1,077 research outputs found

    New Symmetric and Planar Designs of Reversible Full-Adders/Subtractors in Quantum-Dot Cellular Automata

    Full text link
    Quantum-dot Cellular Automata (QCA) is one of the emerging nanotechnologies, promising alternative to CMOS technology due to faster speed, smaller size, lower power consumption, higher scale integration and higher switching frequency. Also, power dissipation is the main limitation of all the nano electronics design techniques including the QCA. Researchers have proposed the various mechanisms to limit this problem. Among them, reversible computing is considered as the reliable solution to lower the power dissipation. On the other hand, adders are fundamental circuits for most digital systems. In this paper, Innovation is divided to three sections. In the first section, a method for converting irreversible functions to a reversible one is presented. This method has advantages such as: converting of irreversible functions to reversible one directly and as optimal. So, in this method, sub-optimal methods of using of conventional reversible blocks such as Toffoli and Fredkin are not used, having of minimum number of garbage outputs and so on. Then, Using the method, two new symmetric and planar designs of reversible full-adders are presented. In the second section, a new symmetric, planar and fault tolerant five-input majority gate is proposed. Based on the designed gate, a reversible full-adder are presented. Also, for this gate, a fault-tolerant analysis is proposed. And in the third section, three new 8-bit reversible full-adder/subtractors are designed based on full-adders/subtractors proposed in the second section. The results are indicative of the outperformance of the proposed designs in comparison to the best available ones in terms of area, complexity, delay, reversible/irreversible layout, and also in logic level in terms of garbage outputs, control inputs, number of majority and NOT gates

    New Symmetric and Planar Designs of Reversible Full-Adders/Subtractors in Quantum-Dot Cellular Automata

    Full text link
    Quantum-dot Cellular Automata (QCA) is one of the emerging nanotechnologies, promising alternative to CMOS technology due to faster speed, smaller size, lower power consumption, higher scale integration and higher switching frequency. Also, power dissipation is the main limitation of all the nano electronics design techniques including the QCA. Researchers have proposed the various mechanisms to limit this problem. Among them, reversible computing is considered as the reliable solution to lower the power dissipation. On the other hand, adders are fundamental circuits for most digital systems. In this paper, Innovation is divided to three sections. In the first section, a method for converting irreversible functions to a reversible one is presented. This method has advantages such as: converting of irreversible functions to reversible one directly and as optimal. So, in this method, sub-optimal methods of using of conventional reversible blocks such as Toffoli and Fredkin are not used, having of minimum number of garbage outputs and so on. Then, Using the method, two new symmetric and planar designs of reversible full-adders are presented. In the second section, a new symmetric, planar and fault tolerant five-input majority gate is proposed. Based on the designed gate, a reversible full-adder are presented. Also, for this gate, a fault-tolerant analysis is proposed. And in the third section, three new 8-bit reversible full-adder/subtractors are designed based on full-adders/subtractors proposed in the second section. The results are indicative of the outperformance of the proposed designs in comparison to the best available ones in terms of area, complexity, delay, reversible/irreversible layout, and also in logic level in terms of garbage outputs, control inputs, number of majority and NOT gates

    Avionics architecture studies for the entry research vehicle

    Get PDF
    This report is the culmination of a year-long investigation of the avionics architecture for NASA's Entry Research Vehicle (ERV). The Entry Research Vehicle is conceived to be an unmanned, autonomous spacecraft to be deployed from the Shuttle. It will perform various aerodynamic and propulsive maneuvers in orbit and land at Edwards AFB after a 5 to 10 hour mission. The design and analysis of the vehicle's avionics architecture are detailed here. The architecture consists of a central triply redundant ultra-reliable fault tolerant processor attached to three replicated and distributed MIL-STD-1553 buses for input and output. The reliability analysis is detailed here. The architecture was found to be sufficiently reliable for the ERV mission plan

    Quantum-dot Cellular Automata: Review Paper

    Get PDF
    Quantum-dot Cellular Automata (QCA) is one of the most important discoveries that will be the successful alternative for CMOS technology in the near future. An important feature of this technique, which has attracted the attention of many researchers, is that it is characterized by its low energy consumption, high speed and small size compared with CMOS.  Inverter and majority gate are the basic building blocks for QCA circuits where it can design the most logical circuit using these gates with help of QCA wire. Due to the lack of availability of review papers, this paper will be a destination for many people who are interested in the QCA field and to know how it works and why it had taken lots of attention recentl

    QCA-Based Majority Gate Design under Radius of Effect-Induced Faults

    Get PDF
    This paper presents reliable QCA cell structures for designing single clock-controlled majority gates with a tolerance to radius of effect-induced faults, for use as a basic building component for carry look-ahead adder. Realizable quantum computing is still well in the future due to the complexity of the quantum mechanics that govern them. In this regard, QCA-based system design is a challenging task since each cell\u27\u27s state must interact with all the cells that are in its energy-effective range in its clocking zone, referred to as its radius of effect. This paper proposes a design approach for majority gates to overcome the constraints imposed by the radius of effect of each cell with respect to clock controls. Radius of effect induces faults that lead to constraints on the clocking scheme of majority gates. We show majority gate structures that operate with multiple radius of effect-induced faults under a single clock control. The proposed design approach to a single clock controlled majority gate ultimately facilitate more efficient and flexible clocking schemes for complex QCA designs

