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Abstract
The classical theorem of Fáry states that every planar graph can be represented by an embedding
in which every edge is represented by a straight line segment. We consider generalizations of
Fáry’s theorem to surfaces equipped with Riemannian metrics. In this setting, we require that
every edge is drawn as a shortest path between its two endpoints and we call an embedding
with this property a shortest path embedding. The main question addressed in this paper is
whether given a closed surface S, there exists a Riemannian metric for which every topologically
embeddable graph admits a shortest path embedding. This question is also motivated by various
problems regarding crossing numbers on surfaces.

We observe that the round metrics on the sphere and the projective plane have this property.
We provide flat metrics on the torus and the Klein bottle which also have this property.

Then we show that for the unit square flat metric on the Klein bottle there exists a graph
without shortest path embeddings. We show, moreover, that for large g, there exist graphs
G embeddable into the orientable surface of genus g, such that with large probability a random
hyperbolic metric does not admit a shortest path embedding of G, where the probability measure
is proportional to the Weil-Petersson volume on moduli space.

Finally, we construct a hyperbolic metric on every orientable surface S of genus g, such that
every graph embeddable into S can be embedded so that every edge is a concatenation of at most
O(g) shortest paths.
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43:2 Shortest Path Embeddings of Graphs on Surfaces

1 Introduction

Fáry’s theorem and joint crossing numbers. A famous theorem of Fáry [10] (originally
showed by K. Wagner [33]) states that any simple planar graph can be embedded with
straight line segments representing the edges. In this article, we investigate a generalization
of Fáry’s theorem to the setting of surface-embedded graphs. We focus on the following
question: Given a surface S, is there a metric on S such that every graph embeddable into S
admits a shortest path embedding, i.e., can be embedded so that the edges are represented by
shortest paths? We call such a metric a universal shortest path metric. (We do not require
that these shortest paths are unique but as we will see later on, in the case of our positive
results, i.e., Theorem 1 and 4, the uniqueness of the shortest paths can be obtained as well.)

Before being enticed by this question, there were a number of problems involving joint
embeddings of curves or graphs on surfaces, but arising from seemingly disparate settings,
that motivated us to consider it. The literature on the subject goes back at least 15 years
with Negami’s work related to diagonal flips in triangulations [25]. He conjectured that there
exists a universal constant c such that for any pair of graphs G1 and G2 embedded in a surface
S, there exists a homeomorphism h : S → S such that h(G1) and G2 intersect transversely
at their edges and the number of edge crossings satisfies cr(h(G1), G2) ≤ c|E(G1)| · |E(G2)|.
Recently, on one hand, Matoušek, Sedgwick, Tancer, and U. Wagner [20, 21], working on
decidability of embeddability of 2-complexes into R3 and on the other hand, Geelen, Huynh,
and Richter [12], in a quest for explicit bounds for graph minors, were faced with a similar
question and provided bounds for related problems. Dually, this problem is equivalent
to the one of finding a graph with a specific pattern within an embedded graph while
bounding the multiplicity of the edges used: this is a fundamental question in computational
topology of surfaces, where one is interested in finding objects with a fixed topology and
minimal combinatorial complexity, e.g., short canonical systems of loops [19], short pants
decompositions [5] or short octagonal decompositions [3]; see also [4].

Negami provided an upper bound on the number of crossings which grows linearly with g,
and despite subsequent discoveries [1, 27], his conjecture is still open. In a paper that refines
Negami’s work [27], Richter and Salazar wrote “this [conjecture] seems eminently reasonable:
why should two edges be forced to cross more than once?”. The connection with our work is
that if two graphs are embedded transversally by shortest path embeddings, then indeed no
two edges cross more than once, since otherwise one of them could be shortcut.

Beyond these crossing numbers, the existence of shortest path universal metrics might
be of interest to Riemannian geometers working on curvature free estimates and extremal
metrics.

Related work. Generalizing Fáry’s theorem is one of the drives of the field of graph
drawing [31], where a lot of effort has been devoted towards embedding planar graphs with
additional constraints such that the edges are straight lines, or polylines with few bends.
Yet only few extensions to graphs embedded in surfaces are known. Two classical avatars of
Fáry’s theorem in the plane are of relevance to our work: Tutte’s barycentric embedding
theorem [32] and the Koebe-Andreev-Thurston circle packing theorem (see, for example, the
book of Stephenson [28]). Both have been generalized to surfaces, providing positive answers
to the following questions:
1. Given a surface S, a metric m, and a graph G embeddable into S, can we embed the

graph G so that every edge is represented by a geodesic with respect to m?
2. Given a graph G embeddable into S, does there exist a metric m on S so that G embeds

into S with shortest paths?
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a. b. c. d.

