
Valparaiso University
ValpoScholar
Symposium on Undergraduate Research and
Creative Expression (SOURCE) Office of Sponsored and Undergraduate Research

Spring 5-2-2015

A Signal Distribution Network for Sequential
Quantum-dot Cellular Automata Systems
Hayden M. Hast
Valparaiso University, hayden.hast@valpo.edu

Douglas Tougaw
Valparaiso University, douglas.tougaw@valpo.edu

Sami Khorbotly
Valparaiso University, sami.khorbotly@valpo.edu

Follow this and additional works at: https://scholar.valpo.edu/cus

This Poster Presentation is brought to you for free and open access by the Office of Sponsored and Undergraduate Research at ValpoScholar. It has been
accepted for inclusion in Symposium on Undergraduate Research and Creative Expression (SOURCE) by an authorized administrator of ValpoScholar.
For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.

Recommended Citation
Hast, Hayden M.; Tougaw, Douglas; and Khorbotly, Sami, "A Signal Distribution Network for Sequential Quantum-dot Cellular
Automata Systems" (2015). Symposium on Undergraduate Research and Creative Expression (SOURCE). 406.
https://scholar.valpo.edu/cus/406

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Valparaiso University

https://core.ac.uk/display/144552095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.valpo.edu?utm_source=scholar.valpo.edu%2Fcus%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.valpo.edu/cus?utm_source=scholar.valpo.edu%2Fcus%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.valpo.edu/cus?utm_source=scholar.valpo.edu%2Fcus%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.valpo.edu/osur?utm_source=scholar.valpo.edu%2Fcus%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.valpo.edu/cus?utm_source=scholar.valpo.edu%2Fcus%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.valpo.edu/cus/406?utm_source=scholar.valpo.edu%2Fcus%2F406&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@valpo.edu

 1

1

Abstract—The authors describe a signal distribution network

for sequential systems constructed using the Quantum-dot

Cellular Automata (QCA) computing paradigm. This network

promises to enable the construction of arbitrarily complex QCA

sequential systems in which all wire crossings are performed

using nearest neighbor interactions, which will improve the

thermal behavior of QCA systems as well as their resistance to

stray charge and fabrication imperfections. The new sequential

signal distribution network is demonstrated by the complete

design and simulation of a two-bit counter, a three-bit counter,

and a pattern detection circuit.

Index Terms—Nanoelectronics, quantum-dot cellular automata

(QCA), quasi-adiabatic switching, wire crossing, sequential

systems.

I. INTRODUCTION

Quantum-dot Cellular Automata (QCA) is an emerging

nanoscale computing paradigm that offers many benefits over

traditional transistor-based computing paradigms, such as

reduced power consumption, increased speed, and reduced

surface area [1]-[6].

QCA systems are composed of cells, each of which includes

two electrons that are shared among four quantum dots that lie

at the corners of a square. Mutual Coulombic repulsion

between the two electrons causes them to occupy diagonally

opposite quantum dots. There are two bistable configurations

of the cell, one along the left-leaning diagonal axis (encoded

as a binary 0), and the other along the right-leaning diagonal

axis (encoded as a binary 1) [1]-[2]. Electrons contained

within adjacent cells repel each other, so that cells placed

along a line tend to align in the same state [3]. Figure 1

H. Hast is with the Electrical and Computer Engineering Department,

Valparaiso University, Valparaiso, IN 46383 USA (phone: 219-464-5000; fax:

219-464-5065; e-mail: Hayden.Hast@ valpo.edu).

S. Khorbotly is with the Electrical and Computer Engineering Department,

Valparaiso University, Valparaiso, IN 46383 USA (phone: 219-464-5183; fax:

219-464-5065; e-mail: Sami.Khorbotly@ valpo.edu).

D. Tougaw is with the Electrical and Computer Engineering Department,

Valparaiso University, Valparaiso, IN 46383 USA (phone: 219-464-5027; fax:

219-464-5065; e-mail: Doug.Tougaw@ valpo.edu).

Copyright © 2015 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be

obtained from the IEEE by sending a request to pubs-

permissions@ieee.org.

illustrates this geometry as well as the typical dimensions used

for the calculations in this paper.

Fig. 1. The QCA geometry used in this paper. Each cell is composed of four

quantum dots placed at the corners of a square, and the distance from

each dot to the center of the square is 20 nm. Tunneling is allowed

between each pair of adjacent quantum dots. Two electrons occupy

each cell, and the distance between the centers of the adjacent cells is

60 nm. [After reference 7]

These cells can be arranged into particular geometric

patterns to implement majority logic functions, which can in

turn be reduced to AND and OR gates. Inverters can also be

constructed by arranging the cells in a particular pattern,

which means that the QCA paradigm can be used to

implement a complete set of combinational logic functions

[4]-[5].

The tunneling among the four dots can be controlled by the

height of the tunneling barriers between each pair of dots, and

this can in turn be controlled by the voltage applied to a

nearby metal lead under the plane of the QCA cells. When the

barriers are raised very high, the cell is in a “locked” state,

meaning the electrons are not allowed to move among the dots

and are effectively isolated on their current dot. When the

barriers are lowered significantly, the cell is in a “relaxed”

state, meaning that the electrons are largely free to spread out

evenly among the four cells. By quasi-adiabatically switching

from a relaxed state to a locked state and then back to a

relaxed state, the system is able to respond to inputs applied in

a specific manner. Allowing different groups of cells to pass

through this cycle at different times allows data to propagate

through the system in a predetermined manner [6].

