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a b s t r a c t

This paper initiates a general study of the connection between graph homomorphisms and the Tutte 
polynomial. This connection can be extended to other polynomial invariants of graphs related to the Tutte 
polynomial such as the transition, the circuit partition, the boundary, and the coboundary polynomials. 
As an application, we describe in terms of homomorphism counting some fundamental evaluations of the 
Tutte polynomial in abelian groups and statistical physics. We conclude the paper by providing a 
homomorphism view of the uniqueness conjectures formulated by Bollobás, Pebody and Riordan.

1. Introduction

Counting homomorphisms between graphs arises in many different areas including extremal
graph theory, partition functions in statistical physics and property testing of large graphs [6]. Given
twographsG = (V (G), E(G)) andH = (V (H), E(H)), a homomorphismof G toH , written as f : G→ H ,
is a mapping f : V (G) → V (H) such that f (u)f (v) ∈ E(H) whenever uv ∈ E(G). When G and H are
multigraphs, that is, they might have parallel edges and loops, a homomorphism of G to H is a function
fV : V (G)→ V (H) together with an associated function fE : E(G)→ E(H) consistent with fV in that
fE(uv) = fV (u)fV (v), and such that fE maps parallel edges (resp., loops) in G to parallel edges (resp.,
loops) in H .
The number of homomorphisms of G to H is denoted by hom(G,H). This number, considered

as a function of G with H fixed is a graph parameter, that is, a function of graphs invariant under
isomorphisms. A broader class of parameters related to homomorphismshas been recently intensively
studied in the context of statistical physics in [6].
The motivation of this paper is to show the usefulness of the homomorphism perspective in the

study of polynomial invariants of graphs. Thus, our main contribution is to prove that there exists a
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strong connection between counting graph homomorphisms and evaluating polynomials associated
with graphs. The importance of this approach lies in its applicability. For instance, it can put in a new
context somewell-knownproblems such as the uniqueness questions formulated by Bollobás, Pebody
and Riordan in [4].
One of the most studied polynomial invariants in combinatorics is the Tutte polynomial, or

dichromate of [32]. This is an isomorphism-invariant function from the set of finite multigraphs with
loops allowed to Z[x, y] which can be defined in several ways, see for instance [5,7,32]. Throughout
this paper, we shall consider its contraction–deletion formulae. Given a finite graph G = (V (G), E(G))
and e ∈ E(G), we denote by G − e and G/e, respectively, the result of deleting and contracting the
edge e in G. Thus, the Tutte polynomial of G, denoted by T (G; x, y), can be defined by the following
recurrence relations:

1. If G has no edges then T (G; x, y) = 1.
2. T (G; x, y) = T (G− e; x, y)+ T (G/e; x, y) provided that e ∈ E(G) is neither a loop nor a bridge.
3. T (G; x, y) = yT (G− e; x, y)whenever e ∈ E(G) is a loop.
4. T (G; x, y) = xT (G/e; x, y)whenever e ∈ E(G) is a bridge.

It is well known that homomorphisms of a graph G to the complete graph Kn are just n-colorings
of G (see [16]). In [18], Joyce showed that the number of homomorphisms of any graph G to a
complete graphwith non-multiple edges and p loops at each vertex, is an evaluation of the coboundary
polynomial of G. This polynomial was first defined in [8] as a generalization of the chromatic
polynomial. Since the Tutte polynomial can be regarded as an extension of the chromatic and the
coboundary polynomials, a natural question arises: can we find other graphs H such that the number
of homomorphisms of any graph G to H is given (up to a determined term) by an evaluation of the
Tutte polynomial of G?
This paper contains twomain results.We first prove that every complete graphwith p loops at each

vertex and constantmultiplicity q at the non-loop edges can play the role ofH , whenever p is different
than q. Just as the Tutte polynomial is an extension of the chromatic and the coboundary polynomials,
this complete graphwhichwe denote by K p,qn is a natural extension of both the complete graph Kn and
the Joyce graph K p,1n . Fig. 1 shows four instances of this family of graphs.
Our second main result is the characterization, by assuming a local condition, of those graphs H

such that the parameter hom( ,H) can be recovered from the Tutte polynomial. We prove that such
graphs are necessarily isomorphic to graphs of the family K p,qn . The local condition is not too restrictive
since it is satisfied by all the multiplicative invariants of graphs that can be deduced from the Tutte
polynomial.
The Tutte polynomial extends not only the chromatic and the coboundary polynomials but also,

among others, the flow, the boundary, the transition and the circuit partition polynomials. Thus,
our characterization leads to important connections between homomorphism counting and these
polynomials, which have a special role in the field of graph theory. Indeed, the boundary polynomial
was introduced in [33] as a generalization of the flow polynomial, and it is the dual coboundary
polynomial [7]. Both polynomials have been recently used to obtain new evaluations of the Tutte
polynomial at some points on the hyperbolae Hα = {(x, y)|(x− 1)(y− 1) = α} for α ∈ N (see [13]).
The boundary polynomial is also the coboundary polynomial of the dual of the cycle matroid of the
graph. We refer the reader to [33] for its particular interpretation for graphs.
The transition polynomial arose in [17] as a tool for summarizing and generalizing a number of

results obtained by Martin [26,27] and Las Vergnas [22–24]. It has many interesting applications in



knot theory, see for example [19]. The circuit partition polynomial was first defined in [9], and was
so named in [3]. This polynomial is a simple transform of the original Martin polynomial, which was
developed by Martin in [26] to study families of cycles in 4-regular Eulerian graphs. Furthermore,
the circuit partition polynomial has surprising applications to many areas including infrastructure
networks and reconstruction of DNA sequences, see for instance [1].
As an application, we use our characterization to describe in terms of homomorphism counting

some important evaluations of the Tutte polynomial in abelian groups and statistical physics.
Specifically, we sketch applications to difference sets in abelian groups, the Potts model, and the
random cluster model in statistical mechanics.
We shall conclude the paper by introducing a new type of uniqueness of graphs related to

homomorphism counting, which we call coloring uniqueness, and by showing its relation with Tutte
uniqueness and chromatic uniqueness.