Figure 1 a. and b. Two geodesics crossing many times. c. A grid embedded in a torus with
geodesics. d. A reembedding of this grid with shortest paths.

Regarding the first question, Y. Colin de Verdière [6] generalized Tutte’s barycentric
embedding approach using a variational principle. The idea is to start with a topological
embedding of the graph, replace the edges by springs, and let the system reach an equilibrium.
Y. Colin de Verdière proved that for any metric of non-positive curvature, the edges become
geodesics with disjoint interiors when the system reaches stability; moreover, this embedding
is essentially unique within its homotopy class. However, geodesics need not be shortest
paths, and two geodesics can intersect an arbitrarily large number of times, see Figure 1.
Yet, these examples do not provide a negative answer to the second question, or to our main
question, since we could change the embedding by a homeomorphism of the torus (thus even
preserving the combinatorial map) to obtain a shortest path embedding.

The second question also has a positive answer, which can be proved via a generalization
of the circle packing theorem to closed surfaces [28]. Namely, for every triangulation T of
a surface, there exists a metric of constant curvature so that T can be represented as the
contact graph of a family of circles. The representation of the triangulation that places a
vertex at the center of its corresponding circle is an embedding with shortest paths. Such a
representation can be computed efficiently and can be used as a tool for representing graphs
on surfaces [23]. However, the metric is “chosen” by the triangulation, which makes this
approach ill-suited for our purpose.

Our results. Our objective here is a mix of these last two results. On the one hand, we
require shortest paths and not geodesics, on the other hand, we want a single metric for each
surface and not one which depends on the triangulation. We will also consider the relaxation
of our problem where we are allowed to use concatenations of shortest paths: we say that
a metric is a k-universal shortest path metric if every topologically embeddable graph can
be represented by an embedding in which edges are drawn as concatenations of k shortest
paths. This is akin to various problems in graph drawing where graphs are embedded with
polylines with a bounded number of bends instead of straight lines [8, 30].

Our results and techniques are organized by curvature. We first observe that for the
sphere and the projective plane, since there is a unique Riemannian metric of curvature 1, the
circle packing approach applies to all graphs. Then, with the aid of irreducible triangulations,
we provide flat metrics (i.e., of zero curvature) on the torus and the Klein bottle for which
every graph admits a shortest path embedding.

I Theorem 1. The sphere S2, the projective plane RP 2, the torus T 2, and the Klein bottle
K can be endowed with a universal shortest path metric.

This result could lead to the idea that shortest path embeddings can be achieved for
any metric, i.e., that every metric is a universal shortest path metric. We prove that this is
not the case already for the unit square flat metric on the Klein bottle (arguably the first
example to consider).

SoCG 2016



43:4 Shortest Path Embeddings of Graphs on Surfaces

I Theorem 2. Let K denote the Klein bottle endowed with the unit square flat metric on
the polygonal scheme aba−1b. Then there exists a graph embeddable into K which cannot be
embedded into K so that the edges are shortest paths.

In higher genus, the number of irreducible triangulations is too large to check all cases
by hand. Hyperbolic surfaces of large genus are hard to comprehend, but the probabilistic
method allows us to show that if there exists universal shortest path metrics at all, their
fraction tends to 0 as the genus tends to infinity.

I Theorem 3. For any ε > 0, with probability tending to 1 as g goes to infinity, a random
hyperbolic metric is not a O(g1/3−ε)-universal shortest path metric. In particular, with
probability tending to 1 as g goes to infinity, a random hyperbolic metric is not a universal
shortest path metric.

We refer to Section 5 for an introduction to the probability measure used on the space of
hyperbolic metrics, called the Weil-Petersson volume form. Our proof is an application of
deep results on this volume form by Mirzakhani [22] and Guth, Parlier, and Young [14].

For genus g > 1 we do not know if there exist shortest path universal metrics. But
relaxing the question to concatenations of shortest paths and combining ideas from hyperbolic
geometry and computational topology, we provide for every orientable surface of genus g an
O(g)-universal shortest paths metric. The proof relies on the octagonal decompositions of É.
Colin de Verdière and Erickson [3] and a variant of the aforementioned theorem of Y. Colin
de Verdière [6].

I Theorem 4. For every g > 1, there exists an O(g)-universal shortest path hyperbolic
metric m on the orientable surface S of genus g.

