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Abstract

This paper presents reliable QCA cell structures for designing single clock-controlled majority
gates with a tolerance to radius of effect-induced faults, for use as a basic building component for
carry look-ahead adder. Realizable quantum computing is still well in the future due to the com-
plexity of the quantum mechanics that govern them. In this regard, QCA-based system design is a
challenging task since each cell’s state must interact with all the cells that are in its energy-effective
range in its clocking zone, referred to as its radius of effect. This paper proposes a design approach
for majority gates to overcome the constraints imposed by the radius of effect of each cell with re-
spect to clock controls. Radius of effect induces faults that lead to constraints on the clocking scheme
of majority gates. We will show majority gate structures that will operate with multiple radius of
effect-induced faults under a single clock control. The proposed design approach to a single clock
controlled majority gate will ultimately facilitate more efficient and flexible clocking schemes for
complex QCA designs.

1: Introduction

QCA (Quantum-Dot Cellular Automata) is one of the six promising technologies for nano-scale
computing listed in the Industry Technology Roadmap for Semiconductors (ITRS) 2004 [1]. In the
QCA paradigm, a regular array of cells, each interacting with its neighboring cells, is employed
in a locally interconnected architecture [2–8]. The coupling between the cells is given by their
electrostatic interactions. Such arrays are in principle capable of encoding digital information. The
fundamental unit of QCA is the QCA cell created with four quantum dots positioned at the vertices
of a square. The cell is loaded with two extra electrons which tend to occupy the diagonals due to
electrostatic repulsion. Binary information is encoded in the two possible polarizations (i.e., +1 or -
1). The cell will switch from one polarization to the other when the electrons quantum-mechanically
tunnel from one set of dot positions to the other [9]. Implementing QCA cells with single molecules
is a new area with considerable promise. It is anticipated that molecular QCA architectures could
operate at densities 1012 devices/cm2 and 100 GHz domain [10, 11].

One of the major hurdles that needs to be overcome in quantum computing is defect- and fault-
tolerance. Quantum-dot cellular automata (QCA) are no different in this respect. QCA are com-
posed of a number of cells each of which contains four dots where electrons may lie. The small
structures are subject to manufacturing defects as well as other faults. A QCA cell may interact
with too many of its neighboring cells and cause erroneous operation of the most basic functions.
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Also, use of fine-grained complex clocking zones may result in more reliable operations, but it in-
duces excessive complexity of underlying clocking wire structure and additional time delay. In order
to address these issues, this paper proposes a design strategy involving design elements robust to
radius of effect-induced faults, here, the majority gate. The proposed fault-tolerant majority gate
can be placed in a single clocking zone; therefore, it will also be useful for designing QCA circuits
with less complex clocking structures.

In section 2, we will briefly discuss QCA cells and basic structures that are used to create complex
arrays for computation, the clocking scheme that is used to control large arrays of cells and the faults
that can occur due to an increase or a decrease within the radius of effect of each cell. Section 3
introduces structures that can tolerate various radius of effect-induced faults while under only a
single clock control to perform a majority gate operation. Simulation results for the structures will
be shown as well. The conclusion will reflect the impact that these modified majority gates are
predicted to have on the future of quantum-dot cellular automata and their introduction into the
world in the form of viable quantum computers.

2: Preliminaries and Review

A QCA-based implementation of a single carry-look-ahead full-adder is a target design in which
the proposed single clock-controlled majority-gate is employed as a basic component, which will
ultimately facilitate a multi-staged pipelined processor design. In order to construct the proposed
single carry-look-ahead full-adder under a single clock control (one set of four clock phases), the
proposed majority gates are to be integrated along with proper clocking, wire crossings and inverter
wires. In order to create a functional full adder, three inputs are needed: a, b, and Cin. A design of
the single carry-look-ahead full-adder is shown in Figure 1 as created using QCADesigner, a design,
layout and simulation tool for QCA [12,13]. As derived in [19] the formulae used in the creation of
the adder are as follows:

Cout = m(a, b, Cin) (1)

Sum = m(m(a, b, Cin), m(a, b, Cin), m(a, b, Cin)) (2)

Where m defines the three-input majority function as previously discussed. The adder uses three,
four-phase clocks; each phase consumes a zone with a width of three cells. The three cells of each
zone are adjacent and each zone runs vertically down the array, as would occur with the previously
discussed clocking scheme.