2. Graph homomorphisms and the Tutte polynomial

In this sectionwe establish a connection between counting graph homomorphisms and evaluating
the Tutte polynomial.
We first introduce some notation that will be used throughout this paper. The graphs considered

are finite and not necessarily simple. Thus, let us denote byΩ the set of finite multigraphs with loops
allowed. The vertex set and edge set of a graph G are denoted by V (G) and E(G). An edge e ∈ E(G)
can be either a loop uu or a non-loop edge uv with u 6= v. The multiplicity of an edge e = uv ∈ E(G),
written asm(e), is the number of edges joining u and vwhen u 6= v, and the number of loops attached
at uwhen u = v. The set of homomorphisms of a graph G to a graph H is denoted by Hom(G,H), and
its order is hom(G,H), which is given by the following expression:

hom(G,H) =
∑

f :V (G)→V (H)

∏
u,v∈V (G)

m(f (u)f (v))m(uv)

where the multiplicities are zero when the vertices are not adjacent, and considering 00 = 1.
Given f ∈ Hom(G,H) and e = uv ∈ E(G), we write f (e) = f (u)f (v) ∈ E(H). For a fixed H ∈ Ω , a

constant x that depends on H is written as xH . The graphs K
p,q
n defined in the previous section satisfy

the following conditions: p, q, n ∈ N, n ≥ 1 and p, q ≥ 0. When n = 1, we consider q = 0 and p > 0.
One of the most important properties of the Tutte polynomial is the existence of a

contraction–deletion formula. In fact, this polynomial is an example of a Tutte–Grothendieck invariant
[7,33], that is, a function f from the set of graphs to a fixed commutative ring satisfying the following:
• Contraction–Deletion Formula: f (G) = f (G − e) + f (G/e) when G is connected and e is neither a
loop nor a bridge.
• Multiplicativity: the invariant of a graph is the product of the invariants of its connected
components.
• Isomorphism Invariance: the invariants of two isomorphic graphs are the same.

The following result states that every Tutte–Grothendieck invariant is essentially an evaluation of
the Tutte polynomial.

Theorem 2.1 ([33]). Let f be any function from the set of graphs to a fixed commutative ring
Z[x0, y0, n, a, b] which is multiplicative and isomorphism invariant. Further, let f satisfy the following
recurrence relations:
• f (G) = nλ if G has no edges and λ vertices.
• f (G) = af (G− e)+ bf (G/e) provided that e ∈ E(G) is neither a loop nor a bridge.
• f (G) = x0f (G/e) whenever e ∈ E(G) is a bridge.
• f (G) = y0f (G− e) whenever e ∈ E(G) is a loop.
Then f (G) = ncam−λ+cbλ−cT (G; x0b ,

y0
a ) where G is a graph with λ vertices, m edges and c connected

components.

Observe that the parameter hom( , K p,qn ) ismultiplicative, and hom(G, K p,qn ) = nλ ifG is the graph
with λ vertices and no edges. Thus, the following result is the key tool to relate this parameter to the
Tutte polynomial. It defines hom( , K p,qn ) in terms of a contraction–deletion formulae.



Lemma 2.2. The number of homomorphisms of any graph G to K p,qn satisfies the following recurrence
relations:
(1) hom(G, K p,qn ) = q hom(G − e, K p,qn ) + (p − q) hom(G/e, K p,qn ) provided that e ∈ E(G) is neither a
loop nor a bridge.

(2) hom(G, K p,qn ) = p hom(G− e, K p,qn ) whenever e ∈ E(G) is a loop.
(3) hom(G, K p,qn ) = (p+ q(n− 1)) hom(G/e, K p,qn ) whenever e ∈ E(G) is a bridge.
Proof. Assume first that K p,qn is a simple graph, that is p = 0 and q = 1. Statements (1), (2) and (3)
are the contraction–deletion formulae of the chromatic polynomial:
• hom(G − e, K 0,1n ) = hom(G, K 0,1n ) + hom(G/e, K 0,1n ) whenever e ∈ E(G) is neither a loop nor a
bridge.
• If G has loops then hom(G, K 0,1n ) = 0.
• hom(G, K 0,1n ) = (n− 1) hom(G/e, K 0,1n )whenever e ∈ E(G) is a bridge.

Suppose now that K p,qn is not a simple graph. For n > 1, we consider three cases:
(1) First suppose that e = uv is an edge of a graph G which is neither a loop nor a bridge. Let
f ∈ Hom(G, K p,qn ). Obviously, f (e) = f (u)f (v) might be either a loop or a non-loop edge with
multiplicity q. In the first case, there are clearly p · hom(G/e, K p,qn ) homomorphisms of G to K p,qn .
In the second case, we have to count the number of homomorphisms of G to K p,qn satisfying that
f (u) 6= f (v). Thus, we have to exclude from the set Hom(G − e, K p,qn ) those homomorphisms
such that f (e) is a loop, that is, the set Hom(G/e, K p,qn ). Therefore, there are q hom(G− e, K p,qn )−
q hom(G/e, K p,qn ) homomorphisms so that the image of e is a non-loop edge with multiplicity q.
Hence, the total number is hom(G, K p,qn ) = q hom(G − e, K p,qn ) + (p − q) hom(G/e, K p,qn ). This
recurrence relation includes the possibilities of p = 0 and p = q > 0.

(2) When e ∈ E(G) is a loop, f (e) is a loop in K p,qn . Since there are p loops attached at each vertex of
K p,qn , we have hom(G, K

p,q
n ) = p hom(G− e, K p,qn ).

(3) Let e ∈ E(G) be a bridge. Then f (e) is either a loop xx or a non-loop edge xy with m(xy) = q. The
graph K p,qn has p loops attached at x and (n − 1)q non-loop edges incident with x (or y). Hence,
hom(G, K p,qn ) = (p+ q(n− 1)) hom(G/e, K p,qn ).
The result also holds for n = 1. In this case K p,01 is a graph with one vertex and p loops. It is

clear that hom(G, K p,01 ) = p|E(G)| for every graph G. �

Theorem 2.1 and Lemma 2.2 imply the following relationship for all n ≥ 1 (the case n = 1 is
straightforward since T (G; 2, 2) = 2m).

Theorem 2.3. For every graph G with λ vertices, m edges and c connected components, the following
holds:
1. hom(G, K p,qn ) = nc(p− q)λ−cqm−λ+cT

(
G; p+q(n−1)p−q ,

p
q

)
with q ≥ 1 and p 6= q.

2. hom(G, K p,01 ) = (p/2)mT (G; 2, 2) with p > 0.

Remark. When p = q, hom(G, K p,pn ) = nλpm is considered an evaluation of the Tutte polynomial
in [2], hence it could be included as case 3 in the previous theorem. However we have not considered
this case since the characterization provided by Theorem 2.3 and the following results hold for p 6= q.

Our next aim is to characterize the graphs H such that the parameter hom( ,H) satisfies a
contraction–deletion formula. We first state the result for complete graphs, that is, graphs with the
property that between any two distinct vertices there is at least one edge, and at a vertex there may
be any number of loops.

Definition 2.4. A function h : Ω → Q − {0} is called local if for every graph G ∈ Ω the quotients
h(G)/h(G−e) and h(G)/h(G/e) depend only onwhether the edge e is a loop, a bridge or none of them,
but they do not depend on the choice of G and e (up to its status as a loop, bridge or neither).