In this article we choose to focus on Riemannian metrics of constant curvature, but we
remark that both of our last results also hold in the setting of piecewise-Euclidean metrics
as well. For the upper bound, it suffices to replace hyperbolic hexagons with Euclidean ones,
and the rest of the proof works similarly. For the lower bound it follows from the strong
parallels between the Weil-Petersson volume form on moduli space and the counting measure
on the space of N = 4g Euclidean triangles randomly glued together. In particular the results
that we use have analogs in this latter space: see Brooks and Makover [2] and the second
half of the article of Guth, Parlier, and Young [14].

We have stated our results for graphs in this introduction. We note that one could
consider the problem of shortest path embeddings for a graph with a fixed embedding up to
a homeomorphism of the surface (i.e., for a combinatorial map), which is more in the spirit
of Negami’s conjecture. Our positive results can be stated in this stronger version; i.e., in
our proofs the map is preserved. Our negative results would be weaker if the map had to
be preserved, and in fact the proofs deal firstly with the statements for maps and then we
derive the analog for graphs with some extra work.

The main open question is the existence of universal shortest path metrics, or O(1)-
universal shortest path metrics. Natural candidates for these are given by certain celebrated
extremal metrics, for instance the one minimizing

∫
log det(∆)ds, (where ∆ denotes the

Laplacian) that appeared in the work of Osgood, Phillips, and Sarnak [26], or the extremal
ones in Gromov’s systolic inequality [13].

After introducing the main definitions in Section 2, we will prove Theorems 1, 2, 3, and 4
in Sections 3, 4, 5, and 6, respectively.
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2 Preliminaries

In this article we only deal with compact surfaces without boundaries. By the classification
theorem, these are characterized by their orientability and their genus, generally denoted
by g. Orientable surfaces of genus 0 and 1 are respectively the sphere S2 and the torus T 2,
while non-orientable surfaces of genus 1 and 2 are the projective plane RP 2 and the Klein
bottle K. The orientable surface of genus g is denoted by Sg. The Euler genus is equal to
the genus for non-orientable surfaces and equals twice the genus for orientable surfaces.

By a path on a surface S we mean a continuous map p : [0, 1]→ S, and a closed curve
denotes a continuous map γ : S1 → S. These are simple if they are injective. We will be using
occasionally the notions of homotopy, homology, and universal cover, we refer to Hatcher [15]
for an introduction to these concepts. All the graphs that we consider in this paper are
simple graphs unless specified otherwise, i.e., loops and multiple edges are disallowed. An
embedding of a graph G into a surface S is, informally, a crossing-free drawing of G on S.
We refer to Mohar and Thomassen [24] for a thorough reference on graphs on surfaces, and
only recall the main definitions. A graph embedding is cellular if its faces are homeomorphic
to open disks. Euler’s formula states that v − e+ f = 2− g for any graph with v vertices, e
edges, and f faces cellularly embedded in a surface S of Euler genus g. When the graph is
not cellularly embedded, this becomes an inequality: v − e+ f ≥ 2− g. A triangulation of a
surface is a cellular graph embedding such that all the faces are adjacent to three edges. By
a slight abuse of language, we will sometimes refer to an embedding of a triangulation, by
which we mean an embedding of its underlying graph which is homeomorphic to the given
triangulation. A pants decomposition of a surface S is a family of disjoint curves Γ such that
cutting S along all of the curves of Γ gives a disjoint union of pairs of pants, i.e., spheres with
three boundaries. Every surface except the sphere, the projective plane, the torus, and the
Klein bottle admits a pants decomposition with 3g−3 closed curves and 2g−2 pairs of pants.
Note that all the pants decompositions are not topologically the same, i.e., are not related
by a self-homeomorphism of the surface. A class of pants decompositions equivalent under
such homeomorphisms will be called the (topological) type of the pants decomposition. We
say that an embedding f : G→ S contains a pants decomposition if there exists a subgraph
H ⊆ G such that f : H → S is a pants decomposition of S.

In this article, we will also be dealing with notions coming from Riemannian geometry,
we refer to the book of do Carmo for more background [7]. By a metric we always mean a
Riemannian metric, which associates to every point of a surface the curvature at this point.
The Gauss-Bonnet theorem ties geometry and topology; it implies that the sign of a metric of
constant curvature that a topological surface accepts is determined solely by its Euler genus.

