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Abstract—The authors describe a signal distribution network 

for sequential systems constructed using the Quantum-dot 

Cellular Automata (QCA) computing paradigm.  This network 

promises to enable the construction of arbitrarily complex QCA 

sequential systems in which all wire crossings are performed 

using nearest neighbor interactions, which will improve the 

thermal behavior of QCA systems as well as their resistance to 

stray charge and fabrication imperfections.  The new sequential 

signal distribution network is demonstrated by the complete 

design and simulation of a two-bit counter, a three-bit counter, 

and a pattern detection circuit. 

 
Index Terms—Nanoelectronics, quantum-dot cellular automata 

(QCA), quasi-adiabatic switching, wire crossing, sequential 

systems.   

I. INTRODUCTION 

Quantum-dot Cellular Automata (QCA) is an emerging 

nanoscale computing paradigm that offers many benefits over 

traditional transistor-based computing paradigms, such as 

reduced power consumption, increased speed, and reduced 

surface area [1]-[6]. 

QCA systems are composed of cells, each of which includes 

two electrons that are shared among four quantum dots that lie 

at the corners of a square.  Mutual Coulombic repulsion 

between the two electrons causes them to occupy diagonally 

opposite quantum dots.  There are two bistable configurations 

of the cell, one along the left-leaning diagonal axis (encoded 

as a binary 0), and the other along the right-leaning diagonal 

axis (encoded as a binary 1) [1]-[2].  Electrons contained 

within adjacent cells repel each other, so that cells placed 

along a line tend to align in the same state [3].  Figure 1 
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illustrates this geometry as well as the typical dimensions used 

for the calculations in this paper. 

 

 
Fig. 1. The QCA geometry used in this paper.  Each cell is composed of four 

quantum dots placed at the corners of a square, and the distance from 

each dot to the center of the square is 20 nm.  Tunneling is allowed 

between each pair of adjacent quantum dots.  Two electrons occupy 

each cell, and the distance between the centers of the adjacent cells is 

60 nm.  [After reference 7] 

 

These cells can be arranged into particular geometric 

patterns to implement majority logic functions, which can in 

turn be reduced to AND and OR gates.  Inverters can also be 

constructed by arranging the cells in a particular pattern, 

which means that the QCA paradigm can be used to 

implement a complete set of combinational logic functions 

[4]-[5]. 

The tunneling among the four dots can be controlled by the 

height of the tunneling barriers between each pair of dots, and 

this can in turn be controlled by the voltage applied to a 

nearby metal lead under the plane of the QCA cells.  When the 

barriers are raised very high, the cell is in a “locked” state, 

meaning the electrons are not allowed to move among the dots 

and are effectively isolated on their current dot.  When the 

barriers are lowered significantly, the cell is in a “relaxed” 

state, meaning that the electrons are largely free to spread out 

evenly among the four cells.  By quasi-adiabatically switching 

from a relaxed state to a locked state and then back to a 

relaxed state, the system is able to respond to inputs applied in 

a specific manner.  Allowing different groups of cells to pass 

through this cycle at different times allows data to propagate 

through the system in a predetermined manner [6]. 

As shown in Figure 2, four different clock signals (all 

repeating the same pattern, but offset from each other in time) 

can be applied to four different regions of the system in order 

to allow data to flow continuously through a QCA system [8]-

[9]. In addition to controlling the directionality of the data 

flow, the use of quasi-adiabatic switching and clocking 
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regions also allows each QCA cell to store one bit of data 

during its locked phase [10].  This is equivalent to the 

functionality of a D flip-flop.  Combined with the complete set 

of combinational logic described above, this memory 

functionality further enables QCA systems to implement 

generalized sequential logic functionality as well.  

