5 research outputs found

    Two Approaches to Ontology Aggregation Based on Axiom Weakening

    Get PDF
    Axiom weakening is a novel technique that allows for fine-grained repair of inconsistent ontologies. In a multi-agent setting, integrating ontologies corresponding to multiple agents may lead to inconsistencies. Such inconsistencies can be resolved after the integrated ontology has been built, or their generation can be prevented during ontology generation. We implement and compare these two approaches. First, we study how to repair an inconsistent ontology resulting from a voting-based aggregation of views of heterogeneous agents. Second, we prevent the generation of inconsistencies by letting the agents engage in a turn-based rational protocol about the axioms to be added to the integrated ontology. We instantiate the two approaches using real-world ontologies and compare them by measuring the levels of satisfaction of the agents w.r.t. the ontology obtained by the two procedures

    Towards Even More Irresistible Axiom Weakening

    Get PDF
    Axiom weakening is a technique that allows for a fine-grained repair of inconsistent ontologies. Its main advantage is that it repairs on- tologies by making axioms less restrictive rather than by deleting them, employing the use of refinement operators. In this paper, we build on pre- viously introduced axiom weakening for ALC, and make it much more irresistible by extending its definitions to deal with SROIQ, the expressive and decidable description logic underlying OWL 2 DL. We extend the definitions of refinement operator to deal with SROIQ constructs, in particular with role hierarchies, cardinality constraints and nominals, and illustrate its application. Finally, we discuss the problem of termi- nation of an iterated weakening procedure

    Towards a Logic of Epistemic Theory of Measurement

    Get PDF
    We propose a logic to reason about data collected by a num- ber of measurement systems. The semantic of this logic is grounded on the epistemic theory of measurement that gives a central role to measure- ment devices and calibration. In this perspective, the lack of evidences (in the available data) for the truth or falsehood of a proposition requires the introduction of a third truth-value (the undetermined). Moreover, the data collected by a given source are here represented by means of a possible world, which provide a contextual view on the objects in the domain. We approach (possibly) conflicting data coming from different sources in a social choice theoretic fashion: we investigate viable opera- tors to aggregate data and we represent them in our logic by means of suitable (minimal) modal operators

    Building high-quality merged ontologies from multiple sources with requirements customization

    Get PDF
    Ontologies are the prime way of organizing data in the Semantic Web. Often, it is necessary to combine several, independently developed ontologies to obtain a knowledge graph fully representing a domain of interest. Existing approaches scale rather poorly to the merging of multiple ontologies due to using a binary merge strategy. Thus, we aim to investigate the extent to which the n-ary strategy can solve the scalability problem. This thesis contributes to the following important aspects: 1. Our n-ary merge strategy takes as input a set of source ontologies and their mappings and generates a merged ontology. For efficient processing, rather than successively merging complete ontologies pairwise, we group related concepts across ontologies into partitions and merge first within and then across those partitions. 2. We take a step towards parameterizable merge methods. We have identified a set of Generic Merge Requirements (GMRs) that merged ontologies might be expected to meet. We have investigated and developed compatibilities of the GMRs by a graph-based method. 3. When multiple ontologies are merged, inconsistencies can occur due to different world views encoded in the source ontologies To this end, we propose a novel Subjective Logic-based method to handling the inconsistency occurring while merging ontologies. We apply this logic to rank and estimate the trustworthiness of conflicting axioms that cause inconsistencies within a merged ontology. 4. To assess the quality of the merged ontologies systematically, we provide a comprehensive set of criteria in an evaluation framework. The proposed criteria cover a variety of characteristics of each individual aspect of the merged ontology in structural, functional, and usability dimensions. 5. The final contribution of this research is the development of the CoMerger tool that implements all aforementioned aspects accessible via a unified interface
    corecore