatment, since one has to deal with divergent �elds.

1.3 The Role of Numerics in Nanophotonics

As mentioned previously, exact analytical solutions to Maxwell's equations are only
known for a few canonical structures such as spheres, ellipsoids or in�nitely long cylin-
ders. In all other cases, one usually has to resort to numerical methods. As long as a
system only contains linear media, there are two basic approaches one can follow. Ei-
ther one pursues a time-domain solution or one applies a Fourier transform and solves
Maxwell's equations in the frequency-domain. For the latter class of problems, sophis-
ticated �nite-element methods (FEMs) are available which allow to accurately model
complex geometries. However, in many cases a time-domain approach is preferable,
because it allows to investigate the propagation of short pulses and transient e�ects
more naturally. In addition, a time-domain solver is the only viable choice if the system
contains any form of nonlinearity.

When researching time-domain methods with respect to Maxwell's equations, one
inevitably comes across the celebrated �nite-di�erence time-domain (FDTD) method.
This scheme was originally proposed in 1966 by Kane Yee and has since become the
primary means to computationally model the propagation of electromagnetic waves.
The beauty of this method lies in its simplicity and versatility. By employing a rectan-
gular grid and low-order discretizations, one obtains an explicit update scheme which
can be implemented with only a few lines of computer code. This allows the scientist
to focus on the research instead of spending time and energy on the implementation
of a numerical scheme. The undeniable importance of the FDTD method is witnessed
by the fact that more than 12,000 scienti�c articles1 investigating or employing this
method were published over the past 40 years.

However, for complex systems containing curved surfaces and material interfaces,
the unadapted grid and the low-order approximations can also present a severe weak-
ness (see Fig. 1.3). In these cases, the required computational e�ort of the FDTD
method increases dramatically and one often needs large compute clusters with enor-

1The number was obtained by a search in the ISI database [17] for articles with either �FDTD� or
��nite-di�erence time-domain� occurring in the title or abstract. Thereby, it can only serve as a
lower limit.
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(a) (b)

Figure 1.3: A sphere discretized by (a) a rectangular grid and (b) an unstructured
tetrahedral mesh. The sphere shown in (a) consists of 4169 cubes, while the mesh
depicted in (b) contains only 118 tetrahedra.

mous amounts of memory to still obtain converged results. To overcome these prob-
lems, it would be desirable to have a more sophisticated time-domain solver which
employs adaptive meshes and allows for higher-order discretizations. Classical FEMs,
as used in the frequency-domain, might seem an ideal choice. Unfortunately, they
require the solution of a large system of equations at each timestep. The additional
computational burden thereby renders traditional �nite-element schemes unsuitable
for time-domain calculations of larger nanophotonic systems. The problem can be
circumvented by employing a variation of the FEM, namely a discontinuous Galerkin
(DG) approach. This method was initially proposed by Hill and Reed [18] in the
context of neutron transport. In the past few years, the DG method has attracted
considerable attention and is now being employed to a wide range of problems from
acoustics to hydrodynamics. Since the year 2002 there exists a mathematical proof for
the convergence of the DG method when applied to Maxwell's equations [19].
In this thesis, we will carefully explore the applicability of both the FDTD and the

DG method with respect to nanophotonic systems. After a brief reminder on classical
electromagnetism (Ch. 2), we will use Ch. 3 to introduce a number of valuable analytical
tools which enable us to model realistic nanophotonic setups. Next, in Ch. 4, the details
of the FDTD method will be presented and its properties are thoroughly analyzed. In
Ch. 5, we then proceed to an extensive discussion of the DG scheme. Here, we will
already conduct �rst comparisons between the two methods on simple model systems.
Before we continue with more realistic setups, we use Ch. 6 for a detour to the topic
of time integration. In Ch. 7, we then come to the simulation of dielectric resonator
structures. Next, we pursue a number of studies on metallic nanostructures in Ch. 8.
There, we will also compare some of our results to experimental measurements. Finally,
the thesis is concluded with a summary and an outlook in Ch. 9.
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2 Chapter 2

Classical Electromagnetism

Before we can dive into the numerical simulation of nanophotonic systems, it makes
sense to brie�y recapitulate Maxwell's equations and some of their inherent proper-
ties. In the interest of brevity, we restrict the discussion to features relevant for the
applications discussed in the later chapters. An exhaustive introduction to linear elec-
tromagnetism can be found in textbooks such as the one by David Jackson [20].

2.1 Maxwell’s Equations

As discovered by J. C. Maxwell, the propagation of light is well described by the
equations for electromagnetic radiation. Today, those equations are commonly called
Maxwell's equations and in their di�erential formulation they read

∇ · ~D(~r , t) = ρ(~r , t),

∇ · ~B(~r , t) = 0,

∇× ~E (~r , t) = −∂
~B(~r , t)
∂t

,

∇× ~H (~r , t) =
∂~D(~r , t)
∂t

+~j (~r , t).

Maxwell's Equations

(2.1a)

(2.1b)

(2.1c)

(2.1d)

Here, ~E (~r , t) and ~H (~r , t) denote the electric and magnetic �eld, respectively. Further-
more, ~D(~r , t) is called the electric displacement, while ~B(~r , t) signi�es the magnetic
induction. The charge density is described by ρ(~r , t) and ~j (~r , t) denotes the electric
currents in the system. To simplify the notation we subsequently drop the explicit
temporal and spatial dependence of the variables unless it is imperative for the under-
standing.
By di�erentiating Eq. (2.1a) with respect to time and inserting Eq. (2.1d), we can

derive the continuity equation
∂

∂t
ρ+∇ ·~j = 0, (2.2)

7



2 Classical Electromagnetism

which essentially states the conservation of charge in the system.

One can classify Maxwell's equations by the type of derivatives they contain. Thus,
Eq. (2.1c) and (2.1d) are called the curl-equations, while Eq. (2.1a) and (2.1b) are
termed divergence conditions. For the time-evolution only the curl-equations are rel-
evant, while the divergence conditions can be seen as constraints which need to be
ful�lled at all times. However, by applying the divergence to the curl-equations and
using the continuity equation (2.2), it becomes obvious that the divergence of ~D and ~B
is constant in time. Therefore, as long as the initial conditions ful�ll the divergence con-
ditions and the currents and charges obey the continuity equation, the curl-equations
are su�cient to describe the entire time evolution of the electric and magnetic �eld.

In the Frequency Domain

In some cases it is advantageous to employ a Fourier transform and express Maxwell's
equations in the frequency domain. We do so by using the convention

∂

∂t
FT←→ −iω

which yields

∇ · ~̆D(~r , ω) = ρ̆(~r , ω), (2.3a)

∇ · ~̆B(~r , ω) = 0, (2.3b)

∇× ~̆E (~r , ω) = iω~̆B(~r , ω), (2.3c)

∇× ~̆H (~r , ω) = −iω ~̆D(~r , ω) + ~̆j (~r , ω). (2.3d)

Here and for the rest of this thesis, ˘ denotes variables in the frequency domain and
we will drop the explicit dependence on ω if not required for clarity.

Conservative Form

In order to obtain a more general formulation, it is possible to combine the curl-
equations into a so-called conservative form

∂tu(~r , t) + ∂xFx (u) + ∂yFy(u) + ∂zFz (u) = J(~r , t). (2.4)

Here, we have introduced u =
(
~D , ~B

)T
, J =

(
~j , 0
)T

and the �ux vector

Fi(u) =

(
−êi × ~H
êi × ~E

)
.

In this notation, êi , i = x , y , z denote the Cartesian unit vectors. In order to explicitly
see the conservative nature of Eq. (2.4), one can integrate them over a volume V with

8
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the closed boundary ∂V . Using Gauss's law and neglecting the current terms then
gives the expected form

∂

∂t

∫
V

u(~r , t) d~r +
∮
∂V

~F (u) · n̂ da = 0,

where we have introduced ~F =
(
F1,F2,F3

)T
and the normal vector n̂ of the boundary.

2.2 Constitutive Relations and Material Interfaces

So far, Maxwell's equations (2.1) contain twelve unknown �eld components with only
eight independent equations. What is still missing are the constitutive relations, de-
scribing the interaction of the �elds with matter. Using SI-units, these relations can
be written as

~B(~r , t) = µ0
~H (~r , t) + ~M (~r , t), (2.5a)

~D(~r , t) = ε0~E (~r , t) + ~P(~r , t), (2.5b)

where ~P and ~M are the macroscopic polarization and magnetization, respectively.
The free-space permittivity ε0 and the permeability µ0 are natural constants which are
related to the velocity of light in vacuum c by

c2 =
1

ε0µ0
.

The polarization and magnetization can both depend on the position ~r , the time t
and the �elds ~E and ~H in a complicated manner. Obtaining a general expression is
an intricate quantum mechanical problem and basically intractable. Fortunately, for
most materials and reasonable light intensities, a full treatment is not necessary and
excellent approximations can be made. For simplicity, we start with considering only
local response in linear and isotropic media, which allows us to write

~D(~r , t) = ε0~E (~r , t) + ε0

∞∫
−∞

dt ′χE (~r , t ′)~E (~r , t − t ′), (2.6a)

~B(~r , t) = µ0
~H (~r , t) + µ0

∞∫
−∞

dt ′χM (~r , t ′)~H (~r , t − t ′), (2.6b)

with the linear electric and magnetic susceptibilities χE (~r , t ′) and χM (~r , t ′), respec-
tively. Above equations are still somewhat cumbersome because of the convolution
integrals. By applying a Fourier transform, one arrives at the more convenient form

~̆D(~r , ω) = ε0ε̆(~r , ω)~̆E (~r , ω), (2.7a)

~̆B(~r , ω) = µ0µ̆(~r , ω) ~̆H (~r , ω). (2.7b)

9



2 Classical Electromagnetism

We have introduced the relative permittivity ε̆(~r , ω) = 1+χ̆E (~r , ω) and the relative per-
meability µ̆(~r , ω) = 1 + χ̆H (~r , ω). Combining the constitutive relations from Eq. (2.7)
with the curl equations in the frequency domain (2.3) then gives

∇× ~̆E (~r , ω) = iωµ0µ(~r , ω) ~̆H (~r , ω), (2.8a)

∇× ~̆H (~r , ω) = −iωε0ε(~r , ω)~̆E (~r , ω) + ~̆j (~r , t). (2.8b)

For the special case that both ε and µ are frequency-independent, i.e., non-dispersive,
one can easily transform Eq. (2.7) back to the time-domain and obtain

~D(~r , t) = ε0ε(~r)~E (~r , t),
~B(~r , t) = µ0µ(~r)~H (~r , t).

In this case, the curl equations in the time domain can be simpli�ed to

∇× ~E (~r , t) = −µ0µ(~r)
∂ ~H (~r , t)

∂t
, (2.10a)

∇× ~H (~r , t) = ε0ε(~r)
∂~E (~r , t)
∂t

+~j (~r , t). (2.10b)

Equivalently, we can also rewrite the conservative form (2.4) as

Q∂tq +Ax∂xq +Ay∂yq +Az∂zq = 0, (2.11)

where q =
(
~E , ~H

)T
and

Q =



ε 0 0 0 0 0
0 ε 0 0 0 0
0 0 ε 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


, Ax =



0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 1 0 0 0 0



Ay =



0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0


, Az =



0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0


.

Material Interfaces

All realistic setups will contain more than just one material, which means that we
will have to deal with interfaces. The behavior of the electric and magnetic �elds at
such interfaces can be obtained by using Stokes's and Gauss's theorem [20]. Assuming

10
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an interface with normal vector n̂, pointing from medium 1 to medium 2. When
integrating the curl equations over a surface across the interface and applying Stokes's
theorem we obtain the conditions

n̂ ×
(
~E2 − ~E1

)
= 0 and n̂ ×

(
~H2 − ~H1

)
= ~js ,

where ~js denotes the surface current density. For vanishing ~js we see that the tangential
components of ~E and ~H are continuous across the interface. Similarly, integrating the
divergence conditions over an in�nitesimal volume across the interface and applying
Gauss's theorem yields

n̂ ·
(
~D2 − ~D1

)
= ρs and n̂ ·

(
~B2 − ~B1

)
= 0.

Here, ρs signi�es the surface charge density. Neglecting ρs , we observe that the normal
components of ~D and ~B are continuous. As a consequence, the normal components of
~E and ~H are discontinuous and for linear media the magnitude of the jumps is given
by

n̂ · ~E2

n̂ · ~E1

=
ε1
ε2

and
n̂ · ~H2

n̂ · ~H1

=
µ1

µ2
.

Boundary Conditions

(2.12)

As we will demonstrate in the later chapters, it is precisely these discontinuities that
complicate the numerical treatment of Maxwell's equations.

2.3 Symmetries and Reduction to Lower Dimensions

In some cases, it is not necessary to solve the full set of Maxwell's equations, due
to symmetries in the underlying physical system. In practice, relevant symmetries
are either translational or rotational ones. Here, we restrict ourselves to translational
symmetries, which lead to an e�ective reduction of the dimensionality of the system.

Reduction to Two Dimensions

If the entire system is homogeneous in z -direction, this corresponds to an e�ectively
two-dimensional system. Then, all z -derivatives vanish and instead of the six coupled
equations, we obtain two decoupled sets of three equations. Explicitly, those sets read

∂tEx =
1
ε0ε

(
∂yHz − jx

)
,

∂tEy = − 1
ε0ε

(
∂xHz − jy

)
,

∂tHz =
1
µ0µ

(
∂yEx − ∂xEy

)
,

TE Polarization

(2.13a)

(2.13b)

(2.13c)

11
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and

∂tHx = − 1
µ0µ

∂yEz ,

∂tHy =
1
µ0µ

∂xEz ,

∂tEz =
1
ε0ε

(
∂xHy − ∂yHx − jz

)
.

TM Polarization

(2.14a)

(2.14b)

(2.14c)

Equations (2.13) describe propagation in the so-called transverse-electric (TE) po-
larization, where the electrical �eld vector lies in the (x ,y)-plane. In contrast, the
transverse-magnetic (TM) polarization as described by Eqs. (2.14) possesses an elec-
trical �eld perpendicular to the plane of propagation1.

Reduction To One Dimension

If there is a further translational symmetry along the y-direction, it is possible to
reduce Eq. (2.13) and Eq. (2.14) to a single set of two equations,

∂tHy =
1
µ0µ

∂xEz ,

∂tEz =
1
ε0ε

(
∂xHy − jz

)
.

One-Dimensional System

(2.15a)

(2.15b)

In this case, we usually drop the indices of the �eld components.

2.4 Plane Wave Solutions

As alluded to previously, there are no known analytical solutions to Maxwell's equations
with general material distributions. However, for the particularly simple case of a
homogeneous medium with spatially constant ε and µ, general solutions can be readily
found. To simplify the derivation, we start from the curl equations in the frequency

domain (2.8). Solving Eq. (2.8a) for ~̆H and inserting it into Eq. (2.8b) gives

∇×∇× ~̆E =
ω2

c2
ε̆µ̆~̆E + iωµ0µ̆~̆j .

1Unfortunately, the nomenclature of �TE� and �TM� is not unequivocal in the literature. Especially
in the context of planar waveguides, the terms are used with the exact opposite meaning. Therefore
care needs to be taken, when discussing the polarization of light in a two-dimensional system.

12



2.4 Plane Wave Solutions

Exploiting the vector identity ∇ × ∇ × ~̆E = ∇ ·
(
∇ · ~̆E

)
− ∇2 · ~̆E and inserting the

divergence condition (2.1a) one obtains the wave equation

∇2 · ~̆E − ω2

c2
n̆2 ~̆E = iωµ0µ̆~̆j .

The Wave Equation

(2.16)

Here, we introduced the index of refraction n̆2 = µ̆ε̆. If we assume vanishing currents,
solutions of Eq. (2.16) can be found by making a plane wave ansatz

~E (~r , t) = ~E0e i(~k~r−ωt) (2.17)

where ~E0 is the polarization of the wave, ~k is the wave vector and ω is the corresponding
angular frequency. In the frequency domain, the expression reads

~̆E (~r , ω′) = ~E0e i~k~rδ(ω − ω′),

where δ denotes the Dirac δ-function. The wave vector and the frequency are connected
via the dispersion relation

ω2 =
c2

n̆2(ω)

∣∣∣~k ∣∣∣2.
By inserting the ansatz (2.17) into Eq. (2.1a), one directly obtains the property that
~E0 ⊥ ~k . From Eq. (2.1d) we �nd the magnetic �eld to be

~H =
1

µ0µω
~k × ~E = Z (ω)−1

~k∣∣∣~k ∣∣∣ × ~E , (2.18)

where we have introduced the impedance Z (ω) =
√

µ0µ(ω)
ε0ε(ω) . From this result we observe

that ~E , ~H and ~k form an orthogonal trihedral, so

~E ⊥ ~k , ~H ⊥ ~k , ~E ⊥ ~H .

Reflection and Transmission at a Plane Interface

With the plane wave solutions for a homogeneous medium, we can ask the question
of what happens at a plane interface between two homogeneous half spaces. Such a
setup is sketched in Fig. 2.1, where we assume an incoming wave with frequency ω and
wave vector ~kI . The interface leads to a splitting of the wave into a re�ected and a
transmitted part. The full ansatz reads

~E =

~EI + ~ER if x < 0
~ET if x > 0

and ~H =

~HI + ~HR if x < 0
~HT if x > 0

,

13



2 Classical Electromagnetism

Figure 2.1: Sketch of an electromagnetic wave with wave vector ~kI impinging
on an interface. The wave is split into a re�ected part with wave vector ~kR and a
transmitted part with ~kT .

where

~EI =~EI0e i(~kI~r−ωt), ~HI =
1

µ0µω
~kI × ~EI ,

~ER =~ER0e i(~kR~r−ωt), ~HR =
1

µ0µω
~kR × ~ER,

~ET =~ET0e i(~kT~r−ωt), ~HT =
1

µ0µ′ω
~kT × ~ET .

Here, we have introduced

k = |~kI | = |~kR| =
ω

c
n and k ′ = |~kT | =

ω

c
n ′.

Since the boundary conditions (2.12) are independent of time and must be ful�lled at
all points on the interface, we conclude

~kI~r
∣∣∣
x=0

= ~kR~r
∣∣∣
x=0

= ~kT~r
∣∣∣
x=0

.

As a consequence, all the ~k -vectors must lie in a plane (plane of incidence) and we
can choose our coordinate system such that the z -component of all ~k -vectors van-
ishes. Furthermore, we see that all y-components of the ~k -vectors are equal and the
x -components of ~kI and ~kR must have equal length but opposite sign

ky = kIy = kRy = kTy and kIx = −kRx .

In order to proceed, it makes sense to distinguish two cases:

�
~E perpendicular to the plane of incidence (s-polarization)

�
~E parallel to the plane of incidence (p-polarization)

14



2.4 Plane Wave Solutions

We will start with the �rst case (s-polarization), which allows us to write

~EI0 = êz , ~ER0 = Rs êz , ~ET0 = Ts êz ,

and reduces the magnetic �elds to

~HI =
1

µ0µω

[
kIy êx − kIx êy

]
e i(~kI~r−ωt),

~HR = Rs
1

µ0µω

[
kRy êx − kRx êy

]
e i(~kR~r−ωt),

~HT = Ts
1

µ0µ′ω

[
kTy êx − kTx êy

]
e i(~kT~r−ωt).

Next, we apply the boundary conditions (2.12) to our �elds. The continuity of the
tangential components results in

1 + Rs = Ts and
1
µ
kIx

(
1− Rs

)
=

1
µ′

kTxTs .

Combining the two expressions, we obtain the re�ection amplitude Rs as

Rs =
kIx/µ− kTx/µ

′

kIx/µ+ kTx/µ′
=

√
k2 − k2

y /µ−
√

k ′2 − k2
y /µ

′√
k2 − k2

y /µ+
√

k ′2 − k2
y /µ

′
.

By using the incident angle θi as de�ned in Fig. 2.1 we obtain the �nal results for the
re�ected and transmitted amplitudes as

Rs =
n cos(θi)/µ−

√
n ′2 − n2 sin2(θi)/µ′

n cos(θi)/µ+
√

n ′2 − n2 sin2(θi)/µ′
, (2.19a)

Ts =
2n cos(θi)/µ

n cos(θi)/µ+
√

n ′2 − n2 sin2(θi)/µ′
. (2.19b)

Those equations are commonly known as Fresnel's equations for s-polarization. The
equivalent formulae for p-polarization can be obtained easily by exploiting a symmetry
of Maxwell's equation [20]. Namely, we can replace ~E → ~H , ~H → −~E and ε↔ µ. The
sign-change does not contribute in the above calculations, so it su�ces to swap ε and
µ to obtain

Rp =
n cos(θi)/ε−

√
n ′2 − n2 sin2(θi)/ε′

n cos(θi)/ε+
√

n ′2 − n2 sin2(θi)/ε′
, (2.20a)

Tp =
2n cos(θi)/ε

n cos(θi)/ε+
√

n ′2 − n2 sin2(θi)/ε′
. (2.20b)

It should be noted that Fresnel's equations are equally valid for dispersive media, but
they do rely on the isotropy of the system. We will return to this point in chapter 3.2.
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2.5 Dyadic Green’s Tensor and Sources

While the plane wave solutions discussed in the previous section provide some insight
into the propagation of light, they are not very helpful in practice. The problem is that
plane waves are in�nitely extended in both time and space, while in reality one usually
has to deal with pulses of �nite extent. Such pulses are typically introduced by a current
distribution ~j (~r , t) = ~J (~r)j (t), where we have separated the spatial distribution ~J (~r)
from its time dependence j (t). For simplicity, we will further assume that the source
starts to radiate at time t = 0 and all �elds are zero before that time. Under these
conditions, a solution of Maxwell's equations can be expressed in terms of the dyadic
Green's tensors G

E
and G

H
as

~E (~r , t) =
∫

dt ′
∫

d~r ′G
E

(~r , t |~r ′, t ′)~J (~r ′)j (t ′), (2.21a)

~H (~r , t) =
∫

dt ′
∫

d~r ′G
H

(~r , t |~r ′, t ′)~J (~r ′)j (t ′). (2.21b)

The derivation of the Green's tensors is a very tedious task and a general procedure
is described in Ref. [21]. The results strongly depend on the dimensionality of the
system.

The One-Dimensional Case

For a one-dimensional system, the Green's tensors are scalar and read

G1D
E

(x , t |x ′, t ′) =
Θ(τ)

2
δ(|r | − τ), (2.22a)

G1D
H

(x , t |x ′, t ′) = Z−1 Θ(τ)
2

sgn(r)δ(|r | − τ), (2.22b)

where, for brevity, we introduced τ = c
n (t − t ′) and r = x − x ′. Further, Θ denotes the

Heaviside step function. In this case, one can directly observe how a source generates
right- and left-moving �elds. The temporal shape of the source is conserved and it
symmetrically travels with the speed c/n in both directions.

The Two-Dimensional Case in TM-Polarization

For the two-dimensional case, we have to distinguish between the two possible polar-
izations TE and TM. Here, we only give the expressions for TM-polarization, where
the vector ~J (~r) is perpendicular to the plane of propagation. Then, the Green's tensors
in polar coordinates take the form

GTM
E

(ρ, ϕ, τ) =
Θ(τ)
2π

 δ(τ − ρ)√
τ2 − ρ2

− τΘ(τ − ρ)(
τ2 − ρ2

)3/2


0 0 0

0 0 0
0 0 1

 (2.23a)
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and

GTM
H

(ρ, ϕ, τ) =
Θ(τ)
2πZ

 δ(τ − ρ)√
τ2 − ρ2

− ρΘ(τ − ρ)(
τ2 − ρ2

)3/2


0 0 − cos(ϕ)

0 0 sin(ϕ)
0 0 0

 . (2.23b)

From these expression, we can already identify a signi�cant problem, namely the sin-
gularities at ρ = 0 and ρ = τ . In the next section, we will give an example of how to
overcome those problems and how to obtain a numerical solution from Eqs. (2.23). The
case of TE-polarization, where the source lies in-plane, is slightly more cumbersome
but does not o�er any new insight. The explicit expressions for the TE case can be
derived from the tensors given in Ref. [21].

The Three-Dimensional Case

In the fully three dimensional case, both G3D
E

and G3D
H

become 3× 3-matrices. Due to
inherent symmetries, they can be written as

G3D
E

=

A1 B3 B2

B3 A2 B1

B2 B1 A3

 and G3D
H

=

 0 C3 C2

−C3 0 C1

−C2 −C1 0

 , (2.24)

where

Ai =
(
S − 3L

) d2
i

R2
+ L + T ,

B1 =
(
S − 3L

) d2d3

R2
, B2 =

(
S − 3L

) d1d3

R2
, B3 =

(
S − 3L

) d1d2

R2
,

Ci = (−1)iZ−1P
di

R

with

L =
Θ(τ)
4π

[
δ(τ − R)− δ(R)

R2
+

Θ(τ − R)−Θ(−R)
R3

]
,

P =
Θ(τ)
4π

[
δ(τ − R)

R2
+
δ′(τ − R)

R

]
,

S = −Θ(τ)
4π

δ′(τ − R) + δ′(R)
R

,

T =
Θ(τ)
4π

δ′(τ − R)
R

,

and
~d = ~r − ~r ′. (2.25)
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For a general spatial distribution and an arbitrary time dependence of ~j (~r , t), an ex-
plicit solution of the integrals in Eqs. (2.21) will not be feasible. In those cases, one has
to resort to numerical integration, which also is highly problematic due to the step- and
delta-functions occurring. However, as we will demonstrate in the following, for par-
ticular spatial distributions of ~j , it is possible to evaluate Eqs. (2.21) by a combination
of analytical and numerical methods.

2.5.1 Fields Generated by a Point Source

As a particularly important example, we consider the case where ~j (~r , t) = ~j0δ(~r)j (t).
This corresponds to a point source at the origin with orientation~j0 and time dependence
j (t).

The Two-Dimensional Case in TM Polarization

In the case of TM polarization, the orientation ~j0 is �xed along the z -axis. Inserting the
Green's tensors from Eq. (2.23) into Eq. (2.21) and performing the spatial integration
leaves us with

Ez (ρ, ϕ, t) =
1

2π

 t∫
0

δ(τ − ρ)√
τ2 − ρ2

j (t ′)dt ′ −
t∫

0

τΘ(τ − ρ)
(τ2 − ρ2)3/2

j (t ′)dt ′

 .
In the next step, we change the integration variable from t ′ to τ and perform an
integration by parts on the second integral. One of the occurring boundary terms will
exactly cancel with the �rst integral and the remaining expression reads

Ez (ρ, ϕ, t) =
1

2π

c
n
t∫

ρ

j ′( c
n t − τ)√
τ2 − ρ2

dτ =
1

2π

c
n
t∫

ρ

j ′( c
n t − τ)

√
τ − ρ

√
τ + ρ

dτ.

Here, j ′ denotes the derivative of the source term with respect to its argument. Unfor-
tunately, the integral contains a singularity at the lower limit τ = ρ. However, as can
be seen from the second expression, the singularity is integrable. By using a tailored
quadrature [22] one can obtain accurate numerical results for arbitrary time envelopes.
The procedure for the two magnetic �eld components is almost identical and yields

(
Hx (ρ, ϕ, t)
Hy(ρ, ϕ, t)

)
=

1
2πZ

c
n
t∫

ρ

τ j ′( c
n t − τ)

√
τ − ρ

√
τ + ρ

dτ

(
− cos(ϕ)

sin(ϕ)

)
.
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The Three-Dimensional Case

Essentially, the three-dimensional cases executes as the previous one, except for the
more cumbersome expressions. The �nal result can be stated explicitly as

~E (~r , t) =

(
j̄ (t)

4πR5
+

j (t)
4πR4

)(
~J − 3~r

(
~r · ~J

))
+

j ′(t)
4πR3

(
~J − ~r

(
~r · ~J

))
,

~H (~r , t) =

(
j (t)

4πR5
+

j ′(t)
4πR4

)(
~r × ~J

)
,

where we have introduced the integral

j̄ (t) =

t∫
t0

j (t ′)dt ′.

It should be noted that, in contrast to the two-dimensional case, there are no singular-
ities or divergences to overcome, as long as j (t) is a well-behaved function. For typical
time-dependencies like Gaussian pulses or sinusoidal oscillations, the integral in j̄ (t)
can even be evaluated analytically, resulting in an entirely explicit expression for the
�elds.

2.6 Energy Density and the Poynting Vector

Experimentally, the light intensity, which corresponds to the energy �ux of the electro-
magnetic �eld, plays an important role. To �nd an explicit expression for the energy
�ux, we start from the curl equations (2.1c) and (2.1d), which can be combined to

~E ·
(
∇× ~H

)
− ~H ·

(
∇× ~E

)
= ~j · ~E + ~E · ∂

∂t
~D + ~H · ∂

∂t
~B . (2.26)

Using the vector identity ∇·
(
~E × ~H

)
= ~H ·

(
∇× ~E

)
− ~E ·

(
∇× ~H

)
, we can transform

Eq. (2.26) to

~E · ∂
∂t
~D + ~H · ∂

∂t
~B +∇ ·

(
~E × ~H

)
= −~j · ~E . (2.27)

For linear and isotropic media, we can then use the relation

~E · ∂
∂t
~D + ~H · ∂

∂t
~B =

∂

∂t

(
1
2
~E · ~D +

1
2
~H · ~B

)
to reformulate Eq. (2.27) as

∂

∂t

(
1
2
~E · ~D +

1
2
~H · ~B

)
︸ ︷︷ ︸

w

+∇ ·
(
~E × ~H

)
︸ ︷︷ ︸

~S

= −~j · ~E . (2.28)
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This expression is known as Poynting's theorem. Calculating the work done by the
�elds on a charged body [23] allows us to identify w with the electromagnetic energy
density. For vanishing currents ~j , we also recover that Eq. (2.28) has the form of a
conservation law. Therefore, we can interpret the vector ~S as the energy �ux density.
This quantity is also called the Poynting vector.

In the case of time-harmonic �elds ~̆E and ~̆H , we are typically interested in the time-
averaged energy �ux as a function of frequency. The proper expression in this case is
given by

~S =
1
2
Re

[
~̆E × ~̆H ∗

]
, (2.29)

where the ∗ denotes the complex conjugate. It should be noted that the energy �ux in
the frequency domain can not be obtained by the direct Fourier transform of ~S (~r , t).
As an argument for why this would be wrong, one should consider a single plane

wave with frequency ω0, i.e., ~E (~r , t) = Re

[
~E0e−i(~k~r−ω0t)

]
. According to Eq. (2.18),

the magnetic �eld then takes the form ~H (~r , t) = Z ~k

|~k |
× ~E . Inserting this into the

expression for the Poynting vector gives

~S = Z

(
~E ×

~k

|~k |
× ~E

)
= Z |~E0|2 cos2

(
~k~r − ω0t

) ~k

|~k |
.