As shown in Figure 2, four different clock signals (all

repeating the same pattern, but offset from each other in time)

can be applied to four different regions of the system in order

to allow data to flow continuously through a QCA system [8]-

[9]. In addition to controlling the directionality of the data

flow, the use of quasi-adiabatic switching and clocking

60 nm

t

t

t

t

t

t

t

t

A Signal Distribution Network for

Sequential Quantum-dot Cellular Automata

Systems

Hayden Hast, Sami Khorbotly, and Douglas Tougaw

 2

regions also allows each QCA cell to store one bit of data

during its locked phase [10]. This is equivalent to the

functionality of a D flip-flop. Combined with the complete set

of combinational logic described above, this memory

functionality further enables QCA systems to implement

generalized sequential logic functionality as well.

Fig. 2. Data propagates from one region (in the “locked” phase) to its

neighbor (in the “locking” phase). Once a region has propagated its

information, it relaxes in preparation for receiving its next input. A

typical region of cells will repetitively cycle through these four

phases, allowing data to be transferred in the desired direction as

indicated by the arrows. [After reference 7.]

One challenge facing the QCA paradigm is that it is

particularly difficult cross two lines of cells without allowing

the signals to interact. Because QCA systems are coplanar,

and because their interactions are based on physical proximity,

it is very difficult to pass signals through each other without

interference. One solution to this problem, relying on rotated

cells and next-near neighbor interactions, was proposed in [5].

Unfortunately, it has since been shown that this wire crossing

negatively impacts the excitation energy between the ground

state and the first excited state, which has been shown to

degrade the overall system’s thermal behavior and its

resistance to fabrication imperfections and stray charge [11]-

[15]. A great deal of research has been performed to

investigate methods to minimize wire crossings [16]-[19] and

to use multiple parallel crossings to strengthen the interaction

of the next-near neighbor wire crossing described above [20-

21]. One solution even allows an arbitrary set of wire

crossings, although it requires the use of several additional

clock signals [22].

II. IMPROVING THE COMBINATIONAL SIGNAL DISTRIBUTION

NETWORK

One method for implementing a generalized set of wire

crossings (referred to as a “signal distribution network”) was

presented in [7] and [23]. This network allows a set of N

inputs to be arbitrarily duplicated and distributed to the inputs

of a combinational logic system. Such a signal distribution

network (SDN) for combinational systems is shown in Figure

3, where it is used to implement the wire crossings necessary

for a one-bit full adder.

Fig. 3. (Color Online) The combinational signal distribution network (SDN).

The three signals propagate down the vertical wires and then work their

way toward the combinational logic. Signals (such as Cin) that have a

shorter distance to travel must move more slowly, while those that

have a longer distance to travel (such as A) must move more quickly.

All signals arrive at the first level of majority gates (M1-M4)

simultaneously. [After 7]

While the SDN presented in [7] offers the ability to perform

any necessary number of wire crossings while only relying on

near-neighbor interactions, it does require a relatively large

amount of surface area to perform the signal distribution. As

shown in Figure 3, the three parallel vertical wires and the

horizontal wires that connect them take up approximately as

much surface area as the combinational logic needed to

perform the addition.

It turns out that this may not be strictly necessary. The

multiple horizontal lines connecting between the leftmost and

rightmost vertical lines are redundant with each other, an

artifact of the Programmable Array of Logic technology that

was used as an initial model for this network. Furthermore,

the multiple vertical wires are only needed to place the correct

values into the right-moving data pipeline. As shown in

Figure 4, which is functionally identical to Figure 3, the same

result can be achieved with only one vertical wire that is

driven by a short input wire that receives all the results in

parallel. Making this small change to the SDN reduces the

size of the overall network by almost half while removing

dozens of redundant cells. It also illustrates that the key to the

operation of the SDN is the serial transmission of the data

values to the input of the vertical line.

Barrier Height

Clock Cycle

Region 1

Region 2

Region 3

Region 4

Locked

Relaxed

Locked Locked

Relaxed

A B Cin

Sum

Cout

X2

M1

X1

M2

M3

M4

M5

X3

Signal

Distribution

Network

Combinational

Logic

 3

 Fig. 4. (Color Online) An improved combinational SDN. Here, the multiple

long vertical lines are no longer necessary, and the signals simply work

their way to the left along the top line until it is their turn to drive the

entire vertical line. This small change significantly reduces the surface

area and number of cells required for the combinational SDN.

III. A SIGNAL DISTRIBUTION NETWORK FOR SEQUENTIAL

SYSTEMS

Figure 5 shows a schematic representation of a generalized

sequential digital system. Such a system is distinguished from

a combinational system in that it contains a “current state” that

is a function of all previous inputs to the system. This current

state is routed back to the Next State Decoder (NSD), which

determines the new value of the current state. In addition, the

current state may need to be distributed to multiple inputs of

an output decoder, which can be used to assert one or more

outputs when the system is in a particular state. Thus, the

sequential system will require one or possibly two

combinational SDNs, as well as finding a way to perform the

wire crossings between the current state and the outputs of the

system. These wire crossings (15 for the case shown here)

will occur in a very regular pattern that suggests a common

solution.

Fig. 5. A schematic representation of the wire crossings and signal distribution

networks required by a typical sequential system. Even neglecting the

wire crossings that are eliminated by the use of two separate

combinational SDNs, this system still requires 15 wire crossings

(which occur in a very regular, standard pattern) between the current

state block and the second SDN.