 

 
Fig. 2. Data propagates from one region (in the “locked” phase) to its 

neighbor (in the “locking” phase).  Once a region has propagated its 

information, it relaxes in preparation for receiving its next input.  A 

typical region of cells will repetitively cycle through these four 

phases, allowing data to be transferred in the desired direction as 

indicated by the arrows. [After reference 7.] 

 

 

One challenge facing the QCA paradigm is that it is 

particularly difficult cross two lines of cells without allowing 

the signals to interact.  Because QCA systems are coplanar, 

and because their interactions are based on physical proximity, 

it is very difficult to pass signals through each other without 

interference.  One solution to this problem, relying on rotated 

cells and next-near neighbor interactions, was proposed in [5]. 

Unfortunately, it has since been shown that this wire crossing 

negatively impacts the excitation energy between the ground 

state and the first excited state, which has been shown to 

degrade the overall system’s thermal behavior and its 

resistance to fabrication imperfections and stray charge [11]-

[15].  A great deal of research has been performed to 

investigate methods to minimize wire crossings [16]-[19] and 

to use multiple parallel crossings to strengthen the interaction 

of the next-near neighbor wire crossing described above [20-

21].   One solution even allows an arbitrary set of wire 

crossings, although it requires the use of several additional 

clock signals [22]. 

II. IMPROVING THE COMBINATIONAL SIGNAL DISTRIBUTION 

NETWORK 

One method for implementing a generalized set of wire 

crossings (referred to as a “signal distribution network”) was 

presented in [7] and [23].  This network allows a set of N 

inputs to be arbitrarily duplicated and distributed to the inputs 

of a combinational logic system.  Such a signal distribution 

network (SDN) for combinational systems is shown in Figure 

3, where it is used to implement the wire crossings necessary 

for a one-bit full adder.  

 
Fig. 3. (Color Online) The combinational signal distribution network (SDN).  

The three signals propagate down the vertical wires and then work their 

way toward the combinational logic.  Signals (such as Cin) that have a 

shorter distance to travel must move more slowly, while those that 

have a longer distance to travel (such as A) must move more quickly.  

All signals arrive at the first level of majority gates (M1-M4) 

simultaneously. [After 7] 

 

While the SDN presented in [7] offers the ability to perform 

any necessary number of wire crossings while only relying on 

near-neighbor interactions, it does require a relatively large 

amount of surface area to perform the signal distribution.  As 

shown in Figure 3, the three parallel vertical wires and the 

horizontal wires that connect them take up approximately as 

much surface area as the combinational logic needed to 

perform the addition.   

It turns out that this may not be strictly necessary.  The 

multiple horizontal lines connecting between the leftmost and 

rightmost vertical lines are redundant with each other, an 

artifact of the Programmable Array of Logic technology that 

was used as an initial model for this network.  Furthermore, 

the multiple vertical wires are only needed to place the correct 

values into the right-moving data pipeline.  As shown in 

Figure 4, which is functionally identical to Figure 3, the same 

result can be achieved with only one vertical wire that is 

driven by a short input wire that receives all the results in 

parallel.  Making this small change to the SDN reduces the 

size of the overall network by almost half while removing 

dozens of redundant cells.  It also illustrates that the key to the 

operation of the SDN is the serial transmission of the data 

values to the input of the vertical line. 
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  Fig. 4. (Color Online) An improved combinational SDN.  Here, the multiple 

long vertical lines are no longer necessary, and the signals simply work 

their way to the left along the top line until it is their turn to drive the 

entire vertical line.  This small change significantly reduces the surface 

area and number of cells required for the combinational SDN. 

III.   A SIGNAL DISTRIBUTION NETWORK FOR SEQUENTIAL 

SYSTEMS 

Figure 5 shows a schematic representation of a generalized 

sequential digital system.  Such a system is distinguished from 

a combinational system in that it contains a “current state” that 

is a function of all previous inputs to the system.  This current 

state is routed back to the Next State Decoder (NSD), which 

determines the new value of the current state.  In addition, the 

current state may need to be distributed to multiple inputs of 

an output decoder, which can be used to assert one or more 

outputs when the system is in a particular state.  Thus, the 

sequential system will require one or possibly two 

combinational SDNs, as well as finding a way to perform the 

wire crossings between the current state and the outputs of the 

system.  These wire crossings (15 for the case shown here) 

will occur in a very regular pattern that suggests a common 

solution.   