Using the relation cos2(x ) =
[
1 + cos(2x )

]
/2 and applying a Fourier transform would

lead to a spectrum with delta-peaks at 0 and 2ω0. This can clearly not be the correct
result for a plane wave with carrier frequency ω0.

2.7 Rescaling to Dimensionless Units

So far, we have worked with Maxwell's equations in SI units, which introduced the
constants ε0, µ0 and c. However, an interesting feature of Maxwell's equations in non-
dispersive media is, that they do not contain a fundamental length scale. Furthermore,
if the media are linear, we are also free to scale the �eld strengths arbitrarily. Conse-
quently, it is possible to rescale Maxwell's equations, making them independent of any
unit system.
To this end, we introduce an arbitrary length scale a and an arbitrary �eld strength

E0 to rescale the individual variables as follows:

~r → ~̃ra, t → t̃a/c, ~E → ~̃EE0, ~H → ~̃H
√
ε0
µ0

E0, ~j → ~̃j
√
ε0
µ0

E0

a
.

Using these transformations yields the rescaled curl equations

∂t̃
~̃E =

1
ε

(
∇̃ × ~̃H − ~̃j

)
, (2.30a)

∂t̃
~̃H = − 1

µ
∇̃ × ~̃E , (2.30b)
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SI→Dimensionless Dimensionless→SI
Length l̃ = l 1

a l = l̃ a

Time t̃ = t c
a t = t̃ a

c

Frequency ν̃ = ν a
c ν = ν̃ c

a

Electric Field ~̃E = ~E/E0
~E = ~̃EE0

Magnetic Field ~̃H = ~H /

(√
ε0
µ0

E0

)
~H = ~̃H

(√
ε0
µ0

E0

)

Table 2.1: Table with conversion factors between quantities in SI units (without
tilde) and quantities in dimensionless units (with tilde).

where all variables are now dimensionless. Thus, the velocity of light in vacuum is now
unity. Subsequently, we will drop the tilde and always work in dimensionless units,
unless stated otherwise. For a given length scale a and a chosen �eld strength E0 one
can translate variables from dimensionless units into SI units and vice versa by using
the factors given in Tab. 2.1. For the rest of this thesis we will work with dimensionless
units, unless stated otherwise.
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3 Chapter 3

Auxiliary Differential Equations

Before we can proceed to the actual numerical methods, there are a few issues that
deserve our attention. As discussed in the previous chapter, material dispersion leads
to convolution integrals in the constitutive relations. Thus, Maxwell's equations be-
come a set of integro-di�erential equations, which signi�cantly complicates numerical
treatment. A second, seemingly independent problem is the truncation of the compu-
tational domain. In particular, we need a way to absorb all outgoing radiation without
re�ections. This is achieved by a thin layer of a specially tailored material, called a
perfectly matched layer (PML). As we will see, such an absorbing material necessarily
is dispersive.

In this chapter, we will modify Maxwell's equations in order to include both disper-
sive media and PMLs without convolution integrals. The key to the implementation lies
in a technique called auxiliary di�erential equations (ADEs). This analytical method
allows for certain models of dispersion to transform the convolution integrals into a
set of di�erential equations. Those additional equations can then be solved in parallel
with Maxwell's equations.

3.1 Models of Dispersion

In nature, essentially all optical media show some form of material dispersion, i.e., their
refractive index depends on the frequency of light. For most glasses, this dispersion is
rather weak in the visible range and only plays a major role if we want to work in a
broad spectral range. Metals on the other hand are strongly dispersive and one must
always account for their frequency dependent properties. As we have seen in Sec. 2.2,
dispersion leads to convolution integrals (2.6) in the time-domain. Therefore, we are
not directly able to include arbitrary dielectric functions when working with a time-
domain formulation. Fortunately, this is not necessary since many of the naturally
occurring permittivities can be approximated by rather simple analytical models. The
idea of these models is to describe the microscopic response of the material via an
induced microscopic dipole moment ~p. For a given ~p, one can obtain the macroscopic
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(a) (b)

Figure 3.1: A sketch of the dispersion relations: (a) Lorentz model, (b) Drude
model.

polarization ~P by
~P = n~p, (3.1)

where n is the density of microscopic dipole moments.

3.1.1 The Lorentz Model

As a �rst model, we assume the electrons in the material to be described as classical
harmonic oscillators that are driven by the incoming electric �eld. The equation of
motion for the position ~x of an individual electron is then given by

∂2

∂t2
~x + γL

∂

∂t
~x + ω2

L~x = − e
me

~E .

Here, we introduced the eigenfrequency ωL, a dissipation term γL and the coupling
constant e

me
to the electric �eld. Applying a Fourier transform, we can directly solve

this equation for the position

~̆x (ω) = − 1
ω2

L − iγLω − ω2

e
me

~̆E .

Using the de�nition of a dipole moment as ~̆p = e~̆x and inserting it into Eq. (3.1), we

obtain the dielectric function from ~̆D = ε∞ ~̆E + ~̆P = ε̆ ~̆E as

ε̆(ω) = ε∞ +
∆ε ω2

L

ω2
L − iγLω − ω2

.

Lorentz Model

(3.2)

We have de�ned ∆ε = ne2

ε0meω2
L
and we also generalized the model slightly by introducing

ε∞. Eq. (3.2) is commonly called Lorentz model and the shape of the dielectric function
is plotted in Fig. 3.1(a).
It should be noted that the Lorentz model does not serve well as an ab-initio descrip-

tion of matter. Instead, it can be used to �t the experimentally measured dielectric
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3.1 Models of Dispersion

function in a certain frequency range. A sum of several Lorentz terms without absorp-
tion (γL = 0) is used in optics to describe the dielectric function of di�erent glasses.
This description is called Sellmeier formula and reads

ε(λ) = A +
∑

i

Biλ
2

λ2 − C 2
i

,

where λ is the wavelength and A,Bi ,Ci are material parameters. For common optical
glasses, using this formula with i = 3 terms can reproduce the experimental data in
the visible spectrum with a relative error below 10−5 [24].

3.1.2 The Drude Model

For the derivation of the Lorentz model, we assumed localized electrons which are
bound to their nuclei. For metals, this description fails and it makes more sense to
assume that some electrons can move freely within the material. In contrast to the
Lorentz model, we now set up an equation for the velocity ~v of a single electron as

∂

∂t
~v + γD~v = − e

me

~E . (3.3)

Executing a Fourier transform then gives

~̆v =
1

iω − γD

e
me

~̆E , (3.4)

from which we can derive a current density ~̆j as

~̆j = −en~̆v = − ne2/me

iω − γD

~̆E . (3.5)

Inserting this current into the wave equation (2.16) with a dispersionless index of
refraction then yields

∇2 · ~̆E − ω2µ

(
ε∞ −

ω2
p

ω2 + iγDω

)
︸ ︷︷ ︸

=:ε(ω)

~̆E = 0. (3.6)

Here, ε∞ describes the non-dispersive background, ωp =
√

ne2

me
is the plasma frequency

and γD denotes the damping. The e�ective dielectric function is given by

ε̆(ω) = ε∞ −
ω2

p

ω
(
ω + iγD

)
Drude Model

(3.7)

and usually called Drude model. Similarly to the Lorentz model, the Drude model
does not serve well as an ab-initio description of materials. Instead, it can be used
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(a) (b)

Figure 3.2: Experimental data for the dielectric functions of gold and silver from
Ref. [25]. The red crosses correspond to the data for silver while the blue circles
denote measurements for gold. (a) shows the real part of ε, while (b) displays the
imaginary part. The solid lines are Drude �ts with parameters given in Tab. 3.1.
The insets show a magni�cation around the visible spectrum.

Silver (Ag) Gold (Au)

Plasma Frequency ωp 1.39× 1016s−1 1.38× 1016s−1

Damping γD 3.23× 1013s−1 1.08× 1014s−1

Table 3.1: Values used to model the dispersion relation of gold and silver via a
Drude model.

to approximate the dielectric function of metals in a certain frequency range. The
shape of Eq.(3.7) is plotted in Fig. 3.1(b). In order to check how well the Drude
model describes real metals, we compare with data from experimental measurements
for gold and silver �lms [25]. The symbols in Fig. 3.2 denote the experimental data,
while the solid lines are �ts corresponding to the values in Tab. 3.1. The �ts presented
in Fig. 3.2 were conducted to achieve an optimal description over the whole spectral
range. It becomes obvious that both silver and gold are reasonably well described in
the infrared region. In the visible, however, especially the dispersion of gold di�ers
signi�cantly due to intraband transitions. In order to accurately model those metals
in the visible spectrum there are multiple options. One can either �t the Drude model
only to a smaller spectral range which will usually improve the accuracy signi�cantly.
Alternatively, one can employ a combination of the Drude and the Lorentz model.
Recently, even more sophisticated models were proposed in order to describe the visible
and ultraviolet spectrum of metals more accurately [26].

3.1.3 Derivation of the ADEs

Since we aim to solve Maxwell's equations in the time-domain, a Fourier transform
of ε(ω) is required. Unfortunately, a straight-forward transform only recovers the
convolution integrals, which render Maxwell's equations intractable. Instead, we have
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3.2 Perfectly Matched Layers

to rearrange the equations and introduce auxiliary �elds in order to obtain a purely
di�erential equation in the time-domain. We start from Eq. (2.3d) without the current
density,

−iωε̆~̆E = ∇× ~̆H , (3.8)

in which we insert the Lorentz model (3.2) as well as the Drude model (3.7). Some
algebraic transformations then yield

−iω~̆E =
1
ε∞

[
∇× ~̆H −

iωω2
D

ω
(
ω − iγD

) ~̆E︸ ︷︷ ︸
=:~̆jD

−
−iω∆ε ω2

L

ω2
L − iγL − ω2

~̆E︸ ︷︷ ︸
=:~̆jL

]
. (3.9)

Here, we have introduced new variables ~̆jD and ~̆jL which are called polarization currents.

Looking at the two contributions separately, we can rewrite the expression for ~̆jD as(
iω + γD

)
~̆jD = ω2

D
~̆E ,

while the equation for ~̆jL now takes the form(
ω2

L − iγLω − ω2
)
~̆jL = −iω∆ε ω2

L
~̆E .

Finally, applying a Fourier transformation to both and introducing the auxiliary �eld
~kL = ∂

∂t
~jL results in the following set of coupled equations

∂

∂t
~E =

1
ε∞

[
∇× ~H −~jD −~jL

]
, (3.10a)

∂

∂t
~jD = −γD

~jD + ω2
D
~E , (3.10b)

∂

∂t
~jL = ~kL, (3.10c)

∂

∂t
~kL = −γL

~kL − ω2
L
~jL + ω2

L∆ε
∂

∂t
~E . (3.10d)

As can be seen, we need one ADE per �eld component to describe a material according
to the Drude model, while the Lorentz model requires two ADEs. Most importantly,
in both cases, there no longer is a convolution integral to solve.

3.2 Perfectly Matched Layers

In principle, Maxwell's equations as stated in Eq. (2.1) have an in�nite number of
solutions. To narrow them down to a unique solution, one needs to specify two more
things. The �rst ingredient are initial conditions, which impress the �elds at an initial
time. The second part are boundary conditions, which de�ne the �elds on a surface
enclosing a given domain. The latter is particularly important when trying to solve

27



3 Auxiliary Di�erential Equations

(a) (b)

Figure 3.3: Schematic sketch of the perfectly matched layers. (a) shows a system,
where the region of interest is surrounded by perfectly matched layers. (b) shows
a closeup of an incident plane wave on an individual layer. The parameters ε′

and µ′ must be chosen such that the re�ection coe�cient is zero for all angles of

incidence.

Maxwell's equations by means of numerical methods. Then, the computational domain
has to be �nite and one needs to make sure that the applied boundary conditions
correspond to the physical system to solve. Of all the possible boundary conditions, one
of the most practically relevant are so-called absorbing boundary conditions (ABCs).
They insure that any radiation hitting the boundary is absorbed and never returns to
the computational domain. Therefore, one can calculate very large open systems with
dramatically reduced computational e�ort. Generally, we di�erentiate between true
ABCs, which are applied at the boundaries, and absorbing materials which surround
the computational region. A lot of research has gone into both methods, but in the
recent years, the second method has established itself as the more practical one. As
sketched in Fig. 3.3(a), one needs to implement an absorbing material around the
physical system, which shows zero re�ection, regardless of the frequency or angle of
incidence. Such a material is called a perfectly matched layer (PML) and there is a
variety of methods to implement it [27]. Here, we will concentrate on two di�erent
implementations.

3.2.1 Uniaxial Perfectly Matched Layers

As a naïve idea, one might try to simply surround the computational domain with an
isotropic absorbing medium. To evaluate this, we consider a simple half-space geometry
as sketched in Fig. 3.3(b). On the left side, we assume an isotropic and lossless medium
with a purely real refractive index nL. The right side is supposed to absorb radiation
and is therefore assumed to have a complex ε′ as well as a complex µ′. Considering a
plane wave impinging under the angle θi , we know the re�ection coe�cients given by
Fresnel's formulae (2.19) and (2.20). Due to the explicit dependence on the angle θi ,
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3.2 Perfectly Matched Layers

it is not possible to �nd an absorbing ε′ and µ′ such that rs = rp = 0 for all angles θi .
In the special case of normal incidence (θi = 0), the formulae for the two polarizations
are identical and read

r =

√
µ/ε−

√
µ′/ε′√

µ/ε+
√
µ′/ε′

.

In order to get the re�ectivity to vanish we need to ful�ll√
µ

ε
=

√
µ′

ε′
=

√∣∣µ′∣∣ e iϕµ′∣∣ε′∣∣ e iϕε′
,

which can be realized by choosing |µ′| = µ, |ε′| = ε and ϕε′ = ϕµ′ . In this case, we
speak of impedance matching.

In order to achieve such matching for any angle θi , we have to reconsider the as-
sumption of isotropy and continue with an anisotropic medium on the right side. As we
will demonstrate, a diagonal tensor is su�cient and�due to the rotational symmetry
around the x -axis�only a uniaxial form is required. Therefore, inside the PML region
(x > 0), we de�ne

ε′ = ε′Λ and µ′ = µ′Λ

with

Λ =

a 0 0
0 b 0
0 0 b

 .

Despite the anisotropy, the plane wave solutions for s-polarization in the PML-region
still take the from

~ET = Ts êz e i(~kT~r−ωt)

with the di�erence that the magnetic �eld now reads [27]

~H =
Ts

ωµ′

(
kTy

a
êx −

kTx

b
êy

)
e i(~kT~r−ωt)

and the dispersion relation is changed to

ab2ε′µ′ω2 = ak2
Tx + bk2

Ty . (3.11)

Employing the boundary conditions (2.12) at x = 0 then yields

kIx

ωµ

(
1− Rs

)
=

kTx

ωµ′b

from which we obtain

Rs = 1− µ

µ′
1
b

kTx

kIx
. (3.12)
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From the dispersion relation (3.11) and using kIy = kTy we derive

k2
Tx = b2ε′µ′ω2 − b

a
k2
Iy = b2

(
ε′µ′

εµ
k2
I −

1
ab

k2
Iy

)
.

If we choose

ε′ = ε, µ′ = µ and a−1 = b, (3.13)

then k2
Tx = b2k2

Ix leads to a vanishing re�ectivity (3.12), independently of the choice
of b. The transmitted wave is then given by

~ET = Ts êz e i(~kT~r−ωt) = Ts êz e i(bkIx x+kIyy−ωt).

In order to ful�ll the requirement of absorption, a suitable choice for b is

b = a−1 = sx = 1− σx

iω
,

where σx > 0 is a real constant determining the loss. With this choice, we observe that
the transmitted plane wave in the PML region evolves as

~ET = Ts êz e i~ki~r−ωte−σxn cos(θi )x

and is therefore exponentially damped as it propagates in x -direction. We also realize
that it is necessary to make sx dispersive so that the damping becomes frequency
independent.

As in the isotropic case, it should be noted that the result for p-polarization can be
obtained by swapping ε′ and µ′. However, since the matching conditions Eq. (3.13) are
invariant under this transformation, our result is valid for both polarizations.

Generalization to Three Dimension

After �nding the uniaxial tensor in x -direction, a generalization to three dimensions is
straight-forwardly de�ned as

Λ =

s−1
x 0 0
0 sx 0
0 0 sx


sy 0 0

0 s−1
y 0

0 0 sy


sz 0 0

0 sz 0
0 0 s−1

z

 =


sysz
sx

0 0
0 sx sz

sy
0

0 0 sx sy
sz

 .

The tensor elements are now given by

sk = 1− σk

iω
, k = x , y , z . (3.14)

This tensor is technically no longer uniaxial, but rather biaxial. Still, this implemen-
tation goes under the name uniaxial perfectly matched layers (UPML).
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Derivation of the ADEs

As mentioned, the tensor elements (3.14) are frequency dependent. This puts us in
a similar position as with the dispersive dielectric function discussed in section 3.1.3.
Inserting the tensor into Maxwell's equations in the frequency domain (2.3) yields

iωεΛ~̆E = ∇× ~̆H , (3.15a)

−iωµΛ ~̆H = ∇× ~̆E . (3.15b)

We start by only looking at the �rst component of Eq. (3.15) and rewriting it slightly
to

iωεĔx = − ∂

∂y
H̆z +

∂

∂z
H̆y − iωε

(
sysz
sx
− 1
)

Ĕx︸ ︷︷ ︸
J̆x

.

Concentrating on the expression in brackets, we can insert Eq. (3.14) and reduce it to

sysz
sx
− 1 =

1
iω + σx

(
σy + σz − σx +

σyσz

iω

)
.

With this, the polarization current J̆x becomes

J̆x =
iωε

iω + σx

(
σy + σz − σx +

σyσz

iω

)
Ĕx .

By introducing a new variable P̆x = J̆x − ε(σy + σz − σx )Ĕx we obtain the expression

iωP̆x = −σx P̆x + ε
(
σ2

x + σyσz − σyσx − σzσx

)
Ĕx

which can now be easily transformed back to the time-domain. The two coupled
equations then read

∂

∂t
Ex = − ∂

∂y
Hz +

∂

∂z
Hy − ε

(
σy + σz − σx

)
Ex − Px ,

∂

∂t
Px = −σxPx + ε

(
σ2

x + σyσz − σyσx − σzσx

)
Ex .

All other components can be obtained by simple permutation of the indices. Thus,
we have derived a set of auxiliary di�erential equations which allows us to include the
dispersive behavior of the PMLs in the time domain.

3.2.2 Stretched Coordinates CFS-PMLs

The UPML formulation discussed so far is a simple, yet very e�ective method to
implement absorbing boundary conditions. There are, however, two minor problems:

� The termination of dispersive or anisotropic material requires an adjustment of
the PML formulation,
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� The absorption of evanescent waves leaking into the PMLs is not optimal [27, 28].

To overcome the �rst problem, we discuss a di�erent implementation of PMLs, called
stretched coordinates formulation. In this case, we do not modify the material pa-
rameters but rather change Maxwell's equations inside the absorbing layers. Starting
from Eq. (2.3) without free charges and currents, we modify the spatial di�erentiation
operators to

∇s · ~̆D(~r , ω) = 0,

∇s · ~̆B(~r , ω) = 0,

∇s × ~̆E (~r , ω) = iω~̆B(~r , ω),

∇s × ~̆H (~r , ω) = −iω ~̆D(~r , ω),

where

∇s =

(
1
sx

∂

∂x
,

1
sy

∂

∂y
,

1
sz

∂

∂z

)T

.

Similarly to the previous section, one can prove that the stretching factors do not
lead to the re�ection of a plane wave [27, 28]. This is even true for dispersive or
anisotropic media, since the formulation is independent of the material properties. It
should be noted, that the UPML formulation and the stretched-coordinate formulation
are mathematically identical for isotropic media [29].
In order to also mitigate the problems with evanescent waves, we introduce a par-

ticular choice of stretching factors si , namely

sk = κk −
σk

αk + iω
, k = x , y , z .

Due to the newly introduced factor αk , this formulation is called complex frequency-
shifted PMLs (CFS-PMLs) [28]. In contrast to Eq. (3.14), we have introduced a sec-
ond new coe�cient κk , which corresponds to a real stretching of the coordinates. As
is shown in Ref. [28], this factor can help to improve the numerical performance of
PMLs dramatically. The only disadvantage when compared to the UPMLs is that an
implementation via a single ADE per �eld component is no longer possible. Instead,
we need a set of two ADEs, which increases computational e�ort and memory con-
sumption. We will skip the derivation, which is very analogous to the one in Sec. 3.2.1.
Instead, we only state the �nal expression for Ex and the two auxiliary �elds as

∂

∂t
Ex =

1
ε

(
1
κy

∂

∂y
Hz −

1
κz

∂

∂z
Hy − Fxy + Fxz

)
, (3.16)

∂

∂t
Fxy =

σy

κ2
y

∂

∂y
Hz −

(
αy +

σy

κy

)
Fxy , (3.17)

∂

∂t
Fxz =

σz

κ2
z

∂

∂z
Hy −

(
αz +

σz

κz

)
Fxz . (3.18)
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All other components can again be obtained by proper permutation of the indices. We
will return to the numerical implementation and careful analysis of the performance in
Sec. 4.3.3 and Sec. 5.4.
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4 Chapter 4

The Finite-Difference Time-Domain
Method

As alluded to in the introduction, analytical solutions to partial di�erential equations
(PDEs) like Maxwell's equations are notoriously di�cult to obtain for any non-trivial
system. If there are no suitable approximations which facilitate analytical treatment,
one usually has to resort to numerical methods for �nding solutions to those PDEs. If
a solution in the time-domain is desired, a typical procedure is to �rst discretize the
system in space. This reduces the set of PDEs to a large system of ordinary di�erential
equations (ODEs), which can then be solved in time by means of standard numerical
integrators. This procedure is known as the method of lines (MOL).
In this chapter, we discuss the simplest spatial discretization possible, namely �nite

di�erences on a rectangular uniform mesh. It will be demonstrated, that Maxwell's
equations have properties which lead to a particular spatial arrangement, known as
a staggered grid. Using �nite di�erences for the time integration as well leads us to
the famous �nite-di�erence time-domain (FDTD) method. We will thoroughly study
the stability and accuracy of this method, before we discuss possible extensions and
improvements. The chapter concludes with a number of basic numerical experiments
in order to verify our implementation of the method.

4.1 Discretization with Finite Differences

In order to solve any PDE numerically, one needs to discretize its continuous �elds to
reduce the problem to a �nite number of unknowns. Possibly the simplest method to do
so is to employ a uniform grid as sketched in Fig. 4.1. Starting from this discretization,
one can expand an arbitrary �eld F (x ) around the points x0 −∆x and x0 + ∆x using
Taylor's theorem as

F (x0 ±∆x ) = F (x0)± F ′(x0)∆x +
1
2
F ′′(x0)∆x 2 ±O(∆x 3).

Combining the two equations allows to solve for F ′(x0) and to obtain an approximation
of the �rst derivative of F at x0. In principle, three di�erent approximations are

35



4 The Finite-Di�erence Time-Domain Method

Figure 4.1: Sketch of a uniform grid in one dimension.

possible:

Forward Di�erences: F ′(x0) =
F (x0 + ∆x )− F (x0)

∆x
+ O(∆x ),

Central Di�erences: F ′(x0) =
F (x0 + ∆x )− F (x0 −∆x )

2∆x
+ O(∆x 2),

Backward Di�erences: F ′(x0) =
F (x0)− F (x0 −∆x )

∆x
+ O(∆x ).

From looking at the truncation order, we observe that the central di�erence yields a
signi�cantly better convergence for ∆x → 0. For this reason, we will continue working
exclusively with central di�erences.

4.1.1 The One-Dimensional Case

In order to understand some of the basic features of the discretized Maxwell equations,
we start from the one-dimensional formulation (2.15) without the source terms:

∂tHy =
1
µ
∂xEz ,

∂tEz =
1
ε
∂xHy .

Employing a uniform grid as sketched in Fig. 4.1 and discretizing the spatial derivatives
by central di�erences yields the semi-discrete system

∂tHy(x , t) =
1
µ

Ez (x + ∆x , t)− Ez (x −∆x , t)
2∆x

,

∂tEz (x , t) =
1
ε

Hy(x + ∆x , t)−Hy(x −∆x , t)
2∆x

.

By close inspection of these semi-discrete equations, one can observe that the grid
decouples into two unrelated subgrids. The electrical �eld at point x0 is not related to
the electrical �elds at points x0 + n∆x for odd n and vice versa. The same also holds
for the magnetic �eld. This behavior is known as even-odd decoupling and indicates
that above discretization is far from ideal. Instead, it makes sense to pick one of the
two subgrids and neglect all unrelated �eld points. This leads us to the staggered
grid as sketched in Fig. 4.2. To keep our notation consistent with the literature,
we rescale the distance between two neighboring gridpoints to ∆x

2 and introduce the
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Figure 4.2: Sketch of a staggered grid in one dimension. The blue arrows indicate
a gridpoint of an Ez �eld component, while the red arrows denote the positions of
the Hy �eld.

notation F |i = F (i∆x , t). Here, all electrical �eld points have integer indices, while
the magnetic �elds are located at half-integer indices as shown in Fig. 4.2. The semi-
discretized Maxwell's equations in this notation then read

∂tHy |i+ 1
2

=
1

µ|i+ 1
2

Ez |i+1 − Ez |i
∆x

,

∂tEz |i =
1
ε|i

Hy |i+ 1
2
−Hy |i− 1

2

∆x
,

where we also discretized the material parameters µ and ε.
So far, we have only discretized the spatial derivatives and derived a coupled system

of ODEs in time. However, nothing prevents us from applying �nite di�erences to the
time derivatives as well. By replacing ∂

∂t with central di�erences, we again observe an
even-odd decoupling, where the �elds at a certain point in time are unrelated to the
same �elds at a neighboring point in time. Therefore, we again decide to drop every
other timestep and end up with a scheme called leap-frogging. The fully discretized
equations can be written as

Hy |
n+ 1

2

i+ 1
2

−Hy |
n− 1

2

i+ 1
2

∆t
=

1
µ|i+ 1

2

Ez |ni+1 − Ez |ni
∆x

, (4.2a)

Ez |n+1
i − Ez |ni

∆t
=

1
ε|i

Hy |
n+ 1

2

i+ 1
2

−Hy |
n+ 1

2

i− 1
2

∆x
, (4.2b)

where we extended our notation to F |ni = F (i∆x ,n∆t). In order to obtain an explicit
update scheme, we can solve Eqs. (4.2) for the future timestep and obtain

Hy |
n+ 1

2

i+ 1
2

= Hy |
n− 1

2

i+ 1
2

+
1

µ|i+ 1
2

∆t
∆x

(
Ez |ni+1 − Ez |ni

)
,

Ez |n+1
i = Ez |ni +

1
ε|i

∆t
∆x

(
Hy |

n+ 1
2

i+ 1
2

−Hy |
n+ 1

2

i− 1
2

)
.

FDTD Update Equations (1D)

(4.3a)

(4.3b)

From this result, one can directly observe how a new value of the electric �eld Ez |n+1
i

is generated from the old value Ez |ni at the same position and the two neighboring
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Figure 4.3: Sketch of the leap-frog integration in time as used by the FDTD
method. The blue arrows indicate a gridpoint of an Ez �eld component, while the
red arrows denote the positions of the Hy �eld.

magnetic �eld points Hy |
i+ 1

2

n+ 1
2

and Hy |
i− 1

2

n+ 1
2

at an in-between time. The procedure is

sketched in Fig. 4.3 and commonly referred to as the one-dimensional �nite-di�erence
time-domain (FDTD) method.

4.1.2 Higher Dimensions and the Yee Cube

Similarly to the one-dimensional case, explicit update schemes can also be derived in
two and three dimensions. First, we generalize our notation to

F |ni ,j ,k = F (i∆x , j∆y , k∆z ,n∆t).

Next, we employ central di�erences to discretize all derivatives and again observe odd-
even decoupling which leads us to staggered grids.

Two-Dimensional Systems

In two dimensions, we can deal with the two di�erent polarizations separately. Since
the two sets of equations (2.13), (2.14) are related by a simple transformation, the
same holds for the grid, as shown in Fig. 4.4. Inserting central di�erences for the
spatial and temporal derivatives will then result in the explicit update equations for
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(a) (b)

Figure 4.4: Schematic layout of the grid positions for a FDTD scheme in two
dimensions. The positions of the �elds in (a) TE and (b) TM polarization are re-
lated by swapping the electric and magnetic �eld components. Blue arrows indicate
the electric �eld, while red arrows denote magnetic �eld components.
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FDTD Update Equations (2D, TE Polarization)

(4.4a)

(4.4b)

(4.4c)

Equivalently, the scheme for TM polarization reads

Hx |n+1
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2

= Hx |n+1
i+ 1

2
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− 1
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2
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2
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 .

FDTD Update Equations (2D, TM Polarization)

(4.5a)

(4.5b)

(4.5c)

It is important to note, that the material parameters ε and µ are also staggered, which
complicates the treatment of anisotropic or nonlinear media.
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4 The Finite-Di�erence Time-Domain Method

Figure 4.5: Yee grid, the three-dimensional spatial arrangement of the �eld com-
ponents in the FDTD method.

Three-Dimensional Systems

For the fully three-dimensional case, all six �eld components are staggered with respect
to each other. Part of the grid is sketched in Fig. 4.5 and this type of arrangement is
often called Yee cube after Kane Yee [30]. The discretization procedure is performed
analogous to the one- and two-dimensional case and leads to the semi-discrete system
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The discretization in time can be performed as in the one-dimensional case to obtain
the fully explicit update equations. For brevity, we only state the explicit update
equation for the Ex as

Ex |n+1
i ,j+ 1

2
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n+ 1
2

i ,j+ 1
2
,k
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 . (4.6)

From the spatial arrangement displayed in Fig. 4.5, we observe how the structure
of Maxwell's equations is embedded in the grid. As an example, let us consider an
arbitrary Ez -component. The change of this �eld value in time is given by the magnetic
�eldsHx andHy in a loop around Ez . This behavior corresponds to Maxwell's equations
in their integral form, where the change of the electric �ux through a loop is given by
the line integral over the magnetic �eld around the loop. Similar considerations apply
to all other �eld components.
Finally, it should be noted that we only discretized the curl equations so far. As

argued in the Sec. 2.1, the divergence conditions remain ful�lled if they are valid
initially. This remains true for the FDTD scheme as proven explicitly in Ref. [28].