Remark. A local function h cannot take the value zero for any graph G since in that case the quotients
h(G)/h(G − e) and h(G)/h(G/e) are undefined for every graph G. Indeed, since these quotients do
not depend on the graph, if there exists a graph G0 such that h(G0) = 0 then h(G)/h(G − e) and



h(G)/h(G/e) are either zero for every graph G or undefined for every graph G. To show that the first
case is impossible it suffices to note that h ≡ 0 and hence the quotients are undefined.

Lemma 2.5 ([29]). Let q1, . . . , qt be different non-zero real numbers and let k be positive integer. If there
exist real numbers a1, . . . , at such that for all m ≥ k it holds that,

a1qm1 + a2q
m
2 + · · · + atq

m
t = 0

then a1 = a2 = · · · = at = 0.

Proposition 2.6. For every complete graph H ∈ Ω , the two following statements are equivalent:
(1) There exist two rational numbers xH and yH , and a local function hH such that for every graph G,
hom(G,H) = hH(G)T (G; xH , yH).

(2) There exist p, q, n ∈ N with p 6= q such that H ∼= K p,qn .

Proof. (⇐=) When H ∼= K p,qn , Theorem 2.3 provides the numbers xH and yH , and the local function
hH satisfying statement (1).
(=⇒) Suppose that there exist such two rational numbers xH and yH , and a local function hH . We have
to show thatH is isomorphic to some K p,qn . If so, then the values xH , yH and hH(G) are necessarily those
stated in Theorem 2.3.
Since H is a complete graph, we can assume that H is not simple (if not, H ∼= Kn and the result

holds). Thus, it suffices to prove the following: (1) every non-loop edge of H has multiplicity q,
(2) there are p loops attached at each vertex of H , (3) p 6= q. Let us consider two cases according
to the number of loops in H .
Case 1. The graph H has n vertices and no loops.
For the graph K p,01 we have 0 = hom(K p,01 ,H) = hH(K

p,0
1 )T (K p,01 , xH , yH) = hH(K

p,0
1 )ypH which

implies that yH = 0 since hH(K
p,0
1 ) 6= 0.

Suppose now on the contrary that there are t different non-zero edge multiplicities that appear
in H , denoted by q1, . . . , qt . Since H is not simple and has no loops, there is at least one multiplicity
bigger than one. Let ei be the number of pairs of vertices joined by an edge of multiplicity qi (thus, the
total number of edges is

∑
eiqi). We have,

hom(K 0,m2 ,H) =
∑
2eiqmi = hH(K

0,m
2 )T (K 0,m2 , xH , 0) = hH(K

0,m
2 )xH .

Since hH is a local function, there exist some value c depending only on H and not onm such that,

c =
hH(K

0,m
2 )

hH(K
0,m
2 − e)

=
hH(K

0,m
2 )

hH(K
0,m−1
2 )

=

∑
eiqmi∑
eiqm−1i

.

Hence,

0 =
∑
eiqmi − c

∑
eiqm−1i =

∑
qm−1i ei(qi − c).

By Lemma 2.5 it follows that qi = c for i = 1, . . . , t and therefore all the edge multiplicities are the
same, as needed.
Case 2. The graph H has n vertices and at least one loop.
Let q1, . . . , qt and e1, . . . , et be defined as in the previous case. Assume also on the contrary that

there are s different loopmultiplicities, denoted by p1, . . . , ps, and let fj be the number of verticeswith
pj loops attached. Then,

hom(K 0,m2 ,H) =
∑
2eiqmi +

∑
fjpmj .

hom(K 0,m2 − e,H) =
∑
2eiqm−1i +

∑
fjpm−1j .

hom(K 0,m2 /e,H) =
∑
fjpm−1j .

Since H satisfies statement (1) and has loops we have,

0 6= hom(K 0,m2 /e,H) = hH(K
0,m
2 /e)T (K 0,m2 /e; xH , yH) = hH(K

0,m
2 /e)ym−1H ⇒ yH 6= 0.



Furthermore,

hom(K 0,m2 ,H) = hH(K
0,m
2 )T (K 0,m2 ; xH , 0)

= hH(K
0,m
2 )

[
T (K 0,m2 − e; xH , 0)+ T (K

0,m
2 /e; xH , 0)

]
=

hH(K
0,m
2 )

hH(K
0,m
2 − e)

hom(K 0,m2 − e,H)+
hH(K

0,m
2 )

hH(K
0,m
2 /e)

hom(K 0,m2 /e,H).

Thus,∑
2eiqmi +

∑
fjpmj =

hH(K
0,m
2 )

hH(K
0,m
2 − e)

[∑
2eiqm−1i +

∑
fjpm−1j

]
+
hH(K

0,m
2 )

hH(K
0,m
2 /e)

[∑
fjpm−1j

]
.

Denoting c and c̃ the quotients hH (K
0,m
2 )

hH (K
0,m
2 −e)

and hH (K
0,m
2 )

hH (K
0,m
2 /e)

respectively, one obtains the following

equation,∑
2eiqmi +

∑
fjpmj − c

(∑
2eiqm−1i +

∑
fjpm−1j

)
− c̃

∑
fjpm−1j = 0.

By Lemma 2.5, we conclude that qi = c for i = 1, . . . , t and pj = c + c̃ for j = 1, . . . , s. Hence, all
non-loop edgemultiplicities are the same, say equal to q, and all loopmultiplicities are also equal, say
equal to p. To show that p 6= q it suffices to observe that c̃ is not zero. �

We next prove the non-complete version of the previous proposition.

Theorem 2.7. For every connected graph H ∈ Ω , the following statements are equivalent:

(1) There exist two rational numbers xH and yH , and a local function hH such that for every graph G,
hom(G,H) = hH(G)T (G; xH , yH).

(2) There exist p, q, n ∈ N with p 6= q such that H ∼= K p,qn .

Proof. By Proposition 2.6, it suffices to prove that if H satisfies statement (1) then H is a complete
graph. We consider two cases according to the number of loops in H .
Case 1. The graph H has n vertices and no loops.
We can assume that the non-zero multiplicities that appear in H are all equal, say equal to q since

in proving Proposition 2.6, we only use that H is complete to exclude the case in which H is simple
and so H ∼= Kn. Thus, the same argument proves that all the non-zero multiplicities in H are the same.
Since H is loopless then 0 = hom(K p,01 ,H) = hH(K

p,0
1 )ypH which leads to yH = 0. Moreover, since

H is simple we have,

hH(K
0,m
2 )

hH(K
0,m−1
2 )

=
hom(K 0,m2 ,H)T (K 0,m−12 , xH , 0)

hom(K 0,m−12 ,H)T (K 0,m2 , xH , 0)
=
2|E(H)|qmxH
2|E(H)|qm−1xH

= q.