The clocking scheme used for this adder is the same as was discussed in the previous section.
Figure 1 differentiates between clocking zones by shading. Each clocking zone in this example has
a three cell width, under which run wires that produce the corresponding phase of that zone. The
speed of the wire transitions, and, therefore, the clock, is directly related to the longest path of cells
in any one zone. In the case of our adder, that longest path is 32 cells in the 5th, 6th and 7th zones.
These are the zones that contain the vertical inverter wires.

3: Radius of Effect-Induced Faults

The radius of effect of each cell can and will affect the operation of certain structures in a QCA
array. In this section we will analyze a simple majority gate using the QCADesigner [13] under a
single clock control and using different areas within the radius of effect. The radius of effect-induced
faults will become apparent through a few simple simulations.

The radius of effect of a cell is the radius at which it will interact with other cells. In the simulator,
specifications of the radius of effect is from the center of one cell to the center of another. So two
in-line cells will interact if

d = dN = w + s (3)
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Cin

Figure 1. A single carry-look-ahead full-
adder.

Figure 2. Area of effect distances which
require consideration.

where d is the radius of effect, w is the width (and height) of the (square) cell, and s is the distance
of separation of the cell. Now we will specify the distances that will be used in testing. We will test
the majority gate at different areas within the radius of effect. We will assume that the cells are
evenly spaced and of uniform width and height. The cells that are being used in these simulations
are 20 nm by 20 nm with 5 nm dots. The cells are spaced 5 nm apart.

Equation 3 is the distance for nearest neighbor which we will denote as dN . The radius of effect
for next to nearest neighbor will simply be

dNN = 2(dN ) = 2w + 2s (4)

Using the Pythagorean theorem, we can find some of the other important distances that need
to be considered in testing the area within the radius of effect. For the diagonal cell distances (see
Figure 2), which we will call first diagonal, second diagonal and third diagonal, respectively, we have
the three equations

d1 =
√

2((s + w)2) (5)

d2 =
√

(s + w)2 + (2s + 2w)2 (6)

d3 =
√

2((2s + 2w)2) (7)

We limit the area of effect distances to d3 due to the rapid decay of kink energy between cells as
their distance of separation increases. As stated in [12], it decreases inversely with the fifth power
of the distance of cell separation.

Now that we have the distances of note defined, we can analyze their impact on a majority gate.
We will use the coherence-vector simulation to test. The ith cell simulated in the coherence vector
simulation is a two-state cell and is defined by the Hamiltonian [12]

Hi =
∑
jεS

( − 1
2PjE

k
i,j −γi

−γi + 1
2PjE

k
i,j

)
. (8)
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Table 1. Radius of Effect Testing Results
Radius of Effect 5 Cell Gate 9 Cell Gate 13 Cell Gate

dN ≤ d < d1 Fault-free Fault-free Fault-free

d1 ≤ d < dNN Fault-free Fault-free A

dNN ≤ d < d2 Fault-free B M(A, B, C)

d2 ≤ d < d3 Fault-free B B

d = d3 Fault-free B B

The energy needed to tunnel between polarization states is γ. The jth cells indicate those cells that
are in the effective radius of the ith cell; S is the effective neighborhood of cell i. Ek

i,j is the kink
energy between the ith and jth cells and Pj is the polarity of the jth cell. The kink energy (the
cost of two cells having opposite polarities) Ek

i,j can be found by calculating from the electrostatic
interaction of all the charges. For each dot in i we compute its electrostatic interaction with each
dot in j by using the equation [12]

Ek
i,j =

1
4πε0εr

qiqj

|rirj | (9)

where ε0 is the relative permittivity of free space and εr is the relative permittivity of the system [12].
For clarity we will expand the equation for kink energy between two cells. The expanded form is

Ek
i,j =

1
4πε0εr

3∑
i=0

3∑
j=0

q1
i q2

j − q1
i q1

j

|ri − rj | (10)

for q1
i = −0.8e− 19 for even i and = 0.8e− 19 for odd i; q2

i = 0.8e− 19 for even i and = −0.8e− 19
for odd i. The constant 0.8e − 19 is one half of one electron volt (eV), a half charge. The term
|ri − rj | is simply the distance between dot i in cell 1 and dot j in cell 2.