4.2 Convergence, Stability and Accuracy

A major point and a condition sine qua non for every numerical method is the proof of
convergence. Unfortunately, such proofs are often riddled with mathematical subtleties
and rarely done in a few lines. In the interest of briefness, we will therefore skip the
full mathematical treatment and rather concentrate on some of the key points. An
exhaustive discussion of the convergence of �nite-di�erence schemes can be found in
Ref. [31].
Here, we will concentrate on the practical implications for Maxwell's equations. As

shown in Sec. 2.4, for a homogeneous system we can �nd general solutions as plane
waves

~E = ~E0e i(~k~r−ωt) and ~H = ~H0e i(~k~r−ωt) (4.7)
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with the dispersion relation

ω =
|~k |
n

=
k
n
.

Remembering the dimensionless units, in which the vacuum speed of light is c = 1, we
can express the phase velocity of the plane waves in free space as

vp =
ω

k
= 1.

In order to compare these analytical solutions with our numerical ones, we insert the
ansatz (4.7) into the three-dimensional update equations (4.6). To avoid confusion
with the exact solution, we indicate the numerical frequency and the wavevector by ω̃

and ~̃k , respectively. This leads to the condition[
sin
(
ω̃∆t/2

)
c∆t

]2

=

 1
∆x

sin

(
k̃x∆x

2

)2

+

 1
∆y

sin

(
k̃y∆y

2

)2

+

 1
∆z

sin

(
k̃z∆z

2

)2

.

Solving for ω̃ then gives the numerical dispersion relation

ω̃ =
2

∆t
arcsin

(
ξ
)
, (4.8)

where

ξ = ∆t

√√√√√
 1

∆x
sin

(
k̃x∆x

2

)2

+

 1
∆y

sin

(
k̃y∆y

2

)2

+

 1
∆z

sin

(
k̃z∆z

2

)2

.

4.2.1 Stability

As can be seen from the ansatz (4.7), the numerical frequency ω̃ needs to stay purely
real. Otherwise, we either �nd an unphysical damping or an exponential growth of the
propagating waves. In order to ful�ll this condition, we require

ξ
!
≤ 1,

which immediately results in a restriction on the timestep ∆t as

∆t ≤ 1√
1

∆x2 + 1
∆y2 + 1

∆z2

.

CFL Criterion

(4.9)

This criterion is also known as the Courant-Friedrichs-Levy (CFL) criterion. A more
detailed analysis [28] proves, that any violation of this condition will indeed lead to
exponentially growing waves and therefore results in an instability. Mathematically
speaking, the CFL-criterion (4.9) is a necessary and su�cient condition for stability of
the FDTD method [31].
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4.2.2 Accuracy

Besides the stability, we are also interested in comparing the numerical dispersion
relation (4.8) to the analytical case

ω2 = k2
x + k2

y + k2
z ,

in order to get a feeling for the errors introduced by the discretization. To proceed, we
restrict our analysis to a cubic mesh, where ∆ = ∆x = ∆y = ∆z . Further, we assume
a timestep ∆t = s∆ where s is called the Courant number and s ≤ 1√

3
is required to

ful�ll the CFL-criterion. Inserting these simpli�cations into Eq. (4.8) results in

ω̃ =
2

s∆
arcsin

s

√√√√sin2

(
k̃x∆

2

)
+ sin2

(
k̃y∆

2

)
+ sin2

(
k̃z∆

2

) .

A Taylor expansion for small ∆ then gives

ω̃ =
√

k̃2
x + k̃2

y + k̃2
z + O(∆2)

and indicates that the FDTD method is accurate to second order. This was to be
expected since we used central di�erences which are of second order. To gain a better
understanding for the e�ect of this error, we now assume propagation along one of the
grid axes, such that k̃x = k̃ and k̃y = k̃z = 0. With that, Eq. (4.8) reduces to

ω̃ =
2

s∆
arcsin

s sin

(
k̃x∆

2

) .

Interestingly, we would regain the exact expression for s = 1, but due to the CFL-
criterion such a �magic� timestep is prohibited. Next, we express k̃ as a function of the
wavelength λ

k̃ =
2π
λ

=
2π

Nλ∆
,

where we have further introduced Nλ = λ
∆ as a measure of the number of cells per

wavelength. With this, we can calculate the numerical phase velocity as

ṽ =
ω̃

k̃
=

Nλ

πs
arcsin

(
s sin

(
π

Nλ

))
.

In Fig. 4.6(a), we plot the numerical phase velocity error 1−ṽ as a function of gridpoints
per wavelength Nλ. One observes that approximately 10 gridpoints per wavelength are
required to reduce the phase velocity error below 1%. Around 35 points are needed
to push the error below 0.1%. These numbers can serve as a rough estimate of how
one should choose the discretization of a given system. However, one must not make
the mistake to conclude from an error in the phase velocity to an error in the �elds.
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Figure 4.6: The error in the phase velocity ṽ as a function of (a) the number of
gridpoints per wavelength and (b) the timestep factor s. Both are double logarithmic
plots and the lines in panel (a) show a slope of −2. The plots in (b) end at s ≈ 0.577
due to the CFL criterion.

As a simple example, we consider a plane wave with wavelength λ and phase velocity
ṽ = 0.99v . After a distance of x = 50λ we have picked up a phase of π when compared
to the exact solution. This corresponds to a relative �eld error of 200%.

From the data in Fig. 4.6(b), we further observe that one should choose the Courant
number s as large as possible to reduce the error. This is also bene�cial from a second
point of view, since it increases the timestep ∆t and therefore speeds up the calculation.
As discussed previously, we must stay below the CFL-criterion which dictates the
optimal value of s as 1√

3
≈ 0.577.

In a next step, we look at the possible anisotropy of the phase velocity by considering
a ~k -vector in the xy-plane. We therefore introduce k̃x = k̃ cos(ϕ) and k̃y = k̃ sin(ϕ),
while k̃z = 0. Insertion into Eq. (4.8) allows us to determine the numerical phase
velocity

ṽ =
Nλ

πs
arcsin

s

√
sin2

(
π

Nλ
cos(ϕ)

)
+ sin2

(
π

Nλ
sin(ϕ)

)
as a function of the propagation angle ϕ. We plot the error for di�erent discretizations
in Fig. 4.7 and observe, how the phase error is signi�cantly reduced for propagation
under 45◦. In fact, if we consider propagation along the space diagonal, i.e., k̃x = k̃y =
k̃z = 1√

3
k̃ , the phase velocity error vanishes entirely for s = 1√

3
. Unfortunately, this is

of little relevance since in any realistic system, there will be propagation in multiple
directions.

4.2.3 Improvements by Using Higher-Order Discretizations

As we have seen in the previous section, the propagation error is mostly determined
by the number of gridpoints per wavelength. Even the lower limit of ten points per
smallest wavelength in the system can be very restricting for larger three-dimensional
systems. For this reason, a massive amount of research has gone into the question
of how one can reduce the required number of points per wavelength. If we want to
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Figure 4.7: The error in the phase velocity ṽ as a function of the propagation
angle in the xy-plane. For all calculations the Courant number was chosen to be
s = 0.577.

stay with a �nite-di�erence discretization, there are a variety of proposed techniques
[28, 32, 33]. The simplest of which is to increase the order of the spatial discretization
by considering more neighboring points. A fourth-order accurate discretization on a
staggered grid reads

∂

∂x
F (x0) =

−F (x0 + 3∆
2 ) + 27F (x0 + ∆

2 )− 27F (x0 − ∆
2 ) + F (x0 − 3∆

2 )
24∆

+ O(∆4)

(4.10)
and can be used to derive update equations which are accurate to fourth order.

Here, we will only increase the order of the spatial discretization, while the time
integration remains a second-order scheme. The reason is that a higher-order �nite-
di�erence scheme in time requires us to store a set of previous �eld values, thereby
dramatically increasing the memory requirements. Should the error be dominated by
an insu�cient time integration, we can simply reduce ∆t to lower this e�ect. Alterna-
tively, we can use more advanced integration methods as will be discussed in Chapter
6.

By inserting the plane wave ansatz (4.7) into fourth-order update equations results
in the numerical dispersion relation

ω̃4th =
2

∆t
arcsin

(
ξ4th

)
, (4.11)

where now

ξ4th = ∆t
√
ζ2
x + ζ2

y + ζ2
z with ζi =

27 sin
(

k̃i∆i
2

)
− sin

(
3k̃i∆i

2

)
24∆i

, i = x , y , z .

A series expansion of Eq. (4.11) then gives

ω̃ =
√

k̃2
x + k̃2

y + k̃2
z +

1
24

(
k̃2
x + k̃2

y + k̃2
z

) 3
2 ∆t2 + O(∆4,∆t4),
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Figure 4.8: The error in the phase velocity for a fourth-order discretization as a
function of (a) the number of gridpoints per wavelength and (b) the timestep factor
s. Both are double logarithmic plots and propagation is assumed along the x -axis.
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Figure 4.9: Anisotropy of the phase velocity for a fourth-order discretization as a
function of the propagation angle. (a) shows data for the maximal Courant number
s ≈ 0.49, while (b) contains results for optimized s values taken from Fig. 4.8(b).

from which we recognize the second-order accuracy in time while the error is of O(∆4)
in space. Enforcing a purely real ω̃4th results in the new stability criterion

∆t4th ≤
6
7

1√
1

∆x2 + 1
∆y2 + 1

∆z2

,

which is reduced by a factor 6
7 ≈ 0.857 compared to the second-order formulation.

To compare the phase velocity we again assume a cubic grid and propagation in the
xy-plane via k̃x = cos(ϕ)k̃ , k̃y = sin(ϕ)k̃ and k̃z = 0. As in the second-order case, we
plot the deviation from the exact phase velocity for propagation along the x -axis as a
function of Nλ and s in Fig. 4.8. What we can observe directly is a generally reduced
error when compared with the data in Fig. 4.6. Even for only �ve points per wavelength,
we now get less than 1% deviation, while the 0.1% mark can be reached with around
ten points for an appropriate ∆t . Further, we observe certain combinations of s and
N , where the error vanishes entirely. To study this behavior further, we look at the
anisotropy of the phase velocity error in Fig. 4.9. For a constant s = 0.49, we observe
how the anisotropy is reduced for larger Nλ. To go a step further, we pick a value of s

46



4.3 Making it Work in Practice

which results in a vanishing error for ϕ = 90◦ (cf. Fig. 4.8(b)), then we also obtain a
dramatic reduction in the propagation error for all angles as shown in Fig. 4.9(b).
So far, the implementation of fourth-order discretizations seems like an excellent

way to reduce the propagation errors with very little additional e�ort. One can go
even further and obtain tailored �nite-di�erence discretizations which are constructed
to minimize this error [28]. Unfortunately, one should keep in mind that we were
only dealing with propagation in homogeneous media so far. As soon as we include
di�erent materials, two problems occur. First, the optimal value for s depends on the
local velocity of light in a medium. So the error can only be minimized for propagation
in one particular medium. Second and much more severe is the problem of interfaces.
As discussed in the introduction, the electric and magnetic �elds are generally not
continuous across interfaces. This strongly a�ects the validity of the Taylor expansion
performed to obtain the �nite-di�erence discretizations. Indeed, in Sec. 4.4.2 we will
demonstrate how an interface reduces the convergence to second order, despite the
higher-order discretizations.

4.3 Making it Work in Practice

Before we can employ the FDTD method in practice, some further issues need to
be addressed. In particular, we will brie�y discuss the discretization of the material
parameters. Further, we also need ways to inject radiation into the system and to
formulate appropriate boundary conditions. Finally, we return to the modeling of
dispersive materials.

4.3.1 Discretization of Material Parameters

So far, we have discretized the material parameters ε and µ at the same location as
their corresponding �elds. Considering an object with a given ε embedded in vacuum,
each gridpoint then lies either inside the object or not. This leads to the characteristic
stair-casing approximation as sketched in Fig. 4.10. If we now slightly modify the
discretization, e.g. by re�ning it, some of the cells will change their value of ε. Thus,
even an in�nitesimal change in the grid can lead to a signi�cant change of the discretized
ε-distribution. As a consequence, the convergence of the method is not monotonic.
Instead, a re�nement might even lead to a signi�cantly higher error. Furthermore, the
stair-casing can also lead to a reduction of the convergence to �rst order [34].
The root of this problem lies in the value of ε for a cell which is located on the surface

of a discontinuous object. Such a cell contains contributions from multiple materials. A
very basic idea to mitigate this problem is to introduce an e�ective material parameter
εeff to �ll the cell with. Possibly the simplest idea is to employ a volume average.
Indeed, such a procedure leads to a monotonic convergence but it might still have
the problem of reduced accuracy. Recently, it was proposed to employ an anisotropic
e�ective ε

eff
at a discontinuous interface [35] as

ε−1
eff

= P
〈
ε−1
〉

+
(
1− P

)
〈ε〉−1 . (4.12)
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Figure 4.10: Sketch of a circle, discretized by a uniform mesh. In order to
improve the convergence, all cells intersecting with the surface are assigned an
e�ective material parameter.

Here, P is the projection matrix Pij = ninj onto the normal vector n̂ of the surface.
The 〈. . . 〉 denotes the volume average over one cell. It was demonstrated that this
e�ective material parameter allows to retain second order of accuracy, despite the
�eld discontinuities at the surfaces [35]. Unfortunately, this improvement does not
come for free, since it raises the memory requirements and leads to a signi�cantly
more involved implementation. Interestingly, for two-dimensional problems in TM
polarization, Eq. (4.12) reduces to the mean value, so we can use the scalar parameter
εeff = 〈ε〉.

4.3.2 Implementation of Sources

The most obvious way to excite a system is via the current source terms in Maxwell's
equations. By simply adding a discretized source term j |i ,j ,k to the update equations,
we implement point-like sources with arbitrary time shapes. Via multiple of such point-
sources it is also possible to launch spatially extended pulses, but each point-source
will always radiate to all directions, so a planar source will always emit to both sides
of the plane.

Total-Field/Scattered-Field Sources

In order to inject an extended pulse travelling only in a given direction into the compu-
tational domain, a special technique called total-�eld/scattered-�eld (TF/SF) method
was developed. The idea relies on the linearity of Maxwell's equations, which allows
us to arbitrarily split the total electric and magnetic �eld into two parts

~E (tot) = ~E (inc) + ~E (scat) and ~H (tot) = ~H (inc) + ~H (scat). (4.13)

Here, ~E (inc) and ~H (inc) denote the incoming �elds. We assume to know these �elds
analytically, e.g. they are plane waves as given by Eq. (2.17). Furthermore, we split our
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Figure 4.11: Sketch of a staggered grid in two dimensions (TM polarization)
to illustrate the TF/SF method. The shaded region signi�es the total �eld region,
while the unshaded areas belong to the scattered �eld region. The time-stepping of
the two marked �eld components at the boundary is discussed in the text.

computational domain into two parts. In one region we work with the total �elds ~E (tot),
~H (tot) while the other part only contains the scattered �elds ~E (scat) and ~H (scat). As an
example, we will discuss a two-dimensional system in TM polarization as sketched in
Fig. 4.11. Inside each region, the time evolution of a �eld component only depends on
other �elds in the same region. At the boundaries however, we see that we need to mix
�elds from di�erent regions in order to obtain an update equation. As an example, we

consider the magnetic �eld component H (tot)
y |i+ 1

2
,j in Fig. 4.11. Its update equation is

given by

H (tot)
y |n+1

i+ 1
2
,j

= H (tot)
y |n+1

i ,j+ 1
2

+
1

µ|i+ 1
2
,j

∆t
∆x

(
E (tot)

z |n+ 1
2

i+1,j − E (tot)
z |n+ 1

2
i ,j

)
,

where the problem lies in the fact that the component E (tot)
z |i ,j does not reside in the

total �eld region anymore. However, by exploiting Eq. (4.13), we can substitute it with
available �eld components as

H (tot)
y |n+1

i+ 1
2
,j

= H (tot)
y |n+1

i ,j+ 1
2

+
1

µ|i+ 1
2
,j

∆t
∆x

(
E (tot)

z |n+ 1
2

i+1,j − E (scat)
z |n+ 1

2
i ,j − E (inc)

z |n+ 1
2

i ,j

)
.

A similar treatment is required for the updating of E (scat)
z |i ,j , where the value of

H (inc)
y |i+ 1

2
,j enters. In this formulation, the known incoming �elds essentially act as a
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source and inject the desired wave into the total �eld region. Without any scatterer,
the scattered �eld region will remain zero. Only if the injected wave hits an object
inside the total �eld region, it will scatter a part of the incoming �eld which can then
penetrate the scattered �eld region. The formulation will prove itself invaluable when
calculating scattering cross sections of small objects as discussed in Chapter 8. It
should be noted here, that several optimizations have been proposed in order to e�-
ciently obtain the values of the incoming �eld. For an extensive review of those details,
we refer to Ref. [28].

4.3.3 Boundary Conditions and PMLs

Due to limited computational resources, we can usually only model a small region of a
realistic experimental system. This leads to boundaries of the computational domain,
on which we need to de�ne appropriate boundary conditions.

PEC and PMC Boundary Conditions

Possibly the simplest boundary conditions is to �x the �eld values on the boundary
to a given value. This is called a Dirichlet boundary condition and can be directly
implemented in the FDTD scheme. The choice of whether to �x the magnetic or the
electric �eld components depends on how we terminate the staggered grid. In practice,
for each boundary we can choose between:

� Perfect Electric Conductor (PEC) boundary conditions, which corresponds to
�xing the tangential electric �eld components to zero.

� Perfect Magnetic Conductor (PMC) boundary conditions, which corresponds to
�xing the tangential magnetic �eld components to zero.

As is well known from electrostatics [20], such a perfect conductor acts as a mirror
for electromagnetic radiation. The only di�erence between the PEC and the PMC
condition lies in the phase jump conducted by the re�ected wave. In the case of a
PEC, the re�ected electric �eld picks up a phase of π when compared to the incoming
�eld, while the magnetic �eld remains continuous. For the PMC boundary, the role of
the �elds is swapped.

Discretization of CFS-PMLs

For most applications, the mirroring boundary conditions are not suitable. Instead we
require open boundaries, which e�ectively absorb all outgoing radiation. In Section
3.2 we demonstrated how this can be achieved by perfectly matched layers and we
already derived the auxiliary di�erential equations which need to be solved. Here, we
will discuss the implementation of the technically superior CFS-PMLs. For the fully
three-dimensional case, this leads to two auxiliary di�erential equations (3.16) for each
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�eld component, repeated here as

∂tEx =
1
ε

(
1
κy
∂yHz −

1
κz
∂zHy − Fxy + Fxz

)
,

∂tFxy =
σy

κ2
y

∂yHz −

(
αy +

σy

κy

)
Fxy ,

∂tFxz =
σz

κ2
z

∂zHy −
(
αz +

σz

κz

)
Fxz .

Spatially, we can place the auxiliary �elds Fxy and Fxz at the same position as their
associated �eld component Ex . However, if we also choose to collocate them in time,
we need to express Fxy and Fxz at in-between timesteps because they appear on the
r.h.s. of the update equation for Ex . We can do so by linear interpolation in time

Fxy |n+ 1
2 =

Fxy |n + Fxy |n+1

2
+ (∆t2). (4.14)

Using this expression allows us to execute the time discretization as

Ex |n+1 = Ex |n +
∆t
ε

(
1
κy
∂yHz −

1
κz
∂zHy −

Fxy |n+1 + Fxy |n

2
+

Fxz |n+1 + Fxz |n

2

)
,

Fxy |n+1 = Fxy |n +
σy∆t
κ2

y

∂yHz −
∆t
2

(
αy +

σy

κy

)(
Fxy |n+1 + Fxy |n

)
,

Fxz |n+1 = Fxz |n +
σz∆t
κ2

z

∂zHy −
∆t
2

(αz + σzκz )
(
Fxz |n+1 + Fxz |n

)
,

which is not a fully explicit scheme yet, since for the auxiliary �elds, values at timestep
n+1 appear on both sides of the equations. However, one can easily solve the equations
for the values at timestep n + 1 to obtain

Fxy |n+1 =
2−∆t

(
αy + σy

κy

)
2 + ∆t

(
αy + σy

κy

)Fxy |n +
2∆t σy

κ2
y

2 + ∆t
(
αy + σy

κy

)∂yHz |n+ 1
2 ,

Fxz |n+1 =
2−∆t

(
αz + σz

κz

)
2 + ∆t

(
αz + σz

κz

)Fxz |n +
2∆t σz

κ2
z

2 + ∆t
(
αz + σz

κz

)∂zHy |n+ 1
2 .

Insertion of the spatial discretization is straight-forward and all other �eld components
can be obtained by permutations of the indices.
Finally, there is also the question of which values should be chosen for the parameters

α, κ and σ to achieve optimal performance. Analytically, this choice does not matter,
as long as the absorption of the PMLs is su�ciently high. In practice, we will see
that the values of the parameters greatly in�uence the performance. Particularly,
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the discontinuous jump from the computational domain into the PMLs can lead to
signi�cant re�ection due to the discretization. Thus, it is advisable to have an adiabatic
transition from the inner domain to the PMLs. In numerical experiments, a polynomial
grading of the type

σ(x ) =
(

x
d

)m

σmax, (4.15a)

κ(x ) = 1 +
(

x
d

)m

(κmax − 1) , (4.15b)

α(x ) =

(
d − x

d

)ma

αmax (4.15c)

proved itself valuable. Here, we assumed the surface of the PMLs to be at x = 0
and the thickness of the layer is taken as d . Thus, we have to determine a set of �ve
parameters (m, σmax, κmax, ma , αmax). However, for practical considerations it makes
sense to rewrite σmax as

σmax =
(m + 1)

2Yd
R, (4.16)

where Y =
√

µ
ε is the impedance and d is the thickness of the layer [28]. Now, R takes

the role of a rescaled σmax as the free parameter. This rescaling allows to somewhat
decouple the in�uence of m and R and therefore facilitates the search for optimal
parameters. We return to the numerical optimization in Sec. 4.4.3.

4.3.4 Dispersive Materials

As discussed in Chapter 3, certain models of dispersive media can be realized via
ADEs. As an example, we consider Eq. (3.10) with only the Drude term. To keep the
derivation compact, we restrict the discussion to the equations for the x -components,
which read

∂

∂t
Ex =

1
ε∞

[
∂

∂y
Hz −

∂

∂z
Hy − jx

]
,

∂

∂t
jx = −γD jx + ω2

DEx .

From those two equations, we see that the polarization currents ~j should be spatially
collocated with their corresponding electric �eld components. This allows a proper
inclusion into the semi-discrete equations for the electric �eld as

∂tEx |i ,j+ 1
2
,k+ 1

2
=

1
ε|i ,j+ 1

2
,k+ 1

2

Hz |i ,j+1,k+ 1
2
−Hz |i ,j ,k+ 1

2

∆y

−
Hy |i ,j+ 1

2
,k+1 −Hy |i ,j+ 1

2
,k

∆z
− jx |i ,j+ 1

2
,k+ 1

2

 .
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With respect to time, we pick the discretization to coincide with the magnetic �elds,
which results in the fully discrete update equation for the x -component of the electric
�eld as

Ex |n+1
i ,j+ 1

2
,k+ 1

2

= Ex |ni ,j+ 1
2
,k+ 1

2

+
∆t

ε|i ,j+ 1
2
,k+ 1

2

Hz |
n+ 1

2

i ,j+1,k+ 1
2

−Hz |
n+ 1

2

i ,j ,k+ 1
2

∆y

−
Hy |

n+ 1
2

i ,j+ 1
2
,k+1
−Hy |

n+ 1
2

i ,j+ 1
2
,k

∆z
− jx |

n+ 1
2

i ,j+ 1
2
,k+ 1

2

 .

Unfortunately, for the update of ~j we have the problem of ~j appearing on the r.h.s. as
well. Similarly to Eq. 4.14, we apply an averaging as

jx |ni ,j+ 1
2
,k+ 1

2

=
jx |

n+ 1
2

i ,j+ 1
2
,k+ 1

2

+ jx |
n− 1

2

i ,j+ 1
2
,k+ 1

2

2
+ O(∆t2)

and insert this for the r.h.s. Solving for jx |
n+ 1

2

i ,j+ 1
2
,k+ 1

2

then results in the update equation

jx |
n+ 1

2

i ,j+ 1
2
,k+ 1

2

=
2− γD∆t
2 + γD∆t

jx |
n− 1

2

i ,j+ 1
2
,k+ 1

2

+
2ω2

D

2 + γD∆t
Ex |ni ,j+ 1

2
,k+ 1

2

.

Update equations for all other components and for di�erent dispersion models can be
derived in an analogous manner. Finally, it should be noted that dispersive media were
not considered in the stability analysis conducted in Sec. 4.2.1. A detailed summary
of the in�uence of the ADEs on the error and the stability is provided in Ref. [36].

4.4 Verification of the Method

An absolute must for any implementation of a numerical method is a thorough and
comprehensive veri�cation. Ideally, one should base this veri�cation on the comparison
with exact analytical results. However, as discussed previously, such analytical results
are only available for relatively simple geometries. Therefore, one sometimes also has
to test the method against numerical results obtained by di�erent numerical methods.

4.4.1 Empty Metallic Cavities

As a �rst veri�cation, we consider an empty metallic cavity, which is bounded by per-
fect magnetic conductors (PMCs). The eigenmodes and the corresponding frequencies
for such a system can be obtained analytically [37]. As an example, we pick a two-
dimensional system in TM polarization and prepare an eigenmode of the cavity via
initial conditions. Then, we let the system evolve for T = 50 T0, where T0 is the
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Figure 4.12: A plot of the cavity mode used for veri�cation. It was picked to have
one wavelength in each directions and the corresponding frequency is ν =

√
2.

period corresponding to the frequency of the eigenmode. During the calculation, all
�eld values are recorded at all timesteps. After the calculation, we look for the maxi-
mum deviation from the analytical solution. The particular mode used for testing has
nx = ny = 2 and is depicted in Fig. 4.12. The corresponding period is T0 = 1/

√
2. To

�nd the error as a function of time, we record all �eld values at every timestep. For
each timestep, we then compare all recorded values with the exact result and pick the
maximum deviation as the error at this given step. This error in time is then normal-
ized to the maximal �eld value in time and space of the analytic solution. Thus, the
relative error in time is de�ned as

E(t) =
max
x ,y

∣∣∣EFDTD
z (x , y , t)− E exact

z (x , y , t)
∣∣∣

max
t

(
max
x ,y

(
E exact

z (x , y , t)
)) . (4.17)

For the case of the metallic cavity, the denominator of Eq. (4.17) is unity. In Fig. 4.13
we plot a typical behavior of the relative error as a function of time. As expected, one
clearly observes a linear growth of the error with time. To �nally obtain a measure for
the total relative error of a calculation, we again take the maximum of E(t) to de�ne

Etot = max
t

(
E(t)

)
. (4.18)

The calculations for the two-dimensional metallic cavity are performed with both,
second-order and fourth-order spatial discretizations and the relative error in time is
plotted as a function of the Courant number and of the discretization in Fig. 4.14.
A number of observations can be made from those results. First, we notice that for
second-order calculations, a Courant number of s = smax is optimal which agrees with
the theoretical analysis executed in Sec. 4.2.2. For this particular example, the error
even seems to vanish entirely for s = smax. In contrast, for fourth-order calculations
a su�ciently small time-step is required in order to not be limited by errors from the
time integration. Again, there is a distinct minimum which now is resolution dependent
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Figure 4.13: Evolution of the error in time during a FDTD simulation of an
empty metallic cavity. Di�erent colors indicate di�erent discretizations. One ob-
serves a linear growth of the error with simulation time, where the slope depends
on the discretization.

and does not tend to zero anymore. As we mentioned when studying the theoretical
accuracy of the model, purely homogeneous systems are rather academic. Therefore,
above calculations only serve to verify our implementation of the method. One should
not draw conclusions about the performance and accuracy of the FDTD method based
on these results.

4.4.2 Half-Filled Cavities

As a slightly more realistic system which still allows for exact solutions, we next an-
alyze a half-�lled cavity. We switch to TE polarization now and the schematic setup
is depicted in Fig. 4.15(a). The �eld component Ex of the used mode is shown in
Fig. 4.15(b). In this case, we clearly observe a discontinuity at the interface. In order
to avoid problems with the averaging of the material parameters (cf. Sec. 4.3.1), we
�x our grid such that the y-components of the electric �eld are located directly on
the interface. For this case, the corresponding ε remains scalar and can be averaged
to maintain second order accuracy. As we observe from the data in Fig. 4.16, second
order convergence is indeed preserved for all cases. However, by looking at the results
produced by a fourth-order scheme, we recognize that the convergence is reduced to
second order for higher resolutions. This reduction is directly caused by the disconti-
nuities which invalidate the Taylor expansion used to derive Eq. (4.10). Since those
errors are spatially localized at the interface, the fourth-order scheme still results in
lower total errors than the standard FDTD method.

4.4.3 Optimization of the PML Parameters

To conclude the veri�cation and testing of the FDTD method, we study the per-
formance of the PMLs. As discussed in Sec. 4.3.3, there is a number of free pa-
rameters which need to be �xed. As a test system, we use a cube of dimensions
[−1, 1] × [−1, 1] × [−1, 1] which is discretized with ∆x = ∆y = ∆z = 0.1. Outside of
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Figure 4.14: Relative error of a FDTD simulation of a two-dimensional metallic
cavity in TM polarization. Solid lines correspond to 2nd-order in space, dashed
lines denote a 4th-order discretization. (a) displays the error as a function of the
Courant number. The di�erent colors indicate di�erent spatial resolutions. (b)
shows the error as a function of Nλ. There, di�erent colors correspond to di�erent
Courant numbers.
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Figure 4.15: (a) Schematic plot of the half-�lled cavity. (b) Plot of the mode used
for calculations.

this cube, we add NPML cells of PMLs, so the thickness of the layers is d = NPML∆x .
The system is excited via a dipole source at the center of the system. The dipole is
oriented along the z -axis and the radiated electric �eld is recorded at three distinct
points P1 = (1, 0, 0), P2 = (1, 1, 0) and P3 = (1, 1, 1). The time variation of the source
is given by a Gaussian pulse as

j (t) = sin
(
2πν0(t − t0)

)
exp

(
−(t − t0)2

2w2

)
. (4.19)

We pick the carrier frequency to be ν0 = 1 and the pulse width w = 1. The pulse starts
at t = 0 and reaches its maximum at t0 = 5w . After t = 10w , the source is switched
o� entirely. In Fig. 4.17 we display the shape of the pulse and the corresponding
spectrum. As can be seen from this �gure, the pulse has a spectrum which covers
wavelength between λ = 8∆x and λ = 15∆x .
After the calculations, the recorded �elds are compared to a reference solution ~ERef .
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Figure 4.16: Relative error of a FDTD simulation of a two-dimensional metallic
cavity in TM polarization. Solid lines correspond to 2nd-order in space, dashed
lines denote a 4th-order discretization. (a) displays the error as a function of the
Courant number. The di�erent colors indicate di�erent spatial resolutions. (b)
shows the error as a function of Nλ. Here, di�erent colors correspond to di�erent
Courant numbers.
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Figure 4.17: (a) The temporal shape of the pulse used for optimization of the
perfectly matched layers. (b) shows the corresponding spectrum.