Therefore for every graphG and e ∈ E(G) that is neither a loop nor a bridgewehave hH(G)/hH(G−e) =
q, since the value of this quotient does not depend on the graph G.
Let A(H) denote the adjacency matrix of H . A m-walk in a graph is an alternating sequence of

vertices and edges v0, e1, v1, . . . , vm−1, em, vm where ei+1 = vivi+1 for 0 ≤ i ≤ m− 1. An m-walk is
closed if v0 = vm.
The matrix A(H)m has (i, j) entry the sum of m-walks from i to j. Moreover, a closed m-walk

corresponds to a homomorphic image of Cm. Thus, for a cycle of length m, denoted by Cm, we have
that hom(Cm,H) = trace(A(H)m) [14]. On the other hand, if Pm denotes the path on m vertices, then
hom(Pm,H) counts them-walks in H not necessarily closed, and so hom(Pm,H) = trace(J · A(H)m−1)
where J is the all-one-matrix [14]. Hence, whenm is even it follows that,

0 6= hom(Cm,H) = hH(Cm)T (Cm, xH , 0),
0 6= hom(Pm−1,H) = hH(Pm−1)T (Pm−1, xH , 0).



Thus, hom(Cm,H) = q · hom(Pm−1,H)+
hH (Cm)
hH (Cm−1)

hom(Cm−1,H). Denoting by c̃ the quotient
hH (Cm)
hH (Cm−1)

it follows that,

trace(A(H)m) = q · trace(J · A(H)m−1)+ c̃ · trace(A(H)m−1).

Therefore, trace((A(H)− qJ− c̃I)A(H)m−1) = 0 for everymwhich implies that all the elements of the
matrix A(H) − qJ − c̃I are equal to zero. Since H is loopless then c̃ = −q and A(H) is the adjacency
matrix of a complete graph with no loops and multiplicity q in all the non-loop edges.
Case 2. The graph H has n vertices and at least one loop.
Suppose on the contrary that H is not a complete graph. By Proposition 2.6 we can assume that all

the non-zero multiplicities of the non-loop edges that appear in H are equal, say equal to q. Denote by
α the number of non-loop edges with multiplicity zero in H . We can also assume that there are n− β
vertices with the same number of loops attached, say equal to p different than q, and β vertices with
no loops attached.
The graph H has loops which implies that 0 6= hom(K p,01 ,H) = hH(K

p,0
1 )ypH and so yH 6= 0. Since h

is a local function and H satisfies statement (1) we have,

c =
hH(K

0,m
2 )

hH(K
0,m−1
2 )

=

[(
n(n−1)
2 − α

)
qm + (n− β)pm

]
(xH + yH + · · · + ym−2H )[(

n(n−1)
2 − α

)
qm−1 + (n− β)pm−1

]
(xH + yH + · · · + ym−1H )

where c is a constant that does not depend onm. Thus if yH = 1 then,[(
n(n− 1)
2

− α

)
[c(xH +m− 1)− q(xH +m− 2)]

]
qm−1

+ (n− β)[c(xH +m− 1)− p(xH +m− 2)]pm−1 = 0

and if yH 6= 1 it follows that,[(
n(n− 1)
2

− α

)(
xH −

yH
yH − 1

)
(q · c − q2)

]
qm−2

+

[
(n− β)

(
xH −

yH
yH − 1

)
(p · c − p2)

]
pm−2

+

[(
n(n− 1)
2

− α

)(
yH
yH − 1

)
(c · q · yH − q2)

]
(q · yH)m−2

+

[
(n− β)

(
yH
yH − 1

)
(c · p · yH − p2)

]
(p · yH)m−2 = 0.

In both cases since p 6= q, by Lemma 2.5 we conclude that n(n− 1)/2 = α and n = β which leads
to the desired contradiction. Hence H ∼= K p,qn . �

Theorems 2.1 and 2.7 lead to the characterization of the graphs H such that the parameter
hom( ,H) satisfies a Tutte–Grothendieck contraction–deletion formula.

Corollary 2.8. For every connected graph H ∈ Ω with n vertices, the following two statements are
equivalent:

1. There exist rational numbers aH , bH , cH and dH such that the parameter hom( ,H) satisfies the
following recurrence relations:
(i) hom(G,H) = nλ if G has no edges and λ vertices.
(ii) hom(G,H) = aH hom(G− e,H)+ bH hom(G/e,H) provided that e ∈ E(G) is neither a loop nor
a bridge.

(iii) hom(G,H) = cH hom(G/e,H) whenever e ∈ E(G) is a bridge.
(iv) hom(G,H) = dH hom(G− e,H) whenever e ∈ E(G) is a loop.

2. There exist p, q ∈ N with p 6= q such that H ∼= K p,qn .



Another consequence of Theorem 2.7 is the characterization of the finite simple graphsH such that
the parameter hom( ,H) can be recovered from the Tutte polynomial, up to a local function. It turns
out that these graphs are just those that can be recovered from the chromatic polynomial.

Corollary 2.9. Let H be a finite connected simple graph with n vertices. The following statements are
equivalent:

1. There exist two rational numbers xH and yH , and a local function hH such that for every graph G,
hom(G,H) = hH(G)T (G; xH , yH).

2. H ∼= Kn.

We conclude this section by establishing a relationship for homomorphisms of dual graphs.

Proposition 2.10. Let G be a planar graph with λ vertices, m edges and c connected components, and G∗
be its dual graph. Then the following holds:

1. hom(G, K p,qn ) =
(
p−q
q

)m
nλ−m−1 hom

(
G∗, K

q+ q
2n
p−q ,q

n

)
with q+ q2n

p−q ∈ N, n > 1, q ≥ 1 and p ≥ 0.

2. hom(G, K p,01 ) = hom(G∗, K p,01 ) with p > 0.

Proof. If G is a planar graph with λ vertices, m edges and c connected components, then the dual
graph, G∗, is a connected graph with 1 − λ + m + c vertices and m edges. Given p, q and n > 1
satisfying that q + q2n

p−q ∈ N, let us choose x = p+q(n−1)
p−q and y = p/q. Thus, x 6= 1 and xq 6= q.

Moreover, n = (x− 1)(y− 1). By Theorem 2.3 we have,

T (G; x, y) = [(x− 1)(y− 1)]−c(yq− q)c−λq−m+λ−chom(G, K yq,qn )

= (x− 1)−c(y− 1)−λq−m hom(G, K yq,qn ).

T (G∗; y, x) = [(x− 1)(y− 1)]−1(yq− q)λ−m−cq−λ+chom(G∗, K xq,qn )

= (x− 1)−1+λ−m−c(y− 1)−1q−m hom(G∗, K xq,qn ).