A Riemannian metric induces a length functional on paths and closed curves. A path
or a closed curve is a geodesic if the functional is locally minimal. Shortest paths between
two points are global minima of the length functional. Unlike in the plane, geodesics are
not, in general, shortest paths; in addition, neither geodesics nor shortest paths are unique
in general. If we have a shortest path embedding of a graph where every edge is drawn as
the unique shortest path between its endpoints, we speak of shortest paths embedding with
uniqueness.

3 Shortest path embeddings through minimal triangulations.

I Theorem 1. The sphere S2, the projective plane RP 2, the torus T 2, and the Klein bottle
K can be endowed with a universal shortest path metric.

SoCG 2016
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In the theorem above, for S2 and RP 2 we use the round metric of positive constant
curvature scaled to 1. In the case of torus we use the flat metric obtained by the identification
of the opposite edges of the square. In the case of the Klein bottle we can show that an
analogous result fails with the flat square metric on the polygonal scheme aba−1b, as we will
see in Section 4. But we can get the result for the metric obtained by the identification of
the edges of a rectangle of dimensions 1× b where b =

√
4/3 + ε for some small ε > 0. (The

edges of length 1 are identified coherently, whereas the edges of length b are identified in
opposite directions.)

In all cases we can get shortest path embeddings with uniqueness. Actually, for the torus
and the Klein bottle, uniqueness will be a convenient assumption for inductive proofs.

The sphere and the projective plane. The circle packing theorem states that any trian-
gulation of the sphere can be represented as the contact graph of circles on the sphere [28,
Theorem 4.3], endowed with the usual metric. Since any graph can be extended into a
triangulation (adding new vertices if needed), and paths between centers of circles are shortest
paths, this proves Theorem 1 for S2. For RP 2 endowed with the spherical metric, a similar
circle packing theorem holds, yet we could not find a satisfying reference for it, so we provide
a proof of it in the full version of the paper [16], based on building the circle-packing in the
universal cover of RP 2.

Minimal triangulations. Let S be a surface and T be a triangulation of it. The triangulation
T is called reducible, if it contains an edge e such that the contraction of e yields again a
triangulation, which we denote by T/e. We refer to e as a contractible edge (we do not mean
contractibility in a topological sense). On the other hand, a triangulation is minimal (or
irreducible), if no edge can be contracted this way. For every surface there is a finite list of
minimal triangulations. In particular, for the torus T 2 this list consists of 21 triangulations
found by Lawrencenko [17] and for the Klein bottle K there are 29 minimal triangulations
found by Sulanke [29].

The strategy of the proof of Theorem 1 for T 2 and K is to show that it is sufficient to
check Theorem 1 for minimal triangulations with appropriate fixed metric; see Lemma 5.
Then, since every embedded graph can be extended to a triangulation (possibly with adding
new vertices), we finish the proof by providing the list of shortest path embeddings of the
minimal triangulations.

I Lemma 5. Let S be a surface equipped with a flat metric. Let T be a reducible triangulation
with contractible edge e. Let us assume that T/e admits a shortest path embedding with
uniqueness into S. Then T admits a shortest path embedding with uniqueness into S as well.

The restriction on flat metrics in the lemma above does not seem essential, but this is all
we need and this way the proof is quite simple.

Proof. Let v be the vertex of T/e obtained by the contraction of e. The idea is to consider
the shortest path drawing of T/e. Then we perform the appropriate vertex splitting of v (the
inverse operation to the contraction) in a close neighborhood of v so that we get a shortest
path embedding of T .

In order to see that this is indeed possible, let us consider an edge f = uv of T/e.
Since the shortest paths are unique, a simple compactness argument shows that there is an
ε-neighborhood Nf of f in S which is isometric to an ε-neighborhood of a segment of the
same length in R2 and such that for every v′ in the ε-neighborhood of v, the straight line
segment connecting v and v′ inside Nf is the unique shortest path between v and v′ in S.
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1 2 3 4

6 18 19 20 21

5

Figure 2 Minimal triangulations of the torus.