Thus, a sequential system requires one or two signal

distribution blocks and one fixed wire crossing block. Figure 6

shows an alternative implementation of the functionality

present in Figure 5 that addresses all three of these needs

simultaneously. In this case, there is no need for an explicit

“current state” block, since each QCA cell can provide the

functionality of a D flip-flop. Instead, the signals leaving the

NSD in parallel pass through a series of delay blocks

(composed of four QCA cells each), and they are shifted

vertically upward. This serial data stream is then delivered to

the inputs of the next state decoder as well as to the output

decoder, if present. If the current state of the system is to

serve directly as the output (as in the case of a counter, for

example), then the output (current state) can simply be read at

the location indicated.

Fig. 6. A schematic representation of a sequential SDN used to perform all the

necessary wire crossings for a sequential QCA system. Since each

QCA cell acts as a D flip-flop, there is no need for an explicit “current

state” block. Data leaving the next state decoder works its way

vertically along a series of delay blocks (implemented by clocking

regions). Once they reach the top, they are transmitted to the inputs of

the next state decoder and the output decoder. As before, the first data

to arrive must be delayed until the later data has also propagated so

that they arrive at the combinational logic gates simultaneously.

This “Sequential Signal Distribution Network” (SSDN) can

be used to significantly simplify the distribution of signals in

sequential systems. The next three sections of this paper

illustrate specific examples of sequential systems constructed

using this method.

IV. SEQUENTIAL SDNS TO IMPLEMENT COUNTER CIRCUITS

In previous sections of this paper, the basic block diagram

and data flow of sequential systems have been described. In

this section, an implementation of the SSDN will be shown

and described in detail. In order to exhibit the full

functionality of the SSDN, only complete examples will be

examined. By using full examples of sequential systems, it can

be demonstrated that the SSDN can handle multiple wire

crossings, which pass the current state to the output decoder as

well as routing it back to the next state decoder.

A counter circuit, one of the most common and basic

sequential systems, has been chosen to exhibit the

implementation of the SSDN. Counter circuits can be seen in a

wide variety of applications and are also easily scalable for

high volume calculation tests. The counter circuit maintains

the current state of the system, distributes those signals as

necessary to the next-state decoder, and forwards the current

state to an optional output decoder. The schematic

ABCin

Sum

Cout

C
u
rr

en
t

S
ta

te

N
ex

t
S

ta
te

D
ec

o
d

er

O
u
tp

u
t

D
ec

o
d
er

C
o
m

b
in

at
io

n
al

S
ig

n
al

 D
is

tr
ib

u
ti

o
n

N
et

w
o
rk

C
o
m

b
in

at
io

n
al

S
ig

n
al

 D
is

tr
ib

u
ti

o
n

N
et

w
o
rk

N
ex

t
S

ta
te

D
ec

o
d
er

O
u
tp

u
t

D
ec

o
d

er

C
u
rr

en
t

S
ta

te

 4

representation of a two-bit counter circuit can be seen in

Figure 7. The sequential system contains two wire crossings

used to distribute the signals to the next-state decoder as well

as a wire crossing needed to route the current-state signals

back to the inputs of the next-state decoder.

The QCA implementation of the schematic from Figure 7

can be seen in Figure 8. Here, it can be observed that the three

explicit wire crossings mentioned above are no longer

explicitly needed. Instead, the clocked QCA cells are

positioned and clocked in such a way that the signal is

transmitted serially along the top and left side of the system.

Fig. 7. A schematic representation of the digital logic required to implement a

two-bit (modulo-4) counter. Note that two wire crossings are required

to distribute the signals to the next-state decoder, and a third is

required to feed the current state back to the inputs of the next-state

decoder.

This new functionality of the SSDN is made possible by the

addition of two new clock phases, shown as orange and purple

in the on-line version of the figure. This addition was required

in order to pass the data vertically and horizontally in an

alternating pattern. The timing of asserting these new clock

phases coincide with the timing of the yellow clock phase.

However, only one of the orange or purple phases is ever

asserted at a time. For example, in one clock cycle the purple

and yellow will be asserted at the same time, then in the next

cycle, orange and yellow will be asserted. This ensures that

the data is driven by the green cells and is then passed either

horizontally or vertically through each intersection. The

alignment of the yellow, orange and purple clock phases

maintains the flow of data through the system.

 The purpose of a sequential system is to use previous

outputs, or current states, as the next inputs into the system.

However, realistic sequential systems have user inputs such as

a start, stop, or reset. In order to emulate a realistic system, a

reset input was implemented. Figure 8 shows two grey reset

cells. At the beginning of the simulation, the reset signal will

place the counter into a known state (‘00’ in this case). It is

important to note that this extra clock signal is not strictly

necessary, but is only included to allow the system to be

initialized. Thus, the true number of clock signals required for

this system is four (as with all pipelined QCA systems) plus

two (the orange and purple signals described above). Adding

a SSDN to a QCA network will increase the number of clock

signals required from four to six.

Fig. 8. (Color Online) An implementation of the two-bit counter from Figure 7

using QCA cells and a sequential SDN. The orange region is asserted

when the signal needs to pass horizontally through the intersection cell,

while the purple region is asserted when data needs to flow vertically

through the intersection cell. The labels and arrows on the left side of

the figure are only intended as an aid to the reader in understanding

which signal is being used on each horizontal line.