The results of the testing can be seen in Table 1, where the five-cell majority gate is the basic
five-cell gate, and the nine-cell configuration is like that in Figure 2, with inputs from top, left and
bottom, and output to the right. The thirteen-cell majority gate is expanded in the same way. The
table gives the resulting outputs from the given configurations. A ”Fault-free” table entry indicates
that the gate functioned properly and the output was M(A, B, C). Erroneous outputs are indicated
by the differing output calculated by the simulator. The only usable erroneous output is for the
13-cell design with dNN ≤ d ≤ d2.

Looking at the table we can see how the radius of effect-induced fault disrupts the larger majority
gates. The distance that works in all three instances is the nearest neighbor (dN ). This is obvious
since the cells will only be interacting with at most four cells (the middle cell of the majority gate
is within dN of one cell above, below, to its left and to its right). For all distances the 5-cell
configuration works, since this is the ‘classic’ setup for a majority gate with the results as expected.

The 9-cell gate obviously has more potential for more complex interaction and thus more potential
for erroneous interaction. As can be seen in Table 1, there are only two distances that work. When
setting the distance to dNN or d2, the output for the gate is equal to the left input value. The
results are then erroneous. There is a rather serious problem here which we will now address.

Simple wire crossings require that there be at least next to nearest neighbor interaction. Without
a radius of effect greater or equal to dNN a wire crossing simply is not possible.

Now we can look back at Figure 1 to further illustrate the radius of effect problem. In the adder
we see that the majority gates needed for the computation are constructed as shown in Figure 3,
which we refer to as a left-to-right majority gate. The results of a coherence-vector simulation of
this configuration with a radius of effect of dNN can be seen in Figure 8 as erroneous. The resulting
output is as if the top input, input A were flipped, i.e., M(A, B, C). This type of majority gate is
used four times in the single carry-look-ahead adder. The adder works, however, due to its clocking
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Figure 3. Left to right
majority gate as used in
an adder constructed of
20nm x 2 0nm cells with
5nm dots, spaced 5nm
apart.

Figure 4. Modified major-
ity gate for d = d1 and
dNN .

Figure 5. Modified major-
ity gate for d1, d = dNN

and d2.

zones. However, we will not be able to have clocking zones that are on such a small scale in a
desirable design.

The radius of effect-induced faults have now been identified and characterized through simulation.
In the next section the new left-to-right majority gates that are tolerant to such radius of effect-
induced faults will be proposed.

4: Radius of Effect-Induced Fault-Tolerant Majority Gates

The projected width of a QCA cell for room temperature operation is somewhere in the 5 nm
realm. For cells of this size it is not likely that we will be able to have small enough clocking
zones (three-cell width in our adder, which will be approximately 75 nm to have working majority
gates. Also, in previously proposed adders the clocking zones are non-uniform in that they do
not follow the constraints of the proposed clocking scheme. They do not have uniform, parallel,
vertical clocking zones that are required by the use of wires running under the array. They are also
very inflexible in that, if clocking zones are offset by one or more cells, the array will not properly
function. These problems can be solved by creating a majority gate that will operate in a single
clocking zone regardless of the radius of effect of the cells.

Therefore, we now have motivation to construct a majority gate that will operate correctly under
a single clock control within multiple radius of effect distances. The construction is not complex,
in fact it merely involves adding (or subtracting) a number of cells to the gate in order to even out
the three inputs’ interactions with the device cell(s). First discussed will be the majority gate that
will be used to handle a radius of effect of up to dNN .

The modified majority gate can be seen in Figure 4, which is a left-to-right majority gate as is
wanted in an adder. From the simulation results in Figure 9, it can be seen that the output for a
radius of effect of dNN is correct, and also works for d1, both with a single clock. This tolerance is
facilitated by the addition of only two cells. However, this configuration does not operate correctly
with a radius of effect of d2.

For radius of effect of d2 we need to add more cells to the configuration. The modified majority
gate can be seen in Figure 5. Once again, the addition of one cell to the design creates a structure that
will operate correctly with radii of effect dNN and d2. The simulation results for this configuration
are exactly like those seen in Figure 9. Though this modified majority gate cannot handle radius of
effect distances of d3, majority gates that can accept greater distances can be further engineered.