Therefore, considering such a neighborhood for every edge, it is sufficient to perform the
vertex splitting of v in sufficiently small neighborhood of v so that we do not introduce new
intersections as on the picture.

v

fNf

J

The minimal triangulations of T 2 and K. In Figure 2 we provide a list of shortest path
embeddings with uniqueness of minimal triangulations of the torus with a flat metric obtained
by identifying the opposite edges of the unit square. They are in the same order as in the
book of Mohar and Thomassen [24, Figure 5.3]. The black (thin) edges are the edges of
the triangulation whereas the green (thick) edges are the identified boundaries of the unit
square which are not parts of the edges of the triangulations. We just skip drawings of the
triangulations 7 to 17, because they are all analogous to the triangulation 6, they only have
different patterns of diagonals. It is clear that every edge is a geodesic. In order to check
that each of them is drawn as a shortest path, it is sufficient to verify that each edge projects
vertically and horizontally to a segment of length less than 1

2 .
For the Klein bottle K, we also provide a metric such that all the minimal triangulations

admit shortest path embeddings with uniqueness. We obtain this metric as the identification
of the edges of the rectangle R = [0, a]× [0, b], where a = 1 and b =

√
4/3 + ε for sufficiently

small ε. The edges of length 1 are identified in coherent directions. The edges of length b
are identified in the opposite directions. Minimal triangulations of the Klein bottle were
obtained by Lawrencenko and Negami [18], and Sulanke [29], and we show how to embed
them with shortest paths in Figure 3. The details regarding these embeddings are explained
in the full version [16], but for a cursory glance the Figures 3 should be self-explanatory
with a couple of remarks. In some cases an additional shift is necessary by a small value

1
1000 (but this value is large compared to ε): this is indicated by arrows next to the vertices.
(The pair of arrows in Kh25 indicates a shift by 2

1000 .) The triangulations split into two

SoCG 2016
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Kh1 Kh2 Kh4 Kh5Kh3

Kh6 Kh7 Kh8 Kh9 Kh10

Kh11 Kh12 Kh13 Kh14 Kh25

Kc1Mb1 Mb2 Mb3

Figure 3 Minimal triangulations of the Klein bottle.

types—so called Kh cases and Kc cases. For the Kh cases we omit few pictures analogous
to Kh14. For the Kc cases, the triangulations of the Klein bottle are obtained by gluing
together two triangulations of the Möbius band pictured in the bottom line; Kc1, obtained
from two copies of Mb1, is provided as an example.

4 Square flat metric on the Klein bottle

The task of this section is to prove the following theorem.

I Theorem 2. Let K denote the Klein bottle endowed with the unit square flat metric on
the polygonal scheme aba−1b. Then there exists a graph embeddable into K which cannot be
embedded into K so that the edges are shortest paths.

We consider the minimal triangulation Kc1 (see Figure 3) and we denote by G the
underlying graph for this triangulation. We will prove that G does not admit a shortest path
embedding into K with the square metric. First, we observe that the triangulation Kc1 is
the only embedding of G into K. The proof is given in the full version [16].
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(0, 0)

(3, 3)

a′ a′′

b′ c′

points of Xa

a b

c

Figure 4 The Klein bottle with a letter ‘Γ’, and its universal cover (left). A lift of the cycle abc
(right).

I Proposition 6. G has a unique embedding into the Klein bottle.

For contradiction, let us assume that G admits a shortest paths embedding into K. We
know that Kc1 is obtained by gluing two triangulations of a Möbius band along a cycle
of length 3 (the triangle corresponding to this cycle is not part of the triangulation). Let
abc be this cycle. With a slight abuse of notation we identify this cycle with its image in
the (hypothetical) shortest path embedding into K. Our strategy is to show that already
abc cannot be embedded into K with shortest path edges, which will give the required
contradiction. By Proposition 6, we know that abc splits K to two Möbius bands.

Let X = R2 be the universal cover of K (with standard Euclidean metric). Let π : X → K

be the isometric projection corresponding to the cover. We will represent the Klein bottle
with the flat-square metric as the unit square [0, 1]2 with suitable identification of the edges
(aba−1b, as in the previous section). We will use the convention that π((0, 1)2) = (0, 1)2; that
is, the projection is the identity on the interior of this square. See Figure 4.

Given a point p ∈ K we set Xp := π−1(p). Finally, let Vp be the Voronoi diagram in X
corresponding to the set Xp.

I Lemma 7. Let p and q be two points in K and γ be an arc (edge) connecting them,
considered as a subset of K. Then γ is the unique shortest path between p and q if and
only if there are p′ ∈ Xp, q′ ∈ Xq such that γ = π(p′q′) where p′q′ denotes the straight edge
connecting p′ and q′ in X and q′ belongs to the open Voronoi cell for p′ in Vp.

The proof directly follows the correspondence between K and X. It is given in the full
version [16].

Now let us lift the cycle abc to a path a′b′c′a′′ in X; see Figure 4. Given a curve in X, we
call the length of its projection to the x-axis, the “horizontal length” of the curve; similarly
we speak about the horizontal distance and the vertical distance of two points in X.