Fig. 9. (Color Online) The clock signals applied to the regions shown in

Figure 8. The colors of the cells along the vertical axis correspond to

the color of each cell show in Figure 8. Notice that the four primary

regions (blue, green, yellow, and red) continuously cycle as shown in

Figure 2. The orange and purple regions alternate, and each always

asserts simultaneously with the yellow region.

Using the clock cycle chart in Figure 9, the flow of the data

through the sequential system depicted in Figure 8 can be

examined. The counter is first put into a known state of ‘00’

from the assertion of the grey, or reset phase. The data from

QA then flows up and around, through the distribution network

using the blue, green, and yellow cells, in that order. At the

same time, data from QB moves vertically through its own

blue and green cells. However, instead of entering a yellow

cell, the data flows into the purple cells. This is because the

purple and yellow clock cycles are both asserted at cycle four.

The red phase is then asserted, acquiring the data driven by the

QA

QB

DA

DB

QA

QA

QA

QB

QA

QA

QB

QB

QA

Reset

Reset

VerticalHorizontal

Intersection

5 10

Barrier Height

Clock Cycle

15 20 25 30

 5

purple cells while disregarding the bogus data in the relaxed

orange cells. This is the first instance of passing the correct

data through the wire crossing.

The data from QB is then quickly passed along through

another cycle of blue, green, and yellow while the QA data

moves in much smaller steps, often only one cell at a time. By

phase number eight, both sets of data have passed through the

next state decoder and are ready to be output. Again, the

utilization of the added clock phases allows the data to be

passed through the wire crossing. In clock cycle number eight

both the orange and yellow phases are asserted, locking the QA

data and QB data into their respectively colored cells, waiting

for the red phase to lock. The red cells for output QA are only

driven by the valid data locked in the orange cells, and not the

invalid data in the adjacent purple cells. Output QB is also

determined only by the locked adjacent yellow cells. Thus,

after nine clock cycles, the first valid output, ‘01’ is seen.

The process described above is repeated, but without the

use of the reset. This causes the next output, ‘10’ to appear

eight cycles later, on clock cycle 17. The sequential system

continues this pattern through 25 total cycles, counting from

’00’ to ’11.’

Fig. 10. Simulation results of the system shown in Figure 8 when the clock

signals of Figure 9 are applied. Notice that the RESET signal is

applied to the cells in the gray region in the first clock cycle, which

causes QA and QB to go to zero. Over the next 34 clock cycles, those

two signals progress through the sequence 00, 01, 10, 11, and back to

00. It is important to note that the outputs are only valid at the times

labelled. It is also possible to observe how the cells labelled “vertical”

and “horizontal” alternate control of the “intersection” cell, allowing

data to flow in both directions.

Applying the clock signals depicted in Figure 9 to the two-

bit counter of Figure 8 produces the simulation results shown

in Figure 10. These results were obtained by performing a

self-consistent simulation of the array of QCA cells, applying

the Intercellular Hartree Approximation. Each cell was

modeled using the Time-Independent Schrodinger equation

and second-quantization operators. The ground state of each

cell was calculated multiple times until the entire array of cells

had reached a self-consistent ground state. The expectation

value of the charge density on each site was then calculated,

and this yielded the polarization of each cell, as shown in

Figure 10. The same method was used to generate the results

in Figure 14 and Figure 19.

Figure 10 displays the reset signal, the state of the vertical

(purple) cells, the state of the horizontal (orange) cells, the

state of the intersection cell, and the counter outputs.

Beginning from the top, it can be seen that the reset signal is

only asserted at the beginning of the sequence in order to start

the counter into a known state.

Also very noticeable is that the vertical and horizontal

signals are mutually exclusive. This is due to the fact that

there is only valid data passing in one direction every fourth

cycle. Although the purple and orange signals are only locked

alternatively every four cycles, the intersection signal locks

every four cycles because it is being driven by either the

vertical or horizontal data. Further examination confirms this

because the value of the intersection signal is always the

previous value of the vertical or horizontal signals, whichever

one was asserted last.

Finally, the output of the two-bit counter can be seen in

signals QA and QB. The QA output signal matches the

intersection signal because they are both located in the same

row of red cells. The output is first driven by the reset and puts

the counter into ’00.’ Eight cycles later, the first legitimate

output of ‘01’ is displayed. It is important to note that the

outputs are only valid once every eight clock cycles.

Although they lock every four clock cycles, the locked results

for QA and QB are invalid for cycles in which no label appears

in Figure 10. The process continues, outputting ‘10’ during

cycle 17, ‘11’ during cycle 25 and finally rolling back to ‘00’

on cycle 35. These simulation results confirm that a QCA

two-bit counter sequential system can be constructed using the

implementation of the proposed SSDN.

As previously mentioned, counter circuits work well for

examples because of their scalability. In order to examine how

the SSDN performs on a larger scale, it was decided to expand

the previous example from a two-bit counter to a three-bit

counter. Figure 11 shows the schematic representation of the

three-bit counter that will be implemented with the SSDN. It

can be seen that the three-bit counter contains six wire

crossings used to distribute the signals to the next-state

decoder as well as three wire crossings needed to route the

current-state signals back to the inputs of the next-state

decoder.