 

 
 

Fig. 5. A schematic representation of the wire crossings and signal distribution 

networks required by a typical sequential system.  Even neglecting the 

wire crossings that are eliminated by the use of two separate 

combinational SDNs, this system still requires 15 wire crossings 

(which occur in a very regular, standard pattern) between the current 

state block and the second SDN. 

 

Thus, a sequential system requires one or two signal 

distribution blocks and one fixed wire crossing block. Figure 6 

shows an alternative implementation of the functionality 

present in Figure 5 that addresses all three of these needs 

simultaneously.  In this case, there is no need for an explicit 

“current state” block, since each QCA cell can provide the 

functionality of a D flip-flop.  Instead, the signals leaving the 

NSD in parallel pass through a series of delay blocks 

(composed of four QCA cells each), and they are shifted 

vertically upward.  This serial data stream is then delivered to 

the inputs of the next state decoder as well as to the output 

decoder, if present.  If the current state of the system is to 

serve directly as the output (as in the case of a counter, for 

example), then the output (current state) can simply be read at 

the location indicated. 

 

 
Fig. 6. A schematic representation of a sequential SDN used to perform all the 

necessary wire crossings for a sequential QCA system.  Since each 

QCA cell acts as a D flip-flop, there is no need for an explicit “current 

state” block.  Data leaving the next state decoder works its way 

vertically along a series of delay blocks (implemented by clocking 

regions).  Once they reach the top, they are transmitted to the inputs of 

the next state decoder and the output decoder.  As before, the first data 

to arrive must be delayed until the later data has also propagated so 

that they arrive at the combinational logic gates simultaneously. 

 

This “Sequential Signal Distribution Network” (SSDN) can 

be used to significantly simplify the distribution of signals in 

sequential systems.  The next three sections of this paper 

illustrate specific examples of sequential systems constructed 

using this method.  

IV.   SEQUENTIAL SDNS TO IMPLEMENT COUNTER CIRCUITS 

In previous sections of this paper, the basic block diagram 

and data flow of sequential systems have been described. In 

this section, an implementation of the SSDN will be shown 

and described in detail. In order to exhibit the full 

functionality of the SSDN, only complete examples will be 

examined. By using full examples of sequential systems, it can 

be demonstrated that the SSDN can handle multiple wire 

crossings, which pass the current state to the output decoder as 

well as routing it back to the next state decoder.  

A counter circuit, one of the most common and basic 

sequential systems, has been chosen to exhibit the 

implementation of the SSDN. Counter circuits can be seen in a 

wide variety of applications and are also easily scalable for 

high volume calculation tests. The counter circuit maintains 

the current state of the system, distributes those signals as 

necessary to the next-state decoder, and forwards the current 

state to an optional output decoder. The schematic 
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representation of a two-bit counter circuit can be seen in 

Figure 7. The sequential system contains two wire crossings 

used to distribute the signals to the next-state decoder as well 

as a wire crossing needed to route the current-state signals 

back to the inputs of the next-state decoder.  

The QCA implementation of the schematic from Figure 7 

can be seen in Figure 8.  Here, it can be observed that the three 

explicit wire crossings mentioned above are no longer 

explicitly needed.  Instead, the clocked QCA cells are 

positioned and clocked in such a way that the signal is 

transmitted serially along the top and left side of the system. 

 

 
Fig. 7. A schematic representation of the digital logic required to implement a 

two-bit (modulo-4) counter.  Note that two wire crossings are required 

to distribute the signals to the next-state decoder, and a third is 

required to feed the current state back to the inputs of the next-state 

decoder.  