The reference solution is obtained by a FDTD calculation of a much larger system but
with the same discretization. This procedure allows to exclude propagation errors and
to concentrate purely on the arti�cial re�ection of the PMLs. The relative error E is
then calculated as given by Eq. (4.17) and Eq. (4.18).

For the �rst test, we neglect the parameters α and κ and study only the in�uence
of σ. Thus, we have two free parameters, m and R, to vary. In Fig. 4.18 we present
the results of a detailed scan of the two parameters. We directly observe, that the
numerical performance does depend strongly on the choice of R and m. This is a
purely numerical e�ect and highlights the importance of the polynomial grading when
implementing PMLs in the FDTD method. Concerning the performance, we note a
strong dependence on the thickness of the layers. By plotting the minimal error for
a given thickness in Fig. 4.19, we observe an exponential reduction with NPML. Even
for only �ve cells, the spurious re�ection can be reduced below 1%. For NPML = 10,
we already �nd a large parameter range for which the error is below 0.1%. From these
results, we conclude that a PML thickness of around NPML = 10 is advisable. In this
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Figure 4.18: Maps of the maximal error at Point P3 for di�erent value of R
and m. The di�erent panels correspond to a di�erent thickness of the PMLs: (a)
NPML = 5, (b) NPML = 10, (c) NPML = 15, (d) NPML = 20.
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Figure 4.19: The minimal error obtained as a function of the PML thickness
NPML. Here, di�erent symbols indicate the recorded errors at di�erent points in
the system.
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Figure 4.20: In�uence of the PML parameter α on a system with NPML = 5.
Here, (a) shows the relative error as a function of R and αmax with �xed m = 3.5,
(b) shows the relative error as a function of R and m with �xed αmax = 1.0.

case, values of R ≈ 10 and m ≈ 3 usually lead to a su�ciently good performance.

So far, we only optimized two of the available �ve parameters in Eqs. (4.15). How-
ever, the stretching parameter κ only becomes relevant, if one has a system with
evanescent �elds leaking into the PMLs. When applied to the absorption of propagat-
ing waves, it will usually reduce the performance [27, 28]. Thus, we are left with the
free parameter α. In Fig. 4.20 we demonstrate the in�uence of changing αmax on the
performance of a system with NPML = 5.
In Fig. 4.20(a), we �xed m = 3.5 and plotted the relative error as a function of R

and αmax. One directly observes an improvement of the performance for �nite α. The
optimal value for this case seems to be around αmax = 1. In Fig. 4.20(b) we also study
the in�uence of non-vanishing αmax on the results in the (R,m)-plane. When comparing
the data with Fig. 4.18(a), we observe that the improvement does not have a strong
in�uence on the choice of R and m. For a large parameter region, choosing αmax = 10
leads to a reduction of the error by roughly a factor 10. Thus, we conclude that a
proper optimization of αmax can lead to a signi�cant improvement of the absorption.
As a consequence, this improvement allows to employ a thinner PML which directly
results in faster calculations and reduced memory requirements.

Finally, it should be noted that above test case only covers the absorption of prop-
agating waves. For realistic nanophotonic problems however, evanescent waves often
play an important role. If we terminate a system with a scatterer very close to the
PMLs, this will lead to signi�cant changes for the choice of optimal PML parameters.
As alluded to above, the stretching κ becomes relevant for this case. Unfortunately,
there is no general rule on how to select the parameters for optimal absorption of prop-
agating and evanescent waves. A number of numerical experiments can be found in
Refs. [27, 28] but the results strongly depend on the particular setup. Thus, one usu-
ally has to start from the values proposed above. To verify that the evanescent �elds
are not distorted by the PMLs, one can shift the boundaries away from the scatterer
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4 The Finite-Di�erence Time-Domain Method

until the results stay unchanged. Since evanescent waves decay exponentially, such a
procedure is usually feasible and should quickly lead to converging results.
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5 Chapter 5

The Discontinuous Galerkin
Method

While the FDTD method discussed in the previous chapter is a conceptually simple,
yet powerful technique, it has a number of signi�cant shortcomings. The two most
important (and somewhat related) problems are the constraint to an orthogonal grid
and the limitation to second order when material interfaces are involved. Over the
past years, dozens if not hundreds of extensions and alternatives were suggested to
overcome some of these restrictions (e.g. see Refs. [28, 38, 39] and references therein).
Unfortunately, the price one usually has to pay for a more powerful technique is the loss
of simplicity and generality. Hence, none of the proposed discretizations has managed
to gain an even remotely similar popularity as the original FDTD method has in the
�eld of nanophotonics.

In this chapter we will discuss a promising alternative technique commonly called
discontinuous Galerkin (DG) which attracted some interest recently due to its �exi-
bility and good performance. The method dates back to 1973 where it was originally
employed to solve a neutron-transport problem [18]. Since then, there was a steady
progress which mostly focussed on problems in hydrodynamics. The major step for-
ward concerning an application to Maxwell's equations was done by Hesthaven and
Warburton in 2002 when they proposed a nodal scheme and proved its convergence
[19]. In the following sections, a comprehensive review of the DG method with respect
to Maxwell's equations will be given. However, the discussion will mainly focus on the
parts directly relevant for the implementation. For clarity, some of the mathematical
proofs will be omitted and the reader is referred to Refs. [19, 40] for the details.

5.1 One-Dimensional Systems

To initially focus on the fundamentals of the DG method, we start with a one-di-
mensional system. Repeating Eq. (2.15) without the current term, the electric and

61



5 The Discontinuous Galerkin Method

Figure 5.1: Sketch of a non-uniform tessellation in one dimension.

magnetic �elds are described by

ε(x )
∂

∂t
E (x , t) =

∂

∂x
H (x , t), (5.1a)

µ(x )
∂

∂t
H (x , t) =

∂

∂x
E (x , t). (5.1b)

In order to keep the notation compact, we will restrict the following discussion to
the time-evolution of the electric �eld, i.e., Eq. (5.1a). The corresponding equation
for the magnetic �eld can be obtained later by interchanging the �elds and material
parameters.

5.1.1 Local mapping of the cells

To discretize Eq. (5.1a) in space, we start by splitting the one-dimensional computa-
tional domain into intervals Dk = [x k , x k+1] as sketched in Fig. 5.1. It is important to
note that we don't require a uniform splitting, but the intervals should all have positive
length, so x k+1 > x k . Next, we introduce a local, linear mapping which maps each
cell Dk onto the unit interval [−1, 1]. Consequently, a new coordinate uk in the unit
interval is introduced by the transformation

uk (x ) = αk
0 + αk

1x with αk
0 = −x k+1 + x k

x k+1 − x k
and αk

1 =
2

x k+1 − x k
.

The inverse mapping then reads

x (uk ) =
uk − αk

0

αk
1

=
x k+1 + x k

2
+

1
αk

1

uk .

To be able to transform derivatives and integrals we further require the Jacobian of
the transformation, which is given by

J k =
∂x
∂uk

=
1
αk

1

. (5.2)

5.1.2 Expansion into a Local Basis

Our next step is to expand the �elds in each unit cell into a polynomial basis Ψn(u)
of order N . Therefore, we need Np = N + 1 coe�cients to write

E k (u, t) ≈
Np∑
i=1

Ê k
i (t)Ψi(u), (5.3)
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where Ê k
i are the expansion coe�cients and Ψn(u) are arbitrary polynomials of max-

imal order N . As an example, we could use the so-called monomial basis given by
Ψi(u) = u i−1. In a later section, we will return to the particular choice of the basis.
Since we are using a polynomial basis, the same expansion can also be expressed in
terms of interpolating Lagrange polynomials lki (u) as

E k (u, t) ≈
Np∑
i=1

E k (ui , t)lki (u) =
Np∑
i=1

E k
i (t)lki (u). (5.4)

Here, we have chosen a set of nodes ui at which the �eld is �xed. Between these points,
the �eld values are given by Lagrange interpolation. This representation is also called
the nodal form, in contrast to the modal form of Eq. (5.3). The nodal representation
has the advantage that the expansion coe�cients are physical �eld values at given
points. This can later be exploited to obtain a better performing implementation of
the numerical scheme. Aside from this, the two forms are equivalent.
The next step is to de�ne, in which sense our discrete solution has to agree with the

exact solution. A typical way to do so is to pick a set of test functions Φk
i (u) on the

unit interval and demand that∫
Dk

(
ε(x )

∂

∂t
E (x , t)− ∂

∂x
H (x , t)

)
Φk

i (uk (x ))dx = 0, (5.5)

for all intervals Dk . Similarly to the choice of the expansion basis, there is a certain
freedom in choosing the test functions Φk

i (u). A very common and practical choice is
to utilize the same set of functions as for the expansion, so Φk

i (u) = lki (u). This choice
is known as Galerkin's approach.
Before we proceed with inserting the expansion, it should be noted that the scheme

so far is purely local. This means that neighboring cells are not related to each other.
To enable this coupling, we employ an integration by parts on Eq. (5.5) to obtain∫

Dk

(
ε(x )

∂

∂t
E (x , t)Φk

i (x ) + H (x , t)
∂

∂x
Φk

i (x )

)
dx =

[
H (x , t)Φk

i (x )
]x (k+1)

x (k)
.

This step yields the boundary values on the right-hand side which we now replace by
a so-called numerical �ux H ∗(x , t). This procedure might seem slightly unmotivated
at this point and we shall return to the details of this substitution later. For now it
su�ces to say that this numerical �ux will facilitate the coupling between neighboring
cells, so we have∫

Dk

(
ε(x )

∂

∂t
E (x , t)Φi(x ) + H (x , t)

∂

∂x
Φi(x )

)
dx =

[
H ∗(x , t)Φi(x )

]x (k+1)

x (k) .

As a result of the integration by parts, the spatial derivative no longer acts on the
�elds but on the test functions Φi . This form is commonly referred to as the weak
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formulation. A second integration by parts leads to the equivalent strong formulation∫
Dk

(
ε(x )

∂

∂t
E (x , t)Φk

i (x )− ∂

∂x
H (x , t)Φk

i (x )

)
dx =

[(
H ∗(x , t)−H (x , t)

)
Φk

i (x )
]x (k+1)

x (k)
.

Using this strong formulation, we continue by inserting the expansion (5.4) to obtain

N∑
j=1

(
εkMk

ij

∂

∂t
E k

j (t)− Sk
ijH

k
j (t)

)
=
[(

H ∗(x , t)−H (x , t)
)
lki (x )

]x (k+1)

x (k)

where

Mk
ij =

∫
Dk

lki (x )lkj (x )dx and Sk
ij =

∫
Dk

lki (x )
∂

∂x
lkj (x )dx . (5.6)

The matricesMk and Sk are called the mass matrix and sti�ness matrix, respectively.
Here, we already assumed that the material parameters are constant in each cell.
Multiplying the system with the inverse mass matrix then results in the �nal semi-
discrete system, which reads

εk
∂

∂t
Ek (t) =

(
Mk

)−1
(
SkHk (t) +

[(
H ∗(x , t)−H (x , t)

)
lk (x )

]x (k+1)

x (k)

)
,

µk ∂

∂t
Hk (t) =

(
Mk

)−1
(
SkEk (t) +

[(
E ∗(x , t)− E (x , t)

)
lk (x )

]x (k+1)

x (k)

)
.

Semi-discrete Discontinuous Galerkin Formulation in 1D

(5.7a)

(5.7b)

To streamline the notation, we have introduced the vectors Ek =
(
E k

1 , . . . ,E
k
Np

)T
and

Hk =
(
H k

1 , . . . ,H
k
Np

)T
.

5.1.3 The Numerical Flux and the Riemann Problem

The one part still unspeci�ed in our method are the numerical �uxes H ∗ and E ∗,
which we combine in a vector f∗ =

(
H ∗,E ∗

)T
. As alluded to above, the task of the

numerical �ux is to properly connect neighboring cells. Since our scheme is local, we
have two (potentially di�erent) �eld values at each boundary: One calculated from the
expansion in the right cell and one value from the left cell. To obtain a convergent
scheme, the numerical �ux has to somehow reconcile the two di�erent values. It also
must ensure that the physical boundary conditions between two cells are enforced, and
�nally it needs to guarantee that the resulting method becomes numerically stable.

Fortunately, the idea of a numerical �ux is not unique to the DG method. In fact,
it is commonly discussed in the context of Finite Volume (FV) methods and a lot of
research was conducted towards the proper choice of the numerical �ux [41]. While
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5.1 One-Dimensional Systems

(a) (b)

Figure 5.2: Sketch of a the Riemann problem: (a) shows the initial condition,
where the �elds have a discontinuity at x = 0. (b) displays the evolution of the
system in time.

there is a large variety of possible choices, a particularly suitable numerical �ux can
be obtained by solving a so-called Riemann problem [41, 42]. The Riemann problem is
sketched in Fig. 5.2 and consists of two half-spaces with di�erent, but constant initial
�elds. Each half-space can also consist of a di�erent material. The question then is,
how the �elds evolve in time. To �nd an answer to this question, we return to the full
set of equations (5.1) and write them in conservative form as

Q ∂

∂t
q =

∂

∂x
f(q). (5.8)

Here, we introduced a vector q = (E ,H )T and the �ux f(q) = (H ,E )T . The matrix

Q =

(
ε(x ) 0

0 µ(x )

)
contains the material properties. Multiplication with Q−1 then

allows us to write
∂

∂t
q− B ∂

∂x
q = 0

with the matrix

B =

(
ε−1 0
0 µ−1

)(
0 1
1 0

)
=

(
0 ε−1

µ−1 0

)
.

If we diagonalize this matrix as B = SΛS−1, we obtain the two eigenvalues λ1,2 =
± 1√

εµ . These eigenvalues are the velocities of a forward and a backward travelling

wave. For the Riemann problem, on each side only the velocity propagating away from
the interface (propagating into the neighboring cell) is relevant. The travelling waves
are sketched in Fig. 5.2 by straight lines in the (x , t)-plane, the so-called characteris-
tics. Since the material parameters on each side are di�erent, so are the velocities as
indicated by the di�erent slopes of the characteristics.

Our aim is to �nd a solution for the �elds in the central (∗) region. To do so, we make
use of the Rankine-Hugoniot condition [42], which is a consequence of the conservation
of q across the characteristics. For the one-dimensional case, when crossing from region
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a to b, the condition reads

∀i : −λiQ
(
qa − qb

)
+ fa − f b = 0.

Jump Condition

(5.9)

As can be seen in Fig. 5.2, we have two characteristics to cross, �rst we go from the
left (−) to the central (∗) region, then from the central (∗) to the right (+) region. So,
the two conditions read

−c−Q−
(
q− − q∗

)
+ f− − f∗ = 0,

−c+Q+
(
q∗ − q+

)
+ f∗ − f+ = 0,

with corresponding velocities c− = − 1√
ε−µ−

and c+ = 1√
ε+µ+

. Eliminating q∗ and

solving the two equations for f∗, we obtain the �ux in the (∗) region as

f∗ =
[
c+Q+ − c−Q−

]−1
[
−c+c−Q+Q−

(
q− − q+

)
− c−Q−f+ + c+Q+f−

]
.

Using f∗ =
(
H ∗,E ∗

)T
, we can then also derive the �elds in the (∗) region as

E ∗ =
1

Y − + Y +

[
Y −E− + Y +E+ +

(
H− −H +

)]
, (5.10a)

H ∗ =
1

Z− + Z +

[
Z−H− + Z +H + +

(
E− − E+

)]
, (5.10b)

with

Z± =

√
µ±

ε±
and Y ± =

(
Z±
)−1

=

√
ε±

µ±
.

Returning to the problem of the numerical �ux, it turns out that the solution of the
Riemann problem also serves as an excellent numerical �ux. This particular choice
is also called upwind �ux. It should be noted again, that this is by far not the only
possible �ux. However, in practice this choice leads to a highly stable scheme with little
numerical artifacts. The main disadvantage of the �ux is, that it does not conserve the
total energy in the system. Instead, it leads to dissipation, which can be signi�cant if
one does not resolve the propagating waves su�ciently.

5.1.4 The Choice of the Basis and the Nodal Points

To implement the DG scheme, we need to somehow explicitly calculate the matrices
Mk and Sk . To do so, we transform the integrals from Eq. (5.6) onto the unit interval
as discussed in Sec. 5.1.1. Then, we have

Mk
ij = J k

1∫
−1

li(u)lj (u)du and Sk
ij =

1∫
−1

li(u)
∂

∂u
lj (u)du. (5.11)
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Np Node Positions ui Graphical Representation

3 −1, 0, 1

4 −1, − 1√
5
, 1√

5
, 1

5 −1, −
√

21
7 , 0,

√
21
7 , 1

6 −1, −
√

7−2
√

7
21 , −

√
7+2
√

7
21 ,

√
7+2
√

7
21 ,

√
7−2
√

7
21 , 1

...
...

...

Table 5.1: Positions of the Legendre-Gauss-Lobatto nodes in the unit interval.

As a �rst observation, we note that the matrix Sk is completely independent of the
element k , while the matrixMk is almost independent, except for the scalar Jacobian
given in Eq. (5.2). This will allow us to precompute these matrices once and reuse them
for all cells. It should be noted that this feature is a result of the constant material
parameters ε and µ in each cell.

The next task concerns the question of how to obtain the Lagrange polynomials li(u)
and how to integrate over them. In one dimension, the polynomials are given explicitly
as

li(u) =
Np∏

j=1,j 6=i

u − uj

ui − uj
, (5.12)

where ui are the interpolation nodes. In order to obtain an optimal approximation, one
needs to choose these nodes carefully. From the theory of numerical integration, it is
known that the zeros of the Legendre polynomials yield the best approximation on the
unit interval [43]. However, for implementation reasons that will become clear later,
we want two of the nodes �xed at the endpoints of the interval. In this case, the opti-
mal set of interpolation nodes is given by the so-called Legendre-Gauss-Lobatto (LGL)
quadrature. The nodal positions up to Np = 6 are presented in Tab. 5.1. Convenient
methods to obtain these nodes for arbitrary Np are discussed in Ref. [40]. For the one-
dimensional case, we could proceed by replacing the integrals with a LGL quadrature
rule to obtain the desired matrices. While this works very well in one dimension, un-
fortunately, it can not be generalized easily to higher-dimensional systems. Therefore,
we follow Ref. [40] and present a more involved, but also more universal procedure.

Remembering the nodal and modal expansion of E on the unit interval, we have

E (u) ≈
Np∑
j=1

Êj Ψj (u) =
Np∑
j=1

Ej lj (u) (5.13)
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with an arbitrary polynomial basis Ψi . As alluded to above, we will not use the
monomial basis Ψi(u) = u i−1, because it lacks orthogonality. This might lead to
numerical problems later on. Instead, we are free to pick any set of polynomials, which
is orthogonal on the unit interval [−1, 1]. Here, we choose the normalized Legendre
polynomials

P̃i(u) =

√
i +

1
2
Pi(u),

where Pi(u) are the classical Legendre polynomials. The orthogonality expresses itself
in the property

1∫
−1

P̃i(u)P̃j (u)du = δij . (5.14)

From Eq. (5.13), we further recover

E (ui) ≈
Np∑
j=1

Êj Ψj (ui) =
Np∑
j=1

Ej lj (ui) = Ei ,

which allows us to write
VÊ = E.

Here, we introduced the vectors Ê =
(
Ê1, . . . , ÊNp

)T
and E =

(
E1, . . . ,ENp

)T
as well

as the generalized Vandermonde matrix

Vij = Ψj (ui) = P̃j−1(ui).

Due to the uniqueness of the polynomial interpolation, we also have

P̃i(u) =
Np∑
j=1

P̃i(uj )lj (u)⇒ P̃(u) = VT l(u).

and more importantly, the inverse relation

li(u) =
Np∑
j=1

(
VT
)−1

ij
P̃j−1(u). (5.15)

Returning to the integrals in Eq. (5.11), we can now exploit Eq. (5.15) and make use
of the orthogonality from Eq. (5.14) to express the mass matrix as

Mk
ij = J k

1∫
−1

li(u)lj (u)du

= J k

Np∑
k=1

Np∑
l=1

(
VT
)−1

ik

(
VT
)−1

jl

1∫
−1

P̃k−1(u)P̃l−1(u)du

= J k

Np∑
k=1

(
VT
)−1

ik

(
VT
)−1

jk
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or more conveniently

Mk = J k
(
VVT

)−1
= J kM. (5.16)

In a similar fashion, we can simplify the sti�ness matrix S by rewriting it as

Sij =

1∫
−1

li(u)l ′j (u)du =

1∫
−1

li(u)
Np∑
k=1

l ′j (uk )lk (u)du =
Np∑
k=1

MikDkj .

Here, the prime denotes the derivative with respect to the argument and we introduced
the di�erentiation matrix

Dij = l ′j (ui).

Making use of the Eq. (5.15), we insert the generalized Vandermonde matrix and obtain

Dij =
Np∑
k=1

(
VT
)−1

jk
P̃ ′k−1(ri) =

Np∑
k=1

P̃ ′k−1(ui)V−1
kj . (5.17)

Exploiting an identity for the derivatives of the Legendre polynomials [40] allows us to
express P̃ ′i (u) as

P̃ ′i (u) =
√

i(i + 1)P̃ (1,1)
i−1 (u),

where P̃ (1,1)
i is a normalized Jacobi polynomial. For details on how to evaluate Jacobi

polynomials see Ref. [40].

5.2 Two- and Three-Dimensional Systems

The most obvious problem in the transition from one-dimensional problems to higher
dimensions concerns the spatial tessellation. To be able to accurately model complex
geometries, we require unstructured meshes. However, the exact shape of the elements
still o�ers a variety of options. Some of the commonly used cell types are shown
in Fig. 5.3. We will restrict the discussion to triangular (2D) and tetrahedral (3D)
elements, but this is by no means a limitation of the method. We will also skip the
topic of mesh generation, because it would go far beyond the scope of this thesis. The
interested reader is referred to Ref. [44]. All meshes employed in the following sections
were either created by hand or they were generated by using the freely available software
NETGEN [44].
To derive a DG scheme for Maxwell's equations in higher dimensions, we start the

conservation form (2.11), which we recast to

∂t

(
Q(~r)q(~r , t)

)
+∇ · ~F (q) = 0. (5.18)

The material matrixQ(~r), the state vector q and the �ux vector ~F (q) =
(
Fx ,Fy ,Fz

)T

are de�ned as

Q(~r) =

(
ε(~r) 0

0 µ(~r)

)
, q(~r , t) =

(
~E (~r , t)
~H (~r , t)

)
, and Fi(q) =

(
−êi × ~H (~r , t)
êi × ~E (~r , t)

)
.
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Triangle Quadrilateral

Tedrahedron Hexahedron Prism Pyramide

3d

2d

Figure 5.3: Di�erent common types of cells in two-dimensional (upper panel)
and three-dimensional (lower panel) unstructured meshes.

In these expressions, êi , i = x , y , z denote the Cartesian unit vectors. In order to
solve this system, the computational domain is tessellated into K conforming elements
Ωk . As discussed above, those elements cyn be of arbitrary shape. Now, the general
procedure closely follows the sequence discussed for the one-dimensional case. On each
element, the �elds are expanded in terms of interpolating Lagrange polynomials Li(~r)
as

qk (~r , t) ≈
Np∑
i=1

qk (~ri , t)Li(~r) =
Np∑
i=1

q̃k
i (t)Li(~r), (5.19)

where Np denotes the number of coe�cients utilized. The vector q̃k (t) contains the
unknown �eld values that have to be solved for, while ~ri denotes a set of suitable
interpolation nodes. The question of how to obtain those nodes is deferred to a later
section.

Application of the standard Galerkin approach then consists of multiplying Eq. (5.18)
with test functions Li(~r) and integrating over an element Ωk , which results in∫

Ωk

(
Qk∂t q̃k +∇ · ~F (q̃k )

)
Li(~r)d~r = 0.

To facilitate the coupling between neighboring cells, we again employ an integration by
parts and substitute the physical �ux ~F (q̃k (t)) with the numerical �ux ~F ∗(q̃k (t)) in
the resulting contour integral. A second integration by parts then results in the strong
formulation∫

Ωk

(
Qk∂t q̃k +∇ · ~F (q̃k )

)
Li(~r)d~r =

∫
∂Ωk

n̂ ·
(
~F (q̃k )− ~F ∗(q̃k )

)
Li(~r)d~r , (5.20)

where n̂ is the outward-pointing normal vector of the cell surface ∂Ωk .
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Figure 5.4: Sketch of a the Riemann problem for Maxwell's equations in two and
three dimensions.

5.2.1 The Numerical Flux in Higher Dimensions

To continue with the derivation of the higher-dimensional equations, we revisit to the
topic of the numerical �ux. Similarly to the one-dimensional case, we calculate the
numerical �ux via solving a Riemann problem. We start from the conservative form
given in Eq. (2.4), repeated here as

Q∂tq +∇ · ~F = Q∂tq +Ax∂xq +Ay∂yq +Az∂zq = 0. (5.21)

Since we are interested in the �ux along a normal vector n̂ · ~F , we consider the equation

Q∂tq + ∂n̂Fn̂ = 0,

where ∂n̂ denotes the directional derivative along n̂ and

Fn̂ = n̂ · ~F =

(
~FE

~FH

)
=
(
nxAx + nyAy + nzAz

)
︸ ︷︷ ︸

=:Π

q =

(
−n̂ × ~H
n̂ × ~E

)
.

Thereby, we have reduced the fully three-dimensional problem to a one-dimensional
problem along the n̂-axis and can apply the Rankine-Hugoniot condition (5.9). The
eigenvalues of the matrix Π are given by c± = ± 1√

εµ and c0 = 0, where each eigenvalue
is doubly degenerate. The main di�erence to the one-dimensional case is the third
eigenvalue c0, which leads to a total of four regions in the (x , t)-plane as sketched in
Fig. 5.4. In total, the Rankine-Hugoniot condition yields the following three equations

−c−Q−
(
q− − q∗

)
+ F−n̂ − F∗n̂ = 0,

F∗n̂ − F∗∗n̂ = 0,

−c+Q+
(
q+ − q∗∗

)
+ F+

n̂ − F∗∗n̂ = 0.
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5 The Discontinuous Galerkin Method

Inserting the explicit expressions for Q, q and Fn̂ , allows us to eliminate q∗ and q∗∗

and to solve for F∗n̂ . The resulting numerical �ux reads

F∗n̂ =

(
−n̂ ×H ∗

n̂ × E ∗

)
=

 1
Z++Z− n̂ ×

[
−Z− ~H− − Z + ~H + + n̂ ×∆~E

]
1

Y ++Y− n̂ ×
[
Y −~E− + Y +~E+ + n̂ ×∆~H

]
 .

Here, we have introduced the di�erence of the �elds at the interface as

∆~E = ~E− − ~E+ and ∆~H = ~H− − ~H +.

As in the one-dimensional case, the superscript �-� denotes the local cell while �+�
signi�es the neighboring element.
For the strong formulation as given in (5.20), we require the di�erence between the

physical and the numerical �ux. This di�erence can be expressed as

n̂ ·
(
~F − ~F ∗

)
=

(
~F−E − ~F ∗E
~F−H − ~F ∗H

)
=

 n̂ × Z+∆~H−n̂×∆~E
Z−+Z+

n̂ × −Y +∆~E−n̂×∆~H
Y−+Y +

 .

Numerical Flux for the Strong Formulation

(5.22)

5.2.2 Briefly on Boundary Conditions

In addition to the equations and an initial condition, every linear PDE must also be
complemented by appropriate boundary conditions. In our case, a number of di�erent
conditions are possible. Typical choices are either re�ecting or open boundaries.

Reflective Boundary Conditions

As discussed in Sec. 4.3.3, we can di�erentiate between two types of re�ective bound-
ary conditions, namely either perfect electric conductors (PECs) or perfect magnetic
conductors (PMCs). In case of PECs, we enforce that the tangential component of the
electric �eld vanishes at the boundary. For PMCs, the tangential components of the
magnetic �eld have to be zero at the surface. Both PEC and PMC are re�ective with
a phase shift of π acquired by either the electric or the magnetic �eld, respectively.
Explicitly, for the PEC case the boundary condition reads

n̂ × ~E = 0

with no particular constraint on ~H . This can be implemented by exploiting the mirror
principle as

n̂ × ~E+ = −n̂ × ~E−.

Additionally, for the magnetic �eld we simply choose n̂ × ~H + = n̂ × ~H−. Those
conditions can be easily integrated into the �ux calculation, by modifying ∆~E and
∆~H on the outer boundary. Then, we also have to set Y + = Y − and Z + = Z−. The
particular values for ∆~E and ∆~H are summarized in Tab. 5.2.
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∆Ẽ ∆H̃

Perfect Electric Conductor (PEC) −2~E− 0

Perfect Magnetic Conductor (PMC) 0 −2~H−

Silver-Müller (1st order absorbing) −2~E− −2~H−

Table 5.2: Implementation of di�erent boundary conditions by modifying ∆~E and
∆~H .

Silver-Müller Boundary Conditions

For many realistic problems, it would be advantageous to have a simple way to imple-
ment open boundary conditions. Open in this context means that all radiation hitting
the outer boundaries leaves the system and never returns. Analytically, one can impose
the condition of out-going radiation via the Silver-Müller radiation conditions [45]

lim
r→∞

r
(

(∇× ~E )× r̂ − ik ~E
)

= 0,

lim
r→∞

r
(

(∇× ~H )× r̂ − ik ~H
)

= 0.

