5 research outputs found

    Tutte uniqueness of locally grid graphs

    Get PDF
    A graph is said to be locally grid if the structure around each of its vertices is a 3 × 3 grid. As a follow up of the research initiated in [4] and [3] we prove that most locally grid graphs are uniquely determined by their Tutte polynomial.Ministerio de Ciencia y Tecnología BFM2001-2474-ORIJunta de Andalucía PAI FQM-16

    Hexagonal Tilings and Locally C6 Graphs

    Full text link
    We give a complete classification of hexagonal tilings and locally C6 graphs, by showing that each of them has a natural embedding in the torus or in the Klein bottle. We also show that locally grid graphs are minors of hexagonal tilings (and by duality of locally C6 graphs) by contraction of a perfect matching and deletion of the resulting parallel edges, in a form suitable for the study of their Tutte uniqueness.Comment: 14 figure

    Hexagonal Tilings: Tutte Uniqueness

    Full text link
    We develop the necessary machinery in order to prove that hexagonal tilings are uniquely determined by their Tutte polynomial, showing as an example how to apply this technique to the toroidal hexagonal tiling.Comment: 12 figure

    Distinguishing graphs by their left and right homomorphism profiles

    Get PDF
    We introduce a new property of graphs called ‘q-state Potts unique-ness’ and relate it to chromatic and Tutte uniqueness, and also to ‘chromatic–flow uniqueness’, recently studied by Duan, Wu and Yu. We establish for which edge-weighted graphs H homomor-phism functions from multigraphs G to H are specializations of the Tutte polynomial of G, in particular answering a question of Freed-man, Lovász and Schrijver. We also determine for which edge-weighted graphs H homomorphism functions from multigraphs G to H are specializations of the ‘edge elimination polynomial’ of Averbouch, Godlin and Makowsky and the ‘induced subgraph poly-nomial’ of Tittmann, Averbouch and Makowsky. Unifying the study of these and related problems is the notion of the left and right homomorphism profiles of a graph.Ministerio de Educación y Ciencia MTM2008-05866-C03-01Junta de Andalucía FQM- 0164Junta de Andalucía P06-FQM-0164

    Homomorphisms and polynomial invariants of graphs

    Get PDF
    This paper initiates a general study of the connection between graph homomorphisms and the Tutte polynomial. This connection can be extended to other polynomial invariants of graphs related to the Tutte polynomial such as the transition, the circuit partition, the boundary, and the coboundary polynomials. As an application, we describe in terms of homomorphism counting some fundamental evaluations of the Tutte polynomial in abelian groups and statistical physics. We conclude the paper by providing a homomorphism view of the uniqueness conjectures formulated by Bollobás, Pebody and Riordan.Ministerio de Educación y Ciencia MTM2005-08441-C02-01Junta de Andalucía PAI-FQM-0164Junta de Andalucía P06-FQM-0164
    corecore