 

This new functionality of the SSDN is made possible by the 

addition of two new clock phases, shown as orange and purple 

in the on-line version of the figure. This addition was required 

in order to pass the data vertically and horizontally in an 

alternating pattern. The timing of asserting these new clock 

phases coincide with the timing of the yellow clock phase. 

However, only one of the orange or purple phases is ever 

asserted at a time. For example, in one clock cycle the purple 

and yellow will be asserted at the same time, then in the next 

cycle, orange and yellow will be asserted. This ensures that 

the data is driven by the green cells and is then passed either 

horizontally or vertically through each intersection. The 

alignment of the yellow, orange and purple clock phases 

maintains the flow of data through the system. 

 The purpose of a sequential system is to use previous 

outputs, or current states, as the next inputs into the system. 

However, realistic sequential systems have user inputs such as 

a start, stop, or reset. In order to emulate a realistic system, a 

reset input was implemented. Figure 8 shows two grey reset 

cells. At the beginning of the simulation, the reset signal will 

place the counter into a known state (‘00’ in this case).  It is 

important to note that this extra clock signal is not strictly 

necessary, but is only included to allow the system to be 

initialized.  Thus, the true number of clock signals required for 

this system is four (as with all pipelined QCA systems) plus 

two (the orange and purple signals described above).  Adding 

a SSDN to a QCA network will increase the number of clock 

signals required from four to six. 
 

 
Fig. 8. (Color Online) An implementation of the two-bit counter from Figure 7 

using QCA cells and a sequential SDN. The orange region is asserted 

when the signal needs to pass horizontally through the intersection cell, 

while the purple region is asserted when data needs to flow vertically 

through the intersection cell.  The labels and arrows on the left side of 

the figure are only intended as an aid to the reader in understanding 

which signal is being used on each horizontal line. 

 

 
Fig. 9.  (Color Online) The clock signals applied to the regions shown in 

Figure 8.  The colors of the cells along the vertical axis correspond to 

the color of each cell show in Figure 8.  Notice that the four primary 

regions (blue, green, yellow, and red) continuously cycle as shown in 

Figure 2.  The orange and purple regions alternate, and each always 

asserts simultaneously with the yellow region. 

 

Using the clock cycle chart in Figure 9, the flow of the data 

through the sequential system depicted in Figure 8 can be 

examined. The counter is first put into a known state of ‘00’ 

from the assertion of the grey, or reset phase. The data from 

QA then flows up and around, through the distribution network 

using the blue, green, and yellow cells, in that order. At the 

same time, data from QB moves vertically through its own 

blue and green cells. However, instead of entering a yellow 

cell, the data flows into the purple cells. This is because the 

purple and yellow clock cycles are both asserted at cycle four. 

The red phase is then asserted, acquiring the data driven by the 
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purple cells while disregarding the bogus data in the relaxed 

orange cells. This is the first instance of passing the correct 

data through the wire crossing.  

The data from QB is then quickly passed along through 

another cycle of blue, green, and yellow while the QA data 

moves in much smaller steps, often only one cell at a time. By 

phase number eight, both sets of data have passed through the 

next state decoder and are ready to be output. Again, the 

utilization of the added clock phases allows the data to be 

passed through the wire crossing. In clock cycle number eight 

both the orange and yellow phases are asserted, locking the QA 

data and QB data into their respectively colored cells, waiting 

for the red phase to lock. The red cells for output QA are only 

driven by the valid data locked in the orange cells, and not the 

invalid data in the adjacent purple cells. Output QB is also 

determined only by the locked adjacent yellow cells. Thus, 

after nine clock cycles, the first valid output, ‘01’ is seen.  

The process described above is repeated, but without the 

use of the reset. This causes the next output, ‘10’ to appear 

eight cycles later, on clock cycle 17. The sequential system 

continues this pattern through 25 total cycles, counting from 

’00’ to ’11.’ 