Here, r =
∣∣~r ∣∣ is the distance to a scatterer, r̂ = ~r/r signi�es the direction of propagation

and k = ω (in dimensionless units) denotes the wave vector. Those expressions suggest,
that one could try to obtain approximate open boundary conditions at �nite r by
enforcing

(∇× ~E )× n̂ − ik ~E = 0,

(∇× ~H )× n̂ − ik ~H = 0,

at the outer boundaries with outward pointing normal vector n̂. Inserting the curl
equations in frequency domain, we obtain

iω~H × n̂ − ik ~E = 0,

−iω~E × n̂ − ik ~H = 0.

After some rearranging and another cross-product with n̂, we �nally recover the bound-
ary conditions

−n̂ × ~H = −n̂ × n̂ × ~E ,

n̂ × ~E = −n̂ × n̂ × ~H .

Those expressions are called Silver-Müller boundary conditions and to enforce them,
we can simply exploit the numerical �ux by requiring

F∗n̂ =

(
−n̂ ×H ∗

n̂ × E ∗

)
=

(
−n̂ × n̂ × ~E−

−n̂ × n̂ × ~H−

)
.
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As a result, we derive

n̂ ·
(
~F − ~F ∗

)
=

(
~F−E − ~F ∗E
~F−H − ~F ∗H

)
=

(
−n̂ ×H− + n̂ × n̂ × ~E−

n̂ × E− + n̂ × n̂ × ~H−

)
. (5.23)

Similarly to the case of re�ective boundary conditions, we can implement this case by
setting ∆~E and ∆~H as given in Tab. 5.2. It should be noted that the Silver-Müller
boundary conditions are only approximate and they improve as the distance to the
boundaries tends to in�nity. For most practical applications, they are not su�cient
and still result in rather strong re�ections from the boundaries. In those cases, we need
to employ PMLs, which will be discussed in Sec. 5.4.

5.2.3 Derivation of the Semi-Discrete System

With the �ux and the boundary conditions in place, we can continue to derive a semi-
discrete system. Inserting the numerical �ux (5.22) into Eq. (5.20) leads us to the
expressions∫

Ωk

(
εk∂t

~E k −∇× ~H
)

Li(~r)d~r =
∫
∂Ωk

(
n̂ × Z +∆~H − n̂ ×∆~E

Z− + Z +

)
Li(~r)d~r ,

∫
Ωk

(
µk∂t

~H k +∇× ~E
)

Li(~r)d~r =
∫
∂Ωk

(
n̂ × −Y +∆~E − n̂ ×∆~H

Y − + Y +

)
Li(~r)d~r .

Now, we can insert the expansion of the �elds (5.19) to obtain

εkMk∂t
~̃E k = ~Sk × ~̃H k + Fk

n̂ × Z +∆ ~̃H k − n̂ ×∆~̃E
Z− + Z +

 , (5.24a)

µkMk∂t
~̃H k = − ~Sk × ~̃E + Fk

n̂ × −Y +∆~̃E − n̂ ×∆ ~̃H
Y − + Y +

 , (5.24b)

where we introduced the new notation

~̃E k =
(
Ẽk

x , Ẽ
k
y , Ẽ

k
z

)
and ~̃H k =

(
H̃k

x , H̃
k
y , H̃

k
z

)
Further, we used a vector ~Sk =

(
Sk

x ,Sk
y ,Sk

z

)
and the matrices(

Sk
m

)
ij

=
∫
Ωk

Li(~r)∂mLj (~r)d~r , with m ∈ {x , y , z}, (5.25a)

(
Mk

)
ij

=
∫
Ωk

Li(~r)Lj (~r)d~r , (5.25b)

(
Fk
)

ij
=
∫
∂Ωk

Li(~r)Lj (~r)d~r where j ∈ {j |~rj ∈ ∂Ωk}. (5.25c)
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As in the one-dimensional case,M and S are the mass matrix and the sti�ness matrix,
respectively. Additionally, we introduced a new matrix Fk , which only acts on the
surface of a cell. Depending on the dimensionality of the system, we call this matrix
edge-mass (2D) or face-mass matrix (3D).

5.2.4 Mapping of the Cells and Node Generation

As in the one-dimensional case, we would like to perform as many operations as possible
on a unit cell. To be able to do so, we need to �nd a transformation from an arbitrary
cell to our reference cell.

Two Dimensions

In the two-dimensional case, this unit cell is chosen to be a right triangle as depicted
in Fig. 5.5. As alluded to above, we require a linear transformation, which leads us to

Figure 5.5: A sketch of the two-dimensional mapping onto a reference triangle
(unit cell).

the general two-dimensional mapping

x = x0 + J (2d)
11 u + J (2d)

12 v , (5.26a)

y = y0 + J (2d)
21 u + J (2d)

22 v . (5.26b)

In the case of an arbitrary triangle with vertices ~r1 = (x1, y1), ~r2 = (x2, y2) and
~r3 = (x3, y3), the transformation coe�cients are uniquely determined by solving the
system (5.26) for each vertex. The results then read

x0 = x1, y0 = y1,

J (2d)
11 = x2 − x1, J (2d)

21 = y2 − y1,

J (2d)
12 = x3 − x1, J (2d)

22 = y3 − y1.
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5 The Discontinuous Galerkin Method

Here, the matrix J (2d) is the metric of the transformation and also called Jacobi

matrix. The Jacobian J (2d) = det
(
J (2d)

)
is then given by

J (2d) = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1).

In the two-dimensional case, the expansion order N and the number of coe�cients
Np is related via

Np =
(N + 1)(N + 2)

2
.

Just as in the one-dimensional case, we require an orthogonal basis on the reference
triangle, to avoid a poorly conditioned Vandermonde matrix. Fortunately, such a basis
is well known and is often referred to as Koornwinder-Dubiner polynomials. On the
unit cell shown in Fig. 5.5, they take the form

Ψm =

√
8(2i + 1)(i + j + 1)

(2i + 2)
P (0,0)

i (a)P (2i+1,0)
j (b)(1− b)i

with

a =
2u

1− v
− 1, and b = 2v − 1.

In Fig. 5.6, we have plotted the �rst few Koornwinder-Dubiner polynomials, to give an
impression of how the basis looks.

The �nal missing ingredient is the set of nodes ~ri on the triangle. Unfortunately,
there is no known way to analytically obtain an optimal set in higher dimensions.
However, there is a number of proposals how to obtain reasonably good interpolation
nodes on triangles and tetrahedra [46�48]. We continue by following the proposal of
Warburton as given in Ref. [47]. This method is called �warp & blend� and it enforces
the nodal points on the edges to be LGL points. We will not repeat the algorithm
here, but instead simply show the resulting positions for several expansion orders in
Fig. 5.7.

Three Dimensions

In three dimensions, we choose the unit cell to be an equilateral tetrahedron as dis-
played in Fig. 5.8. The general procedure is now almost identical to the two-dimensional
case. Assuming a general linear mapping of the form

~r = ~r0 + J (3d)

u
v
w

 (5.27)

directly yields

~r0 =
~r1 + ~r2

2
.
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i=0, j=
0

i=1, j=
0

i=0, j=
1

i=2, j=
0

i=1, j=
1

i=0, j=
2

i=2, j=
1

i=1, j=
2

i=0, j=
3

i=3, j=
0

i=4, j=
0

i=3, j=
1

i=2, j=
2

i=1, j=
3

i=0, j=
4

Figure 5.6: Plot of Koornwinder-Dubiner polynomials. Each row corresponds to
the additional basis functions required by a higher expansion order.

10 Nodes

15 Nodes

21 Nodes

28 Nodes

36 Nodes

36 Nodes

45 Nodes

55 Nodes

66 Nodes

3rd order 4th order 5th order 6th order

10th order9th order8th order7th order

Figure 5.7: Nodal positions for several expansion orders, obtained via the �warp
& blend�-method as proposed in Ref. [47]
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Figure 5.8: Every tetrahedron is mapped onto the reference tetrahedron with
vertices ~ξ1, ~ξ2, ~ξ3, and ~ξ4.

The corresponding Jacobi matrix can then be obtained from the vertices of the reference
tetrahedron ~ξi (cf. Fig. 5.8) as

J (3d) =

x2 − x0 x3 − x0 x4 − x0

y2 − y0 y3 − y0 y4 − y0

z2 − z0 z3 − z0 z4 − z0


ξ2,x ξ3,x ξ4,x

ξ2,y ξ3,y ξ4,y

ξ2,z ξ3,z ξ4,z


−1

=

x2 − x0 x3 − x0 x4 − x0

y2 − y0 y3 − y0 y4 − y0

z2 − z0 z3 − z0 z4 − z0




1 0 0
0 1√

3
− 1

2
√

6

0 0
√

3
2
√

2

 .

In the three-dimensional case, the expansion order N and the number of coe�cients
Np is related via

Np =
(N + 1)(N + 2)(N + 3)

6
.

Again, we require an orthogonal basis on the reference tetrahedron. For the equilateral
tetrahedron pictured in Fig. 5.8, a suitable choice is given by

Ψm =
1√
N

P (0,0)
i (a)P (2i+1,0)

j (b)(1− b)iP (2i+2j+2,0)
k (c)(1− c)i+j

with

a =
√

6u√
6 +
√

2v + w
, b =

2√
3

√
8v − w√

8−
√

3w
− 1, c =

√
3√
2
w − 1

and the normalization factor

N =

√
2
(
4i + 2j + 3

)2
16
(

1 + 1
2

) (
i + j + 1

) (
i + j + k + 3

2

) .
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Again, P (α,β)
i are the Jacobi polynomials and as the special case, P (0,0)

i reduces to the
Legendre polynomials.

As in the two-dimensional case, we obtain the missing set of nodes ~ri via the �warp
& blend�-method presented in Ref. [47]. A few exemplary sets of nodes are pictured in
Fig. 5.9.

20 Nodes 35 Nodes 56 Nodes 84 Nodes

3rd order 4th order 5th order 6th order

Figure 5.9: Three-dimensional nodes in the reference tetrahedron as generated
by the �warp & blend�-method.

5.2.5 Putting it all together

With the transformations, the nodal points ~ri and basis functions Ψi at hand, we can
continue to simplify the semi-discrete system in Eq. (5.24). In order to do so, we recall
the generalized Vandermonde matrix

Vij = Ψj (~ri).

As in the one-dimensional case, this matrix allows us to express the mass-matrix from
Eq. (5.25b) as

Mk = J k
(
VVT

)−1
= J kM. (5.28)

Similarly, we can rewrite the sti�ness-matrices from Eq. (5.25a) as

Sk
m =

(
VVT

)−1
Dk

m , m = x , y , z (5.29)

whereDk
m denotes the di�erentiation matrices with respect to the Cartesian coordinates(

Dm

)
ij

=
∑
k

∂mΨk (~ri)V−1
kj .

The main di�erence to the one-dimensional case results from the matrix F . In order to
make this matrix cell-independent, we need to introduce the surface Jacobian J k

s . In
two dimensions, there will be three di�erent values J k

s per triangle, one corresponding
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to each edge. Equivalently, for three-dimensional systems there will be one J k
s for each

face of the tetrahedron. This de�nition allows to write

Fk =
∑
s

J k
s Fs , (5.30)

where face matrices Fs are now given by

(
Fs

)
ij

=


∫

s Li(~ξ)Lj (~ξ)d~ξ, where j ∈ {j |~ξj lies on surface s}
0, otherwise

.

As for the mass matrix, one can express the integrals in terms of generalized Vander-
monde matrices. However, those matrices must be generated from a basis which is
orthogonal on the surface [40].
Inserting the face matrix, together with the matrices from Eq. (5.28) and Eq. (5.29)

into Eqs. (5.24) results in the �nal, semi-discrete scheme

∂t
~̃E k =

1
J k εk

 ~D × ~̃H k +M−1
∑
s

J k
s Fs

n̂ × Z +∆ ~̃H k − n̂ ×∆~̃E
Z− + Z +


 ,

∂t
~̃H k =

1
J kµk

− ~D × ~̃E +M−1
∑
s

J k
s Fs

n̂ × −Y +∆~̃E − n̂ ×∆ ~̃H
Y − + Y +


 .

Semi-Discrete Discontinuous Galerkin Formulation

(5.31a)

(5.31b)

5.3 Convergence and Time-Stepping

Up until now, we have developed the DG scheme mostly based on intuition and math-
ematical experience. While many steps seem logical, it is not obvious that Eqs. (5.31)
present a convergent and stable numerical scheme. Especially the introduction of the
numerical �ux and its connection to the Riemann problem still lacks a rigorous jus-
ti�cation. Furthermore, the semi-discrete scheme in Eqs. (5.31) is only half the way
towards a general time-domain solver. It still misses the time-stepping to actually
evolve the �elds in time.

5.3.1 Convergence

As noted in Sec. 4.2, a rigorous proof of convergence is a condition sine qua non
for any numerical method. For the Discontinuous Galerkin method, such a proof
can be obtained by making use of the well-known Lax-Richtmyer equivalence theorem
[31]. This procedure is very general and rather convenient since it allows to treat the
consistency of the spatial discretization independently of the stability of the scheme.
Unfortunately, the resulting error estimates are suboptimal [40]. In order to obtain
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sharp error bounds, one has to tackle the full problem directly, which was done for
Maxwell's equations with the upwind �ux in Ref. [19]. In this case, we obtain the error
bound ∣∣∣qexact − qDG

∣∣∣ ≤ hN+1
(
c0 + c1T

)
, (5.32)

where qexact denotes an exact solution of Maxwell's equations, while qDG represents
the numeric approximation. Furthermore, h describes the size of the largest element
in the mesh and T is the total time of simulation.
From this result, we can deduce two important points:

� The deviation of our calculations from the exact result does not grow faster than
linearly with time. As we will demonstrate later, this is a sharp result.

� The slope of the growth is determined by the mesh size h and the polynomial
order N . Here, the convergence is algebraic in h and exponential in N . This
feature is also known as hp-convergence.

We will return to the point of accuracy in Sec. 5.5, where the performance of the scheme
will be analyzed in more detail.

5.3.2 Time-Stepping

The �nal missing component in deriving a time-domain solver from the semi-discrete
system (5.31) is the integration in time. The simplest possible solution would be to
employ a �nite-di�erence discretization as we did for the FDTD method. Unfortu-
nately, this method shows a rather poor performance and would limit the e�ciency
of our solver dramatically. Instead, we adopt a more sophisticated integration scheme
known as the low-storage Runge-Kutta (LSRK) method.
In contrast to classical Runge-Kutta schemes, which are known for their versatility

and excellent performance, the LSRK methods are tuned to require less memory. This
feature becomes important, when we try to simulate a very large system where the
number of unknowns reaches the order of M ≈ 107 or more. But as we will demonstrate
later on, the LSRK methods are also advantageous for smaller systems.
If we rewrite Eqs. (5.31) as

∂

∂t
u(t) = f (u, t), (5.33)

then we can integrate it in time by using the 2M -LSRK due to Williamson [49] as

y0 = y(t)

ki = ãiki−1 + ∆tf (yi−1, t + c̃i∆t)

yi = yi−1 + b̃iki

 ∀i = 1 . . . s

y(t + ∆t) = ys .

Here, s denotes the number of stages while ãi , b̃i and c̃i are the coe�cients which de�ne
a particular scheme. In Ref. [50], Carpenter and Kennedy propose a set of coe�cients
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i ãi b̃i c̃i

1 0 1432997174477
9575080441755 0

2 − 567301805773
1357537059087

5161836677717
13612068292357

1432997174477
9575080441755

3 −2404267990393
2016746695238

1720146321549
2090206949498

2526269341429
6820363962896

4 −3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776

5 −1275806237668
842570457699

2277821191437
14882151754819

2802321613138
2924317926251

Table 5.3: Coe�cients for a low-storage Runge-Kutta scheme according to
Ref. [50]. The scheme requires s = 5 stages and is fourth-order accurate in time.

for a suitable integration scheme of fourth order. Unfortunately, in contrast to the
classical Runge-Kutta methods, it is not possible to create such a scheme with only
four stages. Instead one requires at least s = 5. The proper coe�cients are given in
Tab. 5.3.
As an explicit scheme, the LSRK scheme is only conditionally stable. Similarly to

the case of FDTD, we need to ful�ll a CFS-criterion which limits the allowed timestep.
However, in contrast to FDTD, we can not express this criterion explicitly. Instead,
we can �nd the appropriate condition by considering the ordinary di�erential equation

∂

∂t
y = λy . (5.34)

Inserting this equation into the Runge-Kutta yields

y(t + ∆t) = ∆t
(

1 + α1λ+ α2λ
2 + · · ·+ αsλ

s
)

︸ ︷︷ ︸
=:G(λ)

y , (5.35)

where αn are numerical coe�cients depending on the parameters ãi and b̃i of the
particular scheme. Obviously, for our solution not to be growing we must ful�ll the
condition

∆t G(λ) ≤ 1. (5.36)

A contour of the function G(λ) = 1 is plotted in Fig. 5.10 for a classical fourth-
order Runge-Kutta scheme and for our LSRK integrator. Clearly, the LSRK has a
signi�cantly larger region of stability. Besides the lower memory requirements, this is
the reason for employing a LSRK method instead of a classical Runge-Kutta integrator.
Returning to our full problem, λ plays the role of to the eigenvalues of the discrete
operator on the r.h.s. of Eqs. (5.31). Thus, we are required to pick ∆t su�ciently
small to ensure that the largest eigenvalue still �ts into the region of stability.

Choosing ∆t in Practice

Unfortunately, we can not a�ord to calculate the spectrum of each operator before we
conduct a time-domain calculation. Therefore, we need a more accessible way to obtain
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Stable Stable

Unstable

−5 −4 −3 −2 −1 0 1
−4

−2

0

2

4

Re[λ]
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Figure 5.10: Stability region of the classical Runge-Kutta (red) and a LSRK
scheme (blue).

a su�ciently small ∆t without wasting computational resources by picking it too small.
Empirically, we know that the largest eigenvalue is connected to the shortest distance
between to gridpoints in our system. This scale can be separated into two parts. First,
we have the nodes on an individual elements. As a rather primitive measure for the
minimal distance between them, we consider the LGL-nodes along the edges. There,
we easily calculate the distance ∆uN = u2 − u1 of the �rst two nodes on the unit
interval. This length will depend on the expansion order N as ∆uN ∝ N−2. Further,
we need a measure for the size of the smallest element. Following the suggestions
of Hesthaven and Warburton [40], we pick the incircle or insphere of the triangles or
tetrahedra, respectively. This length is denoted by rk for each element k . Then, we
determine the timestep as

∆t = s ∆uN min
Ω

(
rk
)
, (5.37)

where s is a number of order 1, which we determine from a set of numerical experiments.
We will return to this point in Sec. 5.5.

5.4 Sources, Dispersive Media and PMLs

Before we proceed to test the DG method numerically, we brie�y comment on some of
the relevant extensions.

Sources

A �rst important point is the excitation of the system through sources. Besides via
initial conditions, there are two conceptually di�erent ways to inject radiation into
the system. The more obvious path is to add current density terms to the r.h.s.
of Eqs. (5.31). An alternative is given by the so-called Total-Field/Scattered-Field
approach as discussed in Sec. 4.3.2. Typically, the current density is more suitable to
introduce localized sources while the TF/SF method can be employed to inject plane
waves. Within the DG framework, one can easily implement the TF/SF approach by
modifying the �eld di�erences in the numerical �uxes. The addition of current terms
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also presents no fundamental problem, but the spatial pro�le is obviously expanded
into Lagrange polynomials. For the very important case of a delta-like point source,
this expansion becomes rather intricate and a highly re�ned mesh around the source is
required to model it accurately. In turn, this dramatically reduces the computational
performance due to the stability constraints on the timestep. Therefore, we implement
point sources by exploiting the TF/SF method. For the injection, a small contour
around the desired source location is embedded into the mesh and the outer area is
de�ned as the TF region. The required �elds on the contour can be obtained by means
of Green's functions as presented in Sec. 2.5.

Dispersive Media

A second extension is the implementation of dispersive materials. As discussed in
Sec. 3.1.3, we can include certain models of dispersion via auxiliary di�erential equa-
tions (ADEs). Since the resulting ADEs for typical dispersion models do not contain
spatial derivatives, we can easily incorporate them into the time integration. It was
shown in Ref. [51], that additional ADEs without spatial derivatives do not in�uence
the choice of the numerical �ux.

Perfectly Matched Layer

Finally, we return to the crucial point of PMLs. We have seen in Sec. 3.2, that one
can implement PMLs in multiple formulations. The di�erence between the two pre-
sented versions, namely UPMLs and CFS-PMLs, lies in the number and form of the
resulting ADEs. As demonstrated, a UPML formulation can be implemented by a
single ADE per �eld component, which does not contain additional spatial derivatives.
Unfortunately, this is not true for the more general CFS-PMLs. Here, we require
two additional �elds and the equations contain additional spatial derivatives. As a
consequence, we abstain from implementing CFS-PMLs and employ standard UPMLs
instead. In Sec. 5.5.3, we will demonstrate that one can still achieve excellent absorp-
tion properties by optimizing the free parameters.

5.5 Verification and Comparison to FDTD

Similarly to the veri�cation of the FDTD method in Sec. 4.4, we employ a number of
basic systems to test the performance and stability of our implementation. To allow
for direct comparison, we start with the same tests as for the FDTD case.

5.5.1 Empty Metallic Cavities

In contrast to the FDTD method, the performance DG scheme is a�ected by a number
of external parameters. Particularly the shape and quality of the mesh can signi�-
cantly in�uence the results. For this section, we employ regular meshes with PMC
boundary conditions as depicted in Fig. 5.11. As a �rst test, we return to the question
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Figure 5.11: Regular test meshes for an empty, metallic cavity. (a), (b) and (c)
depict meshes for h = 1, h = 1

2 and h = 1
4 , respectively. The blue frame indicates

PMC boundary conditions.

of the proper timestep ∆t . According to the discussion in Sec. 5.3.2, we still need
to empirically determine an appropriate value for the factor s in Eq. (5.37). To do
so, we simulate the cavity for di�erent meshes, di�erent orders N and di�erent values
for s. The resulting maximal error after T = 50 T0 is plotted as a function of s in
Fig. 5.12. From these results, one can directly extract the point of instability. Fur-
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Figure 5.12: Error for empty cavity calculations as a function of the timestep.
The data in (a) was obtained with 4 triangles per wavelength, while (b) contains
data for 8 triangles per wavelength.

ther, we �nd that once the scheme is stable, most of the results do not change with
the timestep. Thus, we conclude that the error is mostly dominated by the spatial
discretization. Only for relative errors below 10−5 one can observe a further reduction
of the error with decreasing timesteps. As a consequence, we will generally try to make
the timestep as large as possible without crossing the instability limit. Only for highly
accurate calculations, one has to slightly reduce s. From the data in Fig. 5.12, we �nd
that the maximal value smax still depends on both, the spatial order and the size of the
mesh. In Fig. 5.13 we plot the maximal values of smax for di�erent orders and meshes.
We observe how the maximally allowed timestep factor increases with the order and
decreases with re�nement of the mesh. The variations, however, are not too large,

85



5 The Discontinuous Galerkin Method

2 3 4 5 6 7 8
1

1.5

2

2.5

3

Polynomial Order N

M
ax

. a
llo

w
ed

 ti
m

es
te

p 
fa

ct
or

 s

Figure 5.13: The crosses indicate maximally allowed timestep factors smax for
di�erent meshes and orders. The solid line corresponds to values for smax as given
by Eq. (5.38).
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Figure 5.14: (a) Relative error as a function of mesh re�nement. Straight lines
in the semi-logarithmic plot indicate algebraic convergence. The �tted slopes are
given in the legend. (b) Relative error as a function of increasing order of the poly-
nomial expansion. The straight lines in this double logarithmic plot demonstrate
exponential convergence.

indicating that the scaling discussed in Sec. 5.3.2 works reasonably well. In order to
increase performance, we �t a quadratic polynomial to the maximally allowed timestep
for each order of the smallest mesh. To be on the save side, we then subtract a certain
margin of error and obtain the expression

smax(N ) = 0.8 + 0.27N − 0.011N 2. (5.38)

The resulting values are indicated in Fig. 5.13 as blue circles. Those values will be
used for all realistic calculations, unless stated otherwise.
However, before we proceed to realistic setups, we should also analyze the errors as

a function of the mesh and the spatial order. To completely eliminate the in�uence of
the time integration, we will work with a timestep factor of s = 0.1smax. In Fig. 5.14,
we display the error as a function of the mesh size (Fig. 5.14(a)) and of the polynomial
order (Fig. 5.14(b)). These results nicely con�rm the theoretical analysis of the error
bounds presented in Sec. 5.3.1. In particular, from the straight lines in the semi-
logarithmic plot 5.14(a) we con�rm the algebraic h-convergence. Conducting a linear
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Figure 5.15: The relative error as a function of the computational time. The
dashed lines correspond to calculations with a timestep factor of s = smax, while
the data for the solid lines was obtained with s = 0.1smax.

�t, we �nd the slope roughly equivalent to N +1, as predicted by Eq. 5.32. Furthermore,
we observe exponential p-convergence from the double logarithmic plot in Fig. 5.14(b).

The qualitatively di�erent convergence behavior naturally leads to the question of
which re�nement should be preferred. To this end, we plot the relative error as a
function of the computational time spent to obtain the result in Fig. 5.15. From these
results, we observe that for this problem the p-re�nement does indeed result in faster
calculations for a given error. But it should be noted, that this can not directly be
transfered to calculations of realistic systems. Particularly if curved interfaces are
involved, the error can be strongly dominated by the approximation due to straight-
sided elements. In this case, only h-re�nement will lead to any improvement. Similar
considerations are also valid, if we have to deal with �eld singularities.

5.5.2 Half-Filled Cavities

As a next step we demonstrate the superior convergence properties of the DG methods,
when interfaces are involved. In Sec. 4.4.2 we demonstrated that a fourth-order FDTD
scheme is reduced to second order of accuracy if material interfaces are present. Now we
demonstrate that the DG method does not exhibit the same restriction. The physical
setup is identical to the one in Sec. 4.4.2 and the corresponding meshes are shown in
Fig. 5.16. As in the previous section, we employ time-step of s = 0.1smax to avoid
error contributions from the time integration. The important feature is that both, h-
and p-convergence remain entirely una�ected by the interface (cf. Fig. 5.17). This is
in stark contrast to the FDTD results and highlights the versatility of the DG method.

Finally, we conduct a direct comparison with the FDTD method. To this end, we
plot the DG results obtained with the maximal timestep factor as a function of CPU
time in Fig. 5.18. In the same plot, we also depict the computational time required
for the corresponding FDTD calculations. From this plot, we observe that the DG
method is clearly superior for the given problem. If we require a relative error below
1%, then DG delivers the solution about two orders of magnitude faster than FDTD.
However, this advantage largely stems from the higher-order nature of our method. As

87



5 The Discontinuous Galerkin Method

(a)

0 1 2.5
0

0.5

1

x
y

(b)

0 1 2.5
0

0.5

1

x

y

(c)

0 1 2.5
0

0.5

1

x

y

(d)

0 1 2.5
0

0.5

1

x

y

Figure 5.16: Meshes with di�erent levels of re�nement for the semi-�lled cavity
(h = 1, 1

2 ,
1
4 ,

1
8). The green shaded triangles mark the region �lled with ε = 2.
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Figure 5.17: (a) Relative error as a function of mesh re�nement. Straight lines
in the semi-logarithmic plot indicate algebraic convergence. The �tted slopes are
given in the legend. (b) Relative error as a function of increasing order of the poly-
nomial expansion. The straight lines in this double logarithmic plot demonstrate
exponential convergence.
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Figure 5.18: The relative error as a function of the computational time. The
solid lines correspond to DG calculations with a timestep factor of s = smax, while
the dashed line represents results from an FDTD calculation.
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(a) (b)

Figure 5.19: System used for the validation of PMLs. (a) shows the interface
between the computational region and the PMLs (green frame) as well as the outer
boundaries (red frame). The blue surface in the center marks the contour used to
inject the point source, while the crosses indicate the recording points. (b) depicts
the tetrahedral mesh. Edges and Corners are shaded red to indicate the extent of
the PML region (one cell).

discussed previously, for more complicated structures containing curved interfaces, we
might not be able to fully exploit the p-convergence. For those cases, the advantage of
the DG method is diminished but usually still existent.

5.5.3 Optimization of the PML Parameters

Finally, we revisit the problem of absorbing boundary conditions. As alluded to above,
the PMLs still contain a free parameter σ which needs to be determined numerically
for best performance. In the case of FDTD, we have already demonstrated that σ must
be made position dependent, to optimize absorption (see Sec. 4.4.3). There, we chose
a polynomial grading

σ(x ) = (x/d)m
(m + 1)

2d
R,

where d is the thickness of the PML-layer while m and R are free parameters. Best
results for FDTD are obtained for values of m ≈ 3 and R ≈ 10. To facilitate a compar-
ison of PMLs in the DG method with those of FDTD, we adopt the same polynomial
grading with free parameters m and R. In order to scan the entire parameter space,
we use a small three-dimensional test system as sketched in Fig. 5.19. A point-source
is placed in the center of the system and is injected via a TF/SF contour as discussed
in Sec. 5.4. The pulse shape, the de�nition of the error and the recording positions are
all chosen identically to the FDTD case (cf. Sec. 4.4.3). As before, we compare with
numerical results obtained on a much larger system.
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In Fig. 5.20, we depict the results of our parameter studies for the system sketched
in Fig. 5.19. Most importantly, we note that for N = 3 and only one layer of PMLs, we
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Figure 5.20: Dependence of the relative error on the parameters m and R for
spatial order (a) N=3 and (b) N=4. In both cases, the error of the �eld at recording
point P1 is plotted.

already achieve a relative error below 1%. Moreover, this minimum does not coincide
with the one expected from FDTD. Instead, the best performance can be observed for
m = 0 which renders the grading of σ obsolete. This result is not so surprising and
fully consistent with our results for a two-dimensional test case [52].
Instead of wondering why the grading does not help, we have to ask why it was

needed in the �rst place. As we have stated previously, there is no analytic reason for
making σ spatially dependent, since the PMLs should be re�ectionless for all values of
σ. Instead, we had to introduce the grading because the FDTD method does not deal
well with discontinuities in the material parameters. Therefore, an adiabatic ramping
can help to mitigate numerical problems with the derivatives across the PML interface.
Since the DG method by construction has no problems with discontinuous �elds, there
is no longer a reason for the grading.
In a second step, we now have to search for the optimal value of R, which de�nes

the damping inside the PMLs. Analytically, this value should be as large as possible to
prevent radiation making a round-trip through the PML and returning to the compu-
tational domain. Our results of a detailed scan are presented in Fig. 5.21. As expected
theoretically, the error diminishes exponentially with increasing R until a certain point.
At this point, the damping gets so strong, that we fail to properly approximate the
�elds inside the PML with a polynomial of the given order. Then, the error increases
again, because the approximation of the �elds gets worse. This argument is supported
by the observation, that the error reduces further if the order is increased. Thus, the
optimal value for R depends on the polynomial order used. For our system, the opti-
mal value lies around R ≈ 10. This is the value that will be employed in all further
calculations.
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Figure 5.21: Performance of the PMLs for m = 0 as a function of the param-
eter R. The colors denote the three di�erent recording points, while the linestyles
correspond to N=3 (solid) and N=4 (dashed).
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6 Chapter 6

Advanced Time Integration

So far, we were mostly concerned with the spatial discretization of Maxwell's equations
while the time integration was only touched on. For both the standard FDTD formu-
lation and for most discontinuous Galerkin calculations, this was justi�ed because the
errors are strongly dominated by the spatial discretization. Only for highly resolved
systems we could observe a degradation of the accuracy due to insu�cient time inte-
gration. But besides the point of accuracy the time integration obviously has a strong
in�uence on the performance of any time-domain method. All schemes discussed so far
are fully explicit, which means that they allow a direct computation of the following
timestep from the previous one. Unfortunately, those methods all su�er from perfor-
mance restrictions due to the Courant-Friedrichs-Lewy (CFL) criterion (cf. Sec. 4.2.1
and Sec. 5.3.2). To overcome this limitation, one could employ implicit integrators,
but they require the numerical solution of a large system of linear equations for each
timestep. This additional computational e�ort often negates the performance gains
due to the larger timesteps.