Figure 6 shows a functional clocked majority gate with left inputs and right outputs. The figure
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shows that the basic five-cell majority gate is under a different clock cycle than the inputs and
outputs. This configuration requires three clocking zones to function properly with a radius of
effect of dNN .

Creating QCA structures that will operate at room temperature will require reducing the scale of
cells to the molecular level, giving cell sizes of around 2 nm [28]. Molecular cells are constructed by
connecting redox sites, which can hold a charge, by ligands that allow tunneling between the sites.
A simple example of such a molecule is shown in [29] (1,4-diallyl butane radical cation) and has
two allyl groups which are connected by a butyl bridge which facilitates the tunneling of electrons
and, therefore, the switching of the molecule between basis states. The size of this molecule is 7
Å in length (0.7 nm). Placing two of these molecules side by side creates a cell with a total of
four allyl groups. These four allyl groups act as the dots which contain charges. The two-molecule
cell is approximately 1 nm by 1 nm and has the two basic states (”0” and ”1”) that we need for a
typical QCA cell. Cells of this size also have erroneous output in simulation when configured into
a left-to-right majority gate.

Figure 6. A clocked left-input right-output
majority gate using 3 clocking zones.
Zones are denoted by shading.

Figure 7. Functioning left-to-right major-
ity gate for cells of size 1, 2, or 4nm.

Cells of width 1 nm, 2 nm and 4 nm were tested in left-to-right majority gates. The results for
these configurations were the same for all three-cell sizes and radii of effect d1 to d3. All tests resulted
in an output equal to the middle input cell. This indicates that the middle input cell overpowers the
other inputs at the device cell, switching the device cell to the middle input value at all times. This
is not unlike the errors that occur in configurations with larger cells. To overcome this erroneous
functioning we have constructed a majority gate that uses one less cell that functions correctly for
all three cell sizes and for radius of effect greater than or equal to dNN . The configuration is shown
in Figure 7.

For these simulations we used the coherence-vector simulation as with testing of larger cells. The
simulations show that this configuration works only for radius of effect greater than or equal to
dNN . This fact is obvious since the middle input will only be able to interact with the device cell
if it can interact with cells that are dNN away, due to the missing cell in the middle input wire.
Through simulation, we have found that this configuration will work for all radii of effect of concern,
and beyond.

More accurate simulations were done for molecular implementations of QCA. The coherence
vector simulation was used to simulate the previously discussed molecular construction using 1,4-
diallyl butane. It is stated in [16] that molecular implementations will have a kink energy (Ek)
greater than 500 meV. With this in mind a kink energy of Ek = 629.45 (relative permittivity of 0.3)
was chosen as an approximate value for the molecule in question. The value was calculated using
Equation 10. The simulations were performed at approximate room temperature (300 K). The cell
height and width was 1 nm with dot diameter and uniform cell spacing of 0.25 nm.
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The simulations show that, under one clock zone, the construction shown in Figure 3 is erroneous,
resulting in output equal to the middle input for radius of effect greater than dNN . When the
majority gate shown in Figure 7 is used under the same constraints, it functions for radii of effect
from dNN to d3 and beyond. The results of the simulation can be seen in Figure 11. This shows
that the radius of effect-induced fault-tolerant majority gate can operate at room temperature for
molecular implementations of QCA.

5: Conclusion

It has been shown that radius of effect faults occur in the simplest of structures in quantum-
dot cellular automata. Under one clock cycle majority gates will provide erroneous results and,
therefore, will limit the clocking scheme when placed in larger arrays.

To counter these faults we have made minor adjustments to the majority gate. It has been shown
that these changes, which are made according to the radius of effect of each individual cell, result
in functioning majority gates. It has also been shown that, under simulation, the radius of effect-
induced fault-tolerant majority gates will operate for molecular implementations of QCA, which
is important due to the fact that a molecular level cell will be needed to create arrays that will
function at room temperature. It is hoped that these modified majority gates will facilitate more
flexible large QCA arrays with respect to clocking.

Figure 8. Simulation results for majority
gate in figure 3.

Figure 9. Simulation results for the modi-
fied majority gates in figure 4 and figure 5.

Figure 10. Simulation results for majority
gate in figure 6 w ith three clocking zones.

Figure 11. Simulation results for molecu-
lar QCA fault-tolerant majority gate.
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