In [32] it is proved that for every planar graph G, T (G; x, y) = T (G∗; y, x). Hence,

hom(G, K p,qn ) = (x− 1)−1+λ−m(y− 1)λ−1 hom(G∗, K xq,qn )

=

(
p− q
q

)m
nλ−m−1 hom

(
G∗, K

q+ q
2n
p−q ,q

n

)
where x− 1 = qn/(p− q) and y− 1 = (p− q)/q.
When q = 0, it is straightforward to show that the result also holds. �

We want to stress that the conditions xq = q + q2n
p−q ∈ N and n > 1 imply q < p and

(x − 1)(y − 1) > 1. Therefore the previous result provides a connection between the number of
homomorphisms of G and G∗ to K yq,qn and K xq,qn respectively, for an infinite number of points over the
hyperbolae (x− 1)(y− 1) = n.

3. Homomorphisms and other polynomial invariants of graphs

There are many polynomial invariants that can be recovered from the Tutte polynomial. Among
those, there are some (but not all) that can be related to homomorphism counting. In this section,
we establish connections between the parameter hom( ,H) and the boundary, the coboundary,
the transition, and the circuit partition polynomials. We start by considering the boundary and the
coboundary polynomials which have a special role in the theory of the Tutte polynomial, see for
example [13,33].
Let G be a graph and ω a fixed orientation of its edges. For every v ∈ V (G), we can divide the

edges incident with v according to the orientationω into two sets,ω+(v) andω−(v), that is the edges
directed into the vertex and the edges directed out of the vertex.



Given an abelian groupA of order r , a function f : E(G)→ A is called anA-flow ofGwith orientation
ω if for each vertex v ∈ V (G),∑

e∈ω+(v)

f (e) =
∑
e∈ω−(v)

f (e).

In particular, a nowhere-zero A-flow is a A\ {0}-flow. The number of A-flows of a graph G depends only
on the order of A and not on its particular structure.
Let us denote by ΘA(G) the set of A-flows of G. The boundary polynomial, or bad flow polynomial

of [33], is defined as follows.

F(G; r, x) =
∑
f∈ΘA(G)

x|f
−1(0)|

where |f −1(0)| is the number of zero-edges in the A-flow f . Clearly this polynomial is an extension of
the flow polynomial since it considers not only nowhere-zero A-flows of a graph G, but also A-flows
in which there are i zero-edges with 1 ≤ i ≤ |E(G)|. Thus, F(G; r, 0) is the flow polynomial of G.
Similarly, the coboundary polynomial, ormonochrome polynomial of [33], is defined for any abelian

group A of order r by

P(G; r, y) =
∑
g∈Cr (G)

y|Γg (G)|

whereCr(G) is the set of vertex r-colorings ofG, andΓg(G) is the set ofmonochrome edges in a given g ∈
Cr(G), that is, the edges which have endpoints of the same color. Since the chromatic polynomial only
considers proper vertex r-colorings of a graph, it is clear that P(G; r, 0) is the chromatic polynomial
of G.
The following relationships define the boundary and the coboundary polynomials as evaluations

of the Tutte polynomial, up to local functions.

Theorem 3.1 ([33]). For any graph G with λ vertices, m edges and c connected components the following
holds:

(1) F(G; r, x) = (x− 1)m−λ+cT
(
G; x, x−1+rx−1

)
.

(2) P(G; r, y) = rc(y− 1)λ−cT
(
G; y−1+ry−1 , y

)
.

Remark. We refer the reader to [2] for how to interpret F(G; r, 1) = rm−λ+c and P(G; r, 1) = rλ as
sort of evaluations of the Tutte polynomial.

Now, we relate these polynomials to the parameter hom( ,H).

Proposition 3.2. For every graph G with λ vertices, m edges and c connected components, the following
holds:

(1) hom(G, K p,qn ) = nλ−m(p− q)mF
(
G; n, p+q(n−1)p−q

)
with n > 1, q ≥ 1, p ≥ 0 and p 6= q.

(2) hom(G, K p,qn ) = qmP(G; n, p/q) with n > 1, q ≥ 1, p ≥ 0 and p 6= q.

Proof. To prove statement (1), let us choose x = p+q(n−1)
p−q and r = n. Then,

x− 1+ r
x− 1

=
p
q

and Theorem 3.1 provides the following relationship,

T
(
G;
p+ q(n− 1)
p− q

,
p
q

)
=

(
qn
p− q

)λ−m−c
F
(
G; n,

p+ q(n− 1)
p− q

)
.



Hence by Theorem 2.3, we have

hom(G, K p,qn ) = nc(p− q)λ−cqm−λ+cT
(
G;
p+ q(n− 1)
p− q

,
p
q

)
= nc(p− q)λ−cqm−λ+c

(
qn
p− q

)λ−m−c
F
(
G; n,

p+ q(n− 1)
p− q

)
= nλ−m(p− q)mF

(
G; n,

p+ q(n− 1)
p− q

)
.

Statement (2) is proved analogously. It suffices to choose y = p/q and r = n. Then,

y− 1+ r
y− 1

=
p+ q(n− 1)
p− q

and by Theorems 2.3 and 3.1 it follows that,

hom(G, K p,qn ) = nc(p− q)λ−cqm−λ+cT
(
G;
p+ q(n− 1)
p− q

,
p
q

)
= nc(p− q)λ−cqm−λ+cn−c

(
p− q
q

)c−λ
P
(
G; n,

p
q

)
= qmP

(
G; n,

p
q

)
. �

Theorem 3.3. For every connected graph H ∈ Ω , the following two statements are equivalent:
(1) There exist a rational number xH , a positive integer number rH > 1, and a local function hH satisfying
that for every graph G, hom(G,H) = hH(G)F(G; rH , xH).

(2) There exist p, q, n ∈ N with p 6= q such that H ∼= K p,qn .

Proof. (⇐=) When H is isomorphic to some K p,qn , Proposition 3.2 provides the numbers xH and rH ,
and the function hH satisfying statement (1).
(=⇒) Suppose now that we are given a graph H satisfying statement (1). Let G ∈ Ω be a graph with
λ vertices,m edges and c connected components. Theorem 3.1 implies that,

hom(G,H) = hH(G)F(G; rH , xH)

= hH(G)(xH − 1)m−λ+cT
(
G; xH ,

xH − 1+ rH
xH − 1

)
.