In this chapter, we present an alternative class of time integration methods, which
can not be attributed to either explicit or implicit schemes. Those methods are called
exponential integrators and we will demonstrate that they can exhibit unconditional
stability without the computational e�ort usually connected with an implicit integrator.
As we will see, these methods also provide a systematic way to increase the accuracy
of the time integration.

6.1 Linear Matrix Exponential Integrators

To introduce the idea behind matrix exponential integrators, we start from Maxwell's
curl equations (2.10) with linear, non-dispersive media and without explicit source

terms. Combining the electric and magnetic �elds into a supervector q =
(
~E , ~H

)T

allows us to rewrite the curl equations as

∂

∂t
q = Ĥq, (6.1)
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where the operator Ĥ is given by

H =

(
0 ε(~r)−1∇×

−µ(~r)−1∇× 0

)
. (6.2)

By formal integration, a solution to Eq. (6.1) is readily found as

q(t0 + ∆t) = exp(Ĥ∆t)q(t0). (6.3)

As discussed in the previous chapters, spatial discretization of the �elds will convert the
operator Ĥ into a �nite matrixH. Thus, the problem of time integration is transformed
into the task to evaluate the exponential function of a matrix. While there is a large
variety of methods to calculate such matrix exponentials [53], only few of them are
suitable for our task.

The particular problem becomes apparent when we consider an exemplary three-
dimensional system, discretized with �nite di�erences. Assuming a discretization of 100
cells along each axis results in a system of approximately Ntot = 6×(100× 100× 100) =
6 × 106 unknowns. While the storage of Ntot ≈ 107 variables presents no challenge
for modern computers, the corresponding matrix H would have N 2

tot ≈ 1014 entries.
This amount of data can neither be stored nor processed on even the most advanced
machines currently available.

The key to the solution of this problem are two points. First, for most discretizations
the matrix H will be sparse, i.e., most entries are zero. This dramatically reduces the
required storage and it enables us to quickly evaluate matrix-vector products Hq.
Unfortunately, the sparsity of H does not imply a sparse matrix exp

(
H∆t

)
. The

second point is therefore, to realize that the explicit result exp
(
H∆t

)
is not required

to do the time integration. Instead, we only need the action of this matrix onto a given
initial state q(t0). Thus, we are looking for a method which evaluates the action of
the matrix exp

(
H∆t

)
on a vector q(t0) without the requirement to store either H or

exp
(
H∆t

)
explicitly.

The most obvious approach would be to exploit the Taylor expansion

exp(H∆t)q(t0) =
∞∑

n=0

(H∆t)n

n!
q(t0),

and truncate the series at a certain order. Unfortunately, the numerical convergence
of the Taylor series is known to be very poor [53]. Recently, two alternative schemes
to evaluate a matrix exponential with respect to Maxwell's equations were published
by De Raedt and coworkers [54], but both of them rely on the skew-symmetry of
Ĥ. This restriction severely limits the �exibility of those methods and renders them
unsuitable for extensions to nonlinear solvers [55]. In the following sections, we will
present a method based on the so-called Krylov subspace approach which is free of any
requirements on the structure of the matrix.
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q1 ← q(t0)/
∣∣q(t0)

∣∣
for j = 1 . . .m

w← Hqi

for i = 1 . . . j
hi ,j = w · qi

w← w − hi ,j qi

hi+1,j = |w|
qj+1 ← hi+1,j

Figure 6.1: Schematic representation of the Arnoldi algorithm as a Nassi-
Shneiderman diagram.

6.1.1 Krylov Subspace Techniques

The basic idea behind any Krylov-subspace method is to project a large, sparse matrix
onto a much smaller, suitably chosen subspace. In this subspace, the actual calculation
of the matrix exponential (or any other matrix operation) is performed. Projecting
back the result then yields an approximation of the operation on the full matrix [56].
The m-dimensional Krylov subspace Km is de�ned by

Km = span{q(t0),Hq(t0),H2q(t0), . . . ,Hm−1q(t0)}, (6.4)

where the subspace dimension m is typically chosen to be of the order of ten and,
therefore, many orders of magnitude smaller than the number of unknowns Ntot. In a
next step, we need to execute the actual projection of H onto the subspace Km . For
general matrices, this can be achieved by the Arnoldi algorithm [57] as sketched in
Fig. 6.1. It should be noted, that the inner loop of said algorithm is nothing but a
modi�ed Gram-Schmidt process, which leads to an orthonormal basis

Vm =
[
q1,q2, . . . ,qm

]
of Km . Furthermore, the algorithm generates a matrix Hm as(

Hm

)
ij

= hi ,j , i , j ≤ m; i ≤ j + 1,

which is of upper Hessenberg form. By generation, the matrix Hm ful�lls the relation

HVm = VmHm + hm+1,mqm+1eT
m . (6.5)

Here, ei denotes the i -th unit vector belonging to the space Rm . Upon multiplication
of Eq. (6.5) with VT

m , we obtain

Hm = VT
mHVm .

95



6 Advanced Time Integration

Therefore, Hm represents the projection of H onto the subspace Km , with respect to
the basis Vm [56, 58].
In a next step, we note that the best approximation qopt(t0 +∆t) to exp

(
H∆t

)
q(t0)

in the subspace Km is given by the projection [58]

qopt(t0 + ∆t) = VmVT
meH∆tq(t0).

Exploiting the identities q1 = q(t0)/
∣∣q(t0)

∣∣ and q1 = Ve1, it follows that

qopt(t0 + ∆t) =
∣∣q(t0)

∣∣VmVT
meH∆tVm︸ ︷︷ ︸

=:L

e1.

The matrix L is a dense m × m matrix, but unfortunately it is not practically com-
putable, since it still contains the full matrix exponential eH∆t . However, a Taylor
expansion of L around ∆t = 0 results in

L = VT
m

∞∑
n=0

(
H∆t

)n
n!

Vm

= VT
m

m−1∑
n=0

(
H∆t

)n
n!

Vm + VT
m

∞∑
n=m

(
H∆t

)n
n!

Vm

= VT
m

m−1∑
n=0

(
VmVT

mH∆t
)n

n!
Vm + VT

m

∞∑
n=m

(
H∆t

)n
n!

Vm ,

where we have exploited the fact that VmVT
mHn = Hn for all n ≤ m, by construction.

Expanding the �rst sum as

(
VmVT

mH∆t
)n

=

VmVT
mHVm︸ ︷︷ ︸
Hm

VT
mH · · · VmVT

mH

∆tn = Vm

(
Hm∆t

)n
then yields the expression

L = VT
meH∆tVm = eHm∆t + O

(
∆tm

)
. (6.6)

This allows us to formulate the main approximation of the linear Krylov-subspace
scheme as

eH∆tq0 ≈
∣∣q0

∣∣ VmeHm∆te1.

Main Approximation

(6.7)

As we have seen from Eq. (6.6), this approximation is at least accurate up to O
(
∆tm

)
in time. A more accurate error bound is given by [56]∣∣∣eH∆tq(t0)−

∣∣q(t0)
∣∣VmeHm∆te1

∣∣∣ ≤ 2
∣∣q(t0)

∣∣ ρmeρ

m!
,
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where ρ =
∣∣H∆t

∣∣, and |·| denotes the standard two-norm of a vector or the spectral
norm of a matrix, respectively. Thus, for su�ciently large m, we can expect the 1

m! -
dependence to dominate, leading to a superlinear convergence of the scheme.

Exponential of Small Matrices

After establishing the general procedure of a Krylov-subspace based exponential in-
tegrator, we now need to address the problem of calculating eHm∆t , where Hm is a
small upper Hessenberg matrix. As alluded to above, there is a variety of methods for
calculating the exponential of a matrix [53]. For our particular problem, the class of
rational approximations

eHm∆t ≈
Pi

(
Hm∆t

)
Qj

(
Hm∆t

)
has proven itself successfully. Here, Pi and Qj are polynomials of degrees i and j
respectively. In particular, we employ a (n,n) Padé approximation, which takes the
form [59]

eHm∆t ≈
Pn

(
Hm∆t

)
Pn

(
−Hm∆t

) ,
where

Pn

(
Hm∆t

)
=

n∑
i=0

ci

(
Hm∆t

)i
.

The corresponding coe�cients ci are given by the recursion

ci =

1, if i = 0
ci−1

n−i+1
(2n−i+1)i , if i > 0

.

In practice, an order of n = 6 was found to be su�cient to achieve converged results.

6.1.2 Implementation of Sources

So far, our discussion was restricted to systems without sources, which clearly is of
limited practical use. A generalization of Eq. (6.1) with respect to source terms can
be expressed as

∂

∂t
q = Ĥq + j(t), (6.8)

where the supervector j(t) =
(
~jE ,~jH

)T
now contains the current source terms. Simi-

larly to Eq. (6.1), we can formally integrate Eq. (6.8) and �nd the solution by variation
of constants as

q(t0 + ∆t) = eH∆tq(t0) +

t0+∆t∫
t0

e(t0+∆t−τ)Hj(τ)dτ. (6.9)
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Thus, the solution of a system with sources requires us to solve the source-free prob-
lem and, additionally, we have to evaluate a convolution integral containing matrix
exponentials.

Direct Integration via Quadrature Rules

A very general procedure of handling the convolution integral in Eq. (6.9) can be found
by recasting the problem into the time-stepping procedure [58]

q(t0 + ∆t) = q(t0) +

∆t∫
0

e(∆t−τ)H[j(t0 + τ) +Hq(t0)
]︸ ︷︷ ︸

Φ0(τ)

dτ.

Upon replacing the integral with a suitably chosen quadrature formula, one obtains

q(t0 + ∆t) = q(t0) +
n∑

i=1

wie(∆t−τi )HΦ0(τi). (6.10)

Here, τi and wi (i = 1, . . . ,n) are, respectively, the nodes and associated weights of the
quadrature scheme. Note that for an n-point quadrature we would require n Krylov-
subspace calculations. In turn, this would dramatically decrease the performance of the
method. Instead, Gallopoulos and Saad [58] proposed to work in only one subspace,
which, for instance, may be built from the vector Φ0(∆t/2). With the resulting basis
Vm and projected matrix Hm , one can approximate the individual matrix exponentials
according to

e(∆t−τi )HΦ0(τi) ≈ Vme(∆t−τi )HmVT
mΦ0(τi).

Inserting this approximation into Eq. (6.10), one obtains the full time-stepping proce-
dure

q(t0 + ∆t) = q(t0) + Vm

n∑
i=1

wie(∆t−τi )HmVT
mΦ0(τi). (6.11)

The computational cost of the inclusion of sources is now dominated by one additional
matrix-vector-product in Φ0 and n corresponding products with VT

m . If one takes into
account that j is usually an extremely sparse vector, the latter contribution can be
reduced to only one full multiplication with VT

m and n sparse matrix-vector-products
VT

m j(τi).
The stability and accuracy of this procedure strongly depends on the chosen quadra-

ture scheme. A criterion for the choice of a stable quadrature is available [58], but a
full analysis of the in�uence of the quadrature scheme on the accuracy of the result
remains an open issue. In practice, we use a 10-point closed Newton-Cotes quadrature.
Because the nodes are equally spaced for this scheme, it is su�cient to only evaluate
exp

(
τ1Hm

)
via Padé approximation and all further matrices can be produced by simple

matrix-matrix multiplications. As we will see below, this type of quadrature is rather
limiting if large time steps are required. In this case it might be advantageous to either
use a composite Newton-Cotes formula or switch to a specialized Gaussian quadrature
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[60]. The latter is of particular interest because it should enable us to absorb part of
the source, e.g., the carrier wave, into the quadrature. Thus, such an approach has the
potential to dramatically improve the accuracy and/or the performance of the method.

Sources via Auxiliary Differential Equations

While the direct integration of the convolution integral as discussed in the previous
section is capable of dealing with arbitrary source terms, it can become rather time-
consuming and potentially reduces the accuracy. As an alternative, we have developed
an approach which still allows us to include almost arbitrary sources at signi�cantly
reduced computational cost and without any loss of accuracy or time-stepping capa-
bilities. More precisely, we attempt to model the source term j(t) through a system of
linear ADEs (cf. Ch. 3). Including such a system into q and H allows us to remove j(t)
from Eq. (6.8) and reduces our problem to the evaluation of a single�albeit slightly
more complex�matrix exponential.
The general principle of this scheme may best be demonstrated through the example

of a simple time-harmonic electric current source ~jE (t) = ~j0j (t), where j (t) = sin(ωt).
Obviously, j (t) is a solution of the (auxiliary) harmonic oscillator equation

∂2j (t)/∂t2 = −ω2j (t)

with appropriate initial conditions. Since this di�erential equation is of second order in
time, we �rst have to reduce it to a system of �rst order equations. This is facilitated
by introducing k(t) = ∂j (t)/∂t . In total, we obtain the complete scheme

∂

∂t


~E
~H
j
k

 =


0 1

ε∇× ~j0 0
− 1
µ∇× 0 0 0
0 0 0 1
0 0 −ω2 0



~E
~H
j
k

 . (6.12)

The extension of this procedure to more complicated sources exploits two basic
properties of our solver. First, we carry out a time-stepping procedure which means
that we can e�ciently approximate our sources by piecewise de�ned functions, as long
as each piece is su�ciently smooth and much longer than our timestep ∆t . Second, we
can easily add any homogeneous linear system of di�erential equations to our problem
under consideration. In order to simplify the notational burden, we will consider a
single linear ADE of order n that should model the source j (t)

an j (n)(t) + · · ·+ a2j ′′(t) + a1j ′(t) + a0j (t) = 0. (6.13)

We assume real coe�cients ai , i = 1, . . . ,n which makes it straightforward to transform
this equation into a system of real �rst-order ordinary di�erential equations as required
by our solver. The general solution of Eq. (6.13) is

j (t) =
k∑

i=1

li−1∑
j=0

(
c(i)
j t j

)
eλi t

 , (6.14)
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where k is the number of linearly independent roots λi with multiplicity li (i = 1, . . . , k)
of the characteristic equation of Eq. (6.13). In addition, the coe�cients c(i)

j (j =
1, . . . , li) are determined by the initial conditions.

This result shows that we can directly model sources with a polynomial envelope
and an underlying harmonic oscillation (for imaginary λi). Exactly this feature will
be exploited in the following to model general sources by piecewise approximation of
the exact envelope through a polynomial of order n. To do so, we �rst need to �nd
the polynomial pn(t) =

∑n
k=0 ck tk of order n which approximates the envelope of our

source on a given interval [ta , tb ]. The optimal (in a least-square sense) coe�cients
ci can be found by an expansion of the target source into Legendre polynomials [43].
This procedure requires us to solve the equations

n∑
k=0

ck

tb∫
ta

t j+kdt =

tb∫
ta

j (t)t jdt , j = 0 . . .n (6.15)

for the coe�cients ci .

Once we have obtained the coe�cients, we go backwards and construct the correct
ADE which has the desired polynomial as a solution. For a carrier frequency ω0, we
require the complex pair λ± = ±iω0 as roots of the characteristic equation. Further,
each root has to be (n + 1)-fold degenerate in order to allow for a polynomial envelope
of order n. Thus we create the characteristic equation as

(λ+ iω0)n+1(λ− iω0)n+1 = 0.

From this, we can directly generate the required system of ADEs and then use the
initial conditions in order to determine the coe�cients ci .

We now illustrate this somewhat abstract procedure through the explicit construc-
tion of a system of ADEs for the source j (t) with a Gaussian temporal pro�le which
we have used in Sec. 4.4.3, i.e.,

j (t) = e−t2/(2σ2) cos(ω0t). (6.16)

First, we limit our source to the interval [−5σ, 5σ]. For t outside this region, we set
j (t) to zero. Next, we split the interval into two parts, the ramp-up part [−5σ, 0]
and the ramp-down part [0, 5σ]. We restrict the discussion to the ramp-up part, the
ramp-down being perfectly analogous. In Fig. 6.2 we demonstrate that an 11th-order
polynomial represents an excellent approximation to the envelope of this source. The
corresponding coe�cients ci are obtained by solving Eqs. (6.15) and are listed in Tab.
6.1.

Finally, after having set up the characteristic function for n = 11, we obtain the
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Coe�cient Value

c0 0.00002738064

c1 −0.00084243573/σ

c2 0.00763879040/σ2

c3 −0.02842436916/σ3

c4 0.05676807528/σ4

c5 −0.06672686731/σ5

c6 0.04935061201/σ6

c7 −0.02332427648/σ7

c8 0.00703431090/σ8

c9 −0.00128177207/σ9

c10 0.00012671339/σ10

c11 −5.18632981473× 10−6σ11

Table 6.1: Coe�cients for an 11th-order polynomial p11 =
∑11

k=0 ck tk that ap-
proximates the ramp-up part of a pulse with Gaussian temporal pro�le.

following system of 24 �rst-order ADEs

∂

∂t
j (t) = j1(t),

∂

∂t
ji(t) = ji+1(t), i = 1, . . . , 22,

∂

∂t
j23(t) = −12ω2

0j22 − 66ω4
0j20 − 220ω6

0j18 − 495ω8
0j16 − 792ω10

0 j14 − 924ω12
0 j12

−792ω14
0 j10 − 495ω16

0 j8 − 220ω18
0 j6 − 66ω20

0 j4 − 12ω22
0 j2 − 12ω24

0 j .

What remains is to determine the initial conditions, i.e., j (t = 0) and ji(t = 0). This
is facilitated by successively di�erentiating our solution

j (t) =

 11∑
i=0

ci t i

 cos(ω0t)

and inserting the coe�cients from Tab. 6.1. Therefore, in order to fully describe the
ramping-up and -down of a Gaussian pulse, we need to add 2× 24 = 48 ADEs to our
basic solver. In more extreme cases, the number of resulting ADEs may go into the
hundreds. In view of the fact that modeling a typical nanophotonic system requires at
least some 105 − 106 unknowns, the additional computational overhead incurred can
then still be neglected.
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Figure 6.2: Quality of the approximation of a source with Gaussian temporal
pro�le via an 11th-order polynomial. (a) Shape of the ramp-up part of the envelope,
(b) Error of the polynomial approximation to the Gaussian pro�les, Eq. (6.16).

Thus, we have a general scheme for the inclusion of almost arbitrary source terms into
the Maxwell equations without ever evaluating the convolution integral in Eq. (6.9).
Further, since the source is fully described by a system of di�erential equations, we
never have to sample the corresponding source function explicitly. In turn, this implies
that our time steps are not limited by the sampling theorem's apparent requirement
of su�ciently over-sampling the source terms.

6.2 Numerical Experiments

Finally, we provide details about the solver's performance and compare it with the
standard FDTD approach. As discussed in the introduction to this chapter, the most
signi�cant gains can be expected for higher-order discretizations. Therefore, for all
further computations in this chapter, we employ a Yee-grid with a 4th-order accurate
discretization as discussed in Sec. 4.2.3.

6.2.1 One-Dimensional Systems

We start with a simple 1D test setup consisting of a system of length L = 20 (di-
mensionless units), the right half of which is �lled with a material of refractive index
n = 1.5. The left side is vacuum (refractive index n = 1). A Gaussian pulse is prepared
on the left side and is allowed to propagate towards the interface through the initial

conditions E (x , t) = exp
(
−(x − x0 − t)2/σ2

x

)
and H (x , t) = −E (x , t) (x0 = 5 and

σx = 1). For FDTD, which works in a time-staggered fashion, we initialize the system
with E (x , 0) and H (x ,∆t/2), whereas the Krylov subspace method assumes all initial
conditions at the same time. When the pulse hits the interface it splits into re�ected
and transmitted parts. After the computational time T = 12 has elapsed, we compare
the electric �eld of the transmitted pulse with the values of the corresponding analyti-
cal solution. In Fig. 6.3 we display the relative error of the computations as a function
of the Courant number s=∆t/∆x . As expected, once the CFL stability criterion is

102



6.2 Numerical Experiments

10
−1

10
0

10
1

10
−7

10
−6

10
−5

10
−4

Courant number s=∆t/∆x

R
el

. E
rr

or N=3999

N=7999

N=15999

N=31999

Figure 6.3: Comparison of the standard FDTD method with the Krylov-subspace
approach in a one-dimensional system. The symbols indicate the number of to-
tal unknowns employed in the computation. We have used Ntot=3999 (circles),
Ntot=7999 (crosses), Ntot=16999 (triangles), and Ntot=31999 (pluses) grid points.
The line colors correspond to the methods: FDTD (black) and the Krylov-subspace
approach with subspace dimensions m = 4 (red), m = 8 (green), m = 16 (blue),
and m = 32 (cyan), respectively.

satis�ed (s ≤ 6
7), the error for the FDTD results decrease quadratically with decreas-

ing time steps, until the curve �attens out and approaches the error bound set by the
accuracy of the spatial discretization. In contrast, for the Krylov-subspace method the
relative error is of the order one unless the time step is su�ciently small for the method
to converge. When this happens, the error drops extremely fast to the error bound set
by the spatial discretization. The value of ∆t at which this drop happens depends on
the subspace dimension, but the decay itself is always almost �instantaneous�. These
results demonstrate that within the Krylov-subspace approach we can use more than
two orders of magnitude larger time steps as compared to FDTD. We would like to
emphasize that this behavior is a generic feature of the Krylov-subspace approach and
does not depend on the choice of spatial discretization.

6.2.2 Two-Dimensional Systems

As a �rst comparison in 2D, we choose the test setup depicted in Fig. 6.4 with a total
system size of 8×4. As initial conditions, we prepare a localized pulse in the (x ,y)-plane
that propagates into the positive x -direction by

Hx (x , y , t = 0) = 0,
Hy(x , y , t = 0) = −Ez (x , y , 0),

Ez (x , y , t = 0) = cos(k0(x − x0))e−(x−x0)10/σ10
x e−y2/σ2

y .

The values of the parameters are x0 = −1.25, k0 = 2π, σx = 1, and σy = 0.5. In
the right part of the system, we have positioned two cylinders with radius r = 0.5
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(a) (b)

Figure 6.4: Snapshots of the electric �eld Ez for the 2D test setup at (a) T = 0
and (b) T = 10. The circles indicate the positions and sizes of cylinders �lled with
refractive index n = 2.

(a)

10
−4

10
−2

10
0

10
−8

10
−6

10
−4

10
−2

10
0

Courant number s=∆t/∆x

R
el

. E
rr

or

 

 
FDTD
Krylov (m=4)
Krylov (m=8)
Krylov (m=16)
Krylov (m=32)

(b)

10
−1

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

Computational time [s]

R
el

. E
rr

or
 

 

FDTD
Krylov (m=4)
Krylov (m=8)
Krylov (m=16)
Krylov (m=32)

Figure 6.5: A comparison between standard FDTD and the Krylov-subspace
method for the 2D test system depicted in Fig. 6.4. (a) displays the error as
a function of the Courant number, while (b) shows the error as a function of the
actual computational time on a computer with an AMD Athlon64 3500+ processor.

and refractive index n = 2. Their centers are, respectively, located at (2, 0.5)T and
(3,−0.5)T. In order to overcome the problem that FDTD requires time-staggered
initial conditions, we �rst use the Krylov subspace method with m = 32 and at least
10 time steps, to obtain the initial values for Hx (x , y , t = ∆t/2) and Hy(x , y , t = ∆t/2)
from the initial value of the electric �eld.

With these initial conditions, we let the system evolve until T = 10. In Fig. 6.4 we
display the electric �eld Ez before and at the end of the computation. The Yee-grid
consists of 160×80 cells, where the electric �eld Ez is de�ned in the cell center while the
magnetic �elds, Hx and Hy , reside on the cell vertices. We have implemented perfectly
re�ecting boundary conditions, by requiring the magnetic �eld at the system bound-
aries to be zero (perfect magnetic conductor). We double-checked this procedure by
using a complementary FDTD calculation with very small time steps and both results
agree up to machine precision. Since this problem is not amenable to an analytical
solution, we use as a reference-solution the Krylov-subspace method with m = 32 and
∆t = 0.01∆x . This reference solution is (up to machine precision) identical to a solu-
tion obtained from FDTD with ∆t = 10−6∆x . In Fig. 6.5, we compare the accuracy of
the two methods as a function of both the Courant number s = ∆t/∆x and the actual
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(a) (b)

Figure 6.6: Schematic setup (a) and reference solution (b) of the second (open)
2D test system. A dielectric cylinder (radius r = 1, index of refraction n = 2)
is centered at (1, 0)T and is illuminated by an electric line source (frequency ω =
2π) located at (−2, 0)T. In both panels, we delineate a dashed line. The entire
computational domain to the right of this line is used for comparing the results of
the Krylov-subspace approach.

computational time. As expected, for FDTD the error drops quadratically, while for
the Krylov-subspace method the error decays as ∆tm . Looking at the computational
times, obtained on a desktop computer with a AMD Athlon64 3500+ processor (see
Fig. 6.5(b)), the Krylov-subspace method becomes advantageous for a relative error
below 10−4. For very high accuracy calculations, the Krylov-subspace approach can be
two to three orders of magnitude more e�cient than standard FDTD. From Fig. 6.5(b)
we also see that increasing m from 16 to 32 results in a slight performance loss, which
largely stems from the overhead of the exponential of Hm and the much larger Vm .
Thus, for optimal performance one must not choose m too large. Depending on the
required accuracy and the available memory, we propose to work with Krylov-subspace
dimensions ranging from m from 4 to 12. Concerning the memory usage, the Krylov-
subspace approach generally requires more memory than standard FDTD. For typical
applications where the entire basis is kept in the memory, the Krylov-subspace ap-
proach requires storage for a total of (m + 1)Ntot unknowns. Therefore, accuracy and
long time-stepping capability have to be balanced against available memory.

6.2.3 Testing of the Sources

To demonstrate the capability of the Krylov-subspace approach to model open systems
and sources, we choose a slightly di�erent system whose setup is sketched in Fig. 6.6.
The total system size is 6× 4 (dimensionless units) and it is discretized by 301× 201
grid cells. A dielectric cylinder (radius r = 1, refractive index n = 2) is centered at
(1, 0)T and an electric line source with frequency ω = 2π is positioned at (−2, 0)T.
Since we are simulating an open system, we have added CFS-PMLs with a thickness
of ten grid cells to the entire computational domain. To obtain a reference solution for
the electric �eld, we have employed the (for such simple systems numerically exact)
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Figure 6.7: Convergence study of the Krylov-subspace method for an open system
that includes a source. The plot displays the relative deviations from the reference
solution as a function of the Courant number. Two di�erent implementations
of the sources have been utilized: A harmonic source via ADEs (solid) and an
approximation via a quadrature formula for the convolution integral (dashed). The
dotted line represents the error bound set by the spatial discretization. This error
bound has been obtained by a fourth-order FDTD-calculation with s = 0.1.

multiple multipole expansion technique [61]. Since this reference solution represents
the steady-state of the system, we have to run our time-domain simulations su�ciently
long so that transients have died out. In practice, we run the simulations for T = 250
and compare the computed �eld in the region of the computational domain described
by x ≥ −1 with that of the reference solution.

We model this system with the source realized by ADEs (see Eq. (6.12)) and, al-
ternatively, by a 10-point closed Newton-Cotes quadrature of the convolution integral
formulation (see Sec. 6.1.2). The results in Fig. 6.7 indicate that sources via ADEs
work extremely well. In addition, these results highlight the capability of the Krylov-
subspace approach of doing very large time steps even in the presence of sources. Note
that in the case of m = 32 the method converges with less than 3 time steps per oscil-
lation period of the source. These results also suggest that the inclusion of PMLs does
not have any in�uence on the stability or accuracy of the Krylov-subspace approach.

6.3 Conclusions on the Choice of Time-Integration

In total, we have discussed three di�erent time-integration schemes in this thesis: The
�nite-di�erence scheme (FDTD), a low-storage Runge-Kutta method (DG) and now
the Krylov-subspace approach. All three methods have their own advantages and dis-
advantages, which we tried to summarize in Tab. 6.2. When looking for a suitable
method, it almost always comes down to a trade-o� between available memory, per-
formance and accuracy. Generally speaking, the simpler methods require less memory
but they also perform worse in terms of computational time or accuracy. Hence, one
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should pick an appropriate scheme on the basis of the problem at hand. For simpler
problems with low requirements on accuracy, the integration via �nite di�erences might
be su�cient. In contrast, for challenging but not memory limited problems, the Krylov
subspace approach is a viable alternative. Between these two extremes, the low-storage
Runge-Kutta scheme presents a good compromise for many cases.
As a �nal note, it should be stated that there exists a wealth of other integration

methods and new schemes are still developed regularly. Our selection of methods is
by no means comprehensive and certainly there are other methods which are more
suitable for one problem or another. While it is doubtful that there exists an ultimate
method, we still expect that further research in the �eld of time integration will lead
to signi�cant performance gains.
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7 Chapter 7

Optical Micro-Resonators

Optical resonators have come a long way since the pioneering work of Fabry and Perot
in 1899 [62]. Today, di�erent kinds of electromagnetic resonators have found applica-
tions as �lters and antennas from radio frequencies to the visible spectrum. Not to
forget, resonators are an essential part of practically every laser setup. A common
feature of all resonator structures is their ability to selectively modify certain optical
properties within narrow spectral ranges. Recently, progress in nano-fabrication tech-
nology has allowed to manufacture optical resonators with dimensions of only a few
optical wavelengths. The interest in such microresonators ranges from applications as
sensors [8] to fundamental questions of light-matter interaction [63]. Typically, the
resonators must be tailored speci�cally for a given task. For these design purposes,
accurate and fast numerical calculations are indispensable.