I Lemma 8. The horizontal distance between a′ and a′′ is at least 2.

Sketch of a proof. If we consider the point a′ fixed, then the position of a′′ in Xa determines
the homotopy class of the cycle abc in the fundamental group π1(K).

SoCG 2016
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The horizontal distance between a′ and a′′ must be a non-negative integer. However, by
checking the homology class of abc in the Z and Z2-homology, it is possible to rule out the
cases when this distance is 0. By the fact that abc is a double-sided cycle, it is possible to
rule out the distance 1. The full proof is given in the full version of this paper [16]. J

I Lemma 9. Let γ be a unique shortest path in K connecting points p and q. Let γ′ be a
lift of γ with endpoints p′ and q′. Then the horizontal distance in X between p′ and q′ is less
than 5

8 .

Proof. Let C be the open Voronoi cell for p′ in Vp. By Lemma 7, q′ belongs to C. Therefore,
it is sufficient to check that every point c′ of C has horizontal distance less than 5

8 from p′.
Without loss of generality, we may assume that the x-coordinate of p′ equals 0 since shifting
p′ in horizontal direction only shifts Xp and Vp ( note that this is not true for the vertical
direction). For contradiction, there is a c′ in C at distance at least 5

8 and without loss of
generality the x-coordinate of c′ is positive. Let p′′ be the point of Xp with x-coordinate
equal 1 which is vertically closest to c′ (pick any suitable point in case of draw); see the
picture on the left. The vertical distance between c′ and p′′ is at most 1

2 . A simple calculation,
using the Pythagoras theorem, gives that p′′ is at most as far from c′ as p′. A contradiction.

p′

p′′

c′

J

Finally, we summarize how the previous lemmas yield a contradiction. By Lemma 8, the
horizontal distance between a′ and a′′ is at least 2. On the other hand, Lemma 9 gives that
the horizontal length of each of the edges a′b′, b′c′, and c′a′′ is at most 5

8 , altogether at most
15
8 . This gives the required contradiction, which finishes the proof of Theorem 2.

5 Asymptotically almost all hyperbolic metrics are not universal

Before stating the main theorem of this section, we will give some very quick background on
the geometry of surfaces, we refer to Farb and Margalit [9] for a proper introduction. The
Teichmüller space Tg of a surface S of genus g denotes the set of hyperbolic metrics on S,
such that two metrics are equivalent if they are related by an isometry isotopic to the identity.
In some contexts, like ours, one might also want to identify metrics related by an isometry
(not necessarily isotopic to the identity). The corresponding space is called the moduli space
Mg of the surface, and is obtained by quotienting Tg by the mapping class group of S, i.e.,
its group of homeomorphisms. This moduli space can be endowed with multiple structures,
here we will be interested in a particular one, called the Weil-Petersson metric. This metric
providesMg with a Riemannian structure of finite volume, and therefore by renormalizing,
we obtain a probability space, allowing to choose a random metric. We can now state the
main theorem of this section.

I Theorem 3. For any ε > 0, with probability tending to 1 as g goes to infinity, a random
hyperbolic metric is not a O(g1/3−ε)-universal shortest path metric. In particular, with
probability tending to 1 as g goes to infinity, a random hyperbolic metric is not a universal
shortest path metric.
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The proof is a consequence of two important results on random hyperbolic metrics. The
first is a small variant of a theorem of Guth, Parlier, and Young [14, Theorem 1]. Before
stating it, we need some definitions.

Given a hyperbolic metric m on a surface S, we say that m has total pants length at least
` if in any pants decomposition Γ of S, the lengths of the closed curves of Γ sum up to at least
`. We say that m has total pants length of type ξ at least ` if in any pants decomposition Γ
of S of type ξ, the lengths of the closed curves of Γ sum up to at least `.

I Theorem 10. For any ε > 0, a random metric on Mg has total pants length at least
g7/6−ε with probability tending to 1 as g → ∞. For any ε > 0 and any family of types of
pants decomposition ξg, a random metric on Mg has total pants length of fixed type ξg at
least g4/3−ε with probability tending to 1 as g →∞.

The proof is almost identical to the one in Guth, Parlier, and Young [14]; it is summarized
in the full version of this paper [16].

The following is an immediate corollary of this theorem.

I Corollary 11. Let Tg be a family of triangulations of Sg, such that every member of Tg

contains a pants decomposition of fixed type ξg. For any ε > 0, with probability tending to 1
as g →∞, a shortest embedding of Tg into a random hyperbolic surface of genus g has length
at least Ω(g4/3−ε).