Fig. 11. A schematic representation of the digital logic required to implement

a three-bit (modulo-8) counter. Note that six wire crossings are

Polarization

Clock Cycle

RESET

Vertical

Horizontal

Intersection

QB

0

0 0

1

10 15 20 25 305

1

0

1

1

0

0 0

1 1

1

0

1

QA

0 0 0 0

1 1 1 1

0

0

0

0

QA

QB

DA

DB

QA

QA

QCDBQA

 6

required to distribute the signals to the next-state decoder, and three

more are required to feed the current state back to the inputs of the

next-state decoder. These nine wire crossings will be implemented

using the sequential SDN.

Fig. 12. (Color Online) An implementation of the three-bit counter from

Figure 11 using QCA cells and a sequential SDN. Again notice the

use of two special clock phases to implement the serial wire crossings.

It is now more evident that lines carrying QA must be designed to

transmit that value more slowly, whereas QC moves the data as

quickly as possible toward the beginning of the combinational logic.

Figure 12 displays the QCA implementation of the three-bit

counter circuit depicted in Figure 11. The QCA

implementation of the next state decoder has become visibly

more complex, accounting for the increased number of inputs

and outputs to the sequential system. However, the same data

flow principles that were utilized in the two-bit counter can be

seen at work here.

 The current states of QA, QB, and QC are successively

transmitted vertically, passing through the three wire crossings

with the use of the newly created purple and orange clock

phases. These signals are then passed serially along the top

and down the left side of the diagram. To the left side of the

diagram there are labels depicting where each of the current

state signals enter the next state decoder. As with the two-bit

counter, the QA signal must slowly propagate for four clock

cycles in order for the QB signal to catch up. Then, both the

QA and QB signals (or the logical combination of the two)

must propagate for four more signals, allowing all three

signals to align before continuing through the decoding logic.

The next-state outputs are then passed horizontally through the

wire crossing, labeled “intersection” in Figure 12, to their

respective outputs.

Fig. 13. (Color Online) The clock signals applied to the regions shown in

Figure 12. The colors of the cells along the vertical axis correspond to

the color of each cell show in Figure 12. This figure is very similar to

Figure 9, except that each horizontal data transmission (the orange

region) is followed by two vertical transmissions. As shown in Figure

11 and Figure 12, this is required to enable QC to first cross QB and

then to cross QA while moving up the right edge of the system.

Figure 13 depicts the sequence of the applied clock signals

to the corresponding regions in Figure 12. The assertion of the

reset signal at the beginning of the sequence puts the

sequential system into a known state of ‘000’. The data is then

propagated through the system, flowing through the red, blue,

green, and yellow regions in order. However, exceptions to

this data progression occur when a signal must pass through a

wire crossing. As in the two-bit counter example, the addition

of the orange and purple signals make this wire crossing

possible. However, instead of the purple and orange regions

being asserted alternatively every four cycles as described in

the two-bit counter, a pattern of purple-purple-orange can be

seen instead. This is because QC must pass through two wire

crossings, utilizing the vertical purple regions, before it can

reach the next-state decoder. Once it reaches the next sate

decoder, it is then quickly propagated through the required

logic, after which the outputs are passed horizontally through

the orange regions. It is the behavior that results in two purple

region assertions to every one orange regions assertion. The

simulation data depicted in Figure 14 verifies that there are

two vertical assertions to every horizontal assertion as well as

the correct outputs of the QCA implemented three-bit counter

circuit.

QA

QB

QA

QA

QB

QB

QA

Reset

Reset

Reset

QCQA

QC

QB

QC

VerticalHorizontal

Intersection

32

Barrier Height

Clock Cycle

40 48 56 648 16 24 72 80 88 96

 7

Fig. 14. Simulation results of the system shown in Figure 12 when the clock

signals of Figure 13 are applied. Over the course of 98 clock cycles,

the output signals QA, QB, and QC cycle through the sequence 000,

001, 010, 011, 100, 101, 110, 111, and back to 000. It is important to

note that the outputs are only valid at the times labelled. The pattern

of one horizontal data pulse followed by two vertical data pulses can

also be observed in this figure.

V. PATTERN DETECTOR USING SEQUENTIAL SDN

The SSDN can also be used to construct a pattern detector,

which monitors a serial bit stream for a particular binary

sequence. This example is particularly interesting because it

illustrates a Mealy machine, in contrast with the Moore

machines described in the previous examples. In computing

theory, a Moore machine is a sequential system where the

output is determined exclusively by the state of the machine.

A Mealy machine, on the other hand, is a sequential system

where the output is determined by both the state of the

machine and the input signal.

The chosen example is a pattern detector designed to detect

the pattern “11010.” The system has a single input line x and a

single output line z. The output value is always a logic ‘0’

except when the last 5 bits of the serial input stream have been

“11010.”

Fig. 15. State diagram for detection of the pattern 11010. Labels along each

transition arrow show the input signal that will cause the system to

move along that arrow, followed by the output signal that will result

from the current state and that input being applied. Note that the only

time the output will be asserted is when the system is in state S4 and

receives a 0 input.

The logic design for this system results in the state diagram

shown in Figure 15. As can be seen in the figure, five distinct

states [S0 – S4] are needed for this implementation. A three-bit

binary number is required to represent these five states.

Fig. 16. Digital logic required to implement the state diagram shown in Figure

15. This system requires 31 wire crossings to distribute the signals to

the next-state decoder, along with 4 wire crossing to feed the current

state back to the next state decoder. Note the input X at the top right

corner, as well as the output Z.