This chapter starts with a very brief introduction to the theory of optical resonators.
Next, we will discuss a special type of optical resonators, namely dielectric cylinders
which can be treated analytically. These exact results will then be used to evaluate
and compare numerical results obtained with FDTD and the DG method. Finally, we
apply both methods to realistic cases of integrated disk and ring resonators.

7.1 Fundamentals of Optical Micro-Resonators

Optical resonators or microcavities are essentially de�ned by their capability to trap
light for a certain time in a restricted volume. The underlying mechanism for the
con�nement is typically either total internal re�ection or distributed Bragg re�ection.
Starting from the linear Maxwell equations in the conservation form (2.11), we can
apply a Fourier transform in time to obtain the eigenproblem

Q−1
[
Ax∂x +Ay∂y +Az∂z

]
q = iωq. (7.1)

Here, the matrix Q contains the material distribution (see Sec. 2.2) and therefore
de�nes the resonator setup. As solutions to Eq. (7.1), one �nds a set of eigenfrequencies
ωj and the corresponding eigenvectors qj . To qualify as a proper resonator mode, we
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7 Optical Micro-Resonators

expect the �elds to be strongly localized in the vicinity of the resonator. Further,
the eigenfrequencies should be discrete and well separated. In general, the frequencies
ωj will not be purely real, but instead they contain a negative imaginary part. This
imaginary part describes the decay of a mode in time.

To distinguish between the real and the imaginary part of ωj , we de�ne the real
resonance frequency νj as

νj =
Re
[
ωj

]
2π

,

and the real quality factor or Q factor as

Qj = −
Re
[
ωj

]
2Im

[
ωj

] .
Qj is proportional to the ratio between the stored energy and the energy dissipated in
one oscillation cycle [20]. Therefore, it is a measure for the lifetime of the corresponding
mode. The Q factor is determined by a number of di�erent contributions

1
Q

=
1

Qrad
+

1
Qsurf

+
1

Qmat
.

Here, Qrad denotes the radiative losses due to curvature, Qsurf describes scattering
losses caused by imperfections of the surface and Qmat contains the intrinsic material
losses. In the following, we will neglect Qmat and concentrate on Qrad and particularly
on the e�ect of an arti�cial Qsurf , which is introduced by the numerical discretization
of the surface.

7.1.1 Numerical Extraction of the Resonance Frequencies

As discussed above, one needs to solve the eigenproblem (7.1) in order to obtain the
resonance frequencies and quality factors of a given resonator. While it is possible
to solve (7.1) directly, here, we will exploit the time-domain solvers discussed in the
previous chapters.

As a �rst step, we have to excite the modes of interest. In some cases, this can
be achieved via initial conditions, but it usually is more convenient to employ one
or multiple point sources. Tuning the spectrum of these sources allows for selective
excitation of a certain set of modes. Once the modes are excited, we turn o� the
sources and start to record the �elds at a point ~r0 in the resonator. In principle, the
recording point can be chosen arbitrarily, as long as the mode does not exhibit a node
at this position. Since the eigenmodes form a complete basis of our system, we expect
to observe a superposition of the di�erent resonator modes

q(~r0, t) =
∑
j

qj (~r0)e−iωj t =
∑
j

qj (~r0)e
−2πνj

„
i+ 1

2Qj

«
t
.
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7.2 Analytic Test Cases

To extract the frequencies, we apply a Fourier transform to the recorded data and
obtain

q̆(~r0, ν) =

∞∫
0

dtq(~r0, t)e−i2πνt =
∑
j

qj (~r0)
iQj

2πQj

(
ν − νj

)
+ iπνj

. (7.2)

It should be noted that the Fourier integral's lower limit is t = 0, because we assume
the recording to start at this time. Considering only a single resonance and taking the
modulus squared of Eq. 7.2 then yields∣∣∣q̆j (~r0, ν)

∣∣∣2 =
1
π2

1

4
(
ν − νj

)2
+
(
νj
Qj

)2 ,

which we recognize as a Lorentzian curve. If we assume all resonances in our system to
be well separated, then the modulus squared of Eq. (7.2) will be a sum of Lorentzian
line shapes. By plotting this data, we can identify the resonance frequencies and Q
factors via the peak positions and peak widths, respectively.
Unfortunately, above procedure has a number of serious limitations. First, we need

to record the data until all �elds have decayed su�ciently. Otherwise, we will introduce
spurious oscillations due to the Fourier transform of the cut-o�. Second, it is far from
trivial to distinguish the di�erent modes in a plot, if the Q factors are not su�ciently
large or if the frequencies are not well separated. To overcome these problems, a number
of di�erent analysis tools were developed. Most of them do not execute a Fourier
transform but rather try to directly �t a sum of exponentially decaying functions to
the recorded time data. One of the most e�ective methods in this �eld is known as the
�lter diagonalization method (FDM) [64]. It allows to detect a large number of modes
from a relatively small amount of data. In the following, we will employ the library
harminv [65], which is a very convenient and freely available implementation of the
FDM.

7.2 Analytic Test Cases

For certain resonator geometries, it is possible to �nd the resonance frequencies ana-
lytically. A particularly elegant method was introduced by Gustave Mie in 1908 [66],
which allows the exact treatment of cylindrical and spherical geometries. Here, we
will use this technique to obtain reference solutions for comparison with our numerical
results. A complete discussion of Mie's theory is far beyond the scope of this thesis.
The interested reader is referred to a number of books [67�69] for the details of the
analytic calculations.

7.2.1 Infinite Cylinders under Normal Incidence

An in�nite cylinder with light propagation restricted to the plane perpendicular to
the cylinder axis can be described as a two-dimensional system. As we have seen in
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7 Optical Micro-Resonators

m l = 1 l = 2
ν Q ν Q

17 1.955 560.1 2.364 59.62

18 2.065 829.5 2.479 73.33

19 2.175 1236 2.594 90.99

Table 7.1: An exemplary set of resonance frequencies and their respective Q-
factors for a cylinder in TM polarization with radius r = 1 and refractive index
n = 1.59 (cf. Fig. 7.1).
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Figure 7.1: Analytic results for the modes of a cylinder with n = 1.59 and radius
r = 1 in TM polarization. Di�erent symbols/colors denote di�erent radial order
l . (a) shows the resonance frequencies, while (b) contains the corresponding Q
factors.

Sec. 2.3, TM and TE polarizations decouple for this case and we expect two sets of
independent solutions. Assuming a cylinder with refractive index n =

√
ε and radius

r , the complex resonance frequencies ωj can be found as the zeros of the following
equations [69]:

TM-Polarization: Jm(nω)H (1)
m

′
(ωr)− nJ ′m(nω)H (1)

m (ωr) = 0, (7.3a)

TE-Polarization: nJm(nω)H (1)
m

′
(ωr)− J ′m(nω)H (1)

m (ωr) = 0. (7.3b)

Here, Jm are the Bessel functions, while H (1)
m denote Hankel functions of the �rst kind.

Further, ′ denotes the derivative with respect to the argument and the index m signi�es
the azimuthal order of the resonance. For each index m, multiple roots can be found,
which are then labeled by the index l . Therefore, we can uniquely identify a cylinder
mode by the tuple (m,l).
As an example, we pick a cylinder in TM polarization with radius r = 1 and refractive

index n = 1.59. A few selected resonances and their corresponding Q factors are listed
in Tab. 7.1 .
From the results depicted in Fig. 7.1, we observe that the resonance frequencies grow

linearly with the azimuthal order m. Modes of higher radial order l also have higher
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Figure 7.2: Resonator modes found from FDTD calculations for di�erent spatial
discretizations. Panels (a) and (b) contain the frequencies and Q factors, respec-
tively. Analytic solutions are indicated by horizontal lines for l=1 (solid) and l=2
(dashed). The modes (17,1), (18,1) and (19,1) are highlighted and their corre-
sponding relative error is plotted in panel (c).

frequencies. In contrast, the Q-factors grow exponentially with m but typically, they
are maximal for l = 1. Therefore, if a large Q is desired, one should pick a mode of
high azimuthal order m but with minimal radial order l = 1.

Calculations with FDTD

For the calculations with FDTD, we model a system of extent 3× 3 (in dimensionless
units) with the cylinder of radius r = 1 centered in it. Around the system, we add 10
cells of PMLs in each direction. For excitation, we employ an electric dipole source,
oriented in z -direction at position ~rsource = (0.8, 0)T. The time dependence of our
source is given by

j (t) = sin(2πν0(t − t0))e−
(t−t0)2

2σ2 ,

where ν0 = 2, σ = 2 and t0 = 5σ. These parameters ensure a su�ciently broad
spectrum to excite modes with frequencies between ν = 1.5 and ν = 2.5.
After the source has decayed su�ciently (T = 2t0), we start recording the Ez �eld

component at the position of the source for 1000 time units. The resonances are then
extracted via harminv. The results for di�erent spatial discretizations are depicted
in Fig. 7.2. From Fig. 7.2(a), we observe that harminv sometimes reports modes,
which can not be identi�ed as modes with l = 1. Whether these modes are of higher
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Figure 7.3: Cylinder meshes with di�erent re�nement: (a) α = 1, (b) α = 5,
(c) α = 10. The green areas denote regions with refractive index n = 1.59, while
the red shaded triangles belong to the PMLs.

radial order or spurious is di�cult to decide. Since they lie reasonably close to analytic
resonances with l = 2, we attribute them to weak contributions from these modes.

Concerning the �rst-order modes, from the relative error plotted in Fig. 7.2(c), we
�nd the expected quadratic convergence for the resonance frequencies. We also observe
that the error drops below 1% at approximately 32 cells per radius. If we relate this to
the wavelength in the material, given by λmat = 1/(nν0) = 0.314, we recover the rule
of thumb, that 10 cells per wavelength are su�cient for an error of approximately 1%.
Considering the Q factor however, signi�cantly more cells are required to reach the
same level of accuracy. As can be seen from Fig. 7.2(c), even 128 cells per radius are
barely su�cient. For realistic calculations, this behavior poses a signi�cant problem,
since the optimization of the Q factor often is the main objective.

Calculations with the DG Method

To compare the FDTD results with DG calculations, we �rst generate a mesh with
an edge length of h0 = 0.5. Instead of a uniform re�nement, we only improve the
discretization of the cylinder, by adding more triangles at the interface. In particular,
we introduce a re�nement factor α which denotes the ratio between h0 and the smallest
edge of a triangle at the interface. A number of meshes for α = 1 . . . 10 is generated,
some examples are shown in Fig. 7.3. To facilitate a fair comparison with the FDTD
results, we introduce the average number of gridpoints per radius navrg =

√
NTriNp/3.

Here, NTri is the number of triangles in the inner computational domain (excluding the
PMLs). Np is the number of gridpoints per triangle for a given order N . This number
can be seen as a rough equivalent to the cells per radius used in the previous section.

In Fig. 7.4 we plot the relative error of mode 18 (cf. Tab. 7.1) as a function of
navrg for di�erent orders N . Studying the convergence in Fig. 7.4(a), we observe that
calculations with various orders all seem to exhibit the same slope of approximately
4. This indicates, that our calculations are still limited by the shape of the cylinder
surface. In this case, it obviously is futile to increase the polynomial order. Instead
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Figure 7.4: Convergence of the cylinder mode (18,1) for DG calculations. Shown
is the relative error of (a) the frequencies and (b) the Q factors as a function of
the number of average gridpoints per radius navrg.

one should re�ne the mesh even further, if a higher accuracy is desired. Remarkably,
for the Q factors the situation is slightly di�erent. At lower resolutions, the error is
reduced with the expected order. Only after it drops below 0.1%, the convergence order
reduces to the same as observed for the frequencies. This behavior can be attributed to
the dissipative nature of the DG method, which will dominate the error for insu�cient
resolutions.

However, both the frequencies and the Q-factors can be obtained by the DG method
with signi�cantly less grid points as compared to FDTD. For an accurate estimate of
the Q factor (relative error below 0.1%), the DG calculations can be up to a factor 100
faster.

7.3 Microcavity Disk and Ring Resonators

Of particular interest for applications are integrated disk- and ring resonators, pro-
duced from semiconductor materials like Si or GaAs. Since these structures are usu-
ally fabricated by means of electron-beam lithography, the quality of the resonators
has pro�ted from the enormous progress of this fabrication technology over the past
years. Today, it is possible to produce structures with sizes of tens of microns, where
imperfections and surface roughness stay below 5 nm. Here, we picked two typical
resonator devices as sketched in Fig. 7.5. The disk resonator in Fig. 7.5(a) is coupled
to two waveguides and therefore quali�es as a four-port device. For reasons that will
become clear later, this setup is also called an add/drop �lter. The second device,
pictured in Fig. 7.5(b), only connects to a single waveguide and is therefore called a
two-port or all-pass con�guration.

7.3.1 Disk Resonators

To allow for direct comparison of our results for the disk resonator with other calcu-
lations and experimental measurements, all data in this section will be presented in
physical units. For our setup, we choose a disk with radius r = 2.5µm, while the
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Figure 7.5: Schematic setup of (a) a disk resonator system and (b) a ring
resonator setup. In both cases, the computational domain is surrounded by PMLs.
The dashed lines indicate contours through which we measure the �ux.

waveguides have a width of w = 300 nm. The distance between disk and waveguides
is d = 232 nm. The disk and the waveguide are assumed to consist of a material
with ε = 10.24 (n = 3.2). This setup exactly corresponds to the system discussed
theoretically and experimentally in Ref. [70].

The aim is to identify the available resonances of the disk resonator at wavelengths
around λ0 = 1.55µm. As we have seen from the studies on cylinders in Sec. 7.2, a
FDTD calculation will require at least 10 cells per shortest wavelength. Here, the
wavelength in the material is given be λmat = λ0/n ≈ 500nm. Thus, we would expect
to reasonably converged results for a spatial discretization of ∆ ≈ 50nm. In Fig. 7.6 we
show the numerical convergence behavior for a FDTD simulation of our system. Ob-
viously, for this system, the common rule of thumb fails dramatically. A discretization
with ∆ = 50 nm is far from su�cient and by extrapolation we can estimate a required
grid spacing of ∆x ≈ 10 nm for the frequency to be converged below 1%. In Ref. [70],
the authors employ FDTD calculations with grid spacings of ∆ = 13.6 nm, which is
roughly consistent with our estimates. Further, they argue that the staircasing serves
as a realistic model for the experimental surface roughness. However, by looking closely
at the surfaces of structures fabricated with modern microfabrication methods (see e.g.
Ref. [71]), this claim seems rather doubtful.

In order to investigate the in�uence of the surface on the performance of a disk
resonator, we employ the DG method. For our studies, we generate four di�erent
meshes, �M1� to �M4�, as depicted in Fig. 7.7. For each of these meshes, we execute
calculations to extract the resonance frequencies of the resonator. In particular, we
inject a pulse with a well-de�ned spectrum in the upper waveguide and let it propagate
from left to right. During the simulations, we record the electric �eld at a point P
inside the disk (marked by a cross in Fig. 7.5). Additionally we record the spectral
�ux through a plane �B� at the right side of the upper waveguide.
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Figure 7.6: Convergence for a particular mode (m = 28, l = 1) of the disk
resonator (solid line). Also plotted is the typical computational time required to
obtain the resonance wavelength with a commercial FDTD package on a desktop
computer (dashed line).

To get an overview of the modes around λ0 ≈ 1.55µm, we initially excite the system
with a broad-band Gaussian pulse. Since most of the resonances are very narrow, a
good frequency resolution of 1 nm or better is required. Due to the sampling theorem,
this forces us to simulate for rather long times of approximately 334 ps. The normalized
spectrum over a broad wavelength region can be found in Fig. 7.8(a). By studying at
individual peaks (cf. Fig. 7.8(b)), we observe how the frequencies shift very slightly
with the mesh size. Still, from comparison between the data obtained for M3 and M4,
we conclude that our results are converged to at least four decimal places. It should
be noted that all calculations where conducted with 4th order discretizations.

To obtain more detailed information on the resonances, we also employ a FDM on
the data collected at point P inside the disk. From the time-data, plotted in Fig. 7.9(a),
we �nd that even after almost 350 ps (more than 5× 105 optical cycles), there still is
some electric �eld localized inside the disk. This indicates modes with extremely high
Q factors. The recorded timedata is then analyzed with harminv as a function of the
simulated time. To simplify matters, we concentrate on modes with resonances between
λ = 1.5µm and λ = 1.55µm. The resulting wavelengths are plotted in Fig. 7.9(b). The
�rst thing to note is that�except for a few spurious modes for short simulation times�
harminv consistently �nds three modes. By comparison with the data in Fig. 7.8(b),
we con�rm that the resonance wavelengths agree very well with the results from our
Fourier analysis. To complement the data in Fig. 7.9(b), we list a larger number of
resonance wavelengths and Q factors in Tab. 7.2. The individual modes are sorted
by their azimuthal order m and their radial order l (cf. Sec. 7.2 and Fig. 7.10). As
a �rst observation, we �nd that the Q factors increase dramatically with increasing
radial order. This is in contrast to the analytical predictions made for the modes of
a dielectric cylinder (see Sec. 7.2). For comparison, we have calculated the respective
resonance frequencies and Q factors for a dielectric cylinder with radius r = 2.5µm, and
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Figure 7.7: The meshes used for the calculation of the resonance frequencies and
spectra. Di�erent colors denote di�erent material properties: air (white), silicon
(green) and PMLs (red). In the text, we refer to the meshes as (a) M1, (b) M2,
(c) M3 and (d) M4.

refractive index n = 3.2. The values are also found in Tab. 7.2 and we observe a good
agreement in the frequencies. The Q factors however are many orders of magnitude
larger than what we observe for the disk resonator. They are so large in fact, that our
numerical root-�nding algorithm can not resolve the vanishing imaginary part for some
of the modes. Of course, the large discrepancy is readily explained by the presence of
the waveguides, which o�er an additional decay channel. Furthermore, the waveguides
are also the key to understanding the increasing Q factor with increasing l . In this case,
the mode is more localized in the center of the disk (see below) and simply has less
overlap with the waveguide modes. For completeness, we also compare our resonances
to the FDTD results published in Ref. [70]. We �nd that the frequencies agree very well
with deviations below 1%. The Q factors on the other hand, are signi�cantly reduced
in the FDTD calculations. Particularly for the modes of higher radial order, the DG

118



7.3 Microcavity Disk and Ring Resonators

(a)

1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75
0

0.2

0.4

0.6

0.8

1

Wavelength [µm]

T
ra

ns
m

itt
an

ce
(b)

1.505 1.51 1.515 1.52 1.525 1.53 1.535 1.54
0

0.2

0.4

0.6

0.8

1

Wavelength [µm]

T
ra

ns
m

itt
an

ce

Figure 7.8: Spectra for meshes M1 (red), M2 (green), M3 (blue) and M4 (black).
All calculations were done in 4th order. The dashed line in (a) indicates the spec-
trum of the exciting pulse. Panel (b) shows a close-up of the spectrum.
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Figure 7.9: The result of the �lter diagonalization as a function of the runtime
of the simulation. Di�erent meshes are indicated by di�erent symbols and colors:
M1 ('x', red), M2 ('o', green), M3 ('+', blue) and M4 ('*', black).

results are up to a factor 25 higher than those obtained via FDTD. This signi�cant
reduction of the Q factors for the FDTD calculations can only be attributed to the
arti�cial surface roughness due to the staircasing, which introduces an unphysical Qsurf .

Finally, we study some of the modes in more detail, by exciting them individually.
To this end, we replace the short waveguide pulse by a continuous-wave source. The
frequency is tuned to the individual resonance and a snapshot of the �eld distribution
is recorded after T ≈ 500 ps. The �eld plots corresponding to the three resonances
of Fig. 7.9(b) are depicted in Fig. 7.10. In addition, we also show the �eld for a case,
where the excitation wavelength does not coincide with a resonance of the disk. From
the �eld plots, we can directly recognize the azimuthal and radial order of each mode.
Furthermore, we observe that the radiation is coupled from the upper waveguide into
the disk and then leaves the system through the left port of the lower waveguide. While
this e�ect is clearly visible in Fig. 7.10(a), it is less pronounced for the modes of higher
radial order. This can be attributed to the high Q factors (cf. Tab. 7.2), which lead to
extremely narrow resonances. Despite specifying the incoming wavelength to 6 digits,
we still do not hit the resonance perfectly. The mode pictures are thereby consistent
with the transmittance spectra in Fig. 7.8(b), where we only �nd a partial reduction
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(a) (b)

(c) (d)

Figure 7.10: Field plots of the Ez -component after excitation with a sinusoidal
waveguide mode with di�erent frequencies: (a) First-order radial mode (m = 28,
λ = 1.529µm), (b) second-order radial mode (m = 24, λ = 1.5112µm), (c) third-
order radial mode (m = 20, λ = 1.5357µm) and (d) o�-resonant excitation (λ =
1.5198µm).
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DG FDTD [70] Mie's Theory
m l λ [µm] Q λ [µm] Q λ [µm] Q

27 1 1.58113 9181.8 1.58451 7600 1.5817 2.13× 1018

28 1 1.52985 12286 1.53319 7500 1.5303 1.13× 1019

29 1 1.48185 16354 1.48521 7000 1.4823 > 1019

30 1 1.43684 21865 1.44010 9100 1.4373 > 1019

23 2 1.56388 28782.2 1.56724 8700 1.5644 5.78× 1012

24 2 1.51121 39050.1 1.51455 9900 1.5117 2.66× 1013

25 2 1.46210 52434.4 1.46543 11000 1.4625 1.23× 1014

19 3 1.59272 109861 1.59610 9900 1.5932 2.32× 108

20 3 1.53565 89068.5 1.53901 9700 1.5360 9.02× 108

21 3 1.48271 195808 1.48605 8800 1.4830 3.56× 109

Table 7.2: Numerical values for selected resonance frequencies of a disk res-
onator. The di�erent colors indicate di�erent calculations: DG (red), FDTD as
taken from Tab. II in Ref. [70] (green) and a dielectric cylinder (with parameters
r = 2.5µm, n = 3.2) according to Mie's theory (blue).

in the transmittance for modes of higher radial order.

7.3.2 Ring Resonators

As we have demonstrated in the previous section, a disk resonator supports modes of
higher radial order. While these modes can be useful for certain applications due to
their higher Q factors, more often they pose a problem. Particularly, we can not realize
a device with equidistant resonance frequencies, which is desirable for many �ltering
applications. Fortunately, there is a rather simple way to suppress the higher-order
radial modes by etching out the center of the disk. If the resulting ring is su�ciently
narrow, it will only support a single mode in radial direction. To study such a system
in more detail, we model a ring as depicted in Fig. 7.11(a). In contrast to the previous
structure, we now work with a two-port device. Our waveguide is assumed to be
w = 400 nm wide and the outer radius is taken to be r = 4µm. Concerning the
material, we use a refractive index of n = 3 and the whole system will be considered
in TE polarization.

Since we are dealing with a two-port device, it makes no sense to look at the spectrum
of the transmission through plane B. Eventually, all radiation will �nd its way out of
the ring and, neglecting the very small losses, the transmittance will be 100% for all
frequencies. Instead, we will concentrate on the dispersive properties of the system.
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Figure 7.11: (a) Mesh used to model a ring resonator with gap width d = 50 nm.
(b) Close-up of the gap.

Coupling Efficiency

One of the important characteristics of a resonator coupled to a waveguide is the power
coupling coe�cient K . It describes, what percentage of the energy will be transfered
from the waveguide into the ring or vice versa. Intuitively, it is clear, that this coupling
e�ciency is strongly in�uenced by the distance between the ring and the waveguide.
Furthermore, it depends on the radius and it is a function of the wavelength. To
determine K numerically, we measure the �ux across surface C (cf. Fig. 7.5(b)) and
normalize it to the incoming �ux measured at plane A. For this calculation, we need
to take care that the simulation is terminated before the pulse has �nished its �rst
round-trip and returns to C for a second time. Therefore, su�ciently narrow pulses
must be used for this study.
The power coupling coe�cient K as a function of wavelength is plotted in Fig. 7.12.

As expected, the coupling e�ciency strongly increases if we reduce the distance between
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Figure 7.12: Coupling e�ciencies of ring resonators with varying distance d to
the waveguide.

ring and waveguide. As the gap between waveguide and ring gets smaller, the structure
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7.3 Microcavity Disk and Ring Resonators

becomes increasingly more di�cult to resolve numerically. Here, the DG method is at
its most impressive, since the adaptive mesh allows to locally re�ne the geometry (see
Fig. 7.11(b)). All calculations were done with several re�nements and expansion orders
to ensure numerical convergence. The mesh shown in Fig. 7.11, in combination with
a 4th order discretization was found su�cient to achieve results converged to at least
three decimal places.

Group Delay

As discussed above, the all-pass setup does not allow for outcoupling of certain frequen-
cies. However, the phase response of the system still is strongly frequency dependent,
as the resonant parts of the spectrum will be delayed considerably. This introduces a
so-called group delay, which allows us to use such devices for dispersion compensation
[72, 73]. The group delay is also interesting with respect to all-optical bu�ering and
delay lines [6].

Formally, the group delay is de�ned as

τ(ω) = −∂Φ(ω)
∂ω

, (7.4)

where Φ(ω) represents the phase di�erence between the left and the right port. For a
lossless ring and in the limit K � 1, we can express this phase di�erence analytically
as [73]

Φ(ω) = tan−1

 K (ω) sin(θ(ω))
2
√

1−K (ω)−
(
2−K (ω)

)
cos(θ(ω))

 (7.5)

with the round-trip phase shift

θ(ω) = neff(ω)ω 2πr . (7.6)

Here, neff is the e�ective index of the waveguide, while r denotes the outer radius of
the ring.

Thus, we have two options for calculating the group delay. First, we can numerically
record the phase delay between the two ends of the waveguide. From a numerical
di�erentiation according to Eq. (7.4), we can directly obtain the group delay. As a
second option, we can exploit expression (7.5) to analytically calculate the group delay
for a given coupling strength K . While the coupling must still be obtained numerically,
the second method eliminates all in�uence of numerical dispersion and arti�cial surface
roughness. In Fig. 7.13, we present the results obtained via both approaches. We �nd
that for the DG results presented in Fig. 7.13(a), both approaches agree very well. The
minor deviations can be attributed to the approximations used in deriving Eq. (7.5).

For comparison, we present results from the analysis with a commercially available
FDTD package [74]. The data for two di�erent grid sizes, ∆ = 50 nm and ∆ = 25 nm,
is shown in Fig. 7.13(b). Interestingly, we already �nd a deviation between the semi-
analytic solutions of DG and FDTD. This discrepancy can be traced back to a di�erence
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Figure 7.13: Group delay for a ring of radius r = 4µm and with a gap of
d = 50nm. (a) Contains the results for a calculation with the DG method, while (b)
displays data obtained with FDTD. In both cases, the semianalytic result, calculated
via Eq. (7.5), is represented by the solid line. The dashed lines signify results
obtained by numerical di�erentiation of the recorded phase delay.

in the coupling strengthK . It is readily explained by considering the gap width between
ring and waveguide. Here, we only have a distance of 50 nm, which corresponds to
either one or two cells in the FDTD simulation. The DG calculations on the other
hand employ an adaptive mesh, which properly resolves the gap, even for distances
below 20 nm (see Fig. 7.11(b)). Fortunately, the coupling only in�uences the height of
the semi-analytic peaks. The position is solely de�ned by the geometrical parameters
of the ring.
To account for the di�erence between semi-analytic and numerical results, we have to

consider two e�ects. The �rst contribution again comes from an insu�cient resolution
of the geometry. Due to the �nite size of the discretization cells, we have an uncertainty
in the precise value of the radius for the discretized ring. Indeed, by varying the radius
in Eq. (7.6) of the order of the lattice spacing, we manage to superimpose the semi-
analytic with the numeric solution. However, there is a second contribution, which
stems from the anisotropy of the phase velocity, as discussed in Sec. 4.2.2. There, we
have demonstrated that the phase velocity varies for di�erent propagation directions.
For a second-order FDTD calculation, as employed here, the propagation is slower
along the Cartesian axes than along the diagonals. As a consequence, the wave in the
waveguide (parallel to the axes) is delayed when compared to the wave propagating in
the ring (average over all directions). This leads to an e�ective round-trip phase-shift
and therefore slightly changes the resonance frequency.
In conclusion, we have demonstrated that the DG method is well suited for the sim-

ulation of dielectric resonator structures. There are two distinctive advantages over the
traditional FDTD method, which help to achieve accurate and well-converged results.
The �rst relevant point are the adaptive meshes, which allow to precisely model arbi-
trary geometries. A second advantage is the higher-order nature of the method, which
suppresses the e�ects of numerical dispersion. In combination, these feature allow to
investigate large-scale dielectric structures with reasonable computational e�ort.
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8 Chapter 8

Metallic Nanostructures

As we have seen in the previous chapter, the DG method fares quite well on calculations
of dielectric resonators. As a next step, we proceed to metallic structures, which
hold great potential for future applications (see Ch. 1). Unfortunately, as we will
demonstrate, they also pose a signi�cant challenge for some numerical methods.

In this chapter, we will discuss the numerical treatment of metallic structures in
the time-domain. The fundamentals of how to incorporate dispersive media into a
time-domain formulation were already covered in Ch. 3. Here, we will consider a few
examples of realistic structures and apply our methods to study their optical properties.