 
Fig. 10. Simulation results of the system shown in Figure 8 when the clock 

signals of Figure 9 are applied.  Notice that the RESET signal is 

applied to the cells in the gray region in the first clock cycle, which 

causes QA and QB to go to zero.  Over the next 34 clock cycles, those 

two signals progress through the sequence 00, 01, 10, 11, and back to 

00.  It is important to note that the outputs are only valid at the times 

labelled.  It is also possible to observe how the cells labelled “vertical” 

and “horizontal” alternate control of the “intersection” cell, allowing 

data to flow in both directions. 

 

Applying the clock signals depicted in Figure 9 to the two-

bit counter of Figure 8 produces the simulation results shown 

in Figure 10. These results were obtained by performing a 

self-consistent simulation of the array of QCA cells, applying 

the Intercellular Hartree Approximation.  Each cell was 

modeled using the Time-Independent Schrodinger equation 

and second-quantization operators.  The ground state of each 

cell was calculated multiple times until the entire array of cells 

had reached a self-consistent ground state.  The expectation 

value of the charge density on each site was then calculated, 

and this yielded the polarization of each cell, as shown in 

Figure 10.  The same method was used to generate the results 

in Figure 14 and Figure 19. 

Figure 10 displays the reset signal, the state of the vertical 

(purple) cells, the state of the horizontal (orange) cells, the 

state of the intersection cell, and the counter outputs. 

Beginning from the top, it can be seen that the reset signal is 

only asserted at the beginning of the sequence in order to start 

the counter into a known state. 

Also very noticeable is that the vertical and horizontal 

signals are mutually exclusive. This is due to the fact that 

there is only valid data passing in one direction every fourth 

cycle. Although the purple and orange signals are only locked 

alternatively every four cycles, the intersection signal locks 

every four cycles because it is being driven by either the 

vertical or horizontal data. Further examination confirms this 

because the value of the intersection signal is always the 

previous value of the vertical or horizontal signals, whichever 

one was asserted last.  

Finally, the output of the two-bit counter can be seen in 

signals QA and QB. The QA output signal matches the 

intersection signal because they are both located in the same 

row of red cells. The output is first driven by the reset and puts 

the counter into ’00.’  Eight cycles later, the first legitimate 

output of ‘01’ is displayed. It is important to note that the 

outputs are only valid once every eight clock cycles.  

Although they lock every four clock cycles, the locked results 

for QA and QB are invalid for cycles in which no label appears 

in Figure 10. The process continues, outputting ‘10’ during 

cycle 17, ‘11’ during cycle 25 and finally rolling back to ‘00’ 

on cycle 35.  These simulation results confirm that a QCA 

two-bit counter sequential system can be constructed using the 

implementation of the proposed SSDN. 

As previously mentioned, counter circuits work well for 

examples because of their scalability. In order to examine how 

the SSDN performs on a larger scale, it was decided to expand 

the previous example from a two-bit counter to a three-bit 

counter.  Figure 11 shows the schematic representation of the 

three-bit counter that will be implemented with the SSDN. It 

can be seen that the three-bit counter contains six wire 

crossings used to distribute the signals to the next-state 

decoder as well as three wire crossings needed to route the 

current-state signals back to the inputs of the next-state 

decoder.  

 
 

Fig. 11. A schematic representation of the digital logic required to implement 

a three-bit (modulo-8) counter.  Note that six wire crossings are 
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required to distribute the signals to the next-state decoder, and three 

more are required to feed the current state back to the inputs of the 

next-state decoder. These nine wire crossings will be implemented 

using the sequential SDN. 

 

 

 
 

Fig. 12. (Color Online) An implementation of the three-bit counter from 

Figure 11 using QCA cells and a sequential SDN. Again notice the 

use of two special clock phases to implement the serial wire crossings.  