 The three state variables used to store the state information

are labeled ��, �� , and �� . Using the single output design

methodology [24], the next state decoder equations were

minimized in the sum of products format as follows:

�� � �� · �� · 	

�� � �� · ��

 � �� · 	 � ��

 · �� · 	

�� � �� · ��

 · 	� � ��

 · ��

 · ��

 · 	

Where � denotes the future/next state value of the state

variable �.The minimized logic equation for the output of the

system was similarly found to be:

� � �� · 	�

 The logic circuit diagram corresponding to the pattern

detector is shown in Figure 16. The circuit includes three D-

flip flops to store the state variables, 15 combinational logic

components used to implement the next state decoder, and two

combinational logic components used to implement the output

decoder.

Polarization

Clock Cycle

RESET

Vertical

Horizontal

Intersection

QB

0

QA

32 40 48 56 648 16 24 72 80 88 96

QC

0

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1

1

0

0

0

S0

S1

S2S3

S4

1/0

1/0

1/0

0/0

1/0

0/1

0/0

1/0

0/0

0/0

QA

QB

DA

DB

QA

QA

QC
DCQC

X

Z

 8

Fig. 17. (Color Online) An implementation of the pattern detector from Figure

16 using QCA cells and a sequential SDN. The three state variables

complete a full loop and update their values every 20 clock cycles.

 An implementation of the pattern detector from Figure 16

using QCA cells and a sequential SDN is shown in Figure 17.

Initially, the present state value is determined by the three

“Reset” cells associated with each of the three state

variables ��, ��, and �� . In this particular example, only ��

is used, along with the input signal x, in the output decoder.

However, all three state variables are used, along with the

input signal x, to determine the next state value. For this

purpose, the values of these variables all propagate through

the rightmost vertical line starting in the same clock phase.

These values then complete the loop by moving leftward along

the top horizontal line, and then copies of the signals are

distributed as needed by twelve horizontal lines. Similarly, the

input signal x propagates along the same path where five

copies of it are distributed to help determine the next state

value.

Seeing that four signals are propagating via the same path,

the pattern of clock phases is carefully selected to ensure that

all four signals are routed to their destinations at the proper

times. The input signal x, controlled by an external source

signal, will appear on the far-left vertical line after two clock

cycles, and it is never updated internally. The three state

variables, on the other hand, complete a feedback loop and

periodically update their own values every 20 clock cycles. It

is therefore imperative that the values of the three state

variables and the input signal reach the end of the loop

simultaneously to update the state value. For example, �� has

a shorter time to reach the far-left vertical line than ��, so its

propagation is slowed down along the horizontal lines.

Similarly, �� has the longest path to the far-left vertical line

but is caught up by having the fastest propagation in the

horizontal lines.

Fig. 18. (Color Online) The clock signals applied to the regions shown in

Figure 17. The three purple pulses allow the data to move upward

along the right edge of the next-state decoder, while one of the orange

pulses enables data to move horizontally to the right of the next-state

decoder. The second orange pulse is not strictly necessary, because

the data is working its way through the next-state decoder. It is

included here to ensure that the “intersection” cells are in a well-

defined state for the simulation.

The clock signals shown in Figure 18 illustrate the clocking

pattern used to ensure the appropriate routing and propagation

of all signals. The gray signal is only activated to reset the

system in order to determine a specific initial state. It is then

de-activated during the synchronous operation of the system.

Once the system is initialized, a four cycle “normal” pattern is

set for the signals to propagate to the blue cells in one clock

cycle, followed by the green cells, then the yellow cells, and

finally the red cells. The only exception to this pattern is the

intersection lines where more sophisticated clocking is needed

to handle the wire crossing. At these intersections, the yellow

cells are replaced by either orange cells for the horizontal lines

or purple cells for the vertical lines. The yellow clock signal is

de-multiplexed between the purple cells and the orange cells

clock in order to propagate the correct signals at the correct

times. It all starts by activating the orange cells to horizontally

propagate the input signal x. Then, the purple cells are

activated for three consecutive cycles to vertically

propagate ��, �� , and �� all the way to the top horizontal

line. The orange cells are then activated to ensure that ��, ��,

and �� are horizontally updated with the next state values.

The pattern is then periodically repeated.

The simulation results of the system are shown in Figure

19. During the first two clock cycles, the system is reset, and

an input value is applied. As was shown in Figure 17, the state

variables are updated once every 20 clock cycles. Therefore, it

is reasonable to evaluate the output of the system only during

the �20 · � � 2)
th

 clock cycles where N is a positive integer.

The results show that the only time an output of ‘1’ was

detected was at N = 6 in response to the input segment x[2:6]

being “11010.” This input sequence is highlighted by the

dotted box shown in Figure 19, which is immediately followed

QC

QB

X

QB

QB

QB

QB

QC

QC

QC

QC

X

X

X

X

QA

QA

QA

X

QB

QC

Z

Vertical

Horizontal

Intersection

Reset

Reset

Reset

Barrier Height

Clock Cycle

80 10020 6040 120 140 160

 9

by an asserted output.

Fig. 19. Simulation results of the system shown in Figure 17 when the clock

signals of Figure 18 are applied. It is especially important here to

remember that the output Z is only valid in clock cycles 2, 22, 42, 62,

etc., as shown by the labels adjacent to that signal. The desired

pattern is applied to the input X (as highlighted by the dotted line),

resulting in an asserted output on Z in the following clock cycle.