Since the function hH(G)(xH − 1)m−λ+c is local, Theorem 2.7 leads to H ∼= K
p,q
n . �

Observe that Theorem 3.1 and the connection between the parameter hom( ,H) and the Tutte
polynomial, enable us to state and prove a similar characterization for the coboundary polynomial.
We omit it for the sake of brevity.
The transition polynomial was first defined in [17] on 4-regular planar graphs in terms of a weight

functionΛ. One can find many interesting applications of this polynomial mostly in knot theory, see
for instance [19]. The Tutte polynomial of a connected planar graph Gwith set of faces R(G) is related
to the transition polynomial Q (M(G);Λ, τ ) of its medial graph M(G). The following relationship is
proved in [17] for special values of µ and δ, and a special weight function Λ. For the sake of brevity,
we do not describe the roles of these parameters but refer the reader to [17] for a complete description
of them.

Q (M(G);Λ, τ ) = δ1−|V (G)|µ1−|R(G)|T
(
G; 1+

δτ

µ
, 1+

µτ

δ

)
.

The medial graph M(G) is the planar connected 4-regular graph obtained from G as follows: The
vertices of M(G) correspond to the edges of G and two vertices of M(G) are joined by an edge if the



Fig. 2. (a) The cycle C4 , (b) the medial graph of C4 , (c) the directed medial graph of C4 .

corresponding edges of G are neighbors in the cyclic order around the vertex (see Fig. 2). We do not go
into more details and just state the connection between the transition polynomial and the parameter
hom( ,H). This connection is given by the following two results.

Proposition 3.4. Let G be a connected planar graph with λ vertices and m edges. The number of
homomorphisms of G to K p,qn with p 6= q and n > 1 is given by

hom(G, K p,qn ) = nm−λ+1(p− q)mδmQ (M(G),Λ,
√
n) if p− q 6= q

√
n.

hom(G, K p,qn ) = (
√
n)λ+1qmδmQ (M(G),Λ,

√
n) if p− q = q

√
n.

Proof. Assume first that p− q 6= q
√
n. By Theorem 2.3 we have,

hom(G, K p,qn ) = n(p− q)λ−1qm−λ+1T
(
G;
p+ q(n− 1)
p− q

,
p
q

)
.

Let us choose δ 6= 0, τ =
√
n and µ = δ p−qq

√
n . Then,

p+ q(n− 1)
p− q

= 1+
δ
√
n

µ
and

p
q
= 1+

µ
√
n

δ
·

We prove this result by using Euler’s formula, |R(G)| = 2−λ+m, and by considering the connection
between the Tutte polynomial and the transition polynomial. We proceed as follows.

hom(G, K p,qn ) = n(p− q)λ−1qm−λ+1T
(
G;
p+ q(n− 1)
p− q

,
p
q

)
= n(p− q)λ−1qm−λ+1T

(
G; 1+

δ
√
n

µ
, 1+

µ
√
n

δ

)
= n(p− q)λ−1qm−λ+1δλ−1µ1+m−λQ (M(G),Λ,

√
n)

= n(p− q)λ−1qm−λ+1δm
(
p− q
q
√
n

)1+m−λ
Q (M(G),Λ,

√
n)

= n1+m−λ(p− q)mδmQ (M(G),Λ,
√
n).

Suppose now that p− q = q
√
n. Then, µ = δ and

p
q
= 1+

√
n =

p+ q(n− 1)
p− q

.

Thus, the following expressions are obtained.

hom(G, K p,qn ) = n(p− q)λ−1qm−λ+1T (G; 1+
√
n, 1+

√
n)

= n((1+
√
n)q− q)λ−1qm−λ+1δmQ (M(G),Λ,

√
n)

= (
√
n)1+λqmδmQ (M(G),Λ,

√
n). �

Theorem 3.5. For every connected graph H ∈ Ω , the following statements are equivalent:
1. There exist a constant τH , and a local function hH such that for every connected planar graph G,
hom(G,H) = hH(G)Q (M(G);Λ, τH).

2. There exist p, q, n ∈ N with p 6= q and n > 1 such that H ∼= K p,qn .



Proof. (⇐=) When H is isomorphic to some K p,qn , Proposition 3.4 proves that statement (1) holds.
(=⇒) Consider now the constant τH , and the local function hH satisfying statement (1). Let G be a
connected planar graph with λ vertices andm edges. We have,

Q (M(G),Λ, τH) = δ1−λH µλ−m−1H T
(
G; 1+

δHτH

µH
, 1+

µHτH

δH

)
.

Then,

hom(G,H) = hH(G)δ1−λH µλ−m−1H T
(
G; 1+

δHτH

µH
, 1+

µHτH

δH

)
.

Clearly, the function hH(G)δ1−λH µλ−m−1H is local. Hence, Theorem 2.7 implies that H is isomorphic to
some K p,qn . �

We obtain similar results for the circuit partition polynomial which was first defined in [9] as
a generating function for the number of Eulerian partitions of an Eulerian graph or digraph into s
components. This polynomial is a generalization, for a specific weight function, of one of Jaeger’s
transitionpolynomials (see [9]). It hasmany applications to several areas, includingnon-mathematical
fields (see for instance [1,3]).
The Tutte polynomial of a planar graph G with c connected components is related to the circuit

partition polynomial of its directed medial graph
−−→
M(G) (see [26,27]). This relationship is given by the

following expression,

j(
−−→
M(G); x) = xcT (G; x+ 1, y+ 1)

The directed medial graph
−−→
M(G) results from directing the edges ofM(G) as follows. We first color the

faces of M(G) black or white, depending on whether they contain or do not contain, respectively, a
vertex of the original graph G. The edges ofM(G) are directed so that the black face is on the left of an
incident edge (see Fig. 2). We just state the connection between the circuit partition polynomial and
the parameter hom( ,H), without going into more detail.

Proposition 3.6. Let G be a planar graph with λ vertices, m edges and c connected components. For every
q, n ∈ N with q ≥ 1 and n > 1 such that

√
n ∈ N, the following holds:

hom
(
G, K (1+

√
n)q,q

n

)
= (
√
n)λqmj(

−−→
M(G);

√
n).

Proof. Given q and n, let us choose p = (1+
√
n)q. Then,

p+ q(n− 1)
p− q

=
p
q
= 1+

√
n⇒ T

(
G;
p+ q(n− 1)
p− q

,
p
q

)
= T

(
G; 1+

√
n, 1+

√
n
)
.

Hence by Theorem 2.3 we have,

hom(G, K (1+
√
n)q,q

n ) = nc(p− q)λ−cqm−λ+cT
(
G;
p+ q(n− 1)
p− q

,
p
q

)
= nc((1+

√
n)q− q)λ−cqm−λ+c(

√
n)−c j(

−−→
M(G);

√
n)

= (
√
n)λqmj(

−−→
M(G);

√
n). �

Theorem2.7 and the connection between the Tutte polynomial and the circuit partition polynomial
allow us to prove the following result.