It is now more evident that lines carrying QA must be designed to 

transmit that value more slowly, whereas QC moves the data as 

quickly as possible toward the beginning of the combinational logic. 

 

Figure 12 displays the QCA implementation of the three-bit 

counter circuit depicted in Figure 11. The QCA 

implementation of the next state decoder has become visibly 

more complex, accounting for the increased number of inputs 

and outputs to the sequential system. However, the same data 

flow principles that were utilized in the two-bit counter can be 

seen at work here.  

 The current states of QA, QB, and QC are successively 

transmitted vertically, passing through the three wire crossings 

with the use of the newly created purple and orange clock 

phases. These signals are then passed serially along the top 

and down the left side of the diagram. To the left side of the 

diagram there are labels depicting where each of the current 

state signals enter the next state decoder. As with the two-bit 

counter, the QA signal must slowly propagate for four clock 

cycles in order for the QB signal to catch up. Then, both the 

QA and QB signals (or the logical combination of the two) 

must propagate for four more signals, allowing all three 

signals to align before continuing through the decoding logic. 

The next-state outputs are then passed horizontally through the 

wire crossing, labeled “intersection” in Figure 12, to their 

respective outputs.  

 

 
Fig. 13.  (Color Online) The clock signals applied to the regions shown in 

Figure 12.  The colors of the cells along the vertical axis correspond to 

the color of each cell show in Figure 12.  This figure is very similar to 

Figure 9, except that each horizontal data transmission (the orange 

region) is followed by two vertical transmissions.  As shown in Figure 

11 and Figure 12, this is required to enable QC to first cross QB and 

then to cross QA while moving up the right edge of the system. 

 

Figure 13 depicts the sequence of the applied clock signals 

to the corresponding regions in Figure 12. The assertion of the 

reset signal at the beginning of the sequence puts the 

sequential system into a known state of ‘000’. The data is then 

propagated through the system, flowing through the red, blue, 

green, and yellow regions in order. However, exceptions to 

this data progression occur when a signal must pass through a 

wire crossing. As in the two-bit counter example, the addition 

of the orange and purple signals make this wire crossing 

possible. However, instead of the purple and orange regions 

being asserted alternatively every four cycles as described in 

the two-bit counter, a pattern of purple-purple-orange can be 

seen instead. This is because QC must pass through two wire 

crossings, utilizing the vertical purple regions, before it can 

reach the next-state decoder. Once it reaches the next sate 

decoder, it is then quickly propagated through the required 

logic, after which the outputs are passed horizontally through 

the orange regions. It is the behavior that results in two purple 

region assertions to every one orange regions assertion. The 

simulation data depicted in Figure 14 verifies that there are 

two vertical assertions to every horizontal assertion as well as 

the correct outputs of the QCA implemented three-bit counter 

circuit. 
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Fig. 14. Simulation results of the system shown in Figure 12 when the clock 

signals of Figure 13 are applied.  Over the course of 98 clock cycles, 

the output signals QA, QB, and QC cycle through the sequence 000, 

001, 010, 011, 100, 101, 110, 111, and back to 000.  It is important to 

note that the outputs are only valid at the times labelled.  The pattern 

of one horizontal data pulse followed by two vertical data pulses can 

also be observed in this figure.   

V.   PATTERN DETECTOR USING SEQUENTIAL SDN 

 

The SSDN can also be used to construct a pattern detector, 

which monitors a serial bit stream for a particular binary 

sequence.  This example is particularly interesting because it 

illustrates a Mealy machine, in contrast with the Moore 

machines described in the previous examples. In computing 

theory, a Moore machine is a sequential system where the 

output is determined exclusively by the state of the machine. 

A Mealy machine, on the other hand, is a sequential system 

where the output is determined by both the state of the 

machine and the input signal.  