    A Signal Distribution Network for Sequential Quantum-dot Cellular Automata Systems

    Get PDF
    The authors describe a signal distribution network for sequential systems constructed using the Quantum-dot Cellular Automata (QCA) computing paradigm. This network promises to enable the construction of arbitrarily complex QCA sequential systems in which all wire crossings are performed using nearest neighbor interactions, which will improve the thermal behavior of QCA systems as well as their resistance to stray charge and fabrication imperfections. The new sequential signal distribution network is demonstrated by the complete design and simulation of a two-bit counter, a three-bit counter, and a pattern detection circuit

    Timing speculation and adaptive reliable overclocking techniques for aggressive computer systems

    Get PDF
    Computers have changed our lives beyond our own imagination in the past several decades. The continued and progressive advancements in VLSI technology and numerous micro-architectural innovations have played a key role in the design of spectacular low-cost high performance computing systems that have become omnipresent in today\u27s technology driven world. Performance and dependability have become key concerns as these ubiquitous computing machines continue to drive our everyday life. Every application has unique demands, as they run in diverse operating environments. Dependable, aggressive and adaptive systems improve efficiency in terms of speed, reliability and energy consumption. Traditional computing systems run at a fixed clock frequency, which is determined by taking into account the worst-case timing paths, operating conditions, and process variations. Timing speculation based reliable overclocking advocates going beyond worst-case limits to achieve best performance while not avoiding, but detecting and correcting a modest number of timing errors. The success of this design methodology relies on the fact that timing critical paths are rarely exercised in a design, and typical execution happens much faster than the timing requirements dictated by worst-case design methodology. Better-than-worst-case design methodology is advocated by several recent research pursuits, which exploit dependability techniques to enhance computer system performance. In this dissertation, we address different aspects of timing speculation based adaptive reliable overclocking schemes, and evaluate their role in the design of low-cost, high performance, energy efficient and dependable systems. We visualize various control knobs in the design that can be favorably controlled to ensure different design targets. As part of this research, we extend the SPRIT3E, or Superscalar PeRformance Improvement Through Tolerating Timing Errors, framework, and characterize the extent of application dependent performance acceleration achievable in superscalar processors by scrutinizing the various parameters that impact the operation beyond worst-case limits. We study the limitations imposed by short-path constraints on our technique, and present ways to exploit them to maximize performance gains. We analyze the sensitivity of our technique\u27s adaptiveness by exploring the necessary hardware requirements for dynamic overclocking schemes. Experimental analysis based on SPEC2000 benchmarks running on a SimpleScalar Alpha processor simulator, augmented with error rate data obtained from hardware simulations of a superscalar processor, are presented. Even though reliable overclocking guarantees functional correctness, it leads to higher power consumption. As a consequence, reliable overclocking without considering on-chip temperatures will bring down the lifetime reliability of the chip. In this thesis, we analyze how reliable overclocking impacts the on-chip temperature of a microprocessor and evaluate the effects of overheating, due to such reliable dynamic frequency tuning mechanisms, on the lifetime reliability of these systems. We then evaluate the effect of performing thermal throttling, a technique that clamps the on-chip temperature below a predefined value, on system performance and reliability. Our study shows that a reliably overclocked system with dynamic thermal management achieves 25% performance improvement, while lasting for 14 years when being operated within 353K. Over the past five decades, technology scaling, as predicted by Moore\u27s law, has been the bedrock of semiconductor technology evolution. The continued downscaling of CMOS technology to deep sub-micron gate lengths has been the primary reason for its dominance in today\u27s omnipresent silicon microchips. Even as the transition to the next technology node is indispensable, the initial cost and time associated in doing so presents a non-level playing field for the competitors in the semiconductor business. As part of this thesis, we evaluate the capability of speculative reliable overclocking mechanisms to maximize performance at a given technology level. We evaluate its competitiveness when compared to technology scaling, in terms of performance, power consumption, energy and energy delay product. We present a comprehensive comparison for integer and floating point SPEC2000 benchmarks running on a simulated Alpha processor at three different technology nodes in normal and enhanced modes. Our results suggest that adopting reliable overclocking strategies will help skip a technology node altogether, or be competitive in the market, while porting to the next technology node. Reliability has become a serious concern as systems embrace nanometer technologies. In this dissertation, we propose a novel fault tolerant aggressive system that combines soft error protection and timing error tolerance. We replicate both the pipeline registers and the pipeline stage combinational logic. The replicated logic receives its inputs from the primary pipeline registers while writing its output to the replicated pipeline registers. The organization of redundancy in the proposed Conjoined Pipeline system supports overclocking, provides concurrent error detection and recovery capability for soft errors, intermittent faults and timing errors, and flags permanent silicon defects. The fast recovery process requires no checkpointing and takes three cycles. Back annotated post-layout gate-level timing simulations, using 45nm technology, of a conjoined two-stage arithmetic pipeline and a conjoined five-stage DLX pipeline processor, with forwarding logic, show that our approach, even under a severe fault injection campaign, achieves near 100% fault coverage and an average performance improvement of about 20%, when dynamically overclocked
    • …
    corecore