Theorem 3.7. Let H ∈ Ω be a connected graph. Suppose that there exist a constant xH , and a local function
hH such that for every planar graph G, hom(G,H) = hH(G)j(

−−→
M(G); xH). Then there exist p, q, n ∈ Nwith

p 6= q and n > 1 such that H ∼= K p,qn .

Remark. The Penrose polynomial is an instance of graph polynomial that cannot be related to the
homomorphism counting by using our technique. Indeed, this polynomial can be described in terms



of a transition polynomial for specific values of δ, µ and τ (see [17] for more details). The Penrose
polynomial is defined for τ = −2 and Proposition 3.4 considers τ =

√
n > 0.

4. Applications to abelian groups and statistical physics
The aim of this section is to sketch connections between homomorphism counting and

fundamental evaluations of the Tutte polynomial in abelian groups and statistical physics. Concretely,
we focus on difference sets in abelian groups, the Potts model and the random cluster model in
statistical mechanics.
4.1. Difference sets in abelian groups

Let G be a graph with a fixed orientation ω of its edges, and consider uniform probability in the
space of pairs (f1, f2) of functions from E(G) into a subset B of an abelian group A of order r . A (r, k, l)-
difference set in A is a subset B ⊆ A of k elements with 2 ≤ k ≤ r such that, for all 0 6= a ∈ A there
exist l pairs (b1, b2) ∈ B× Bwith b1 − b2 = a.
LetAV (G) denote the set of all functions g : V (G)→ A, andAE(G) the set of all functions f : E(G)→ A.

The boundary operator d∗ : AE(G) → AV (G) is defined for a given function f : E(G)→ A and each vertex
v ∈ V (G) by,

d∗f (v) =
∑
e∈ω+(v)

f (e)−
∑
e∈ω−(v)

f (e).

Observe that the kernel of d∗ is the space of the A-flows of G.
In this subsection, we prove that when B is a difference set in A with k < r , the event that f1 and

f2 have the same boundary has probability equal, up to a factor, to hom(G, K
p,q
n ) for some values of

n, p and q. We first recall the relationship between such probability and the boundary polynomial
from [13].

Lemma 4.1 ([13]). If B is a (r, k, l)-difference set then,

Pr(d∗f1 = d∗f2) = k−2mlmF
(
G; r,

k
l

)
where G is a graph with m edges.

This lemma and Proposition 3.2 imply the following result.

Proposition 4.2. Let A be an abelian group on r elements, B ⊆ A a (r, k, l)-difference set in A, and q any
positive integer number such that ( rlk−l +1)q ∈ N. If two functions f1, f2 : E(G)→ B are chosen uniformly
at random then for every graph G with λ vertices and m edges it holds that,

Pr(d∗f1 = d∗f2) = k−2m(k− l)mr−λq−mhom
(
G, K

( rlk−l+1)q,q
r

)
.

Proof. Let us choose p = ( rlk−l + 1)q and n = r . Then,
p+ q(n− 1)
p− q

=
k
l
and F

(
G; r,

k
l

)
= F

(
G; n,

p+ q(n− 1)
p− q

)
.

Proposition 3.2 and Lemma 4.1 lead to the following expressions,

Pr(d∗f1 = d∗f2) = k−2mlmF
(
G; r,

k
l

)
= k−2mlmrm−λ(p− q)−m hom

(
G, K

( rlk−l+1)q,q
r

)
= k−2mlmrm−λ

(
qrl
k− l

)−m
hom

(
G, K

(
rl
k−l+1

)
q,q

r

)

= k−2m(k− l)mr−λq−m hom

(
G, K

(
rl
k−l+1

)
q,q

r

)
. �



Observe that the condition ( rlk−l+1)q ∈ N implies k > l. Hence, we can consider the value q = k− l
and the following result is a particular case of the above-stated proposition.

Corollary 4.3. Let B be a proper (r, k, l)-difference set in A. If two functions f1, f2 : E(G)→ B are chosen
uniformly at random then for every graph G with λ vertices and m edges we have,

Pr(d∗f1 = d∗f2) = k−2mr−λhom
(
G, K (r−1)l+k,k−lr

)
.

Note also that B = A \ {0} is an (r, r − 1, r − 2)-difference set. Thus, we can state the following
corollary.

Corollary 4.4. Let q be any positive integer number. If two functions f1, f2 : E(G)→ A \ {0} are chosen
uniformly at random then for every graph G with λ vertices and m edges it holds that,

Pr(d∗f1 = d∗f2) = (r − 1)−2mr−λq−mhom
(
G, K (r−1)

2q,q
r

)
.

4.2. The Potts model and the Gibbs probability

For the combinatorial analysis of the Potts model on a finite graph G, it is assumed that the
interaction energy, which measures the strength of the interaction between neighboring pairs of
vertices, is constant and equal to J . Consider that each vertex can be in S different states, and let
K = 2βJ where β is a parameter of the model determined by the temperature. The following
relationship between the partition function Z of the Potts model and the coboundary polynomial of G
is proved for example in [33],

Z(G) = e−K |E(G)|P(G; S, eK ).

This relationship and Proposition 3.2 lead to the connection between counting graph
homomorphisms and the partition function Z of the Potts model.

Proposition 4.5. Let q be any positive integer such that eKq ∈ N. Then for every graph G with m edges it
holds that,

Z(G) = e−Kmq−m hom
(
G, K e

K q,q
S

)
.

The random cluster model on a finite graph G can be regarded as the analytic continuation of the
Pottsmodel to non-integer S (see [31]). Thismodel is a correlated bond percolationmodel in statistical
mechanics, introduced by Fortuin and Kasteleyn in [10] (see also [31,33]) and defined by a probability
distribution, called the Gibbs probability, as follows. For every subset A ⊆ E(G),

µ(A) = N−1
(∏
e∈A

te

)(∏
e6∈A

(1− te)

)
Sk(A)

where k(A) is the number of connected components of the graph (V (G), A), the value te is a probability
assigned to every edge e ∈ E(G), S ≥ 0 is a parameter of the model, and N is the normalizing constant
so that

∑
A⊆E(G) µ(A) = 1.

When each of the te are made equal, the Gibbs probability appears as a two-parameter family of
probability measure µ = µ(t, S) where 0 ≤ t ≤ 1 and S > 0. In this case, this probability is
essentially an evaluation of the Tutte polynomial of G (see [33]). Indeed,

µ(A) =

( t
1−t

)|A| S−r(A)(
t

S(1−t)

)r(E(G))
T
(
G; 1+ S(1−t)

t , 1
1−t

)
where r(A) = |V | − k(A) is the rank of A.
We now reformulate this relationship in terms of homomorphism counting.