The next theorem was proved by Mirzakhani [22, Theorem 4.10].

I Theorem 12. With probability tending to 1, the diameter of a random hyperbolic surface
of genus g is O(log g).

Theorem 3 is proved by providing an explicit family of graphs Gg which will embed badly.
It is defined in the following way for g ≥ 2. Let ξg be a type of pants decompositions for
every value of g.

We start with a pants decomposition of type ξg of a surface Sg

We place four vertices on every boundary curve.
We triangulate each pair of pants with a bounded size triangulation so that each cycle of
length 3 bounds a triangle in the triangulation, and any path connecting two boundary
components of the pair of pants has length at least 4 (in particular Gg is a simple graph
and each cycle of length 3 in the graph Gg bounds a triangle in the triangulation).

The following proposition controls the issues related to the flexibility of embeddings of
graphs into surfaces, it is proved in the full version [16].

I Proposition 13. There is a unique embedding of Gg into Sg, up to a homeomorphism; in
particular every embedding contains a pants decomposition of type ξg.

With these three results at hand we are ready to provide a proof of the theorem.

Proof of Theorem 3. We use the family of graphs Gg previously defined. Since there are
O(g) curves in a pants decomposition, it contains O(g) edges, and every embedding of Gg

into Sg contains a pants decomposition of type ξg by Proposition 13.
Now, by Corollary 11, for every ε > 0, and for g large enough, the probability that the

shortest possible embedding of Gg into a random metric has length at least O(g4/3−ε) is at
least 1− ε/2. In particular, since there are O(g) edges in Gg, some edge eg in this embedding
must have length at least Ω(g1/3−ε). By Theorem 12, we can choose g large enough so that
with probability at least 1− ε

2 , the random hyperbolic metric has diameter O(log g). Hence,
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b.a.

c.

Figure 5 a. An octagonal decomposition b. A hexagonal decomposition c. How to add one
closed curve to upgrade an octagonal decomposition to a hexagonal decomposition.

by the union bound, with probability 1− ε both properties hold. Therefore, for every ε > 0,
there exists some value g0 such that for any g ≥ g0, in any embedding of Gg, there exists an
edge eg = (x, y) such that `m(eg) = Ω(g1/3−ε), but dm(x, y) ≤ diam(m) ≤ O(log g). This
implies that e is not drawn by a shortest path. Similarly, subdividing each edge O(g1/3−ε)
times will run into the same issue. This concludes the proof. J

6 Higher genus: positive results

I Theorem 4. For every g > 1, there exists an O(g)-universal shortest path hyperbolic
metric m on the orientable surface S of genus g.

Our approach to prove Theorem 4 is to cut the surface Sg with a hexagonal decomposition
∆, so that every edge of G is cut O(g) times by this decomposition ∆. The construction
to do this is a slight modification of the octagonal decompositions provided by É. Colin de
Verdière and Erickson [3, Theorem 3.1]. Each of the hexagons is then endowed with a specific
hyperbolic metric mH , and pasting these together yields the hyperbolic metric m on Sg.
The hyperbolic metric mH is chosen so that the hexagons are convex, i.e., the shortest paths
between points of a hexagon stay within this hexagon. Therefore, there only remains to
embed the graph G cut along ∆, separately in every hexagon with shortest paths. To do
this, we use a variant of a theorem of Y. Colin de Verdière [6] which generalizes Tutte’s
barycentric method to metrics of nonpositive curvature.

Hexagonal decompositions. A hexagonal decomposition, respectively an octagonal decom-
position of Sg is an arrangement of closed curves on Sg that is homeomorphic to the one
pictured in Figure 5.a., respectively Figure 5.b. In particular, every vertex has degree four
and every face has six sides, respectively eight sides.

Octagonal decompositions were introduced by É. Colin de Verdière and Erickson [3] where
they showed how to compute one that does not cross the edges of an embedded graph too
many times. We restate their theorem in our language.

I Theorem 14 ([3, Theorem 3.1]). Let G be a graph embedded in a surface Sg for g ≥ 2.
There exists an octagonal decomposition Γ of Sg such that each edge of G crosses each closed
curve of Γ a constant number of times.
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σ1

σ2

σ2

Figure 6 The intersection graph I and the two involutions: σ1 is the symmetry about the dashed
horizontal line, and σ2 swaps every disk and its adjacent star.