VI. CONCLUSIONS AND OBSERVATIONS

In this paper, the authors have introduced a specialized

Sequential Signal Distribution Network (SSDN) that can be

used to route and distribute the signals as needed in a

generalized sequential system. This functionality has been

demonstrated by the complete design and simulation of three

example systems: a two-bit counter, a three-bit counter, and a

sequence detector. The SSDN allows designers to apply a

generalized strategy for implementing the wire crossings

necessary to route signals from the current state to the required

inputs of the next state decoder and the output decoder, if one

is required.

The examples presented in this paper have been selected to

illustrate the features of the SSDN, but the method is entirely

general. There is nothing about the examples presented here

that make them particularly advantageous to the methods

presented. The SSDN is a general tool that can be used to

implement any Mealy or Moore finite state machine.

Designers who wish to incorporate this tool into their own

designs only need to adjust the clock phases of the horizontal

lines leading up to the majority logic gates in order to ensure

that all input signals arrive at the majority logic gates

simultaneously, as illustrated in the three examples presented

in this paper.

Although this is a significant step forward in overcoming

the wire crossing challenge, this solution still exhibits some

undesirable characteristics. In particular, it requires 4·(N-1)

clock cycles to route the signals to the appropriate inputs,

where N is the number of bits in the current state. Another

concern is that it is necessary to be able to control the clocking

regions very precisely, with several regions containing only a

single cell. In practice, this will be difficult to implement. A

third concern is that this network requires six different clock

signals (in addition to the Reset signal, which is only used to

ensure a well-defined initial state). Since it is possible to

implement combinational QCA systems with only four clock

signals, this adds complexity to the clocking system required.

ACKNOWLEDGMENTS

This work was supported by the Frederick Jenny

Professorship of Emerging Technology and the Leitha and

Willard Richardson Professorship of Engineering, both of

which are provided through the Valparaiso University College

of Engineering.

REFERENCES

1. C. S. Lent, P. D. Tougaw, and W. Porod, “Bistable saturation in coupled

quantum dots for quantum cellular automata,” Applied Physics Letters,

vol. 62, no. 7, pp. 714-716, 1993.

2. C. S. Lent, P. D. Tougaw, and Wolfgang Porod, “Bistable saturation in

coupled quantum-dot cells,” Journal of Applied Physics, vol. 74, no. 5,

pp. 3558-3566, 1993.

3. C. S. Lent and P. D. Tougaw, “Lines of interacting quantum-dot cells: a

binary wire,” Journal of Applied Physics, vol. 74, no.10, pp. 6227-6233,

1993.

4. P. D. Tougaw and C. S. Lent, “Logical devices implemented using

quantum cellular automata,” Journal of Applied Physics, vol. 75, no. 3,

pp. 1818-1825, 1994.

5. C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum

cellular automata,” Nanotechnology, vol. 4, no. 1, pp. 49-57, 1993.

6. C. S. Lent and P. D. Tougaw, “A device architecture for computing with

quantum dots,” Proceedings of the IEEE, vol. 85, no. 4, pp. 541-557,

1997.

7. D. Tougaw and M. Khatun, “A Scalable Signal Distribution Network for

Quantum-Dot Cellular Automata,” IEEE Transactions on

Nanotechnology, vol. 12, no. 2, pp. 215-224, 2013.

8. K. Hennessy and C. Lent, “Clocking of Molecular Quantum-dot Cellular

Automata,” J. Vac. Sci. Technol., vol. 19, no. B, pp. 1752- 1755, 2001.

9. C. S. Lent and B. Isaksen, “Clocked molecular quantum-dot cellular

automata,” IEEE Transactions on Electron Devices, vol. 50, no. 9, pp.

1890–1896, 2003.

10. V. Vankamamidi, M. Ottavi, and F. Lombardi, “Two-Dimensional

Schemes for Clocking/Timing of QCA Circuits,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol.27,

no.1, pp.34-44, 2008.

11. G. A. Anduwan, B. D. Padgett, M. Kuntzman, M. K. Hendrichsen, I.

Sturzu, M. Khatun, and P. D. Tougaw, “Fault-tolerance and thermal

characteristics of quantum-dot cellular automata devices,” J. Appl.

Phys., 107, 114306, 2010.

12. M. Khatun, T. Barclay, I. Sturzu, and D. Tougaw, “Fault Tolerance

Properties in Quantum-dot Cellular Automata Devices,” J. Phys. D:

Appl. Phys. 39, pp. 1489-1494, 2006.

13. M. Khatun, T. Barclay, I. Sturzu, and D. Tougaw, “Fault Tolerance

Calculations for Clocked Quantum-dot Cellular Automata Devices,”

Journal of Applied Physics, 98, 094904, 2005.

14. M. Khatun, B. D. Padgett, G. A. Anduwan, I. Sturzu, and D. Tougaw,

“Defect and Temperature Effects on Complex Quantum-dot Cellular

Automata Devices,” Journal of Applied Mathematics and Physics, vol.

1, no. 2, 2013.

15. M. LaRue, D. Tougaw, and J. D. Will, “Effect of Stray Charge in a QCA

System: A Validation of the Intercellular Hartree Approximation,” IEEE

Transactions on Nanotechnology, vol. 12, no. 2, pp. 225-233, 2013.

16. A. Chaudhary, D. Z. Chen, X. S. Hu, K. Whitton, M. Niemier, and R.

Ravichardran, “Eliminating Wire Crossings for Molecular Quantum-dot

Cellular Automata Implementation,” Proc. IEEE/ACM International

Conference on Computer-Aided Design, 2005.