We start this chapter with a brief theoretical introduction to plasmons. Next, we
study the scattering properties of a metallic sphere, for which exact analytic results are
available. After comparing the FDTD and the DG method, we proceed to an inves-
tigation of the transmission through sub-wavelength metallic slit-apertures. Finally,
we consider two types of individual metallic nanoparticles, namely metallic rods and
V-shaped structures. There, we are particularly interested in the �eld enhancements
in front of the tip of such an object.

8.1 Plasmons and Surface Plasmon Polaritons

The relevant property of metals with respect to their optical response is the large
free electron density. Very generally speaking, one can excite coherent oscillations
in those free electrons, leading to charge density waves. These excitations are called
plasmons and they can be launched in multiple ways. To us, only the excitation via
electromagnetic radiation is relevant.

8.1.1 SPP Dispersion Relation

A speci�c kind of plasmons are the so-called surface plasmon polaritons (SPPs). They
are hybrid oscillations of the electromagnetic �eld and the surface charge density at an
interface between a dielectric and a metallic halfspace. The general setup is sketched
in Fig. 8.1. From Eq. (2.17) we know, that the solutions of each halfspace are plane-
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8 Metallic Nanostructures

(a) (b)

Figure 8.1: (a) Sketch of a plane wave impinging on a �at metallic surface. (b)
Schematic picture of the charge distribution and the corresponding electric �elds at
a metallic surface after excitation.

waves, which need to be matched according to Eqs. (2.12). If we further require the
waves to be localized at the interface, we can make the ansatz

~Ei(~r , t) = ~E0e−κi |y|e i(kx−ωt), (8.1a)

~Hi(~r , t) = ~H0e−κi |y|e i(kx−ωt), (8.1b)

where the index i = m, d denotes the metallic or dielectric halfspace, respectively.
Here, we have selected the propagation direction along the x -axis. Insertion of Eqs. (8.1)
into Maxwell's equations then yields the dispersion relations

k(ω) =
ω

c

√
εd (ω)εm(ω)
εd (ω) + εm(ω)

and

κi(ω) =

√
k2(ω)− εi(ω)

ω2

c2
=
ω

c

√
−ε2i (ω)

εd (ω) + εm(ω)
.

Since we require the solution to be localized at y = 0 but propagating along the x -axis,
we �nd the conditions

Im [κi ] = 0 and Im
[
k
]

= 0,

which can be reformulated as

εd (ω)εm(ω) < 0 and εd (ω) + εm(ω) < 0.

Therefore, the two permittivities must have opposite sign and the modulus of the
negative ε must be larger than the modulus of the positive one. As can be seen from
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Figure 8.2: The Skin depth of gold and silver as a function of the wavelength.
For both cases, we assumed a Drude model with parameters taken from Tab. 3.1.

the dispersion relation of gold and silver (see Fig. 3.2 in Sec. 3.1.2), these metals in
combination with a standard dielectric ful�ll above conditions in the red and near
infrared spectrum. For silver, the conditions are even ful�lled for the entire visible
range.
Since SPPs are localized at the metal-dielectric interface, we can ask for the penetra-

tion depth, i.e., the length scale over which the electric �eld decays inside the metal.

Said length-scale is called Skin depth and it is given by l = Re
[

1
κm

]
. Assuming a

vacuum-metal interface and describing the metal via the Drude model allows to explic-
itly calculate l . In Fig. 8.2, we plotted the Skin depth as a function of the wavelength.
From this plot, we recognize that l is almost constant in the visible and near-infrared
spectrum. Furthermore, its exact value seems to be very similar for both materials and
is roughly given by l ≈ 20 nm. Thus, for devices of the lengthscale of the Skin depth,
the electromagnetic �eld fully penetrates the structure.

8.2 Metallic Spheres

Before we can continue to study complex metallic nanostructures, we need to ensure
that our numerical methods are actually capable of dealing with such objects. Similarly
to the dielectric case, we employ a test system where the solution is known analytically.
Here, it will be a metallic sphere of radius r = 50 nm. The material is assumed to be
silver, which is implemented via a Drude model as described in Sec. 3.1.2.
Deviating from the dielectric case, we will use the scattering cross section Cscat of

the metallic sphere for comparison. Similarly to the resonance frequencies, a reference
solution C ref

scat can be obtained analytically via Mie's theory [67�69].

Calculations with FDTD

The setup for a calculation of the scattering cross section consists of a number of
di�erent regions as sketched in Fig. 8.3. In the center, we place a metallic sphere.
Around this scatterer, we position a closed contour across which the electromagnetic
�ux is recorded. From the surface integral over the �ux, we can later extract the
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Figure 8.3: Illustration of the scattering setup for the FDTD calculations.

absorption cross section Cabs. Outside of this contour, we locate the TF/SF interface
(see Sec. 4.3.2), which is used to inject radiation. Even further out, in the scattered
�eld region, we place a second integration contour. The integrated �ux through this
surface results in the desired scattering cross section Cscat. To save computational
time, this contour is placed at a distance of only 25 nm from the surface of the sphere.
A far-�eld projection [28] is then employed to ensure an accurate calculation of Cscat.
On the outside, we terminate the computational domain via PMLs. For the FDTD
simulations, the whole system is discretized by an equidistant cubic Yee grid with
spacing ∆ := ∆x = ∆y = ∆z . The scatterer is illuminated by a broadband pulse with
a carrier wavelength of λ0 = 200 nm and the simulations run for T ≈ 1.67 ps. To get
an impression on the required spatial discretization, we run calculations for a number
of di�erent cell sizes, ranging from ∆ = 1.5 nm down to ∆ = 0.667 nm. The resulting
cross sections are plotted in Fig. 8.4. It is immediatly evident that the agreement
between the FDTD results and the analytical reference solution is very poor. Instead
of the three pronounced resonances expected from Mie's theory, we �nd a multitude
of spurious peaks and oscillations. To quantify the deviations, we introduce a measure
for the relative error as a function of wavelength as

E(λ) =

∣∣∣Cscat(λ)− C ref
scat(λ)

∣∣∣
max
λ

(
C ref

scat(λ)
) . (8.2)

In Fig. 8.4(c), this error is plotted as a function of the wavelength. In the long-
wavelength limit we do observe convergence, albeit reduced to �rst order due to the
material interface (cf. Sec. 4.3.1). Closer to the resonances however, this convergence
behavior disappears and we do not �nd a clear reduction of the error upon improving
the discretization.
This e�ect can be understood by remembering the staircase approximation associ-
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Figure 8.4: (a) Scattering cross section of a silver nanosphere with radius r = 50
nm. (b) A close-up of the range between 200 nm and 300 nm. (c) A plot of the
relative error as a function of the wavelength.
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Figure 8.5: Illustration of a discretized sphere for di�erent re�nements: (a) 8
cells per radius, (b) 16 cells per radius, and (c) 32 cells per radius.

ated with the orthogonal mesh. Thus, the discretized sphere's surface actually consists
of tiny metallic cubes, as illustrated in Fig. 8.5. Each of the small cubes has sharp cor-
ners, which theoretically lead to a singularity of the electric �eld at the tip [20]. Since
the convergence analysis of the FDTD is based on the assumption of smooth �elds, it
breaks down in the vicinity of the singularities. Re�ning the grid does not necessar-
ily improve the situation. On the contrary, it only introduces more (albeit narrower)
singularities. We can con�rm this explanation by looking at the �elds obtained via an
FDTD calculation. In Fig. 8.6 we plot the electric �eld component perpendicular to a
cut plane through the center of the sphere. The plane is chosen such that the recorded
electric �eld component is parallel to the polarization of the exciting wave. In the left
column of Fig. 8.6, the analytical �eld obtained via Mie's theory is shown for three
di�erent wavelength. Next to it, in the right column, we present the corresponding
�eld obtained from a FDTD calculation. The strong spurious peaks at the surface of
the sphere are clearly visible. As a consequence, we have to conclude that the FDTD
method is not well suited to calculate metallic nanostructures, if the geometry leads
to an unphysical staircasing.

Calculations with the DG Method

To be able to compare the FDTD results with DG calculations, we generate a number
of di�erent meshes for a scattering setup similar to the one shown in Fig. 8.3. Since the
surface of the sphere is expected to play a crucial role in the convergence, we employ
meshes which are locally re�ned at the interface between sphere and vacuum. A cut
through di�erent discretizations is depicted in Fig. 8.7. In total we run nine di�erent
calculations, where we start from three basic meshes with edge lengths of h0 = 20 nm,
h0 = 15 nm and h0 = 10 nm inside the sphere. Each of these three meshes is re�ned at
the surface of a sphere by a factor α = 1, 2, 3. The order of the expansion is chosen to
be N = 3. The rest of the setup is very similar to the one of the FDTD calculations,
with the di�erence that we do not require speci�c surfaces for the �ux integration.
Instead, we reuse the inner and outer side of the interface between the total �eld and
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(a) (b)

(c) (d)

(e) (f)

Figure 8.6: Electrical �eld component perpendicular to the cutplane. The plots
on the left represent the analytical results, while the plots on the right contain the
corresponding FDTD data. The analysis was conducted for three di�erent wave-
lengths: (a),(b) λ = 346 nm, (c),(d) λ = 253 nm and (e),(f) λ = 223 nm.
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(a) (b) (c)

Figure 8.7: Meshes for calculating the scattering cross section of a metallic
nanosphere. Depicted is the coarsest mesh with h0 = 25 nm for three di�erent
re�nements: (a) α = 1, (b) α = 2, (c) α = 3. Di�erent colors represent the
di�erent regions: Scatterer (yellow), total �eld region (blue), scattered �eld region
(green), PMLs (red).

the scattered �eld region.
The results of our calculations can be found in Fig. 8.8(a). At �rst sight, all cal-

culations seem to reproduce the analytic result rather well. In particular, all curves
are smooth and no spurious peaks are introduced. However, if we take a closer look
at the resonance at λ = 223 nm (Fig. 8.8(b)), we �nd that all calculations struggle to
reproduce the peak accurately. Still, we clearly see how a re�nement of the sphere's
surface brings our results closer to the analytical solution. The relative error is plotted
in Fig. 8.8(c). As expected, the error has a distinct peak at λ = 223 nm, which corre-
sponds to the very narrow resonance discussed above. This feature aside, we observe
reasonable convergence and the average error is below 1%. The e�ect that the error
does not continue to decrease with better resolution can be attributed to the PMLs.
We have demonstrated in Sec. 5.5.3, that a PML of only one cell for a calculation with
N = 3 leads to re�ections of the order 5×10−3, which is roughly the number we observe
here. Clearly, the DG method does not live up to its full potential in this example. It
seems that the approximation of the spherical surface, despite the local re�nement, is
still not su�cient to yield the optimal convergence behavior for the resonance around
λ = 223 nm. In order to improve this situation, one has to implement curvilinear
elements. Furthermore, one could reduce the overall error by adding more cells to the
PMLs or by increasing the order. Nonetheless, the DG method fares very well when
compared to the FDTD calculations. The fact that we observe no spurious peaks or
oscillations is very reassuring and allows us to employ the method for further studies
in the following sections.

8.3 Transmission through Metallic Nano-Apertures

For our �rst calculations of an experimentally relevant system, we consider a thin
metallic �lm with holes of subwavelength size in it. This system has attracted a lot of
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Figure 8.8: Results of the DG calculations for a metallic nanosphere with radius
r = 50 nm. (a) Scattering cross section over a broad spectral range. (b) A close-up
of the region between 200 nm and 300 nm. (c) A plot of the relative error as a
function of the wavelength. The colors belong to di�erent edge lengths h0, while the
linestyles indicate the re�nement. The black crosses denote the analytical reference
solution.
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Figure 8.9: Schematic setup of a slit aperture in a metallic �lm. The aperture is
�anked by a �nite number of grooves and the dashed line indicates a contour used
to calculate the transmittance.

attention in the past years, because it may exhibit extraordinary optical transmission
[12]. From the start, it was suspected that the excitation and propagation of SPPs
must play a major role in the explanation of the e�ect. This assumption is supported
by a number of theoretical studies (e.g. [75�77]). Unfortunately, most theoretical work
on extraordinary optical transmission is still based on approximations that describe
the metal as a perfect electric conductor (PEC) [75, 76]. Although this simpli�es
the calculations and may provide a qualitative picture of the physical processes, it is
not suitable for designing and optimizing experiments. As an application of the DG
approach we will, in the following, study the in�uence of a more accurate description
of the material on the transmittance properties of such apertures. A typical structure
is sketched in Fig. 8.9 and consists of an in�nite metallic screen of thickness w with
a nano-structured surface. We assume a slit of width a going through the metal and
next to it N grooves of width a and depth h that are spaced a distance d apart from
each other. The many parameters make it obvious, that a fast and reliable numerical
method is required to thoroughly study the properties of such systems. Although these
structures can be grid-aligned and, thus be treated with FDTD, the DG method still
exhibits a distinct advantage: The unstructured meshes allow an accurate resolution of
the small nano-structures without wasting grid points in the bulk regions. Speci�cally,
we employ a 4th-order discretization in all forthcoming calculations. Before getting
to the full structure we �rst analyze the simple slit aperture without grooves so as
to obtain a reference. We assume a metallic �lm of thickness w = 350nm with a
single slit of width a and irradiate it with a plane wave, where the magnetic �eld
is parallel to the slit. The pulse shape is taken to be a broadband Gaussian with a
carrier wavelength of λ0 = 500nm that covers the relevant spectrum from 350nm to
1000nm. Behind the aperture, we integrate the �ux over the entire half-space and
normalize it to the width of the aperture. First, we conduct a series of calculations
with di�erent slit width a for both, a PEC structure as well as for a more realistic
Drude model with silver parameters ωpl = 1.37 × 1016s−1 and ωcol = 8.5 × 1013s−1

[78]. We display the results in Fig. 8.10. Already for the simple slit-aperture, the
di�erences between PEC and a Drude metal are quite signi�cant. For the realistic
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Figure 8.10: Normalized transmittance spectra for simple apertures with di�er-
ent slit widths a. In panel (a) the spectra for systems with perfectly conducting
metal are shown, while panel (b) contains the results for metallic systems that are
described by a Drude model (see text for details).

metal, the transmission is reduced, which is consistent with the fact that the silver
exhibits absorption through an imaginary part in the dielectric function. Further, the
position of the resonance at higher wavelength is strongly blue-shifted for the Drude
case. Finally, for both material models the resonances shift with varying slit width a,
but they move in opposite directions. For the PEC structure, the resonances shift to
longer wavelengths as a increases, while they move towards shorter wavelengths when
the Drude model is used to describe the metal.

We now proceed to the full structures with added grooves, and again start the
analysis by comparing the PEC and the Drude model. The geometrical parameters
are �xed to d = 500nm, h = 100nm, w = 350nm, and a = 40nm, identical to
those reported in Ref. [76]. As discussed above, a simple slit shows two pronounced
resonances, while adding the corrugation gives rise to a third peak with signi�cantly
increased transmittance. Our data for the PEC structure is in perfect agreement
with results obtained via the modal expansion technique (cf. Fig. 2(a) in [76]). By
comparing the data in Fig. 8.11(a) and 8.11(b), we again observe the strong in�uence
of the material model on the spectra. In addition to the resonance shifts observed
before, for the PEC case, the central resonance quickly saturates for N ≈ 5 grooves.
When using the Drude model, around N = 15 grooves are required to observe a similar
enhancement. In a next step, we want to study the in�uence of the groove depth h
and the spacing d between the grooves on the systems' transmittance properties. In
accordance with the experimental setup in Ref. [76], we �x the number of grooves to
N = 5 and keep all other parameters identical to those of the previous calculations
expect for the height h, which is now scanned from h = 20nm to h = 80nm. All
calculations are carried out with the more realistic Drude model. From the results
depicted in Fig. 8.12(a), we deduce that changing the height results in a shift of the
central resonance. The highest transmittance is observed, when this central resonance
coincides with a peak of the simple aperture at 610nm (see Fig. 8.10(b)). The results
for scanning the distance d between the grooves display a similar behavior as shown
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Figure 8.11: Normalized transmittance spectra for slit apertures with added
grooves for di�erent numbers of grooves. The geometrical parameters are d =
500nm, h = 100nm, w = 350nm, and a = 40nm. Panel (a) depicts the spectra for
systems with perfectly conducting metal, while in panel (b) the metal is described
by a more realistic Drude model.
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Figure 8.12: Normalized transmittance spectra for di�erent parameters of the
corrugations. In (a), we shows the variation with the groove depth h, while (b)
displays the results of changing the distance d between the grooves.

in Fig. 8.12(b). Here, we have �xed the depth to h = 40nm and changing d again
leads to shifts of the central resonance frequency. As before, one observes that the
maximum transmittance is reached when the resonance coincides with the resonance
of the simple aperture.

8.4 Metallic Rods and V-Shaped Particles

Finally, we proceed to the analysis of three-dimensional metallic nanoparticles. Here,
we focus on two particular geometries, both of which have been proposed in the context
of local �eld enhancement. As discussed in Sec. 8.2, one has to be very careful when
studying �elds in the direct vicinity of metallic surfaces, especially if the surfaces are
curved. In order to avoid problems from staircasing, we pursue all of the following
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8.4 Metallic Rods and V-Shaped Particles

Figure 8.13: Sketch of the (a) nanorod and (b) V-structure under consideration.
Panel (c) depicts a sideview on the general setup with a plane wave impinging
from the top. The metallic structures are assumed to rest on a glass substrate. In
(d) and (e), we show the meshes used to model the nanorod and the V-structure,
respectively. The red-shaded triangles in (d) and (e) represent the symmetry plane
exploited to accelerate the numerical computation.

calculations with the DG method.

8.4.1 The Nanobar

As a �rst system, we consider a silver nanobar as sketched in Fig. 8.13(a). This par-
ticular structure has the advantage that it has only few free geometrical parameters
and can be easily fabricated [79]. To keep our calculations realistic, we assume that
the bar is situated on a glass substrate. Furthermore, we chamfered the corners of
the structure in order to avoid sharp metallic tips. This is in accordance with experi-
mental realizations, where the corners of the rods always appear rounded (cf. electron
micrographs in Ref. [79]).

Since we will only excite the structure under normal incidence and with the electric
�eld polarized along the rod, we can exploit a mirror symmetry in order to accelerate
the numerical calculations. The corresponding mirror plane is indicated in Fig. 8.13(d)
and is implemented by enforcing a PMC boundary condition. The excitation itself
consists of a short Gaussian pulse of approximately 10 fs duration. The corresponding
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Figure 8.14: Extinction cross section of nanobars of di�erent lengths l . Each
fundamental resonance is annotated with its corresponding Q factor. The small
peaks on the left can be attributed to higher-order modes of the structures.

spectrum ranges from 300 nm to 1500 nm. After the excitation, we record the �elds
at the interface between the total-�eld and the scattered-�eld region. Due to the
discontinuous nature of our method, we can record both, the �elds inside and outside
of the TF/SF contour. From the �eld data, after a Fourier transform, we obtain
the Poynting vectors in frequency domain. Integration over the entire surface then
yields the total �ux. Normalization with respect to the incoming spectrum results in
the absorption cross section and the scattering cross section for the �elds inside and
outside of the contour, respectively. The sum of the two cross sections �nally yields the
extinction cross section Cext which we use for the characterization of our nanoparticles.

In a �rst set of calculations, we �x the height and width of the rod at h = w = 20 nm
and vary the length l between 100 nm and 200 nm. The chamfering of the corners was
achieved by replacing the endfaces of the bars with half-cylinders. From the results
depicted in Fig. 8.14, we �nd that the resonance shifts to shorter wavelength as we
decrease the length of the rod. This was to be expected and in a very crude approxi-
mation, we can interpret the nanorod as a small antenna. However, in contradiction to
classical antennas, the fundamental resonance wavelength is found to be much longer
than twice the rod length. In order to extract the properties of the individual reso-
nances, we �t a Lorentzian curve to each peak (cf. Sec. 7.1). The extracted resonance
wavelengths and Q factors are plotted in Fig. 8.15. The quality factors are found to
vary only weakly with the length and a saturation can be observed for very small
lengths. This is in good agreement with theoretical expectations for the quasi-static
limit [80].

With the knowledge of the resonance wavelengths, we now proceed to the second part
of the analysis. There, we excite the structure with monochromatic light at its funda-
mental resonance. During the illumination, we record the electric �eld at two points A
and B in front of the nanobar (see Fig. 8.13(a)). The recording sites are located at a
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Figure 8.15: (a) The resonance frequencies and (b) Q factors as a function of
the length of a nanobar. Width and height of the structure are kept constant at
w = h = 20nm.
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Figure 8.16: Maximal �eld enhancement observed a point A (circles) and point
B (crosses).

distance of 1 nm and 5 nm from the tip of the structure, respectively. By studying the
recorded signals, we �nd that the maximal �eld strength saturates after approximately
30 optical cycles. Thus, we store the maximal amplitudes after 40 cycles and plot them
as a function of the length l in Fig. 8.16. Interestingly, the �eld enhancement seems to
increase almost linearly with the length of the bar. However, we can not increase the
enhancement arbitrarily, since the resonance wavelength also increases with the length
of our structure. Thereby, we are restricted to �eld enhancements of approximately
100 if an excitation wavelength around 1500 nm is desired. Furthermore, we need to
keep in mind that the recording point A is only 1 nm away from the structure and the
enhancement decays exponentially with the distance. Still, a factor 50 in the �eld re-
sults in a factor 2500 for the intensity. For many applications such as surface enhanced
Raman spectroscopy (SERS), this can already lead to a signi�cant improvement of the
sensitivity.

8.4.2 Metallic V Structure

In comparison to the nanobar, we now consider a V-shaped structure as sketched in
Fig. 8.13(b). This shape was originally proposed by Mark Stockman and coworkers
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Figure 8.17: Extinction cross section of V-shaped metallic nanostructures for
di�erent armlengths.

[81] with the sole purpose of creating strong �eld enhancements at its tip. It should
be noted that the analysis of Stockman et al. was conducted in the quasi-static limit,
where all retardation e�ects are neglected. Furthermore, the authors of Refs. [81, 82]
employ chirped excitation in order maximize the �eld enhancement.

Here, we will study a structure with experimentally realistic dimensions. Therefore,
our structure is barely at the edge of the onset of the quasi-static regime [83] and we
can not expect quantitative agreement with the results of Ref. [81]. Furthermore, we
will refrain from using chirped pulses, to limit the number of free parameters.

Similarly to the nanobar studied previously, the width and height of the V-shape
are �xed at w = h = 20 nm. The apex angle is chosen as α = 30◦ and we assume the
structure to be located on a glass substrate. As before, the chamfering of the endfaces
and the tip is achieved by replacing them with half-cylinders of radius rrounding =
w/2. The excitation is performed identically to the one used for the nanobar, and the
polarization is chosen to be parallel to the V's symmetry axis. Therefore, we can again
exploit the mirror symmetry to reduce the computational e�ort by a factor of two.

In Fig. 8.17, we show the extinction cross sections for a number of V-shaped particles
of di�erent armlength l . By comparing the curves for the V-structure with those of
the nanobar (Fig. 8.14), we �nd a very similar scaling behavior. Both structures show
a diminishing extinction cross section for shorter lengths. As expected, the resonance
wavelength also reduces with shrinking size. The only obvious di�erence in the spectra
of particles with identical lengths consists in a slightly shorter resonance wavelength
and in a lower Q factor for the V-structure (cf. Fig. 8.15 and Fig. 8.18).

In a second step, we proceed to evaluate the �eld enhancement in front of the rounded
apex. The general procedure is identical to the case of the nanobars and the resulting
data for the two recording points A and B is plotted in Fig. 8.19. The �rst thing to
note is that the enhancement is signi�cantly lower for a V structure than for a nanobar.
Looking at the exact numbers, we �nd the enhancement of a nanobar to be between
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Figure 8.18: (a) The resonance frequencies and (b) Q factors as a function of
the length of a metallic V structure. Width and height of the structure are kept
constant at w = h = 20nm. The apex angles is α = 30◦.
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Figure 8.19: The �eld enhancement in front of (a) the nanobar and (b) the
V-structure. The di�erent symbols correspond to di�erent recording points (cf.
Fig. 8.13).

30% and 50% higher than that of the equivalent V-shape.
To visualize the spatial variation of the enhancement, we �nally depict the maximal

intensity in the vicinity of the V-structure in Fig. 8.20. The data depicted here was
calculated for a V-shape with an armlength of l = 150 nm. From this data, we �nd
similar enhancement at the tip and at the endfaces of the V. Furthermore, we observe
the exponential decay with distance from the surface (note the logarithmic colorscale).
At 10 nm above the structure (Fig. 8.20(b)). Finally, we would like to note that more
detailed studies of metallic nanorods and V-structures, conducted with our DGmethod,
can be found in the masters thesis of Kai Stannigel [83]. There, he also investigated
the in�uence of the various geometric parameters such as apex angle, width and height
of the structures. Furthermore, a thorough investigation of the excitation via chirped
pulses was conducted. For all the studied cases, no signi�cant enhancement over the
values reported here could be found.
inputModi�edRadiationDynamics/Modi�edRadiationDynamics.tex
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(a) (b)

Figure 8.20: Maps of the intensity enhancement in the vicinity of a V-shaped
metallic nanostructure (indicated by the white line). Panel (a) shows the enhance-
ment factor on a horizontal cut through the center of the V. In (b) we depict the
factor in a plane 10 nm above the structure.
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9 Chapter 9

Summary and Outlook

One of the key requirements for the design and optimization of nanophotonic devices is
the availability of accurate, �exible, and e�cient computational methods. In order to
keep up with the steady progress in fabrication technology, it is certainly not su�cient
to purely rely on Moore's law1. Instead, there is a pressing need for new and more
powerful numerical approaches.

Summary

The aim of the present thesis was to investigate di�erent ways to improve the time-
domain simulations of nanophotonic devices. After a short introduction and motivation
in chapter 1, we started with a brief recapitulation of Maxwell's equations and some
of their properties (chapter 2). From the basic constitutive equations, it became ob-
vious that a time-domain approach has the disadvantage that one can not directly
include dispersive materials. This constitutes a severe limitation, since one of the most
promising material classes in nanophotonics�metals�is strongly dispersive. To over-
come this obstacle, we used chapter 3 to introduce the method of auxiliary di�erential
equations (ADEs), which allows to treat dispersive behavior within a time-domain
framework. Besides dispersion, this technique also facilitates the implementation of
absorbing boundary conditions, thereby enabling us to model open systems.

With the theoretical framework set, in chapter 4 we discussed the workhorse of all
ab-initio methods for Maxwell's equations, namely the �nite-di�erence time-domain
(FDTD) method. Besides the fundamentals of this approach, we also studied a possi-
ble extension towards higher-order discretizations. However, in a set of numerical ex-
periments we demonstrated that this improvement only works for fully homogeneous
systems. In chapter 5, we then introduced a more sophisticated spatial discretiza-
tion, the discontinuous Galerkin (DG) scheme, which manages to overcome some of
FDTD's inherent limitations. In particular, we showed that�in contrast to the FDTD

1Moore's law describes the empirical observation that the number of transistors in a typical computer
processor doubles approximately every two years. It thereby indicates an exponential growth of
the available computing power over time.

143
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method�the DG scheme allows for higher-order approximations in the presence of
material interfaces. This feature essentially allows us to obtain much more accurate
results with less computational e�ort. For high-precision calculations, we have demon-
strated that results can be obtained several orders of magnitude faster with the DG
method when compared to FDTD.

In chapter 6, we deviated from the question of spatial discretization and turned to
the problem of time integration. In particular, we studied a linear matrix-exponential
integrator based on a Krylov-subspace approach. Besides the bare scheme, we also
provided essential extensions to make the scheme suitable for practical applications.
Finally, in a series of numerical experiments, we demonstrated the method's attractive
features of strong stability and high accuracy.

With all the di�erent numerical methods at hand, in chapters 7 and 8, we ap-
plied them to a number of real-world challenges. The �rst tests were conducted on
two-dimensional dielectric resonator structures. A direct comparison of an FDTD cal-
culation with DG results for an analytically solvable cylinder already hinted at the
superiority of the DG method. This observation was then con�rmed by studies of a
disk and a ring resonator structure. To preclude any bias from our side, we conducted
these comparisons using established results from the literature as well as calculations
with a commercially available FDTD package.

For the �nal set of applications, in chapter 7, we then proceeded to the analysis
of metallic nanostructures. Again, we started with an analytically solvable problem
to allow for a quantitative study of the numerical errors. In this case, we calculated
the scattering cross section of a small silver sphere. Here, the FDTD method fared
much worse than for the dielectric resonators. It essentially produced an unusable
spectrum, littered with spurious peaks and unphysical oscillations. The DG method
in contrast had no problems with these particular calculations and yielded accurate
results. The strange behavior of the FDTD method was explained as an artifact of the
insu�cient geometrical approximation. After this analytic comparison, we proceeded
to realistic experimental setups. In particular, we investigated the transmission through
a sub-wavelength aperture. Here, we demonstrated that for nanophotonic systems, the
proper description of the materials is essential. Concretely, we showed that describing
a metal as a perfect electric conductor can lead to qualitatively wrong results. In a
�nal study, we investigated the capability of small metallic nano rods and V-structures
to generate strong local �eld enhancements. Interestingly, we did not �nd particularly
strong enhancements at the tip of V-shaped structures. Quite the contrary, a simple
nanorod of similar extent can provide up to 40% stronger �elds.

Conclusions and Outlook

In conclusion, we have investigated both, the in�uence of the spatial discretization as
well as the e�ect of the time-integration on numerical simulations of photonic nanos-
tructures. Out of these two factors, the spatial discretization was identi�ed as the
dominating cause of numerical errors. Therefore, we proposed a discontinuous Galerkin
scheme as a �exible, accurate and fast alternative for the commonly applied FDTD
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method. In a series of realistic calculations, this approach has proven itself successful.
In view of its attractive properties, we expect the DG scheme to soon become a popular
tool in the repertoire of numerical methods for nanophotonic systems.
In addition to its already competitive performance, the DG method also holds great

promise for further improvements. Possibly the most relevant extension for nanopho-
tonic calculations is the implementation of curvilinear elements. This feature would
allow for an exact representation of rounded structures and should thereby further
increase the accuracy and performance of the method. A second point where we can
still expect signi�cant improvements is the time-integration. While we established that
the spatial discretization is responsible for most of the numerical errors, the perfor-
mance is still strongly limited by the time-integration. We expect that an advanced
combination of implicit and explicit methods could lead to a dramatic reduction of the
computational time. Last but not least, we would also like to see more sophisticated
material models implemented in the DG approach. This includes but is not limited to
classical nonlinearities, anisotropic media or active materials such as quantum dots.
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