We observe that this octagonal decomposition can be upgraded to a hexagonal decom-
position that still does not cross G too much:

I Corollary 15. Let G be a graph embedded in a surface Sg. There exists a hexagonal
decomposition ∆ of Sg such that each edge of G crosses each closed curve of ∆ a constant
number of times, except for maybe one closed curve which is allowed to cross each edge of G
at most O(g) times. In particular, the number of crossing between every edge of G and ∆ is
O(g).

Proof. The decomposition ∆ is simply obtained by taking the decomposition Γ and adding a
single curve that follows closely a concatenation of O(g) subpaths of curves of Γ, see Figure 5c.
The resulting arrangement of curves has the topology of a hexagonal decomposition, and the
bounds on the number of crossings results directly from the construction. J

The hyperbolic metric. We first endow each hexagon of the hexagonal decomposition with
the hyperbolic metric mH of an equilateral right-angled hyperbolic hexagon. Since the
hexagons have right angles and the vertices of a hexagonal decomposition have degree 4, this
metric can be safely pasted between hexagons to endow Sg with a hyperbolic metric m. The
main property of this metric that we will use is the following one:

I Proposition 16. Every hexagon H, viewed as a subset of Sg endowed with m, is convex,
i.e., every path between x, y ∈ H that is a shortest path in H is also a shortest path in Sg.

Proof. The proof relies on an exchange argument based on the symmetries of the hexagonal
decomposition.

The intersection graph I of the hexagonal decomposition is defined by taking one vertex
for each hexagon and edges between adjacent hexagons (we allow multiple edges). We are
interested in two graph automorphisms which are also involutions. These are pictured in
Figure 6:

The symmetry σ1 about the horizontal axis, corresponding to the so-called hyperelliptic
involution of the surface S.
The automorphism σ2 swapping every hexagon with its neighbor in the octagonal decom-
position.

Since all the hexagons are isometric, these involutions correspond naturally to isometric
involutions of S.

Now, let γ be a shortest path between two vertices x and y in a hexagon H1, let us
assume without loss of generality that H1 is in the upper part of I. This path γ naturally
induces a walk in I obtained by taking each hexagon of which interior is met by γ. This
walk does not backtrack at some hexagon H: otherwise one could shortcut γ by staying on
the boundary of H.
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From γ, one can build a path γ′ between x and y which stays in the upper half of the
graph: for every maximal subpath of the graph in the lower half, one applies the isometry
σ1, effectively mirroring these paths in the upper half. Similarly, by applying σ2, one obtains
a path γ′′, which only uses half of the hexagons. The walk in I corresponding to γ′′ lies now
in a path. Since it does not backtrack, it is necessarily trivial and never leaves hexagon H1.
We have thus found a shortest path in H1 connecting x and y. J

Finishing the proof. We prove in this paragraph how to reembed a graph embedded in a
hexagon so that its edges are shortest paths. This allows us to finish the proof.

I Theorem 17. Let G be a graph embedded as a triangulation in a hyperbolic hexagon H
endowed with the metric mH . If there are no dividing edges in G, i.e., edges between two
non-adjacent vertices on the boundary of H, then G can be embedded with geodesics, with the
vertices on the boundary of H in the same positions as in the initial embedding.

Given this theorem, we can now conclude the proof of Theorem 4: the intersections of
our input graph with the hexagonal decompositions subdivide it, and in each hexagon one
can subdivide the dividing edges if needed, then upgrade the subgraph to a triangulation,
and finally embed it with this theorem. The details are in the full version [16]. We note that
by subdividing each edge once more, the shortest paths we obtain are unique.

The proof of Theorem 17 is obtained in a spirit similar to the proof of the one of the
celebrated spring theorem of Tutte [32]. However, there are two main differences which
prevent us from directly appealing to the literature: on the one hand the metric is not
Euclidean but hyperbolic, and on the other hand the boundary of the input polygon is
not strictly convex, since there may be multiple vertices of G on a geodesic boundary of
H. The hypothesis on dividing edges is tailored to circumvent the second issue, and in a
Euclidean setting it was proved by Floater [11] that the correspond embedding theorem
holds. Regarding the first issue, Y. Colin de Verdière stated a Tutte embedding theorem [6,
Theorem 3] for the hyperbolic setting with strictly convex boundary, yet he actually did
not provide a proof for it. In Appendix A of the full version [16] we show how to prove
Theorem 17 in the generality that we need following the ideas laid out (in French) by Y.
Colin de Verdière in the rest of his article [6].
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