The chosen example is a pattern detector designed to detect 

the pattern “11010.” The system has a single input line x and a 

single output line z. The output value is always a logic ‘0’ 

except when the last 5 bits of the serial input stream have been 

“11010.” 

 
 
Fig. 15. State diagram for detection of the pattern 11010. Labels along each 

transition arrow show the input signal that will cause the system to 

move along that arrow, followed by the output signal that will result 

from the current state and that input being applied.  Note that the only 

time the output will be asserted is when the system is in state S4 and 

receives a 0 input. 

 

The logic design for this system results in the state diagram 

shown in Figure 15. As can be seen in the figure, five distinct 

states [S0 – S4] are needed for this implementation. A three-bit 

binary number is required to represent these five states. 

 
 

Fig. 16. Digital logic required to implement the state diagram shown in Figure 

15.  This system requires 31 wire crossings to distribute the signals to 

the next-state decoder, along with 4 wire crossing to feed the current 

state back to the next state decoder.  Note the input X at the top right 

corner, as well as the output Z. 

 

 The three state variables used to store the state information 

are labeled ��, �� , and �� . Using the single output design 

methodology [24], the next state decoder equations were 

minimized in the sum of products format as follows: 

�� � �� · �� · 	

�� � �� · ��




 � �� · 	 � ��





 · �� · 	

�� � �� · ��




 · 	� � ��





 · ��




 · ��





 · 	

 

Where �  denotes the future/next state value of the state 

variable �.The minimized logic equation for the output of the 

system was similarly found to be: 

� � �� · 	� 

 The logic circuit diagram corresponding to the pattern 

detector is shown in Figure 16. The circuit includes three D-

flip flops to store the state variables, 15 combinational logic 

components used to implement the next state decoder, and two 

combinational logic components used to implement the output 

decoder. 
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Fig. 17. (Color Online) An implementation of the pattern detector from Figure 

16 using QCA cells and a sequential SDN. The three state variables 

complete a full loop and update their values every 20 clock cycles. 

 

 An implementation of the pattern detector from Figure 16 

using QCA cells and a sequential SDN is shown in Figure 17. 

Initially, the present state value is determined by the three 

“Reset” cells associated with each of the three state 

variables ��, ��, and �� . In this particular example, only �� 

is used, along with the input signal x, in the output decoder. 

However, all three state variables are used, along with the 

input signal x, to determine the next state value. For this 

purpose, the values of these variables all propagate through 

the rightmost vertical line starting in the same clock phase. 

These values then complete the loop by moving leftward along 

the top horizontal line, and then copies of the signals are 

distributed as needed by twelve horizontal lines. Similarly, the 

input signal x propagates along the same path where five 

copies of it are distributed to help determine the next state 

value.  

Seeing that four signals are propagating via the same path, 

the pattern of clock phases is carefully selected to ensure that 

all four signals are routed to their destinations at the proper 

times. The input signal x, controlled by an external source 

signal, will appear on the far-left vertical line after two clock 

cycles, and it is never updated internally. The three state 

variables, on the other hand, complete a feedback loop and 

periodically update their own values every 20 clock cycles. It 

is therefore imperative that the values of the three state 

variables and the input signal reach the end of the loop 

simultaneously to update the state value. For example, �� has 

a shorter time to reach the far-left vertical line than ��, so its 

propagation is slowed down along the horizontal lines. 

Similarly, ��  has the longest path to the far-left vertical line 

but is caught up by having the fastest propagation in the 

horizontal lines.  

 

 
Fig. 18.  (Color Online) The clock signals applied to the regions shown in 

Figure 17.  The three purple pulses allow the data to move upward 

along the right edge of the next-state decoder, while one of the orange 

pulses enables data to move horizontally to the right of the next-state 

decoder.  The second orange pulse is not strictly necessary, because 

the data is working its way through the next-state decoder.  It is 

included here to ensure that the “intersection” cells are in a well-

defined state for the simulation. 