Proposition 4.6. Let G be a finite graph, and A ⊆ E(G). For every ` ∈ N such that (1 − t)` is a positive
integer, the Gibbs probability is given by

µ(A) =

( t
1−t

)|A| S−r(A)+|V (G)|(1− t)|E(G)|`|E(G)|
hom

(
G, K `,(1−t)`S

) .

Proof. Let us write n = S and q = (1− t)`. Then,

T
(
G;
`+ q(n− 1)

`− q
,
`

q

)
= T

(
G; 1+

S(1− t)
t

,
1
1− t

)
.

By Theorem 2.3 we have,

T
(
G;
`+ q(n− 1)

`− q
,
`

q

)
=
[
n−k(G)(`− q)k(G)−|V (G)|q−|E(G)|+|V (G)|−k(G)

]
hom

(
G, K `,qn

)
=
[
S−k(G)t−r(E(G))(1− t)r(E(G))−|E(G)|`−|E(G)|

]
hom

(
G, K `,(1−t)`n

)
.

Hence,

µ(A) =

( t
1−t

)|A| S−r(A)(
t

S(1−t)

)r(E(G))
S−k(G)t−r(E(G))(1− t)r(E(G))−|E(G)|`−|E(G)|hom

(
G, K `,(1−t)`n

)
=

( t
1−t

)|A| S−r(A)+|V (G)|(1− t)|E(G)|`|E(G)|
hom

(
G, K `,(1−t)`S

) . �

5. Coloring uniqueness

Since the Tutte polynomial contains a great deal of information about the graph to which it is
associated, a question that arises naturally is whether a graph can be recovered up to isomorphism
from its Tutte polynomial. A graph G is said to be Tutte-unique if T (G; x, y) = T (H; x, y) implies
H ∼= G, for every other graph H . Tutte uniqueness has been studied for several families of graphs,
such as complete multipartite graphs, wheels, hypercubes (see [28]), locally grid graphs [11,25], and
hexagonal tilings [12]. In 2000, Bollobás, Pebody and Riordan [4] conjectured that almost all graphs
are Tutte-unique. Since then there has been little progress on this conjecture.
The problem of finding graphs determined by polynomial invariants has been studied also for

other polynomials [30], such as the chromatic polynomial [20,21]. Since the chromatic polynomial
of a 2-connected graph can be recovered from its Tutte polynomial, we obtain that 2-connected
chromatically-unique graphs are Tutte-unique. It is also conjectured that almost all graphs are
chromatically-unique [4]. Following this line of research, we introduce the concept of coloring-
uniqueness.

Definition 5.1. A finite graph G is coloring-unique if hom(G, K p,qn ) = hom(H, K p,qn ) for all n ≥ 1,
p, q ≥ 0 and p 6= q implies H ∼= G, for every other graph H .

Observe that chromatically-unique graphs are coloring-unique.

Theorem 5.2. Let G be a simple, 2-connected graph. If G is coloring-unique then G is Tutte-unique.

Proof. Let H be a simple, 2-connected graph non-isomorphic to G. It suffices to prove that there exist
two values x0 and y0 such that T (G; x0, y0) 6= T (H; x0, y0). We can assume thatm = |E(G)| = |E(H)|
(if not T (G; 2, 2) 6= T (H; 2, 2)). Thus, since G and H are 2-connected simple graphs, we have



Table 1

Homomorphisms–Tutte polynomial
hom(G, K p,qn ) = nc(p− q)λ−cqm−λ+cT

(
G; p+q(n−1)p−q ,

p
q

)
, p ≥ 0, q ≥ 1, p 6= q G any graph with λ vertices,m edges, c

connected componentshom(G, K p,01 ) = (p/2)mT (G, 2, 2)with p > 0

Homomorphisms–Transition polynomial
hom(G, K p,qn ) = nm−λ+1(p− q)mδmQ (M(G), A,

√
n) if p− q 6= q

√
n G connected planar graphM(G)medial

graphhom(G, K p,qn ) = (
√
n)λ+1qmδmQ (M(G), A,

√
n) if p− q = q

√
n

Homomorphisms–Circuit partition polynomial
hom

(
G, K (1+

√
n)q,q

n

)
= (
√
n)λqmj(

−−→
M(G);

√
n), q ≥ 1, n > 1,

√
n ∈ N G planar graph.

−−→
M(G) directed medial

graph

Homomorphisms–Boundary polynomial
hom(G, K p,qn ) = nλ−m(p− q)mF

(
G; n, p+q(n−1)p−q

)
, p ≥ 0, q ≥ 1, p 6= q G any graph with λ vertices,m edges, c

connected components

Homomorphisms–Coboundary polynomial
hom(G, K p,qn ) = qmP(G; n, p/q), p ≥ 0, q ≥ 1, p 6= q G any graph with λ vertices,m edges, c

connected components

λ = |V (H)| = |V (G)|. The graph G is coloring-unique and so there exist n0, p0, q0 ∈ N such that
hom(G, K p0,q0n0 ) 6= hom(H, K p0,q0n0 ). By Theorem 2.3 it follows that,

n0(p0 − q0)λ−1q0m−λ+1T
(
G; 1+

q0n0
p0 − q0

,
p0
q0

)
6= n0(p0 − q0)λ−1q0m−λ+1T

(
H; 1+

q0n0
p0 − q0

,
p0
q0

)
which implies that,

T
(
G; 1+

q0n0
p0 − q0

,
p0
q0

)
6= T

(
H; 1+

q0n0
p0 − q0

,
p0
q0

)
. �

Observe that the above result enables us to state the following result which relates to the
uniqueness conjectures of Bollobás, Pebody and Riordan [4].

Theorem 5.3. If almost all graphs are coloring-unique then almost all graphs are Tutte-unique.

6. Concluding remarks

1. Some of the connections provided in this paper are summarized in Table 1. In particular, those
between counting graph homomorphisms and evaluating polynomials associated with graphs.
2. The connection between graph homomorphisms and graph invariants is well known and useful.

One can here quote not only classical (and not so classical) results such as those covered in [33,16],
but also recent works for reaching an algebraical approach of this connection, see for example [6].
It is perhaps surprising how tight (in certain very concrete instances) this connection is. This paper
shows both the connection in the case of polynomial invariants, and also its limitations. But perhaps
this approach can put in a new context some well-known problems such as uniqueness questions.
Andrew Goodall [15] very recently showed the converse of Theorem 5.2: Every Tutte unique graph is
coloring unique. A bit surprisingly, the concepts of Tutte- and coloring-uniqueness coincide.
3. Finally, note that in proving Theorem 2.7 we used the properties of the homomorphism function

hom( ,H) for very special graphs only: multiple edges and cycles (and their minors). It is sufficient
to assume the locality of the function hH for this small minor closed family. We shall postpone the
details of these questions to a sequel of this paper.
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