17. B. Smith and S. K. Lim, “QCA Channel Routing with Wire Crossing

Minimization,” Proceedings of the Great Lakes Symposium on VLSI,

2005.
18. H. Chen and D. Lee, “On crossing minimization problem,” IEEE

Transactions on Computer-Aided Design, 1998.

Polarization

Clock Cycle

RESET

Vertical

Horizontal

Intersection

QB

0

QA

QC

80 10020 6040 120 140 160

X (Input)

Z (Output)

0
1 1

0
1

0 0 0

0000000 1

19. W.J. Chung, B. Smith, and S. K. Lim, “QCA Physical Design with

Crossing Minimization,” Proceedings of the 2005 5th IEEE Conference

on Nanotechnology, 2005.

20. S. Bhanja , M. Ottavi , F. Lombardi , S. Pontarelli, “Novel designs for

thermally robust coplanar crossing in QCA,” Proceedings of the

Conference on Design, Automation and Test in Europe

21. S. Bhanja, M. Ottavi, F. Lombardi, and S. Pontarelli, “QCA Circuits for

Robust Coplanar Crossing,” J. Electron. Test. 23, pp. 193

22. C.R. Graunke, D.I. Wheeler, D. Tougaw, and J.D. Will,

“Implementation of a crossbar network using quantum

automata,” IEEE Transactions on Nanotechnology, vol.4, no.4, pp. 435

440, 2005.

23. D. Tougaw, “A Clocking Strategy for Scalable and Fault

QDCA Signal Distribution in Combinational and Sequential Devices,” a

chapter in Field Coupled-Nanocomputing: Paradigms, Processes, and

Perspectives, ed. N. G. Anderson and S. Bhanja, Springer, 2014.

24. S. Brown and Z. Vranesic, Fundamentals of Digital Logic with Verilog

Design, McGraw-Hill, 2013.

Hayden Hast is currently a senior electrical engineering

student at Valparaiso University. He is a Hesse Scholar and a

member of Tau Beta Pi. He plans to join

Inc. as a member of the Global Application Rotational

Program after graduation.

Sami Khorbotly (M’06---SM’13) received the B. Eng.

degree in electrical engineering from Beirut Arab

University, Beirut, Lebanon in 2001. He then received the

M.S. and Ph. D. degrees both in Electrical and Computer

Engineering from the University of Akron, Akron, OH in

2003 and 2007, respectively. He is currently an Associate

Professor of Electrical and Computer Engineering and the Frederick F. Jenny

Professor of Emerging Technologies at Valparaiso University. His research

interests include digital circuits design, fixed-point DSP,

Douglas Tougaw (M’91---SM’02) received the B.S. degree
in electrical engineering from the Rose
Technology, Terre Haute, IN, in1991, and the M.S. and
Ph.D. degrees in electrical engineering from the University
of Notre Dame, South Bend, IN, in 1994 and 1996,
respectively, under the guidance of Dr. Craig Lent. He also
received the MBA degree from Valparaiso University,

Valparaiso, IN, in 2005. He is currently a Professor of Electrical and
Computer Engineering and the Richardson Professor of Engineering at
Valparaiso University. His research interests include nanotechnology,
engineering education, and engineering ethics.

W.J. Chung, B. Smith, and S. K. Lim, “QCA Physical Design with

Proceedings of the 2005 5th IEEE Conference

, “Novel designs for

Proceedings of the

Conference on Design, Automation and Test in Europe, 2006.

S. Bhanja, M. Ottavi, F. Lombardi, and S. Pontarelli, “QCA Circuits for

23, pp. 193-210, 2007.

C.R. Graunke, D.I. Wheeler, D. Tougaw, and J.D. Will,

“Implementation of a crossbar network using quantum-dot cellular

, vol.4, no.4, pp. 435-

egy for Scalable and Fault-Tolerant

QDCA Signal Distribution in Combinational and Sequential Devices,” a

Nanocomputing: Paradigms, Processes, and

, ed. N. G. Anderson and S. Bhanja, Springer, 2014.

Fundamentals of Digital Logic with Verilog

s currently a senior electrical engineering

student at Valparaiso University. He is a Hesse Scholar and a

plans to join Texas Instruments

Inc. as a member of the Global Application Rotational

’13) received the B. Eng.

degree in electrical engineering from Beirut Arab

University, Beirut, Lebanon in 2001. He then received the

M.S. and Ph. D. degrees both in Electrical and Computer

Engineering from the University of Akron, Akron, OH in

07, respectively. He is currently an Associate

Professor of Electrical and Computer Engineering and the Frederick F. Jenny

Professor of Emerging Technologies at Valparaiso University. His research

 and robotic systems.

SM’02) received the B.S. degree
in electrical engineering from the Rose-Hulman Institute of
Technology, Terre Haute, IN, in1991, and the M.S. and
Ph.D. degrees in electrical engineering from the University

Notre Dame, South Bend, IN, in 1994 and 1996,
respectively, under the guidance of Dr. Craig Lent. He also
received the MBA degree from Valparaiso University,

Valparaiso, IN, in 2005. He is currently a Professor of Electrical and
he Richardson Professor of Engineering at

Valparaiso University. His research interests include nanotechnology,

10

	Valparaiso University
	ValpoScholar
	Spring 5-2-2015

	A Signal Distribution Network for Sequential Quantum-dot Cellular Automata Systems
	Hayden M. Hast
	Douglas Tougaw
	Sami Khorbotly
	Recommended Citation

	Microsoft Word - 432638-convertdoc.input.420447.lRlx_.docx