 

The clock signals shown in Figure 18 illustrate the clocking 

pattern used to ensure the appropriate routing and propagation 

of all signals. The gray signal is only activated to reset the 

system in order to determine a specific initial state. It is then 

de-activated during the synchronous operation of the system. 

Once the system is initialized, a four cycle “normal” pattern is 

set for the signals to propagate to the blue cells in one clock 

cycle, followed by the green cells, then the yellow cells, and 

finally the red cells. The only exception to this pattern is the 

intersection lines where more sophisticated clocking is needed 

to handle the wire crossing. At these intersections, the yellow 

cells are replaced by either orange cells for the horizontal lines 

or purple cells for the vertical lines. The yellow clock signal is 

de-multiplexed between the purple cells and the orange cells 

clock in order to propagate the correct signals at the correct 

times. It all starts by activating the orange cells to horizontally 

propagate the input signal x. Then, the purple cells are 

activated for three consecutive cycles to vertically 

propagate ��, �� , and ��  all the way to the top horizontal 

line. The orange cells are then activated to ensure that ��, ��, 

and ��  are horizontally updated with the next state values. 

The pattern is then periodically repeated. 

The simulation results of the system are shown in Figure 

19. During the first two clock cycles, the system is reset, and 

an input value is applied. As was shown in Figure 17, the state 

variables are updated once every 20 clock cycles. Therefore, it 

is reasonable to evaluate the output of the system only during 

the �20 · � � 2)
th

 clock cycles where N is a positive integer. 

The results show that the only time an output of ‘1’ was 

detected was at N = 6 in response to the input segment x[2:6] 

being “11010.”  This input sequence is highlighted by the 

dotted box shown in Figure 19, which is immediately followed 
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by an asserted output. 

 

 
Fig. 19. Simulation results of the system shown in Figure 17 when the clock 

signals of Figure 18 are applied.  It is especially important here to 

remember that the output Z is only valid in clock cycles 2, 22, 42, 62, 

etc., as shown by the labels adjacent to that signal.  The desired 

pattern is applied to the input X (as highlighted by the dotted line), 

resulting in an asserted output on Z in the following clock cycle. 

 

VI. CONCLUSIONS AND OBSERVATIONS 

In this paper, the authors have introduced a specialized 

Sequential Signal Distribution Network (SSDN) that can be 

used to route and distribute the signals as needed in a 

generalized sequential system.  This functionality has been 

demonstrated by the complete design and simulation of three 

example systems: a two-bit counter, a three-bit counter, and a 

sequence detector.  The SSDN allows designers to apply a 

generalized strategy for implementing the wire crossings 

necessary to route signals from the current state to the required 

inputs of the next state decoder and the output decoder, if one 

is required. 

The examples presented in this paper have been selected to 

illustrate the features of the SSDN, but the method is entirely 

general.  There is nothing about the examples presented here 

that make them particularly advantageous to the methods 

presented.  The SSDN is a general tool that can be used to 

implement any Mealy or Moore finite state machine.  

Designers who wish to incorporate this tool into their own 

designs only need to adjust the clock phases of the horizontal 

lines leading up to the majority logic gates in order to ensure 

that all input signals arrive at the majority logic gates 

simultaneously, as illustrated in the three examples presented 

in this paper. 

Although this is a significant step forward in overcoming 

the wire crossing challenge, this solution still exhibits some 

undesirable characteristics.  In particular, it requires 4·(N-1) 

clock cycles to route the signals to the appropriate inputs, 

where N is the number of bits in the current state.  Another 

concern is that it is necessary to be able to control the clocking 

regions very precisely, with several regions containing only a 

single cell.  In practice, this will be difficult to implement.  A 

third concern is that this network requires six different clock 

signals (in addition to the Reset signal, which is only used to 

ensure a well-defined initial state).  Since it is possible to 

implement combinational QCA systems with only four clock 

signals, this adds complexity to the clocking system required. 
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